

RADIO TEST REPORT FCC ID: 2AXUI-103S

Product: 4G TABLET PC Trade Mark: hatch Model No.: 103S Family Model: N/A Report No.: STR220923002001E Issue Date: Nov 02, 2022

Prepared for

CHITECH SHENZHEN TECHNOLOGY CO., LTD

101, NO.48, Xiashijia Road, Gongming Town, Guangming Dist., Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 TE	1 TEST RESULT CERTIFICATION			
2 SU	MMARY OF TEST RESULTS	4		
3 FA	CILITIES AND ACCREDITATIONS	5		
3.1	FACILITIES			
3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY			
4 GE	NERAL DESCRIPTION OF EUT	6		
5 DE	SCRIPTION OF TEST MODES	8		
6 SE	FUP OF EQUIPMENT UNDER TEST	9		
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9		
6.2	SUPPORT EQUIPMENT			
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS			
7 TE	ST REQUIREMENTS			
7.1	CONDUCTED EMISSIONS TEST			
7.2 7.3	RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL			
7.3 7.4	NUMBER OF HOPPING CHANNEL			
7.4	AVERAGE TIME OF OCCUPANCY (DWELL TIME)			
7.6	20DB BANDWIDTH TEST			
7.7	PEAK OUTPUT POWER			
7.8	CONDUCTED BAND EDGE MEASUREMENT			
7.9	SPURIOUS RF CONDUCTED EMISSION			
7.10	ANTENNA APPLICATION			
7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS			
8 TE	ST RESULTS			
8.1	DWELL TIME	35		
8.2	MAXIMUM CONDUCTED OUTPUT POWER			
8.3	OCCUPIED CHANNEL BANDWIDTH			
8.4	CARRIER FREQUENCIES SEPARATION	55		
8.5	NUMBER OF HOPPING CHANNEL.	60		
8.6	BAND EDGE			
8.7	CONDUCTED RF SPURIOUS EMISSION	74		

1 TEST RESULT CERTIFICATION

Applicant's name	CHITECH SHENZHEN TECHNOLOGY CO.,LTD
Address	101, NO.48, Xiashijia Road, Gongming Town, Guangming Dist., Shenzhen, China
Manufacturer's Name	CHITECH SHENZHEN TECHNOLOGY CO.,LTD
Address	101, NO.48, Xiashijia Road, Gongming Town, Guangming Dist., Shenzhen, China
Product description	
Product name	4G TABLET PC
Model and/or type reference	103S
Family Model	N/A
Sample number	T220923002R002

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD/ TEST PROCEDURE TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013			
This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., this document in the revision of the document.			
The test results of this report relate only to the tested sample identified in this report.			
Date of Test : Sep 28, 2022 ~ Nov 02, 2022			

Testing Engineer	:	12 Men lin
		(Allen Liu)
Authorized Signatory	:	Alex
c ,		(Alex Li)

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	4G TABLET PC	
Trade Mark	hatch	
FCC ID	2AXUI-103S	
Model No.	103S	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	0.56 dBi	
Adapter	MODEL: AS1201A-0502000USU INPUT: 100-240V~50/60Hz 0.35A MAX OUTPUT: 5V2000mA	
Battery	DC 3.7V, 8000mAh	
Power supply	DC 3.7V from battery or DC 5V from Adapter.	
HW Version	H106_MB_V3.0_20210718	
SW Version	Ignite.Q0.V9.33.2.RC-V39.8788.128.MP4	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01				
Revision History				
Report No.	Version	Description	Issued Date	
STR220923002001E	Rev.01	Initial issue of report	Nov 02, 2022	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

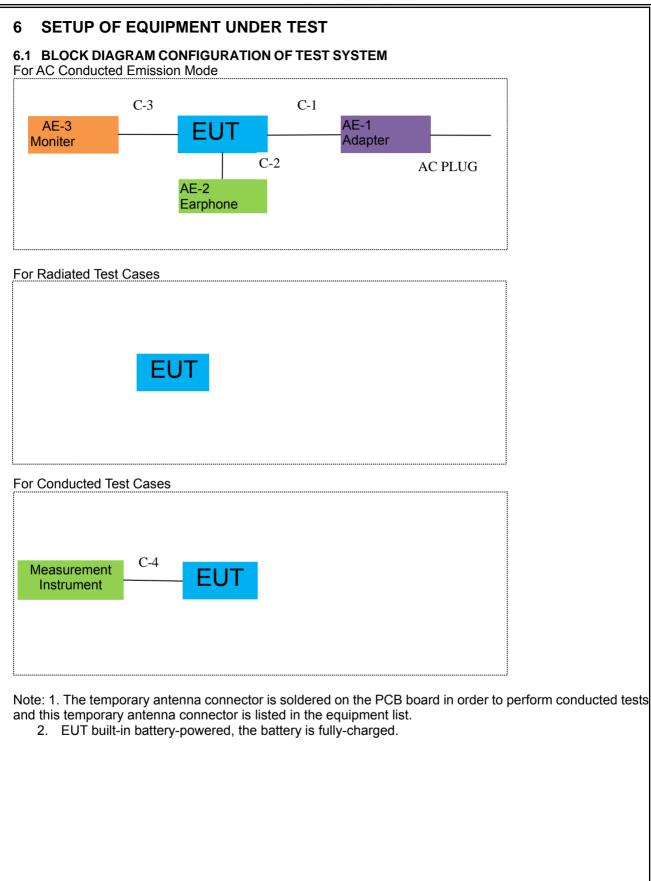
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode Description		
Mode 1 normal link mode		
Nete AO a superior line. Open de stad Enciencia en estado en de enciencia en esta de enciencia		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5 Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	AS1201A-0502000USU	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals
AE-3	Moniter	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.8m
C-2	Earphone Cable	NO	NO	1.2m
C-3	HDMI Cable	NO	NO	1.0m
C-4	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

addad	Und Conducted	corequipment					
Item	Item Kind of Equipment Manufacturer		Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz) N/A		R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G N/A Hz)		R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Ćable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

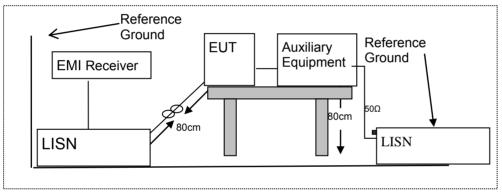
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

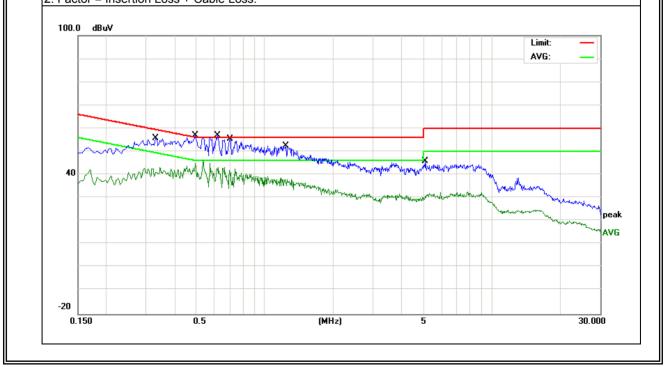
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

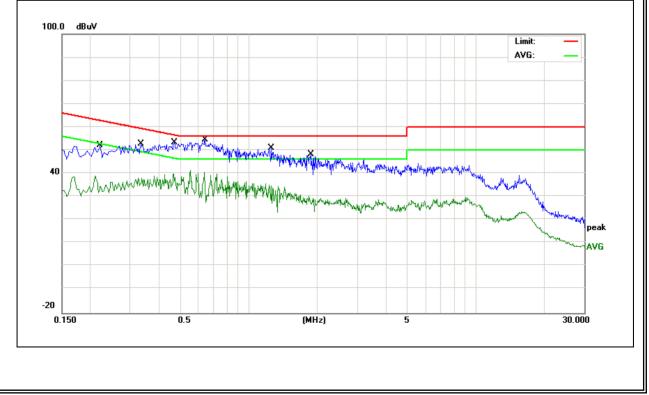
EUT:	4G TABLET PC	Model Name :	103S
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.3300	46.06	9.64	55.70	59.45	-3.75	QP
0.3300	36.02	9.64	45.66	49.45	-3.79	AVG
0.4940	41.70	9.66	51.36	56.10	-4.74	QP
0.4940	31.36	9.66	41.02	46.10	-5.08	AVG
0.6180	42.48	9.67	52.15	56.00	-3.85	QP
0.6180	32.66	9.67	42.33	46.00	-3.67	AVG
0.7019	42.69	9.67	52.36	56.00	-3.64	QP
0.7019	33.02	9.67	42.69	46.00	-3.31	AVG
1.2420	42.73	9.68	52.41	56.00	-3.59	QP
1.2420	32.47	9.68	42.15	46.00	-3.85	AVG
5.1099	36.08	9.77	45.85	60.00	-14.15	QP
5.1099	25.56	9.77	35.33	50.00	-14.67	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

NTEK 北测[®]


EUT:	4G TABLET PC	Model Name :	103S
Temperature:	25 °C	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2220	42.46	9.63	52.09	62.74	-10.65	QP
0.2220	32.52	9.63	42.15	52.74	-10.59	AVG
0.3339	43.14	9.65	52.79	59.35	-6.56	QP
0.3339	32.68	9.65	42.33	49.35	-7.02	AVG
0.4700	43.58	9.66	53.24	56.51	-3.27	QP
0.4700	33.36	9.66	43.02	46.51	-3.49	AVG
0.6419	42.34	9.67	52.01	56.00	-3.99	QP
0.6419	32.66	9.67	42.33	46.00	-3.67	AVG
1.2579	41.25	9.67	50.92	56.00	-5.08	QP
1.2579	30.66	9.67	40.33	46.00	-5.67	AVG
1.8700	38.43	9.67	48.10	56.00	-7.90	QP
1.8700	28.58	9.67	38.25	46.00	-7.75	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 dit10.20	According to FOOT art 15.200, Restricted bands								
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	(2)						
13.36-13.41									

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
Γ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
	30-88	100	40	3
	88-216	150	43.5	3
	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(Miriz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

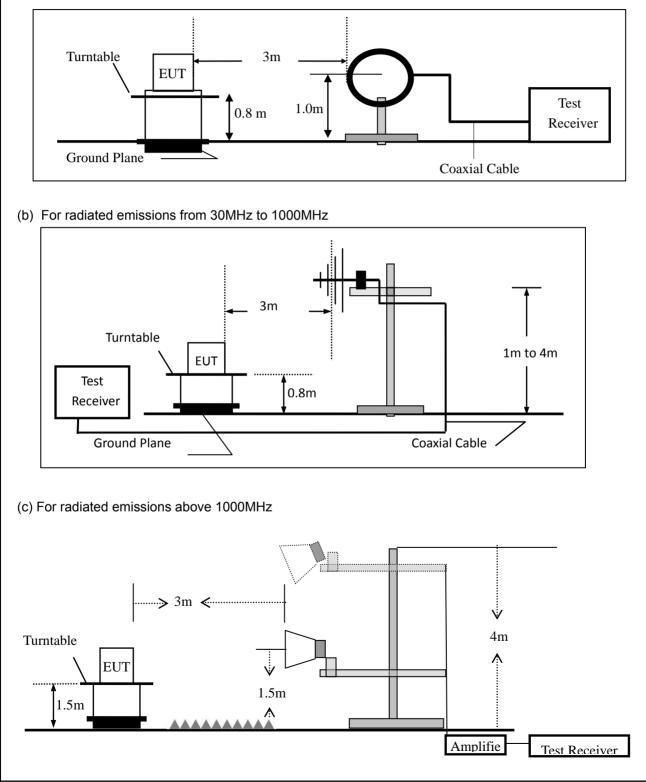
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth					
30 to 1000	QP	120 kHz	300 kHz					
Abaua 1000	Peak	1 MHz	1 MHz					
Above 1000	Average	1 MHz	1 MHz					

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	4G TABLET PC	Model No.:	103S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK ÀV Í		PK	AV	PK	r(dB) AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

31.3992

74.1350

148.4410

222.9500

9.56

17.29

11.19

15.21

-5.04

-8.21

-13.80

-13.51

QP

QP

QP

QP

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: 4G TABLET PC Model Name : 103S **25**℃ 55% Temperature: Relative Humidity: Pressure: 1010hPa Test Mode: Mode 3 GFSK DC 3.7V Test Voltage : Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB)

34.96

31.79

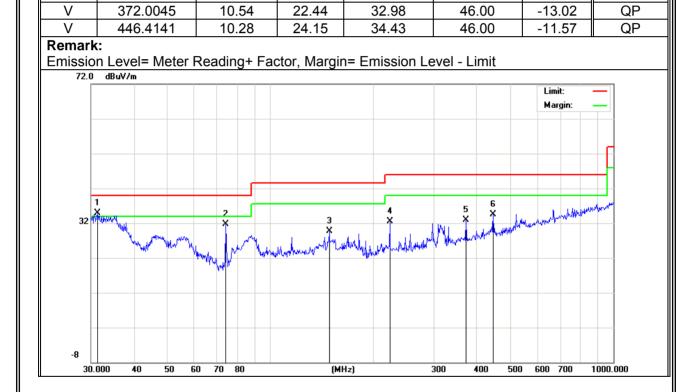
29.70

32.49

40.00

40.00

43.50


46.00

25.40

14.50

18.51

17.28

V

V

V

V

NTEK 北测[®]

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.8535	5.61	25.87	31.48	40.00	-8.52	QP
Н	148.4410	16.93	18.51	35.44	43.50	-8.06	QP
Н	222.9499	15.67	17.28	32.95	46.00	-13.05	QP
Н	297.2241	18.66	20.03	38.69	46.00	-7.31	QP
Н	446.4141	15.65	24.15	39.80	46.00	-6.20	QP
Н	520.8881	12.65	25.23	37.88	46.00	-8.12	QP
						Margin:	_
72.0	dBuV/m					Limit:	
_							
-							$+\mathbf{f}$
			2		4 5 × 6		
1			¥	3		Jun Alderson Street	werthowerth
³²	W. Martin Marrien and Marrien		MI	al water water we had been	M Humberton and M	handerstand	
	Mar Marine	h Mugan un	montaning	"" " the working we had been	AN WILLIAM AND AND A		
-	and the second second	WWWWWWWWWWWWWWWWWW					
	- Advante	V ^A					
-							
-8							

Spurious E					,					
EUT:				Model	No.:		103S			
emperature:	20 ℃			Relativ	Relative Humidity: 48%					
est Mode:	Mode	2/Mode3/	Mode4	Test By	/:		Allen	Liu		
Il the modulati	I the modulation modes have been tested, and the worst result was report as below:									
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)		
			Low Chann	el (2402 MH	z)(8-DPSK)-	-Above	e 1G			
4804.214	63.53	5.21	35.59	44.30	60.03	74	.00	-13.97	Pk	Vertical
4804.214	41.76	5.21	35.59	44.30	38.26	54	.00	-15.74	AV	Vertical
7206.265	61.16	6.48	36.27	44.60	59.31	74	.00	-14.69	Pk	Vertical
7206.265	43.86	6.48	36.27	44.60	42.01	54	.00	-11.99	AV	Vertical
4804.109	61.80	5.21	35.55	44.30	58.26	74	.00	-15.74	Pk	Horizontal
4804.109	44.04	5.21	35.55	44.30	40.50	54	.00	-13.50	AV	Horizontal
7206.224	62.91	6.48	36.27	44.52	61.14	74	.00	-12.86	Pk	Horizontal
7206.224	47.50	6.48	36.27	44.52	45.73	54	.00	-8.27	AV	Horizontal
		r	Mid Channe	el (2441 MH	z)(8-DPSK)-	-Above	e 1G			r
4882.396	63.55	5.21	35.66	44.20	60.22	74	.00	-13.78	Pk	Vertical
4882.396	44.24	5.21	35.66	44.20	40.91	54	.00	-13.09	AV	Vertical
7323.241	60.92	7.10	36.50	44.43	60.09	74	.00	-13.91	Pk	Vertical
7323.241	46.71	7.10	36.50	44.43	45.88	54	.00	-8.12	AV	Vertical
4882.108	60.75	5.21	35.66	44.20	57.42	74	.00	-16.58	Pk	Horizontal
4882.108	48.39	5.21	35.66	44.20	45.06	54	.00	-8.94	AV	Horizontal
7323.132	60.60	7.10	36.50	44.43	59.77	74	.00	-14.23	Pk	Horizontal
7323.132	41.32	7.10	36.50	44.43	40.49		.00	-13.51	AV	Horizontal
		[High Chann	el (2480 MH	z)(8-DPSK)-	- Abov	e 1G		[[
4960.397	66.35	5.21	35.52	44.21	62.87	74	.00	-11.13	Pk	Vertical
4960.397	42.77	5.21	35.52	44.21	39.29	54	.00	-14.71	AV	Vertical
7440.201	62.02	7.10	36.53	44.60	61.05	74	.00	-12.95	Pk	Vertical
7440.201	45.86	7.10	36.53	44.60	44.89	54	.00	-9.11	AV	Vertical
4960.225	67.06	5.21	35.52	44.21	63.58	74	.00	-10.42	Pk	Horizontal
4960.225	47.81	5.21	35.52	44.21	44.33	54	.00	-9.67	AV	Horizontal
7440.298	62.47	7.10	36.53	44.60	61.50	74	.00	-12.50	Pk	Horizontal
7440.298	45.44	7.10	36.53	44.60	44.47	54	.00	-9.53	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz										
EUT	:	4G TABLE	Model I	No.:		103S					
Tem	perature:	20 ℃			Relative	e Humidity	<i>'</i> :	48%			
Test	t Mode:	Mode2/ Mo	de4		Test By	/:		Allen	Liu		
All	the modula	ation modes	s have be	en tested	, and the	worst resu	lt was	s repo	ort as belo	ow:	
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
				3MI	bps(8-DPSK	()-Non-hoppi	ng				
	2310.00	58.20	2.97	27.80	43.80	45.17	7	4	-28.83	Pk	Horizontal
	2310.00	43.31	2.97	27.80	43.80	30.28	5	4	-23.72	AV	Horizontal
	2310.00	60.01	2.97	27.80	43.80	46.98	7	4	-27.02	Pk	Vertical
	2310.00	42.85	2.97	27.80	43.80	29.82	5	4	-24.18	AV	Vertical
	2390.00	59.31	3.14	27.21	43.80	45.86	7	4	-28.14	Pk	Vertical
	2390.00	42.94	3.14	27.21	43.80	29.49	5	4	-24.51	AV	Vertical
	2390.00	57.75	3.14	27.21	43.80	44.30	7	4	-29.70	Pk	Horizontal
	2390.00	42.05	3.14	27.21	43.80	28.60	5	4	-25.40	AV	Horizontal
	2483.50	58.18	3.58	27.70	44.00	45.46	7	4	-28.54	Pk	Vertical
	2483.50	43.64	3.58	27.70	44.00	30.92	5	4	-23.08	AV	Vertical
	2483.50	60.18	3.58	27.70	44.00	47.46	7	4	-26.54	Pk	Horizontal
	2483.50	42.36	3.58	27.70	44.00	29.64	5	4	-24.36	AV	Horizontal
				31	/lbps(8-DPS	K K)-hopping	g				
	2310.00	50.27	2.97	27.80	43.80	37.24	74.	.00	-36.76	Pk	Vertical
	2310.00	41.04	2.97	27.80	43.80	28.01	54	.00	-25.99	AV	Vertical
	2310.00	54.26	2.97	27.80	43.80	41.23	74	.00	-32.77	Pk	Horizontal
	2310.00	40.60	2.97	27.80	43.80	27.57	54	.00	-26.43	AV	Horizontal
	2390.00	54.15	3.14	27.21	43.80	40.70	74	.00	-33.30	Pk	Vertical
	2390.00	43.71	3.14	27.21	43.80	30.26	54	.00	-23.74	AV	Vertical
	2390.00	52.61	3.14	27.21	43.80	39.16	74	.00	-34.84	Pk	Horizontal
	2390.00	42.50	3.14	27.21	43.80	29.05	54	.00	-24.95	AV	Horizontal
	2483.50	51.64	3.58	27.70	44.00	38.92	74	.00	-35.08	Pk	Vertical
	2483.50	44.60	3.58	27.70	44.00	31.88	54.	.00	-22.12	AV	Vertical
	2483.50	53.76	3.58	27.70	44.00	41.04	74.	.00	-32.96	Pk	Horizontal
	2483.50	40.72	3.58	27.70	44.00	28.00	54	.00	-26.00	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 3260MHz-18000MHz										
EU	T:	4G TA	ABLET PO)	Model	Model No.: 103S					
Ter	nperature:	20 ℃			Relativ	e Humidity	<i>/</i> :	48%			
Tes	st Mode:	Mode	2/ Mode4		Test By	/:		Allen	Liu		
All	the modula	ation mode	s have be	en tested	, and the	worst resu	ılt wa	is rep	ort as bel	ow:	
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Liı	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	JV/m)	(dB)	Туре	
	3260	60.05	4.04	29.57	44.70	48.96		74	-25.04	Pk	Vertical
	3260	57.41	4.04	29.57	44.70	46.32	į	54	-7.68	AV	Vertical
	3260	62.04	4.04	29.57	44.70	50.95	-	74	-23.05	Pk	Horizontal
	3260	57.26	4.04	29.57	44.70	46.17	į	54	-7.83	AV	Horizontal
	3332	64.83	4.26	29.87	44.40	54.56		74	-19.44	Pk	Vertical
	3332	53.31	4.26	29.87	44.40	43.04	ę	54	-10.96	AV	Vertical
	3332	63.74	4.26	29.87	44.40	53.47		74	-20.53	Pk	Horizontal
	3332	53.19	4.26	29.87	44.40	42.92	Ę	54	-11.08	AV	Horizontal
	17797	43.15	10.99	43.95	43.50	54.59	-	74	-19.41	Pk	Vertical
	17797	33.00	10.99	43.95	43.50	44.44	į	54	-9.56	AV	Vertical
	17788	44.56	11.81	43.69	44.60	55.46	-	74	-18.54	Pk	Horizontal
	17788	31.54	11.81	43.69	44.60	42.44	į	54	-11.56	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	4G TABLET PC	Model No.:	103S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	4G TABLET PC	Model No.:	103S
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	EUT: 4G TABLET PC		103S	
Temperature:	20 °C	Relative Humidity:	103S 48% Allen Liu	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu	

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	4G TABLET PC	Model No.:	103S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	4G TABLET PC	Model No.:	103S
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	4G TABLET PC	Model No.:	103S
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	103S 48% Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 0.56dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmission sover the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

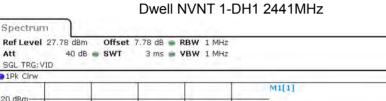
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

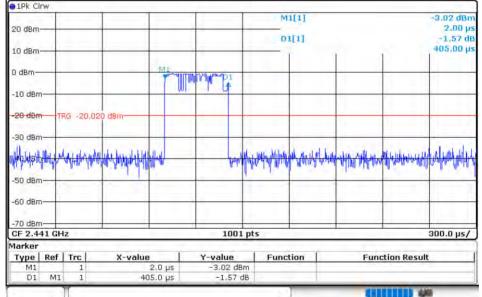
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

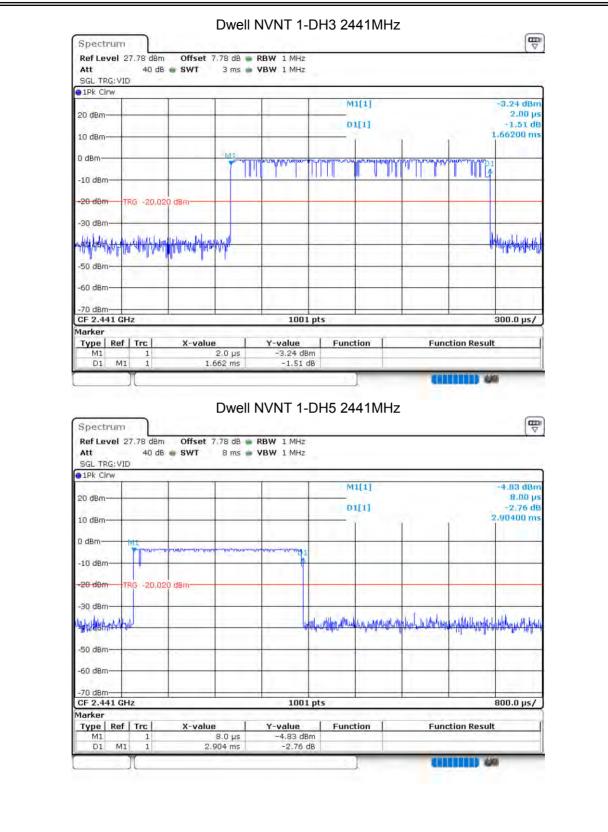
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

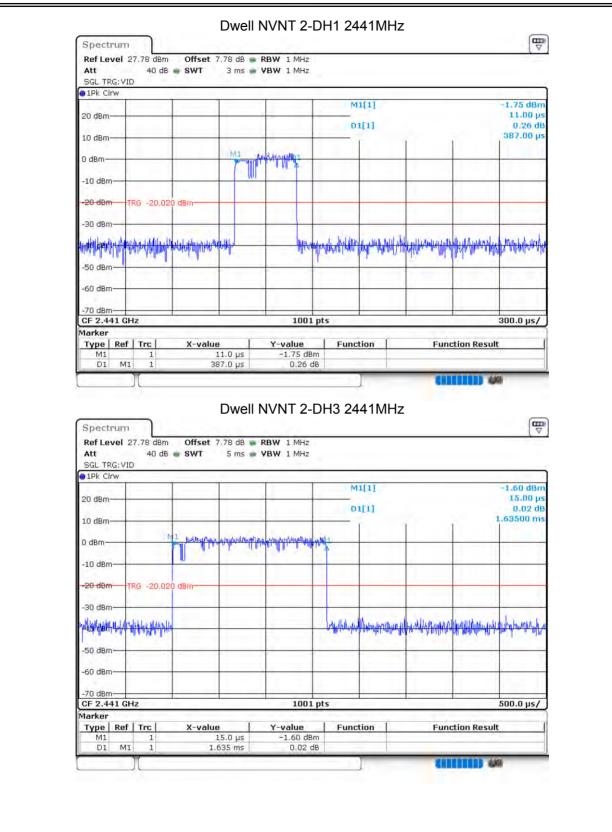

TEST RESULTS 8

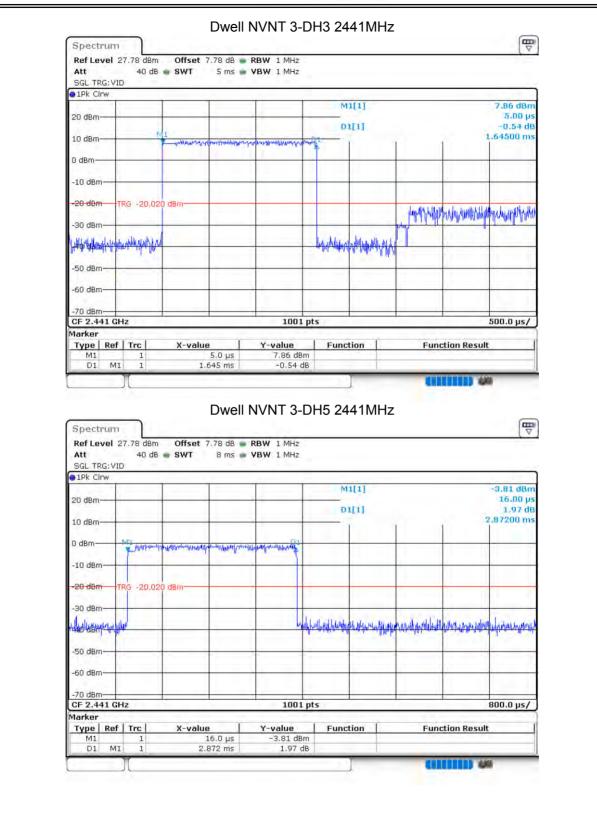

Spectrum

Att SGL TRG: VID

81 DWELLTIME

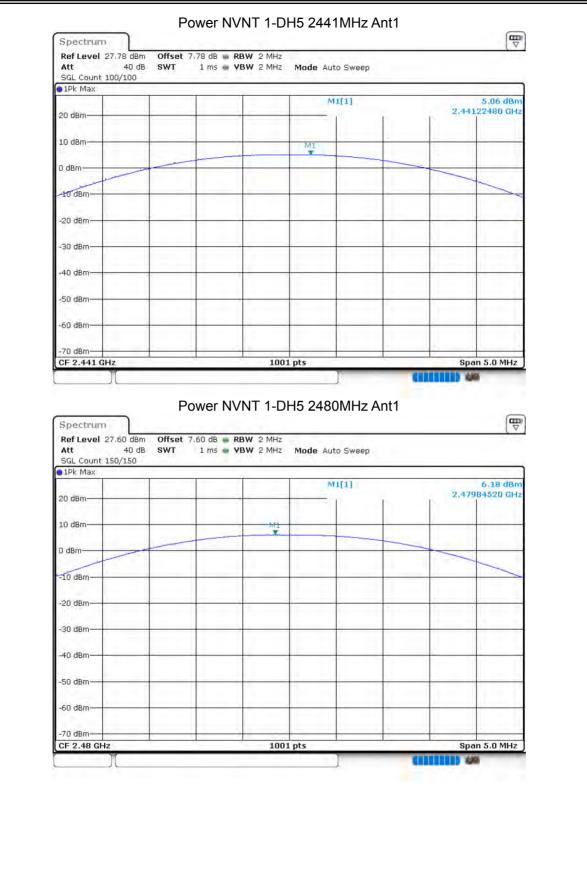

Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
	(MHz)	(ms)	Time (ms)	(ms)	(ms)	
1-DH1	2441	0.405	129.6	31600	400	Pass
1-DH3	2441	1.662	265.92	31600	400	Pass
1-DH5	2441	2.904	309.76	31600	400	Pass
2-DH1	2441	0.387	123.84	31600	400	Pass
2-DH3	2441	1.635	261.6	31600	400	Pass
2-DH5	2441	2.896	308.907	31600	400	Pass
3-DH1	2441	0.393	125.76	31600	400	Pass
3-DH3	2441	1.645	263.2	31600	400	Pass
3-DH5	2441	2.872	306.347	31600	400	Pass
	Mode 1-DH1 1-DH3 1-DH5 2-DH1 2-DH3 2-DH5 3-DH1 3-DH3	Mode Frequency (MHz) 1-DH1 2441 1-DH3 2441 1-DH5 2441 2-DH1 2441 2-DH3 2441 2-DH5 2441 3-DH1 2441 3-DH3 2441	Mode Frequency (MHz) Pulse Time (ms) 1-DH1 2441 0.405 1-DH3 2441 1.662 1-DH5 2441 2.904 2-DH1 2441 0.387 2-DH3 2441 1.635 2-DH5 2441 0.393 3-DH1 2441 0.393	Mode Frequency (MHz) Pulse Time (ms) Total Dwell Time (ms) 1-DH1 2441 0.405 129.6 1-DH3 2441 1.662 265.92 1-DH5 2441 2.904 309.76 2-DH1 2441 0.387 123.84 2-DH3 2441 1.635 261.6 2-DH5 2441 2.896 308.907 3-DH1 2441 0.393 125.76 3-DH3 2441 1.645 263.2	Mode Frequency (MHz) Pulse Time (ms) Total Dwell Time (ms) Period Time (ms) 1-DH1 2441 0.405 129.6 31600 1-DH3 2441 1.662 265.92 31600 1-DH5 2441 2.904 309.76 31600 2-DH1 2441 0.387 123.84 31600 2-DH3 2441 1.635 261.6 31600 2-DH5 2441 2.896 308.907 31600 3-DH1 2441 0.393 125.76 31600 3-DH3 2441 1.645 263.2 31600	Mode Frequency (MHz) Pulse Time (ms) Total Dwell Time (ms) Period Time (ms) Limit (ms) 1-DH1 2441 0.405 129.6 31600 400 1-DH3 2441 1.662 265.92 31600 400 1-DH5 2441 2.904 309.76 31600 400 2-DH1 2441 0.387 123.84 31600 400 2-DH3 2441 1.635 261.6 31600 400 2-DH5 2441 2.896 308.907 31600 400 3-DH1 2441 0.393 125.76 31600 400 3-DH3 2441 1.645 263.2 31600 400





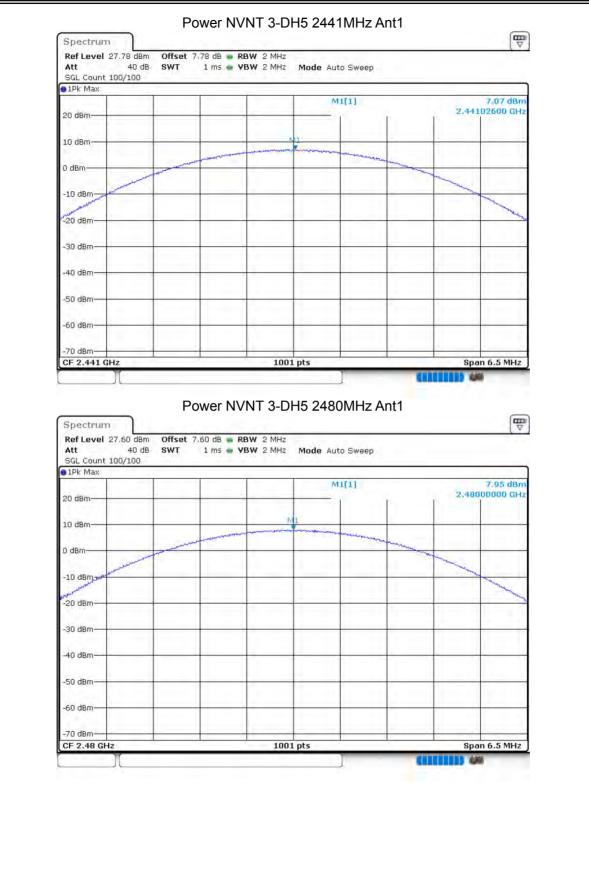
Spectrum Ref Level 2				RBW 1 MHz					
Att SGL TRG: VID		SWT	8 ms 🍺 🕻	BW 1 MHz					
1Pk Cirw									
20 dBm				1	M	[1]			4.94 dBm 8.00 µs
20 000					01	[1]			-0,72 dB
10 dBm	VII Lorman	Virgently Marshager	the provider spinetice, where	promone D1	1		É la com	2	2.89600 ms
D dBm							-		
-10 dBm									
-20 dBm 1	RG -20,020	dBio				1	_		
	0 -20,020	denn						· · · · ·	·
-30 dBm					distant.	1.		1000	- AL
let a support of the state of the second sec	4	-			publication	there the physical of the second seco	holi-cu-danal-plag	Hand and a start of the	politic program
-50 dBm-									
-60 dBm									
				1.1					
-70 dBm	2			1001	nts			-	800.0 µs/
Marker Type Ref		X-value		Y-value	Funct			tion Result	
M1 D1 M1 Spectrum		2,1	8.0 µs 396 ms Dwell N	-0.72 c		41MHz) 4	
D1 M1		Offset 3	Dwell N	-0,72 c	iB	41MHz	- 01		(-
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VID	1 7.78 dBm 40 dB	Offset 3	Dwell N	-0.72 c	iB	41MHz	CH		(
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VID	1 7.78 dBm 40 dB	Offset 3	Dwell N	-0.72 c	DH1 244	41MHz			7.88 dBm
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VIII 1Pk Clrw	1 7.78 dBm 40 dB	Offset 3	Dwell N	-0.72 c	DH1 244	u[1]			7.88 dBm 5.00 µs
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VID	1 7.78 dBm 40 dB	Offset 3	Dwell N 7.78 dB • F 3 ms • V	-0.72 c NVNT 3- RBW 1 MHz VBW 1 MHz	DH1 244	u[1]			7.88 dBm
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VID IPk Clrw 20 dBm	1 7.78 dBm 40 dB	Offset 3	Dwell N 7.78 dB • F 3 ms • V	-0.72 c	DH1 244	u[1]			7.88 dBm 5.00 µs -3.56 dB
D1 M1 Spectrum Ref Level 2 Att SGL TRG:VID 1PK Clrw 20 dBm 10 dBm 0 dBm	1 7.78 dBm 40 dB	Offset 3	Dwell N 7.78 dB • F 3 ms • V	-0.72 c NVNT 3- RBW 1 MHz VBW 1 MHz	DH1 244	u[1]			7.88 dBm 5.00 µs -3.56 dB
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	1 7.78 dBm 40 dB	Offset 3	Dwell N 7.78 dB • F 3 ms • V	-0.72 c NVNT 3- RBW 1 MHz VBW 1 MHz	DH1 244	u[1]			7.88 dBm 5.00 µs -3.56 dB
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VIE 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	1 7.78 dBm 40 dB	Offset 3	Dwell N 7.78 dB • F 3 ms • V	-0.72 c NVNT 3- RBW 1 MHz VBW 1 MHz	DH1 244	u[1]			7.88 dBm 5.00 µs -3.56 dB
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VIE 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	1 7.78 dBm 40 dB	Offset : SWT	Dwell N 7.78 dB • F 3 ms • V	-0.72 c NVNT 3- RBW 1 MHz VBW 1 MHz	DH1 244	u[1]			7.88 dBm 5.00 µs -3.56 dB
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm T1 -30 dBm	1 7.78 dBm 40 dB	Offset : SWT	396 ms		DH1 244	(1)			7.88 dBm 5.00 µs -3.56 dB
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VID 1Pk CIrw 20 dBm 10 dBm -10 dBm -20 dBm 1-30 dBm -30 dBm -30 dBm	1 7.78 dBm 40 dB	Offset : SWT	396 ms		DH1 244	(1)		en for the former of the forme	7.88 dBm 5.00 µs -3,56 dE 393.00 µs
D1 M1 Spectrum Ref Level 2 Att SGL TRG:VIC IPK CIrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 7.78 dBm 40 dB	Offset : SWT	396 ms		DH1 244	(1)			7.88 dBm 5.00 µs -3,56 dE 393.00 µs
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VIC IPk CIrw 20 dBm 10 dBm -10 dBm -20 dBm TI -30 dBm	1 7.78 dBm 40 dB	Offset : SWT	396 ms		DH1 244	(1)			7.88 dBm 5.00 µs -3,56 dE 393.00 µs
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VII IPk CIrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm	1 7.78 dBm 40 dB	Offset : SWT	396 ms		DH1 24-	(1)		el a Mallin e al Mallin	7.68 dBm 5.00 µs -3.56 dB 393.00 µs
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VII IPk CIrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	1 7.78 dBm 40 dB	Offset : SWT	396 ms		DH1 24-	(1)		el a Mallin e al Mallin	7.88 dBm 5.00 µs -3,56 dE 393.00 µs
D1 M1 Spectrum Ref Level 2 Att SGL TRG: VII 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -	1 7.78 dBm 40 dB	Offset : SWT	396 ms	-0.72 c	DH1 244		All to Alto Agentes	el a Mallin e al Mallin	7.88 dBm 5.00 µs -3.56 dB 393.00 µs
D1 M1 Spectrum Ref Level 2 Att SGL TRG:VIC IPK CIrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	1 7.78 dBm 40 dB	Offset 7	396 ms	-0.72 c	DH1 24		All to Alto Agentes	ei a Hallin 12 att lauf	7.88 dBm 5.00 µs -3.56 dB 393.00 µs

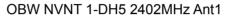
8.2 MAXIMUM CONDUCTED OUTPUT POWER

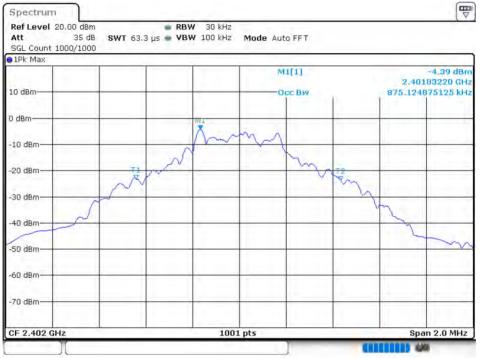

			011-11			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	4.852	30	Pass
NVNT	1-DH5	2441	Ant 1	5.059	30	Pass
NVNT	1-DH5	2480	Ant 1	6.179	30	Pass
NVNT	2-DH5	2402	Ant 1	6.674	21	Pass
NVNT	2-DH5	2441	Ant 1	6.791	21	Pass
NVNT	2-DH5	2480	Ant 1	4.841	21	Pass
NVNT	3-DH5	2402	Ant 1	7.048	21	Pass
NVNT	3-DH5	2441	Ant 1	7.073	21	Pass
NVNT	3-DH5	2480	Ant 1	7.952	21	Pass

Power NVNT 1-DH5 2402MHz Ant1

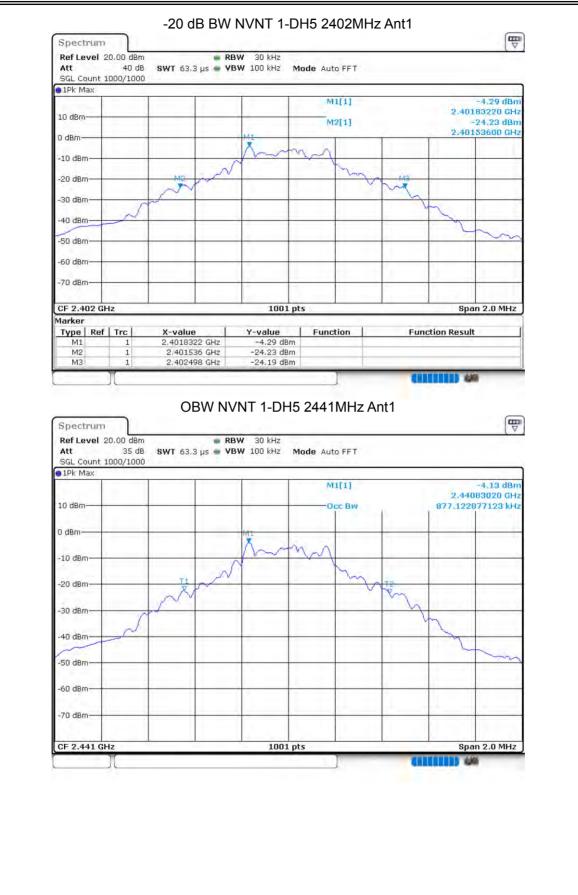


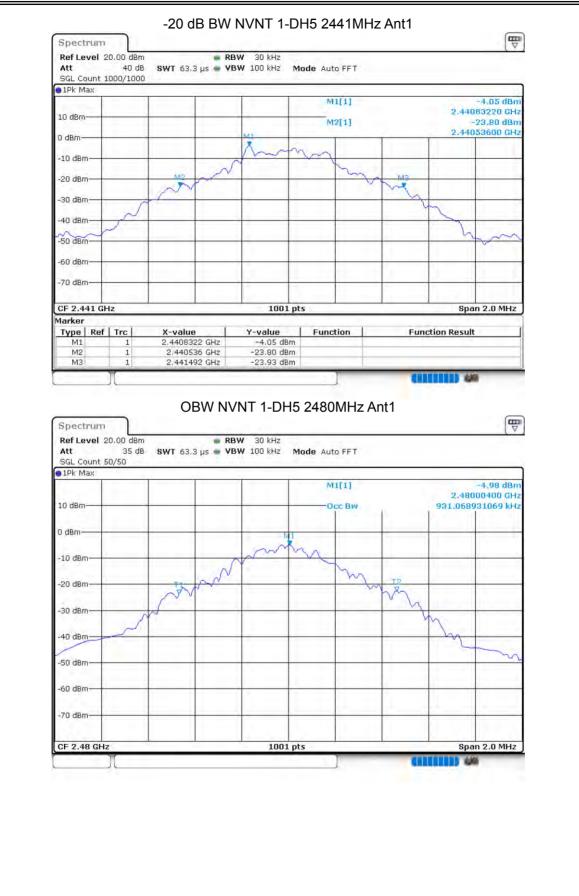


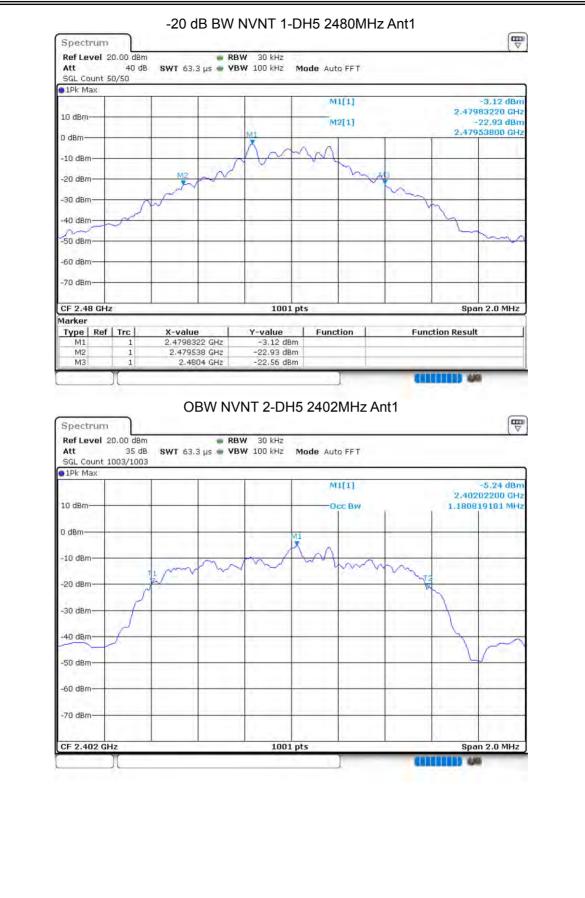


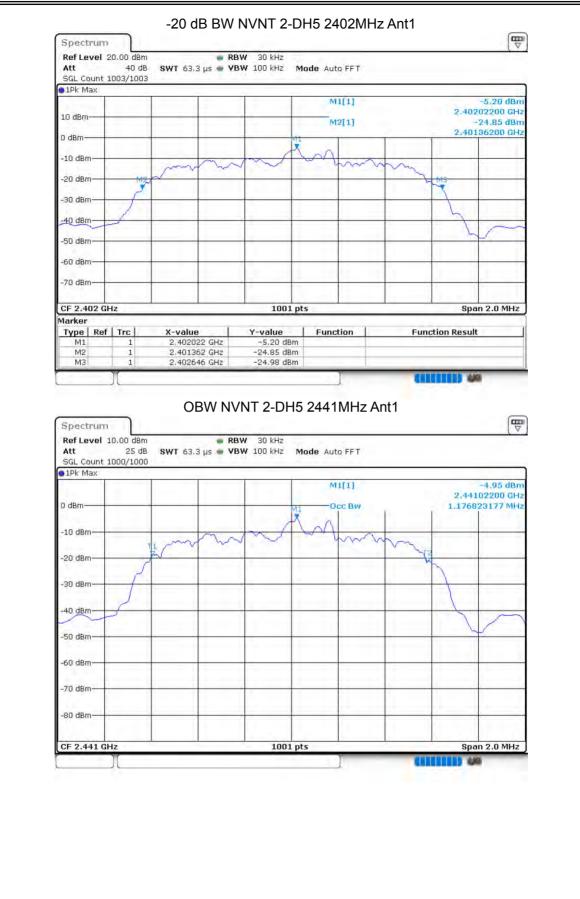


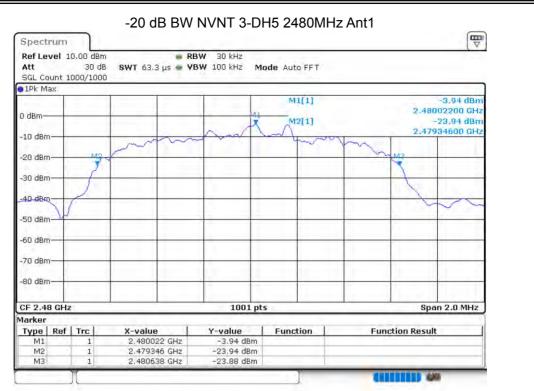
8.3 OCCUPIED CHANNEL BANDWIDTH

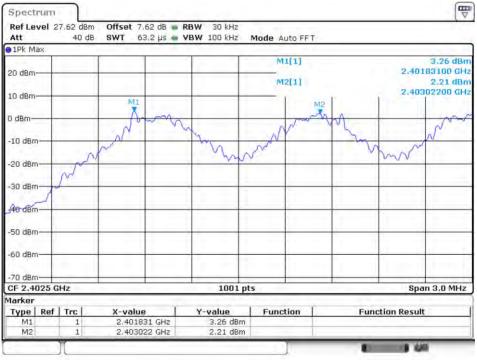

0.3 00001			1			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8751	0.962	Pass
NVNT	1-DH5	2441	Ant 1	0.8771	0.956	Pass
NVNT	1-DH5	2480	Ant 1	0.9311	0.862	Pass
NVNT	2-DH5	2402	Ant 1	1.1808	1.284	Pass
NVNT	2-DH5	2441	Ant 1	1.1768	1.282	Pass
NVNT	2-DH5	2480	Ant 1	1.1768	1.286	Pass
NVNT	3-DH5	2402	Ant 1	1.1788	1.294	Pass
NVNT	3-DH5	2441	Ant 1	1.1768	1.29	Pass
NVNT	3-DH5	2480	Ant 1	1.1828	1.292	Pass





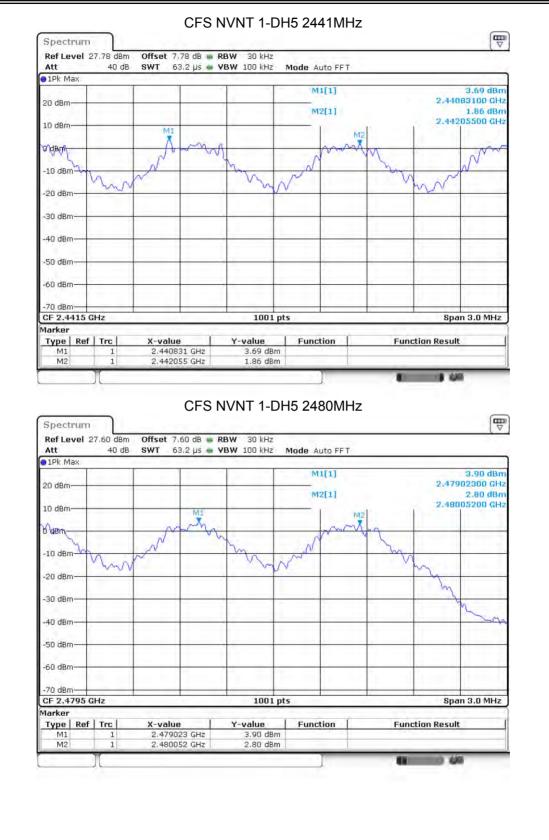


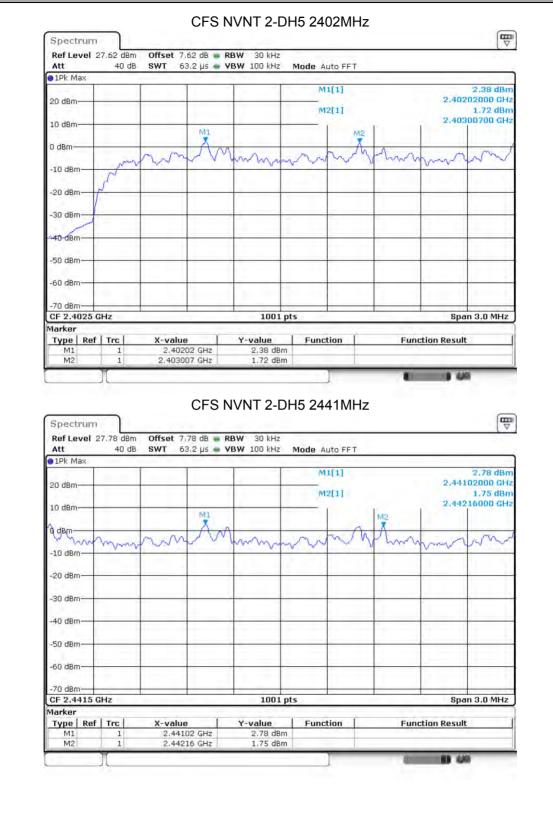


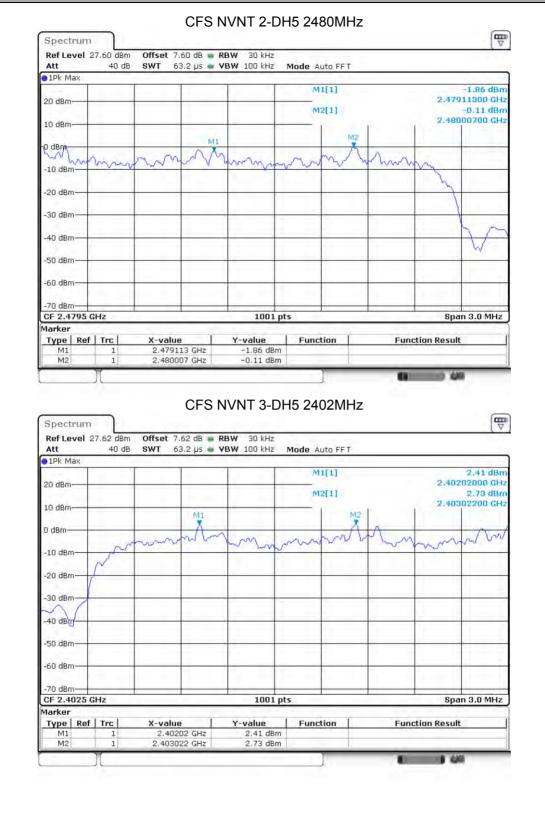


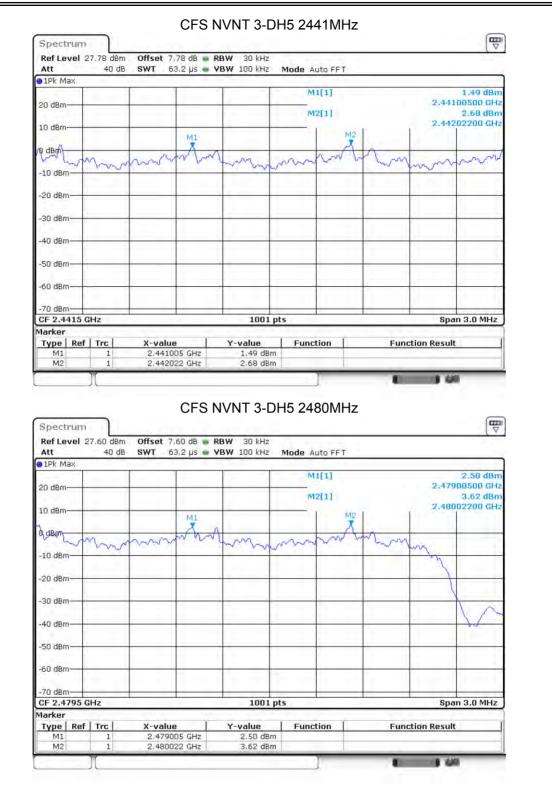
8.4 CARRIER FREQUENCIES SEPARATION

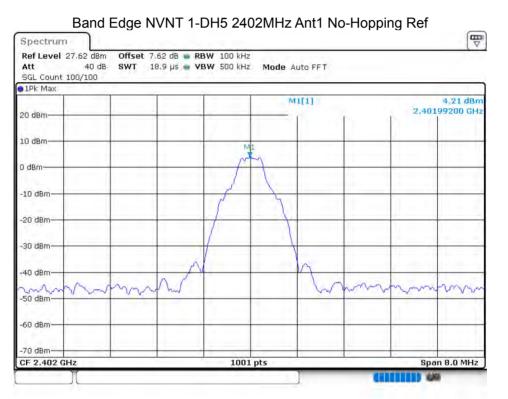
J OANIE			1			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.831	2403.022	1.191	0.962	Pass
NVNT	1-DH5	2440.831	2442.055	1.224	0.956	Pass
NVNT	1-DH5	2479.023	2480.052	1.029	0.862	Pass
NVNT	2-DH5	2402.02	2403.007	0.987	0.856	Pass
NVNT	2-DH5	2441.02	2442.16	1.14	0.855	Pass
NVNT	2-DH5	2479.113	2480.007	0.894	0.857	Pass
NVNT	3-DH5	2402.02	2403.022	1.002	0.863	Pass
NVNT	3-DH5	2441.005	2442.022	1.017	0.86	Pass
NVNT	3-DH5	2479.005	2480.022	1.017	0.861	Pass










ndition	Mode H		G CHANN	er L	imit Verdic				
IVNT	1-DH5		79		15 Pass				
			Hc	pping	No. NVNT	1-DH5 2402	2MHz		
	Spectrum								
	Ref Level 2 Att	27.62 di 40			RBW 100 kHz VBW 300 kHz	Mode Auto Swe	an		2.22
	SGL Count			- 115	1011 000 Mile	Hous Auto Sale	~P		
	●1Pk Max		-1			M1[1]		-	3.74 dBm
	20 dBm					M2[1]			120040 GHz 5.08 dBm
	10 dBm			10.00	BRARRARBAR	a a b a a a a a a a a a	1		100765 GHz
		(HAAA)		<u>IIAAAA</u>	<u>ARIARARAN</u> I	ANALANA ANALA	ADADADADADA	AAAAAAAA	AAAAA
	-10 dBm	04040	<u>KAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>	WYWW	<u>IAKKKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>		WWWWW	ADANANANA	
	-20 dBm								
	-80 dBm								
	40 dBm			1					Wenter
	-50 dBm	_			-		-		
	-60 dBm		_	-			_		
	-70 dBm							11-11	
	Start 2.4 G	łz		-	1001 pt	s		Stop 2	.4835 GHz
	Marker Type Ref	Trc	X-valu	e	Y-value	Function	Fun	ction Result	
	M1 M2	1		004 GHz 765 GHz	3.74 dBm 5.08 dBm				
		T				1			8

NTEK 北测[®]

86 BANDEDGE

8.6 BANDE	DGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-45.22	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.53	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-48.63	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-48.94	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-43.96	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-45.47	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-44.98	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-45.32	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-44.79	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-45.45	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-48.66	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-48.71	-20	Pass

20 dBm 2.408.000 0FHz 10 dBm 4.90.8000 0FHz 0 dBm 2.40000000 CHz 0 dBm 2.40000000 CHz 0 dBm 4.00 dBm -20 dBm 4.00 dBm -30 dBm 4.00 dBm -30 dBm 4.00 dBm -30 dBm 4.00 dBm -30 dBm 4.00 dBm -60 dBm 4.00 dBm -70 dBm 4.00 dBm -80 dBm 4.45 dBm Marker Type I Ref Type I Ref Y -value Function M11 1 2.40125 OHz 4.45 dBm M3 1 2.390 GHz -44.93 dBm M4 2.3401 GHz -40.10 dBm 4.00 dBm Spectrum Offset 7.62 dB RBW 100 kHz Mode Auto FFT SGL Count Boooy30000 SWT 18.9 µS VBW	1Pk Max		r	1	r r	MI	[1]			4,45 dBm
10 dBm 2.4000000000000000000000000000000000000	20 dBm				-	_				85000 GHz
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -20 dBm -2	10 dBm		-			M2	11)			
20 dBm 01 -15.785 dBm 04 04 04 04 04 04 04 04 04 04 04 04 04	0 dBm	_					_			
-20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -5	-10 dBm			-	-	-	_		-	
-40 dBm M3		D1 -15.785	dBm							
40 dbm M2	-30 dBm									
-50 dbm -60 dbm -70 dbm -7	-40 dBm				100 C 101				мэ	ME
Jong Barl Jong Park Stop 2.406 GHz Start 2.306 GHz Jong Park Stop 2.406 GHz Marker Function Result Function Result M1 1 2.40185 GHz 4.45 dBm M2 1 2.4 GHz -45.96 dBm Function Result M3 1 2.301 GHz -44.83 dBm Function Result M4 1 2.3401 GHz -44.83 dBm Function Result Function Result M4 1 2.3401 GHz -44.83 dBm Function Result Function Result M4 1 2.3401 GHz -44.83 dBm Function Result Function Result Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref Spectrum V V Ref Level 27.52 dBm Offset 7.62 dB RBW 100 kHz Made Auto FFT SGL Court 80008000 SWT 18.9 µS VBW 300 kHz Mode Auto FFT 20 dBm 2.40582820 GHz MI(1) 2.40582820 GHz -10 dBm	-50 dBm	withdrikesthew	memorynersel	nowhenever	manufanning	Anorada Brooking Ma	washinghad	derilant rule to	hall be and the second	anual him
Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 4.45 d8m 1 2.46 GHz 1 M3 1 2.39 GHz -44.83 d8m 1 2.39 GHz -44.83 d8m 1 2.39 GHz -44.83 d8m 1 2.3401 GHz -41.01 GBM 1 2.3401 GHz 1 2.3401 GHz 1 1 2.3401 GHz 1 2.3401 GHz 1 1 2.3401 GHz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-60 dBm									
Marker Y-value Y-value Function Function Result M1 1 2.40185 GHz 4.45 dbm Function Result Function Result M2 1 2.4 GHz -45.96 dbm Function Result Function Result M3 1 2.39 GHz -44.83 dBm Function Result Function Result M4 1 2.39 GHz -44.83 dBm Function Result Function Result M4 1 2.39 GHz -44.83 dBm Function Result Function Result Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref Spectrum Spectrum Function Result Ref Level 27.62 dbm Offset 7.52 dB RBW 100 kHz Mode Auto FFT SGL Count 8000/8000 IPk Max SwT 18.9 µ5 YBW 300 kHz Mode Auto FFT Sed dBm 20 dBm 0 dBm Function Result Function FFT Sed dBm Function FFT -20 dBm -40 dBm <td>-70 dBm</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td>	-70 dBm	-					1	1	1	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 4.45 dBm	Start 2.306	i GHz		<u>^</u>	1001	pts		~	Stop	2.406 GHz
M2 1 2.4 GHz -45.96 dBm M3 1 2.39 GHz -44.83 dBm M4 1 2.3401 GHz -41.01 dBm Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref Spectrum Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 18.9 µS VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 PIPk Max 	Type Ref						ion	Fun	ction Result	-
M4 1 2.3401 GHz -41.01 dBm Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref Image: Comparison of the second secon	M2	1		2.4 GHz	-45.96 dBn	n				
Spectrum Provide autorial Offset 7.62 dB merce RBW 100 kHz Mode Auto FFT SGL Count 8000/8000 SWT 18.9 µS mode Auto FFT S.60 dBm 2.40592820 GHz 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm -0 dBm -0 dBm -0 dBm -0 dBm -20 dBm -0 dBm -0 dBm -0 dBm -0 dBm -20 dBm -0 dBm -0 dBm -0 dBm -0 dBm -30 dBm -0 dBm -0 dBm -0 dBm -0 dBm										
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	13.7.		Ant1 Ho	pping R	
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT	Ant1 Ho		5,60 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT	Ant1 Ho		5,60 dBm
-20 dBm -30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT	Ant1 Ho		5.60 dBm 82820 GHz
-20 dBm -30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT	Ant1 Ho		5.60 dBm 82820 GHz
-30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
-40 dBm -50 dBm	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
-50 dBm	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
-50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT	Ant1 Ho		5.60 dBm 82820 GHz
	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
-60 dBm	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
-70 dBm	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
CF 2.402 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT			5.60 dBm 82820 GHz
	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.62 dBm 40 dB 8000/8000	Offset 7	7.62 dB 👅 F	BW 100 kHz	Mode Au	to FFT		2.405	S.60 dBm B2B20 GHz

20 dBm 2.40595000 cH 10 dBm M2[1] 2.40000000 cH 0 dBm 2.40000000 cH 0 dBm 2.40000000 cH -10 dBm 2.4000000 cH -20 dBm 2.4000000 cH -30 dBm -41.395 dBm -20 dBm -41.395 dBm -30 dBm -40 dBm -40 dBm -41.4395 dBm -50 dBm -40 dBm -60 dBm -42.40595 GHz -50 dBm -42.40595 GHz -60 dBm -43.39 dBm -70 dBm -43.39 dBm -80 dBm -43.39 dBm -60 dBm -43.39 dBm -70 dBm -44.92595 GHz Marker	20 dBm	91Pk Max	- 1		-	1	M	1[1]			4.32 dBn
10 dBm 2.4000000 CH 0 dBm 20 dBm -20 dBm 20 dBm -30 dBm 100 pts -30 dBm 100 pts -50 dBm 100 pts -50 dBm 100 pts Stort 2.006 GHz 1001 pts Stort 2.006 GHz 1001 pts Stort 2.006 GHz 1001 pts Stort 2.006 GHz 1.001 pts Stort 2.006 GHz 1.003 gts Mail 1 2.3459 GHz Stort 2.006 GHz 1.003 gts Stort 2.006 GHz 1.003 gts Stort 2.00 GHz 1.003 gts <	10 dBm 2.4000000 CH 0 dBm 2.0 dBm -10 dBm C1 -14.395 dBm -20 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm -40 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm Start 2:306 GHz 1001 pts Start 2:306 GHz -1001 pts Start 2:306 GHz -43.39 dBm M1 1 2.4624 -2.3439 GHz -43.39 dBm M4 1 2.3439 GHz M3 1 2.3439 GHz M4 1 2.3439 GHz M4 1 2.3439 GHz M4 2.3439 GHz Mode Auto FFT Spectrum -10 dBm -10 dBm -10 dBm -10	20 dBm									595000 GH
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -7	-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -10 dBm -10 dBm -110 dBm -10 dBm -1	10 dBm	-			-	M	2[1]	6		
20 dBm 14.395 dBm -20 dBm -30 dBm -40 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -60 dBm Marker Trc X-volue Y-volue M1 1 2.4055 GHz -4.32 dBm -60 dBm Ma 1 2.4057 GHz -44.96 dBm M3 1 2.387 GHz -44.96 dBm M4 1 2.387 GHz -44.96 dBm Spectrum -70 dBm -70 dBm -70 dBm	20. dBm 1 -43.995 dBm M4 -30. dBm -40. dBm -44.965 dBm -44.965 dBm -44.965 dBm -50. dBm 1 2.4056 GHz 1001 pts Stop 2.406 GHz Marker Tro 2.4056 GHz -44.965 dBm -44.965 dBm Marker Too 2.3430 GHZ -44.965 dBm -44.965 dBm M3 1 2.3430 GHZ -44.965 dBm -44.965 dBm M4 1 2.3430 GHZ -44.965 dBm -44.965 dBm M3 1 2.3430 GHZ -44.965 dBm -44.965 dBm Spectrum CV -44.965 dBm -44.965 dBm -44.965 dBm Spectrum CV -44.965 dBm -44.965 dBm -44.965 dBm Spectrum CV -44.965 dBm -44.965 dBm -44.965 dBm Social Count 100,100 SWT 18.9 µS YBW 300 kHZ Mode Auto FFT -50.6 dBm 20 dBm	0 dBm									
20 dBm	20 dBm 30 dBm 40 dBm 41 2.440595 GHz 42.440595 GHz 44.456 GHB 40 dBm 40				-	-	-			-	H AI
+0 dBm Main Main Main -50 dBm -50	-40 dBm M4		-14.395 0	18m			-				
-40 dbm -90 dbm	40 dbm 50 dbm 60 dbm	-30 dBm		_							
-50 dbm -60 dbm	-50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -7	-40 dBm	1000	10.00				Succession in the		13	M2
-70 d8m Stop 2.406 GHz Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Function Result Function Result M1 1 2.40595 GHz 4.32 d8m M2 1 2.404 Hz 4.33 d8m Function Result M3 1 2.387 GHz -44.96 d8m Function Result M4 1 2.387 GHz -44.96 d8m Function Result M4 1 2.3837 GHz -40.93 d8m Function Result M4 1 2.3439 GHz -40.93 d8m Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Function Result Function Result Ref Level 27.60 d8m Offset 7.60 d8 RBW 100 kHz Mode Auto FFT SGL Count 100/100 Pirk Max 2.47983220 GHz 948W 300 kHz Mode Auto FFT Sdl d8m 20 d8m 948 948 948 948 948 948 30 d8m 948 948 948 948 948 948 948 30 d8m<	-70 dBm Stort 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type Ref Trc X-value Y-value Function Result M1 1 2.40595 GHz 4.32 dBm Function Result M3 1 2.387 GHz -43.93 dBm Function Result M4 1 2.387 GHz -44.96 dBm Function Result M4 1 2.3837 GHz -40.93 dBm Function Result M4 1 2.3439 GHz -40.93 dBm Function Result Spectrum Stop 2.406 dBm Function Result Function Result Spectrum SwT 18.9 µ5 YBW 300 KHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µ5 YBW 300 KHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µ5 YBW 300 KHz Mode Auto FFT SGL Count 100/100 Suff 18.9 µ5 YBW 300 KHz Mode Auto FFT SGL Count 100/100 Suff 18.9 µ5 YBW 300 KHz MI[1] Suff dBn -0 dBm		harrylighning	waster steward	and a start and a	all manual	a franka series and and a series of the seri	had for the	he was a second	hat way to avoid a	mentality
Stort 2.306 GHz 1001 pts Stop 2.406 GHz Marker Yuel Function Function Result M1 1 2.40595 GHz 4.32 dBm M2 1 2.404 cHz 4.33 dBm M3 1 2.387 GHz -44.96 dBm M4 1 2.387 GHz -44.96 dBm M4 1 2.3439 GHz -40.93 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum W Spectrum SWT 18.9 µS YBW 300 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Max 0 dBm 0 2.47983220 GH 2.47983220 GH 10 dBm 0 0 0 0 0 -20 dBm - - - - - -0 dBm - - - - - -30 dBm - - - - - -	Stor 2.306 GHz 1001 pts Stop 2.406 GHz Marker Function Function Result M1 1 2.40595 GHz 4.32 dBm Function Function Result M2 1 2.387 GHz -44.96 dBm Function Function Result M3 1 2.387 GHz -44.96 dBm Function Function Result M4 1 2.38439 GHz -40.93 dBm Function Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Market Market Market Market Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Market Market 20 dBm Mil[1] \$.81 dBn 2.47983220 OH 0 dBm 4 30 dBm	-60 dBm								-	
Stort 2.306 GHz 1001 pts Stop 2.406 GHz Marker Yuel Function Function Result M1 1 2.40595 GHz 4.32 dBm M2 1 2.404 cHz 4.33 dBm M3 1 2.387 GHz -44.96 dBm M4 1 2.387 GHz -44.96 dBm M4 1 2.3439 GHz -40.93 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum W Spectrum SWT 18.9 µS YBW 300 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Max 0 dBm 0 2.47983220 GH 2.47983220 GH 10 dBm 0 0 0 0 0 -20 dBm - - - - - -0 dBm - - - - - -30 dBm - - - - - -	Stor 2.306 GHz 1001 pts Stop 2.406 GHz Marker Function Function Result M1 1 2.40595 GHz 4.32 dBm Function Function Result M2 1 2.387 GHz -44.96 dBm Function Function Result M3 1 2.387 GHz -44.96 dBm Function Function Result M4 1 2.38439 GHz -40.93 dBm Function Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Market Market Market Market Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Market Market 20 dBm Mil[1] \$.81 dBn 2.47983220 OH 0 dBm 4 30 dBm	-70 dBm				·		1			
Type Ref Trc X-value Y-value Function Function M1 1 2.40Hz 4.32 dBm 1 1 1.40Hz 1 1.439 dBm 1 1 1.40Hz 1.439 dBm 1 1 1.40Hz 1.439 dBm 1 1 1.40Hz 1.439 dBm 1 1.2387 GHz -44.96 dBm 1 1.4393 GHz 1.40Hz 1.4393 GHz 1.40.93 dBm 1 2.3439 GHz -40.93 dBm 1 1.10Hz 1 1.10Hz 1.	Type Ref Trc X-value Y-value Function Function Function Result M1 1 2.40595 GHz 4.32 dBm 1 2.47839 GHz 4.39 dBm M3 1 2.387 GHz -44,96 dBm 1 2.3439 GHz -40,93 dBm M4 1 2.3439 GHz -40,93 dBm 1 2.3439 GHz -40,93 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum VBW 300 kHz Mode Auto FFT SGL Count 100/100 Offset 7.60 dB RBW 100 kHz Mode Auto FFT S.81 dBm SGL Count 100/100 0 dB WU 300 kHz Mode Auto FFT S.81 dBm 20 dBm 0 dBm M1[1] S.81 dBm 2.47983220 GHz -40 dBm -10 dBm </td <td>Start 2.306 G</td> <td>Hz</td> <td></td> <td></td> <td>1001</td> <td>pts</td> <td></td> <td></td> <td>Stop</td> <td>2.406 GHz</td>	Start 2.306 G	Hz			1001	pts			Stop	2.406 GHz
M2 1 2.4 GHz -43.39 dBm M3 1 2.387 GHz -44.96 dBm M4 1 2.3439 GHz -40.93 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Image: Comparison of the second secon	M2 1 2.4 GHz -43.39 dBm M3 1 2.387 GHz -44.96 dBm M4 1 2.3439 GHz -40.93 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Image: Comparison of the transmission of the transmissin of the transmission of the transmission of the transmission of		Trc					tion	Fun	ction Resu	lt
M4 1 2.3439 GHz -40.93 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" I	M4 1 2.3439 GHz -40.93 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2"										
Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" I	Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" I										
Spectrum T Ref Level 27.60 dBm Offset 7.60 dB • RBW 100 kHz Att 40 dB SWT 18.9 µS • YBW 300 kHz Mate Auto FFT SGL Count 100/100 • N1[1] • IPk Max • N1[1] 20 dBm • 0 dBm 10 dBm • 0 dBm -10 dBm • 0 dBm -20 dBm • 0 dBm -30 dBm • 0 dBm -40 dBm • 0 dBm	Spectrum Image: Construct of the second	E C		and the second	a second second second						
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	10 dBm	Spectrum Ref Level 27 Att	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	- 		o-Hoppi	ng Ref	₩
D dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm	0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm-	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm-	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-40 dBm	-40 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-50 dBm -60 dBm -70 dBm	-50 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-50 dBm -60 dBm -70 dBm	-50 dBm	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-60 dBm	-60 dBm	Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi		5,81 dBn
-70 dBm	-70 dBm	Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi	2.47	5,81 dBn 983220 GH
		Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi	2.47	5,81 dBn 983220 GH
CF 2.48 GHz 1001 pts Span 8.0 MHz	CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi	2.47	5,81 dBn 983220 GH
		Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi	2.47	5,81 dBn 983220 GH
		Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode A	uto FFT	o-Hoppi	2.47	5,81 dBn 983220 GH

●1Pk Max			1		1		_	r in dru
20 dBm		_		M1[1	1		2.480	5.13 dBm 05000 GHz
10/d8m				M2[1	IJ			45.42 dBm 50000 GHz
0 d8m								
-10 dBm	-					·	1 1	1
D1 -	14.186 dBm-	-		-				1
-20 cBm								1
-30 dBm	M	4						
-40 dBmz	anturpulation	- Hundrewellight	warm Mutaning ing	MurrownikeArm	ubelingenerate	when wound	Mark Potestation	monthe
-50 dBm								
-60 dBm								
-70 dBm Start 2.476 GH	-		1001	nte			Stop	2.576 GHz
Marker	2			prs			Stup	2.370 GH2
Type Ref T M1	rc X	-value 2.48005 GHz	Y-value 5.13 dBr	Function	n	Func	tion Result	-
M2 M3	1	2.4835 GHz 2.5 GHz	-45.42 dBi -46.02 dBi	m				
M4	ĩ	2.4999 GHz	-42.82 dBr					
Banc Spectrum Ref Level 27.6 Att SGL Count 8009	0 dBm Off 40 dB SW	set 7.60 dB	NVNT 1-D RBW 100 kHz YBW 300 kHz			nt1 Hop	oping R	ef (\vec{W}
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max	0 dBm Off 40 dB SW	set 7.60 dB	RBW 100 kHz		FFT	nt1 Hop		
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm-	0 dBm Off 40 dB SW	set 7.60 dB	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max	0 dBm Off 40 dB SW	set 7.60 dB	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm-	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm 0 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm 0 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT			6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop		6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT			6,01 dBm
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT		2,476	6.01 dBm 83320 GHz
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop	2,476	6.01 dBm 83320 GHz
Spectrum Ref Level 27.6 Att SGL Count 8009 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop	2,478	6.01 dBm 83320 GHz
Spectrum Ref Level 27.6 Att SGL Count 8009 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	0 dBm Off 40 dB SW	īset 7.60 dB ЛТ 18.9 µs —	RBW 100 kHz	Mode Auto	FFT	nt1 Hop	2,478	6.01 dBm 83320 GHz

1Pk Max			1 1	M1[1]	1			6,42 dBm
20 dBm			1	M2[1]				685000 GHz -44,94 dBm
10 dBm	-		1	1		í		350000 GHz
D dBm			-					
-10 dBm-D1 -	13.994 dBm					-		
-20 cBm								-
-30 dBm								
-40 dBmiz M4	witzman 1013	How prendation	trachendermanny	una war un plan	numpelan	noterination	wind Martin	and materian
-50 dBm								
-60 dBm								1
-70 dBm Start 2.476 GH:	z		1001 p	ts	-	-	Stop	2.576 GHz
Marker Type Ref Tr	rcl X-v	alue	Y-value	Function	.⊐í —	Func	tion Resul	+
M1 M2	1 2	.47685 GHz 2.4835 GHz	6.42 dBm -44.94 dBm			Tunc	cion Kesu	
M3 M4	1	2.4835 GHz 2.5 GHz 2.4887 GHz	-45.49 dBm -42.93 dBm					
Ba Spectrum Ref Level 27.6	and Edge	e NVNT 2	-DH5 2402	A.2.7	FFT	Hoppin	ng Ref	0 (₩ ▼ 3.63 dBm
Bi Spectrum Ref Level 27.6 Att SGL Count 100/	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		
Bi Spectrum Ref Level 27.6 Att SGL Count 100/ IPk Max	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6: Att SGL Count 100/ 1Pk Max 20 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6: Att SGL Count 100/ 1Pk Max 20 dBm 10 dBm 0 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6: Att SGL Count 100/ 9 1Pk Max 20 dBm 10 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6: Att SGL Count 100/ 1Pk Max 20 dBm 10 dBm 0 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6' Att SGL Count 100/ IPK Max 20 dBm 10 dBm 0 dBm -10 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6' Att SGL Count 100/ IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6 Att SGL Count 100/ IC dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT			3,63 dBm
Bi Spectrum Ref Level 27.6 Att SGL Count 100/ ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6 Att SGL Count 100/ IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin		3,63 dBm
Bi Spectrum Ref Level 27.6 Att SGL Count 100/ ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin	2,40	3.63 dBm 201600 GHz
Bi Spectrum Ref Level 27.6: Att SGL Count 100/ 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin	2,40	3.63 dBm 201600 GHz
Bi Spectrum Ref Level 27.6: Att SGL Count 100/ 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	and Edge	e NVNT 2	-DH5 2402	Mode Auto	FFT	Hoppin	2,40	3.63 dBm 201600 GHz

●1Pk Max		-	1	1	M	1[1]			3,79 dBm
20 dBm									15000 GHz
10 dBm	-		-	-	M	2[1]	2		44.28 dBm 000000/GHz
0 dBm			_				<u> </u>		X
-10 dBm									
-20 dBm	D1 -16,365	dBm		-					
-30 dBm							1		
				M4		1	1	1.1	nat
-40 dBm-	Intral male your	which man	of later to be an	upper the hours wind	Numberstown	rehouse where you	www.	MB MB MMM	pundat mus
-50 dBm							-	1 1	
-60 dBm							1,	1	
-70 dBm	5 CH7	-	-	1001	nte		-	Stop	2.406 GHz
Marker	1. A.					13 10 1		1.000	
Type Re M1	f Trc	X-valu 2.402	e 215 GHz	Y-value 3.79 dB	Func m	tion	Fund	tion Result	
M2 M3	1	3	2.4 GHz	-44.28 dB -46.98 dB	m				
	1		.39 GHz						
Spectrun Ref Level Att SGL Count		ge(Hop offset 7	.62 dB 🐞 I	-40.33 dB VNT 2-D RBW 100 kHz yBW 300 kHz	H5 240		Ant1 Ho	pping R	ef
B Spectrun Ref Level Att SGL Count • 1Pk Max	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240 Mode A		Ant1 Ho		4,95 dBm
B Spectrum Ref Level Att SGL Count	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		
B Spectrun Ref Level Att SGL Count • 1Pk Max	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		4,95 dBm
B Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		4,95 dBm
B Spectrun Ref Level Att SGL Count 9 1Pk Max 20 dBm	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240 Mode A	uto FFT			4,95 dBm
B Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7 swT 1	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B. Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- - 10 dBm- - 20 dBm- - 20 dBm- - 30 dBm- - 40 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B. Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7 swT 1	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B. Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- - 10 dBm- - 20 dBm- - 20 dBm- - 30 dBm- - 40 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop offset 7 swT 1	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B. Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm	and Edg 27.62 dBm 40 dB	ge(Hop offset 7 swT 1	ping) N	VNT 2-D	H5 240	uto FFT			4,95 dBm
B. Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	and Edg 27.62 dBm 40 dB 8000/\$000	ge(Hop offset 7 swT 1	ping) N	VNT 2-D	H5 240	uto FFT		2,405	4,95 dBm
B Spectrum Ref Level Att SGL Count ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.62 dBm 40 dB 8000/\$000	ge(Hop offset 7 swT 1	ping) N	VNT 2-D	H5 240	uto FFT		2,405	4.95 dBm 98800 GHz

SGL Count 1000/3 9 1Pk Max	1000		~					
20 dBm-	_		2	1	A1[1]		2.40	4.16 dBr 495000 GH
10 dBm		-			12[1]			-43.87 dBr
0 dBm					1		2.76	
-10 dBm						1		Aligner
	5,046 dBm							
					1	<u></u>		
-30 dBm			M4			1		Date
-40 dBm	Annanananan	unmented burnelines	my automa	an arran washing	non-managed and	another houses	month Marthankhi	minim
-50 dBm			1				1	
-60 dBm			1		1	F	1	
-70 dBm Start 2.306 GHz		1	100	D1 pts		-	Stop	2.406 GHz
Marker	1				ction	-	1	
Type Ref Trc M1 1	2.4	10495 GHz	Y-value 4.16 (dBm	ction	Fund	tion Resul	t
M2 1 M3 1		2.4 GHz 2.39 GHz	-43.87 (-44.40 (dBm				
M4 J	. 2.	.3502 GHz	-40.52 (dBm				
								10
Spectrum Ref Level 27.60	dBm Offset 0 dB SWT	NVNT 2- 7.60 dB R 18.9 µs V	(BW 100 k)	Hz		o-Hoppir	ng Ref	(E
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 1Pk Max	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Hz Mode		o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 1Pk Max	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 1Pk Max 20 dBm-	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/16 1Pk Max 20 dBm 10 dBm 0 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/16 PK Max 20 dBm 10 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT			1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/16 IPk Max 20 dBm 10 dBm 0 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 IPk Max 20 dBm 10 dBm -10 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT			1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 •1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT	o-Hoppir		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT	o-Hoppin		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R	(BW 100 k)	Hz Mode	Auto FFT	o-Hoppin		1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 • IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R		Hz Mode	Auto FFT		2.48	1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R		Hz Mode	Auto FFT	o-Hoppin	2.48	1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 • IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R		Hz Mode	Auto FFT	o-Hoppin	2.48	1,78 dBr
Spectrum Ref Level 27.60 Att 4 SGL Count 100/10 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 0 dB SWT	: 7.60 dB 🔳 R		Hz Mode	Auto FFT	o-Hoppin	2.48	1,78 dBr

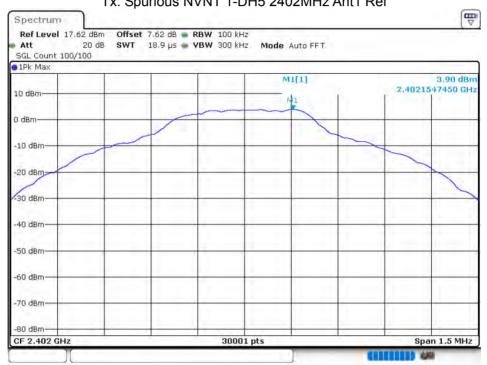
20 dBm 22.480.5000 CH2 10 dBm 22.483.5000 CH2 0 dBm 22.483.5000 CH2 0 dBm 22.483.5000 CH2 0 dBm 22.483.5000 CH2 0 dBm 22.480.500 CH2 0 dBm 22.576 CH2 100 Jpts Stop 2.576 CH2 Spectrum 22.4905 CH2 -46.31 dBm 42.490 1 2.4905 CH2 -46.31 dBm 42.490 1 2.4902 CH2 -43.21 dBm 42.490 1 2.4902 CH2 -490 1	●1Pk Max	C	í	1	1				_	0.05.45
10,8m 2,49350000 GH2 0 dbm 2,49350000 GH2 -10 dbm 20 dbm -20 dbm 01 - 18,215 dbm -30 dbm -10 dbm -50 dbm -10 dbm -70 dbm -10 dbm -11 2.4493 GH2 -46.3 dbm -12 2.4493 GH2 -46.3 dbm Matker 1 2.4493 GH2 Matker -10 dbm -10 dbm 0 dbs Still Count 80000/8000 Offset 7.60 db @ dbm -10 dbm -10 dbm -10 dbm -20 dbm -10 dbm -30 dbm<	20 dBm			-						
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70	10 dBm					M	2[1]	2		
201 18.215 dBm 1 2 400 Bm 1 1 2 400 S 1 <th1< td=""><td>0 dBm</td><td></td><td></td><td></td><td>-</td><td>_</td><td></td><td></td><td></td><td>11</td></th1<>	0 dBm				-	_				11
-30 dbm	-10 cBm					_		-		
	-20 cBm	D1 -18.215	dBm							
Band Mile	-30 dBm									
50 dBm 400 dBm 40 dBm 70 dBm Start 2.476 GHz 1001 pts Start 2.476 GHz 1001 pts Marker Function Type Ref Trc M1 1 2.4935 GHz -46.31 dBm M3 1 2.5 GHz -46.95 dBm M4 1 2.4902 GHz -43.21 dBm M4 1 2.4779600 GHz -43.21 dBm Stot Lound B000/8000 Offset 7.60 dB RBW 100 kHz Mat -40 dB Stot Lound B000/8000 WT 91Pk Max -2,47798600 GHz 10 dBm -43 dBm -20 dBm -43 dBm -30 dBm -40 dBm <	-40 dema	M4	M3	manosharital	Man Holdwoor	wind a Mar al	A. M. M. MILLING	which while desperieus	nhawaktuka	manument
And Bar Stop 2.576 GHz Marker Function Function Result M1 1 2.48015 GHz 2.85 dBm M2 1 2.48015 GHz 2.85 dBm M2 1 2.48015 GHz -46.31 dBm M3 1 2.5 GHz -46.53 dBm M4 1 2.4902 GHz -43.21 dBm M4 1 2.4902 GHz -43.21 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 90 dB SWT 18.9 µs YBW 300 kHz Max 90 dB SWT 18.9 µs YBW 300 kHz Max 90 dBm 90 dBm 91 dBm 91 dBm 10 dBm M1 2.18 dBm 91 dBm -20 dBm 91 dBm 91 dBm 91 dBm 91 dBm -30 dBm 91 dBm 91 dBm 91 dBm 91 dBm -30 dBm 91 dBm 91 dBm 91 dBm 91 dBm <td></td> <td></td> <td></td> <td></td> <td></td> <td>and the second second</td> <td>10 41 40</td> <td>Y</td> <td></td> <td></td>						and the second second	10 41 40	Y		
Stert 2.476 GHz 1001 pts Stop 2.576 GHz Marker Function Function Result M1 1 2.48015 GHz 2.85 dBm M2 1 2.4935 GHz 2.85 dBm M3 1 2.4935 GHz -46.31 dBm M4 1 2.4902 GHz -43.21 dBm M4 1 2.4902 GHz -43.21 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Spectrum W W W Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT SGL Count 8000/8000 SWT 18.9 µ5 VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 M11 2.47798600 GHz 2.47798600 GHz 10 dBm M1 40 dB 40 dB 40 dBm -00 dBm M1 M1 3.18 dBm 3.18 dBm -20 dBm M1 M1 40 dBm 40 dBm 40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td></td<>									1	1
Type Ref Trc X-value Y-value Function Function Result M1 1 2.48015 GHz 2.85 dBm 1 2.4935 GHz -46.31 dBm M3 1 2.4935 GHz -46.31 dBm 1 1 2.4902 GHz -46.31 dBm M4 1 2.4902 GHz -43.21 dBm 1		6 GHz			1001	pts			Stop	2.576 GHz
M2 1 2.4835 GHz -46.31 dBm M3 1 2.5 GHz -46.95 dBm M4 1 2.4902 GHz -43.21 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Image: Constraint of the state of the s	and the second sec	f Trc	X-value		Y-value	Func	tion	Func	tion Resul	t I
M4 1 2.4902 GHz -43.21 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Colspa=	M2	1	2.48	35 GHz	-46.31 dBr	m				
Spectrum Image: Constraint of the second secon										
Spectrum Image: Constraint of the second secon		1								6
bd&m 10 dBm -10 dBm -1	Spectrun Ref Level Att SGL Count	n 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop	oping R	
b d@m -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm	Spectrun Ref Level Att SGL Count 1Pk Max	n 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm-	n 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-20 dBm -30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-30 dBm -40 dBm -50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-40 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- b-dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-50 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-50 dBm	Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-60 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
-70 dBm	Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	n 27.60 dBm 40 dB	Offset 7. SWT 1	60 dB 🐞 R	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		₹ 3,18 dBm
CF 2.48 GHz 1001 pts Span 8.0 MHz	Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7. SWT 1	60 dB 🐞 R		Mode A	uto FFT	Ant1 Hop	2.47	3,18 dBm 798600 GHz

1Pk Max	1		7 1				
20 dBm			-	M1[1]		2.47605	
10 dBm				M2[1]		-43 2.48350	.93 dBm 000 GHz
DidBm-		_				<u> </u>	_
-10 cBm							
-20 cBm-D1 -	-16.818 dBm	-				-	-
-30 dBm	_	_					
-40 dBm	Mitha	konna.				shirts the state	
-50 dBm	-Minzounistanilation and the	enelypower and any	needen and a second and	www.manager.	washing have	infait that have been been been been been been been be	dellant spathet
-60 dBm							
-70 dBm					1	1	
Start 2.476 GH Marker	z	- <u>^</u>	1001 pt	ts		Stop 2.5	76 GHz
Type Ref T			Y-value	Function	Func	tion Result	
M1 M2	1 2	47605 GHz .4835 GHz	2.81 dBm -43.93 dBm				_
M3 M4	1 1 2	2.5 GHz .4985 GHz	-43.55 dBm -42.15 dBm				
							_
Spectrum Ref Level 27.6 Att SGL Count 300,	40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz	Mode Auto FFT	No-Hoppir	ig Ref	V
Spectrum Ref Level 27.6 Att	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz	A 2	No-Hoppir		.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hoppir	4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm- 10 dBm-	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm-	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm- 10 dBm-	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm- 10 dBm- 0 dBm-	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm 10 dBm -10 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		4 2,40183	.48 dBm
Spectrum Ref Level 27.6 Att SGL Count 300, ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz yBW 300 kHz	Mode Auto FFT		4 2,40183	.48 dBm 220 GHz
Spectrum Ref Level 27.6 Att SGL Count 300, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2 dBm Offset 40 dB SWT	t 7.62 dB 🕳 F	RBW 100 kHz yBW 300 kHz	Mode Auto FFT		4 2,40183	.48 dBm 220 GHz

20 dBm M1[1] 3.55 dBm 20 dBm 43.42 dBm -43.42 dBm 10 dBm 2.4000000000000000000000000000000000000	SGL Count : 1Pk Max	100/100			11.					
10 dbm M2[1] 4.3.42 dbm 0 dbm 2.40000009,PHz 10 dbm 01 +15.522 dbm -20 dbm					-	M	1[1]		0.50	
10 dBm 2.4000000000000000000000000000000000000	20 dBm					M	2[1]			
10 dBm 01 +15.522 dBm 101 +15.522 dBm 101 +15.522 dBm 30 dBm 101 +15.522 dBm 101 +15.522 dBm 101 +15.522 dBm 40 dBm 101 +15.522 dBm 101 +15.522 dBm 101 +15.522 dBm -60 dBm 101 +15.522 dBm 1001 pts Stop 2,405 GHz -60 dBm 101 pts Stop 2,405 GHz Stop 2,406 GHz -70 dBm 1 2.40195 GHz 1001 pts Stop 2,406 GHz Warker 1 2.40195 GHz -40.32 dBm Function Result 1 M1 1 2.40195 GHz -40.32 dBm 1 1 1 Marker 1 2.39 GHz -40.32 dBm 1 <td< td=""><td>10 dBm</td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td>6</td><td></td><td></td></td<>	10 dBm				1		1	6		
20 dBm 01 - 15.522 dBm 044 444 444 444 444 444 444 444 444 44	0 dBm		-		-			-		A
-20 dBm -40 dBm	-10 dBm			-		-		-		
40 dBm 14 14 14 14 40 dBm 40	-20 dBm	01 -15,522	dBm		1	_		-		
40 dBm 100 pts 10 pts </td <td>-30 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	-30 dBm									1
Multiple of the second sec	-40 dBm		- E				1.1.1.1	1	10	Ma
-60 dBm -70 dBm Stop 2.406 GHz -70 dBm 1001 pts Stop 2.406 GHz Varker 1 2.404 GHz -43.42 dBm M3 1 2.396 GHz -44.42 dBm M3 1 2.39496 GHz -44.65.61 dBm M4 1 2.39496 GHz -40.32 dBm Spectrum W W WBW 300 kHz Ref Level 27.52 dB Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz Mathematical State M1[1] 5.01 dBm 20 dBm 10 dBm M1[1] 5.01 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm -10 dBm -00 dBm	Manhandan	hillhelingung	and hourselin	Mary Maloovara	invaliance	hartenanthligh	Markin run Joryult	prolinder workship	with Freedoless	month Ma
Band Y-value Function Function Result M1 1 2.406 GHz 3.55 dBm Function Result Function Result M2 1 2.406 GHz -43.55 dBm Function Result Function Result M2 1 2.406 GHz -43.55 dBm Function Result Function Result M2 1 2.406 GHz -43.42 dBm Function Result Function Result M3 1 2.39 GHz -46.61 dBm Function Result Function Result M4 1 2.3496 GHz -40.32 dBm Function Result Function Result M4 1 2.3496 GHz -40.32 dBm Function Result Function Result Spectrum Function Result Function Result Function Result Function Result Superior SWT 18.9 µs< VBW 300 kHz					*	1	1	1	1	1
Stort 2.306 GHz 1001 pts Stop 2.406 GHz Marker Y-value Function Function Result M2 1 2.40195 GHz 3.55 dBm M3 1 2.44 4.43 42 dBm 44.42 dBm M3 1 2.3496 GHz -40.32 dBm M4 1 2.3496 GHz -40.32 dBm M4 1 2.3496 GHz -40.32 dBm Spectrum Figure Anthone Ant	-60 dBm				·				1	
Marker Trc X-value Y-value Function Function Result M1 1 2.40195 GHz 3.55 dBm		GHz	-	-	1001	l pts			Stop 2	2.406 GHz
M1 1 2.40195 GHz 3.55 dBm M2 1 2.4 GHz -43.42 dBm M3 1 2.396 GHz -46.61 dBm M4 1 2.3496 GHz -40.32 dBm Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Ref Spectrum Ref Level 27.62 dBm Offset 7.62 dB R BW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz M1(1) 2.40415780 GHz 2.40415780 GHz 10 dBm 0 dBm 0 0 -20 dBm 0 0 0 -30 dBm 0 0 0 0 -60 dBm 0 0 0 0 -70 dBm 0 0 0 0	Marker								1	
M3 1 2.39 GHz -46.61 dBm M4 1 2.3496 GHz -40.32 dBm Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Ref Spectrum Image: Comparison of the	M1	1	2.40	195 GHz	3.55 dB	Sm	tion	Fund	tion Result	
M4 1 2.3496 GHz -40.32 dBm Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Colspa=										
Spectrum Image: Control of the second s			2.34	496 GHz						
10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Ba Spectrum Ref Level : Att SGL Count I	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz			Ant1 Ho	pping R	
D dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Ba Spectrum Ref Level : Att	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	pping R	
D dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Ba Spectrum Ref Level : Att SGL Count I	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho		5,01 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Ba Spectrum Ref Level : Att SGL Count 1 SGL Count 1 Pk Max 20 dBm-	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Ba Spectrum Ref Level : Att SGL Count 1 • 1Pk Max	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Ba Spectrum Ref Level : Att SGL Count 1 SGL Count 1 Pk Max 20 dBm-	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	Ba Spectrum Ref Level : Att SGL Count f IPk Max 20 dBm 10 dBm D dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-40 dBm -50 dBm -60 dBm -70 dBm	Ba Spectrum Ref Level : Att SGL Count f IPk Max 20 dBm 10 dBm D dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-50 dBm	Ba Spectrum Ref Level 3 Att SGL Count 1 O 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-50 dBm	Ba Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB 👅 R	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-60 dBm	Ba Spectrum Ref Level 3 Att SGL Count 1 SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB в R (8,9 µs в V	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-70 dBm-	Ba Spectrum Ref Level : Att SGL Count I IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB в R (8,9 µs в V	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
-70 dBm-	Ba Spectrum Ref Level 3 Att SGL Count 1 SGL Count 1 SGL Count 1 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB в R (8,9 µs в V	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
	Ba Spectrum Ref Level 3 Att SGL Count 1 SGL Count 1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB в R (8,9 µs в V	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
CF 2.402 GHz 1001 pts Span 8.0 MHz	Ba Spectrum Ref Level 3 Att SGL Count 1 SGL Count 1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edg 27.62 dBm 40 dB	Offset 7	7.62 dB в R (8,9 µs в V	BW 100 kHz	: Mode A	uto FFT			5,01 dBm
	Ba Spectrum Ref Level : Att Sol Count If Pirk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.62 dBm 40 dB 3000/8000	Offset 7	7.62 dB в R (8,9 µs в V		Mode A	uto FFT		2,404	5.01 dBm 15780 GHz
	Ba Spectrum Ref Level : Att Sol Count If Pirk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.62 dBm 40 dB 3000/8000	Offset 7	7.62 dB в R (8,9 µs в V		Mode A	uto FFT		2,404	5.01 dBm 15780 GHz

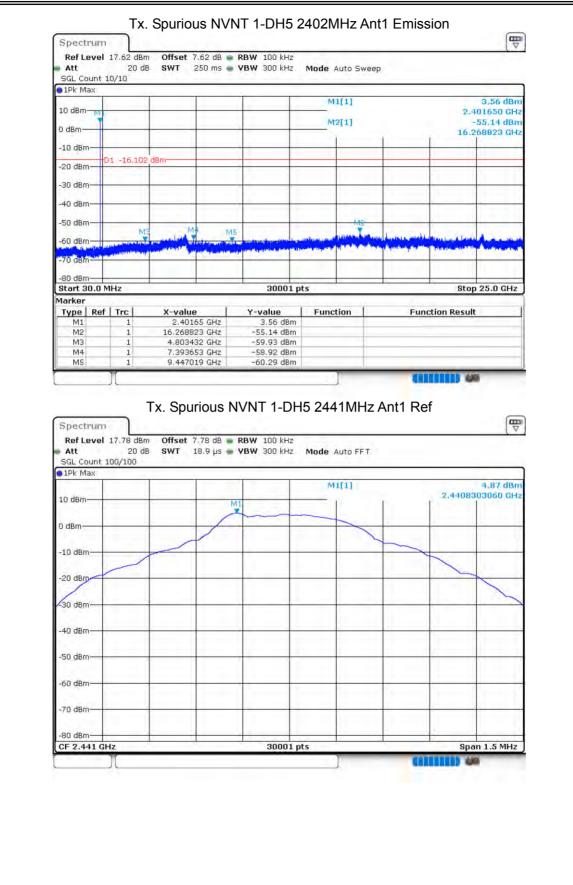
-20 dBm- -30 dBm- -40 dBm- -50 dBm- -60 dBm-	mm	m					h	mm	mm
-30 dBm— -40 dBm—	m	m					him	mm	mm
			hm	M .	V	wy			
-20 dBm			0.00			000			
-10 dBm									
0 dBm				1 million	lon				
10 dBm				- M					
20 dBm					M1[1	1		2,480	5.71 dBm 15980 GHz
Spectrur Ref Level Att SGL Count 1Pk Max	n 27.60 dBm 40 dB	Offset 7.	60 dB 👜 I	-DH5 2480	Mode Auto	FFT	-Hoppir	ng Ref	(m
M4	1 N		19 GHz	-40.44 dBm	1	1	CII		8
Type Re M1 M2 M3	f Trc 1 1 1	2	15 GHz .4 GHz 39 GHz	Y-value 4.85 dBm -44.30 dBm -45.07 dBm	Function	n	Fund	tion Result	
-70 dBm- Start 2.30 Marker	6 GHz	P		1001 pt	s			Stop	2.406 GHz
-60 dBm	1							1	
	produced french	aniash, and a	and markers	nandmenning	relationship	Manhananan	un demonstration	windle Muchaelstone	andert
-30 dBm			M4					113	M2
-20 dBm	D1 -14,992	an	-						
-10 dBm									
0 dBm								2,401	00000 GH2
TO ODIII.					M2[1	1			15000 GHz
20 dBm				1 1	M1[1	1		-	4.85 dBm

SGL Count	100/100	_	_		-				
20 dBm-			1		M	1[1]		2 400	5.71 dBm 15000 GHz
			1		M	2[1]		-	45.60 dBm
10 ¹ dBm							<u> </u>	2.483	50000 GHz
0 d8m			1					11 i I	1
	01 -14.290	dBm					-	1	
-20 aBm			1	5			1	1	
-30 dBm				-		1		1	
-46 dBmr2	n antronta dinha	Antenne Mar	number	an manual and	Arthulthoughth has	all we the same	nutralition on town	Judges Million Handhand	mander
-50 dBm				and solution	i i i i più			1000	
-60 dBm				1					
-70 dBm	GHz			1001	nts			Stop	2.576 GHz
Marker	S					1 = 4		Sec. Contraction	
Type Ref M1	Trc 1	X-value 2.480	₽ 15 GHz	Y-value 5.71 dBm	Func	ion	Fun	ction Result	
M2 M3	1		35 GHz 2.5 GHz	-45.60 dBm -45.36 dBm					
M4	1	2.49	71 GHz	-42.96 dBm	Ú.	1			
	III								1
Ba Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	/NT 3-DH BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Ho	pping R	
Spectrum Ref Level : Att SGL Count	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A		Ant1 Ho	1.45	
Spectrum Ref Level 2 Att SGL Count 2 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 4 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 2 Att SGL Count 2 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm D dBm -10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm D dBm D dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 4 1Pk Max 20 dBm 0 dBm -10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm D dBm -10 dBm -20 dBm -20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A		Ant1 Ho	1.45	6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PR Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A		Ant1 Ho		6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A		Ant1 Ho		6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode A		Ant1 Ho		6,29 dBm
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode Ar		Ant1 Ho	2,476	6.29 dBm 15580 GHz
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode Ar		Ant1 Ho	2,476	6.29 dBm 15580 GHz
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode Ar		Ant1 Ho	2,476	6.29 dBm 15580 GHz
Spectrum Ref Level 3 Att SGL Count 1 9 1Pk Max 20 dBm 40 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 🖷 RI	BW 100 kHz	Mode Ar		Ant1 Ho	2,476	6.29 dBm 15580 GHz

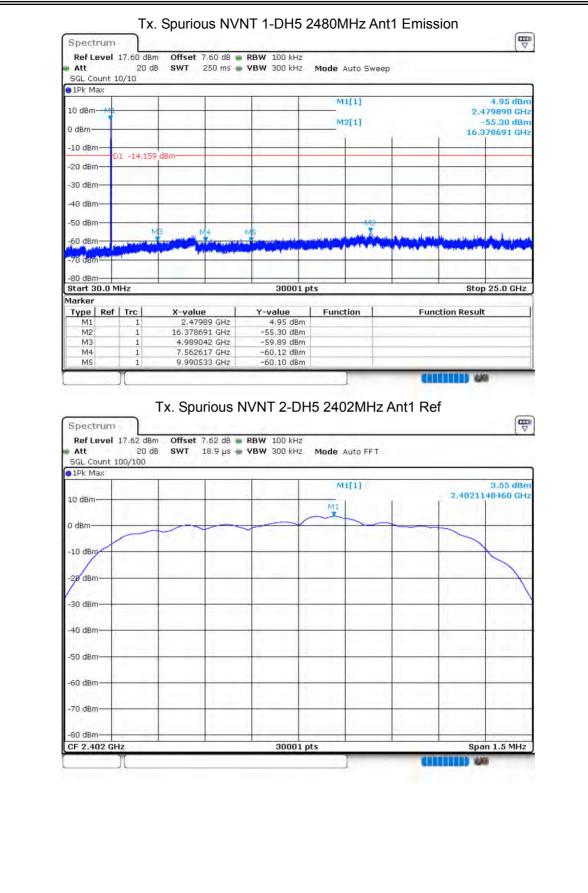


								V
Ref Level 27.) Att SGL Count 100	40 dB SWT	and the first state of the second state of the	RBW 100 kHz VBW 300 kHz	Mode At	uto FFT			
1Pk Max								
			1	M1	[1]			6.52 dBm
20 dBm								15000 GHz
10 dBm				M2	[1]			43.83 dBm 50000 GHz
			1.	1		1	21100	
Alasm-			1					
-10 cBm					-			
	-13.706 dBm	_				-		
-20 dBm-			-					-
3 A			1			1		1 5
-30 dBm			-					
-40 dBm12 M4	842		1.5.				-	1 - A
and when the	strong way much to the land	alourny which the	allowing a hard a second and the	mellindelperde	Munullythis	related hyperson	hupped methodestal	ner many indialized
-50 dBm					-			
10.10								
-60 dBm						1		
-70 dBm						_		
Start 2.476 GH	lz	-	1001 pt	ts			Stop 2	2.576 GHz
Marker				- 1. an	1		The State	
Type Ref 1		2 20 10	Y-value	Functi	on	Func	tion Result	i
M1		7615 GHz	6.52 dBm	-				
			-43.83 dBm					
M2 M3	1 2.	4835 GHz 2.5 GHz	-44.33 dBm					

8.7 CONDUCTED RF SPURIOUS EMISSION


00110	001001					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-59.03	-20	Pass
NVNT	1-DH5	2441	Ant 1	-60.27	-20	Pass
NVNT	1-DH5	2480	Ant 1	-61.13	-20	Pass
NVNT	2-DH5	2402	Ant 1	-59.14	-20	Pass
NVNT	2-DH5	2441	Ant 1	-59.55	-20	Pass
NVNT	2-DH5	2480	Ant 1	-58.67	-20	Pass
NVNT	3-DH5	2402	Ant 1	-58.92	-20	Pass
NVNT	3-DH5	2441	Ant 1	-60.52	-20	Pass
NVNT	3-DH5	2480	Ant 1	-61.96	-20	Pass

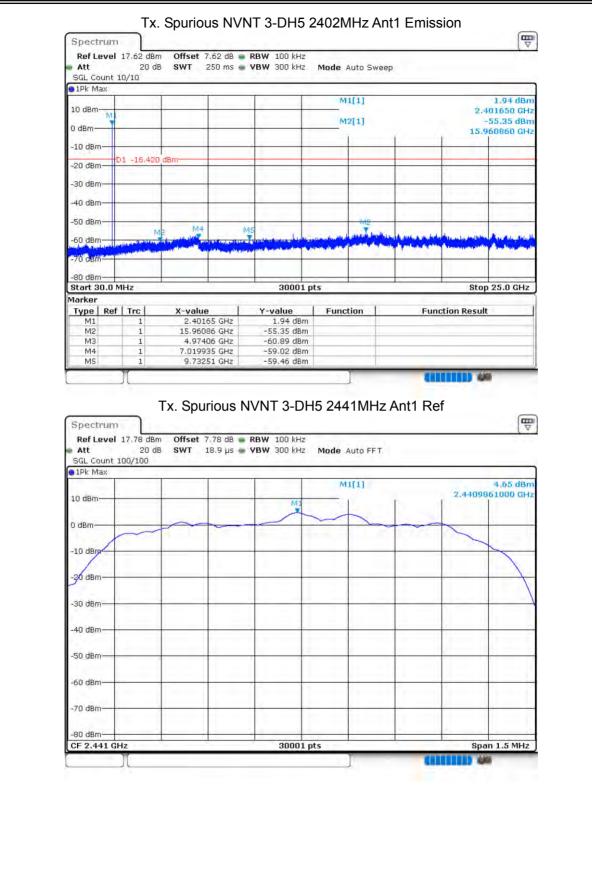
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref



• 1Pk Max	-				M1[11			3.80 dB
10 dBm-wr					M2[2.	440770 GH
0 dBm					_			22.	711916 GH
-10 dBm	01 -15,129	dBm							
-30 dBm									
-40 dBm	-								
-50 dBm								1	112
-60 dBm	Carling and the second s	S M	M5	بوالتق بيدين فيتل	added and the	likes at her its	Martan	-	
-70 dBm	pedarit i charait (fige		(and the Marilling and a second s						
Start 30.0 M	MHz			30001 p	ts			Sto	p 25.0 GHz
Marker		v				un 1	-		
Type Ref M1 M2	1 1		77 GHz	Y-value 3.80 dBm	Functio		Fun	ction Resu	n
M2 M3 M4	1		24 GHz 24 GHz 24 GHz	-55.40 dBm -59.56 dBm -59.90 dBm					
M5				~60.16 dBm					
mo	1	9,5818	S7 GHZ	-00.10 060					
Spectrum	17.60 dBm 20 dB	Tx. Spu	rious N	VNT 1-DH			Ant1 Re	f)))) (E
Spectrum Ref Level Att SGL Count : 1Pk Max	17.60 dBm 20 dB	Tx. Spu	rious N	VNT 1-DH		to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count :	17.60 dBm 20 dB	Tx. Spu	rious N	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		,
Spectrum Ref Level Att SGL Count : 1Pk Max	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm-	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count IPk Max IO dBm 0 dBm -10 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count : SIL Count : SIL Count : I 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count : It dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count : I D dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count : 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	17.60 dBm 20 dB	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re		5,84 dB
Spectrum Ref Level Att SGL Count IPk Max ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.60 dBm 20 dB 100/100	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH	Mode Aut	to FFT.	Ant1 Re	2.4798	5.84 dBi 312560 GH
Spectrum Ref Level Att SGL Count : I Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	17.60 dBm 20 dB 100/100	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	Ant1 Re	2.4798	5,84 dB
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	17.60 dBm 20 dB 100/100	Tx. Spu	rious N 7.60 dB • 1 18.9 µs • 7	VNT 1-DH	Mode Aut	to FFT.	Ant1 Re	2.4798	5.84 dB/ 312560 GH

			1	M	1[1]			1.45 dB
10 dBm ML					2[1]			401650 GH -55,59 dB
0 dBm	-			1	41)	(702101 GH
-10 dBm	5.452 dBm							
-20 dBm	5,452 dBm					1		
-30 dBm					-			1
-40 dBm	_						-	-
-50 dBm	M3 M4	MS				1/12		
-60 dBm	antigener sinter ander bereiten ber	and and and all and a		and a start and a start	provide the Asso		Reflection States and	and Parathestander
-70 dBm								1000
-80 dBm	_		00001			<u></u>		
Start 30.0 MHz Marker			30001	prs			sto	p 25.0 GH
Type Ref Trc M1 1		e	Y-value 1.45 dBm	Funct	ion	Fur	nction Resu	lt
M2 1	17.7021	101 GHz	-55.59 dBm					
M3 1		539 GHz 726 GHz	-59.65 dBm -59.39 dBm	d	1			
M4 1								
M5 1 Spectrum Ref Level 17.76	Tx. Spu	7.78 dB 🝙	-60.26 dBm VNT 2-DH RBW 100 kHz VBW 300 kHz	15 244	1MHz	Ant1 Re	ef	i (q
M5 1 Spectrum Ref Level 17.76 Att 5 SGL Count 100/16 1Pk Max	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	10.71	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 25 SGL Count 100/10	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	
M5 1 Spectrum Ref Level 17.76 Att 5 SGL Count 100/16 1Pk Max	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att SGL Count 100/16 1Pk Max 10 dBm 0 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 3 SGL Count 100/10 1Pk Max 10 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att SGL Count 100/16 1Pk Max 10 dBm 0 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att SGL Count 100/10 1Pk Max 10 dBm -10 dBm -10 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 3 SGL Count 100/10 10 1Pk Max 10 0 dBm 0 -10 dBm - -20 dBm - -30 dBm -	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 25 25 SGL Count 100/10 10 10 dBm 0 0 0 -10 dBm -20 dBm -20 dBm -20 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 3 SGL Count 100/10 10 1Pk Max 10 0 dBm 0 -10 dBm - -20 dBm - -30 dBm -	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 3 SGL Count 100/10 1 1Pk Max 1 0 dBm 0 -10 dBm 0 -20 dBm -30 dBm -40 dBm -40 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 55 SGL Count 100/16 100/16 1Pk Max 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 3 SGL Count 100/10 1 1Pk Max 1 0 dBm 0 -10 dBm 0 -20 dBm -30 dBm -40 dBm -50 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 35 SGL Count 100/16 100/16 1Pk Max 10 dBm 0 dBm	Tx. Spu	1110US N	VNT 2-DF	H5 244 Mode A	outo FFT	Ant1 Re	de la	3,83 dB
M5 1 Spectrum Ref Level 17.76 Att 35 SGL Count 100/10 100/10 10 dBm 0 0 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -70 dBm -	Tx. Spu	1110US N	VNT 2-DF	H5 244	outo FFT	Ant1 Re	2.4+11	3,83 dB

●1Pk Max	-	-		1 1	M1[11			3.24 dB
10 dBm ML			_						440770 GI
0 dBm					M2[[1]			-55.73 dB 118365 GI
-10 dBm									
-20 dBm-	1 -16.172	dBm				_			
-30 dBm					-				
-40 dBm						_			
-50 dBm						1	191	2	
-60 dBm	M	3 M4	N	15	a the second of the	la esta Market an	A consistential	husing to bal	Anthone
-70 dBm	and the second	presentation of the second	Addition of Inder		and the second			and the second	Contraction of the second s
Start 30.0 M Marker	IHz			30001 p	ots			Sto	p 25.0 GH
Type Ref	Trc	X-value		Y-value	Functio	on	Funct	ion Resul	t
M1 M2	1	20.1183		3.24 dBm -55.73 dBm					
M3 M4	1	4.9840		-60.28 dBm -58.56 dBm					
	T								
M5	1	9,7233	54 GHz	-59.19 dBm					-
	1 17.60 dBm 20 dE	Tx. Spu	rious N	-59.19 dBm			Ant1 Ref		۵ ۱
Spectrum Ref Level Att SGL Count 1 9 1Pk Max	1 17.60 dBm 20 dE	Tx. Spu	rious N	IVNT 2-DH		uto FFT.	Ant1 Ref	_	2,81 dB
Spectrum Ref Level Att SGL Count 1	1 17.60 dBm 20 dE	Tx. Spu	rious N	IVNT 2-DH	Mode Au	uto FFT.	Ant1 Ref	_	
Spectrum Ref Level Att SGL Count 1 9 1Pk Max	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm- 0 dBm-	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm-	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm- 0 dBm-	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm - 10 dBm - 20 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm • 0 dBm • 10 dBm • -10 dBm • -20 dBm • -30 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm - 10 dBm - 20 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm • 0 dBm • 10 dBm • -10 dBm • -20 dBm • -30 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -30 dBm -50 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -30 dBm -50 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	1 17.60 dBm 20 dE	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	_	2,81 dB
M5 Spectrum Ref Level Att SGL Count 1 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17.60 dBm 20 dE 00/100	Tx. Spu	rious N	RBW 100 kHz VBW 300 kHz	Mode Au	uto FFT.	Ant1 Ref	2,4799	2.81 dB
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -80 dBm	17.60 dBm 20 dE 00/100	Tx. Spu	rious N	IVNT 2-DH	Mode Au	uto FFT.	Ant1 Ref	2,4799	2.81 dB
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -80 dBm	17.60 dBm 20 dE 00/100	Tx. Spu	rious N	IVNT 2-DH	Mode Au	uto FFT.	Ant1 Ref	2,4799	2.81 dB



	1			1	MI	[1]			0.65 dBr
10 dBm	_								479890 GH
0 dBm				-	1912	2[1]	(-55,86 dBi 194947 GH
-10 dBm									-
-20 dBm0	1 -17,187 c	Bm		-		-			
-30 dBm	-	_			-				-
-40 dBm				-					
-50 dBm	M3	M	. 1	45		10000	M2		
-60 dBm	And the second s	A DE LA DE L	and the state of the state	And and a strength of the stre	han a far all sing a stree of Street and a street and a street of the			المراجعة من المراجعة المراجعة مراجعة مراجعة مراجعة مراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ال	
-70 dBm									
-80 dBm Start 30.0 M	Hz			3000	1 pts			Stor	p 25.0 GHz
Marker	· · · · · · · · · · · · · · · · · · ·								
Type Ref M1	Trc 1		89 GHz	Y-value 0.65 dB		ion	Fund	tion Result	t
M2 M3	1	19.4949 5.0248		-55.86 dB -60.12 dB					
M4 M5	1	7.3620	24 GHz	-60.42 dB -59.25 dB	m				
1110		2,2021	or drie j	39.23 QD		1	-	11111 ÷	a .
-									
SGL Count 1	17.62 dBm 20 dB 00/100		18.9 µs 🖝	RBW 100 kH VBW 300 kH	z Mode A				
• Att SGL Count 1 • 1Pk Max	20 dB		18.9 µs 🖷		z Mode A	uto FFT.	_	2.40204	3,58 dBr 19990 GH
SGL Count 1	20 dB		18.9 µs 🖕		z Mode A			2.40204	3,58 dBr 19990 GH
• Att SGL Count 1 • 1Pk Max	20 dB		18.9 µs •		z Mode A			2.40204	
Att SGL Count 1 1Pk Max	20 dB		18.9 µs •		z Mode A			2,40204	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	20 dB		18.9 µs 🗰		z Mode A			2.40204	
Att SGL Count 1 1Pk Max 10 dBm- 0 dBm-	20 dB		18.9 µs		z Mode A			2,40204	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	20 dB		18.9 µs •		z Mode A			2.4020-	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB		18.9 µs		z Mode A			2.40204	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB		18.9 µs		z Mode A			2.4020-	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20 dB		18.9 µs		z Mode A			2.4020-	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB		18.9 µs		z Mode A			2.40204	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20 dB		18.9 µs		z Mode A			2.40204	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB		18.9 µs		z Mode A			2.4020-	
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20 dB 00/100		18.9 µs		Z Mode A				\$19990 GH
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20 dB 00/100		18.9 µs		Z Mode A				\$19990 GH
Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20 dB 00/100		18.9 µs		Z Mode A			Spe	\$19990 GH

SGL Count 10/1 1Pk Max	4	I.	7 1					
10 dBm		-		M1[1]				1.62 dE 40770 G
0 dBm		-		M2[1]				55.87 de 00084 G
-10 dBm		-						
-20 dBm	15,350 dBm			-				
-30 dBm		-	-	-	-	-		
-40 dBm		-						-
-50 dBm	MB	.M.4 11	vis.	2018	WIZ	Constant Sec.		
-60 dBm	and the second s		The state of the s	and the state of set				
-70 osm								
Start 30.0 MHz	1	1	30001 p	ots			Stop	25.0 GH
Marker Type Ref Tr	rc∣ X-vai	lue l	Y-value	Function	1	Function	Result	
M1 M2	1 2.4	4077 GHz 0084 GHz	1.62 dBm -55.87 dBm					
M3 M4	1 5.02	9826 GHz 0697 GHz	-59.88 dBm -59.60 dBm		_			
M5		4042 GHz	-60.14 dBm	1	-1			
Spectrum Ref Level 17.6 Att SGL Count 100/	Tx. Sp	t 7.60 dB 🖷	IVNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto	FF T.	1 Ref		[
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz		FF T.		.479821	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm-	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479628	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479820	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm-	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479820	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479820	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479820	5.76 dB
Spectrum Ref Level 17.6 • Att SGL Count 100/ • 1Pk Max 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479821	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479628	5.76 dB
Spectrum Ref Level 17.6 • Att SGL Count 100/ • 1Pk Max 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479821	5.76 dB
Spectrum Ref Level 17.6 • Att SGL Count 100/ • 1Pk Max 10 dBm - 0 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479820	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479828	5.76 dB
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.		.479820	5.76 dB
Spectrum Ref Level 17.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Auto	FF T.			5.76 dE 32060 G
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz	Mode Auto	FF T.			5.76 de 32060 G
Spectrum Ref Level 17.6 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm	Tx. Sp	t 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Auto	FF T.		Spar	5.76 de 32060 G

	rum								₩ V
Ref L	evel 1	17.60	dBm Offset 7.60) dB 🍙	RBW 100 kHz				2.22
Att		20	dB SWT 250	ms 🕳	VBW 300 kHz	Mode Auto Swe	еер		
SGL Co	unt 10	0/10							
01Pk M	ах								
1						M1[1]		2.25 dBm	
10 dBm	dBm Mt							2.479890 GHz	
						M2[1]		-56.21 dBm	
0 dBm-						1	1 5	22.7720	576 GHz
-10 dBn	-						_		
		1 -14.5	238 dBm		-				-
-20 dBn	1-				-				
-30 dBn									
-30 UBN					1				
-40 dBn					-				
-50 dBn	1-		MB MH		10			VI2	
en dan					15 •	and the second states and	New Jackson and the second	dian de mandel A.	Real and A
-60 dBn	La Li het	and the late	and the second se		a a standar a standar a fille a fille a fille	and the second second second	Sound A such as a first state of	the second second second	handling
-70 dBh	have digate	And Made			5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
-80 dBn									
Start 3	U.U M	HZ			30001 pt	s		Stop 25	.U GHZ
Marker	1	- I	52.00.20 T						
Type	Ref		X-value	011-	1 10 a 17 1 12 11	Y-value Function Function Result		ion Result	
M1 M2		1	2,47989 GHz 22,772676 GHz		-56.21 dBm				-
M3	-	1	5.004024 GHz		-59.55 dBm				
M4		1	7.468563 GHz		-59.26 dBm	1			
M5	-	1	9.739168 GHz		-59.69 dBm				

END OF REPORT