

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201002502

FCC REPORT

Applicant: CHITECH SHENZHEN TECHNOLOGY CO., LTD

Address of Applicant: Chitech industrial Park, NO.48, Xiashijia Road, Gongming

Town, Guangming Dist., Shenzhen, China

Equipment Under Test (EUT)

Product Name: 4G TABLET PC

Model No.: 102S

Trade mark: hatch

FCC ID: 2AXUI-102S

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Oct., 2020

Date of Test: 14 Oct., to 03 Nov., 2020

Date of report issued: 04 Nov., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	04 Nov., 2020	Original

Tested by:	Janet	Wei	Date:	04 Nov., 2020
	Test Engin	eer		
	Winner Th	, ang		

Project Engineer

Date:

Reviewed by:

Project No.: JYTSZE2010025

04 Nov., 2020

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED E MISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	27
8	EUT	CONSTRUCTIONAL DETAILS	28
Α	PPENDIX	A - BLE	29
_			

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014
ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	CHITECH SHENZHEN TECHNOLOGY CO., LTD
Address:	Chitech industrial Park, NO.48, Xiashijia Road, Gongming Town, Guangming Dist., Shenzhen, China
	Guarigining Dist., Sherizhen, China
Manufacturer/ Factory:	CHITECH SHENZHEN TECHNOLOGY CO., LTD
Address:	Chitech industrial Park, NO.48, Xashijia Road, Gongming Town,
	Guangming Dist., Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	4G TABLET PC
Model No.:	102S
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.64 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 8000mAh
AC adapter:	Model: AS1201A-0502000USU
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: JYTSZE201002502

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	V	ersion: 6.110919l	O
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
rest Equipment	Manufacturer	Wiodel No.	Geriai No.	(mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

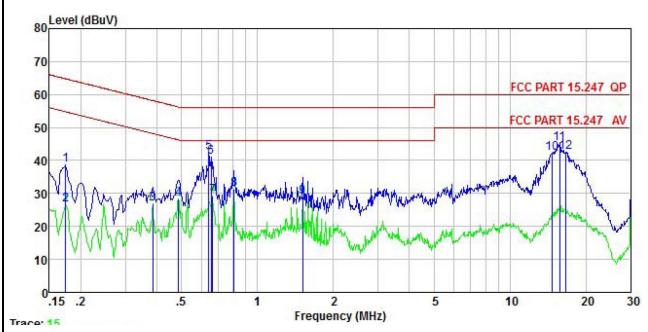
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

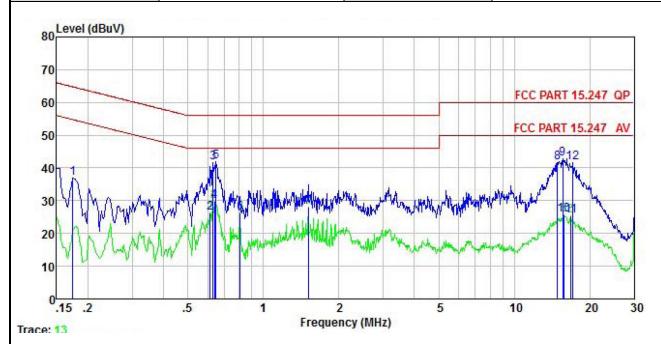
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.64 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	,			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	Limit ((dBuV)		
	1 , 0 , ,	Quasi-peak	Average		
		0.15-0.5 66 to 56* 56 to 46*			
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm 				
	termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement.				
Test setup:	Reference Plane				
	AUX Equipment E.U.T	BOCM Filter Filter EMI Receiver	– AC power		
	Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	iwork			
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Product name:	4G TABLET PC	Product model:	102S
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%

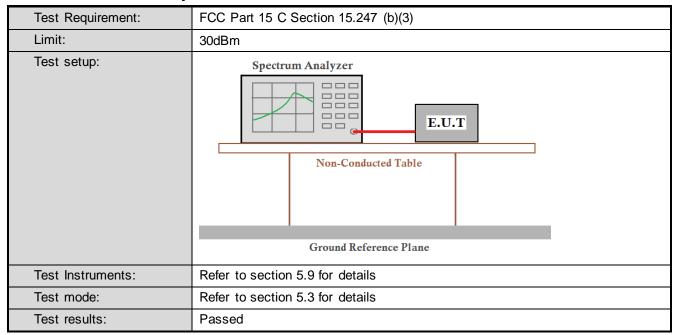

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>ab</u>	<u>ab</u>	<u>ab</u>	—dBu∀	dBu∀	<u>ab</u>	
1	0.174	28.45	-0.58	-0.11	10.77	38.53		-26.24	
2	0.174	16.63	-0.58	-0.11	10.77	26.71	54.77	-28.06	Average
3	0.385	16.35	-0.49	0.33	10.72	26.91	48.17	-21.26	Average
4	0.486	18.27	-0.44	-0.26	10.76	28.33	46.23	-17.90	Average
5	0.641	32.50	-0.50	-0.39	10.77	42.38	56.00	-13.62	QP
1 2 3 4 5 6 7 8 9	0.654	31.04	-0.51	-0.39	10.77	40.91	56.00	-15.09	QP
7	0.665	19.23	-0.51	-0.39	10.77	29.10	46.00	-16.90	Average
8	0.809	21.10	-0.57	-0.05	10.81	31.29	46.00	-14.71	Average
9	1.511	18.43	-0.55	-0.01	10.92	28.79			Average
10	14.672	28.49	-0.69	3.51	10.90	42.21	60.00	-17.79	QP
11	15.718	31.66	-0.72	3.22	10.90	45.06	60.00	-14.94	QP
12	16.661	29.58	-0.75	2.68	10.91	42.42	60.00	-17.58	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

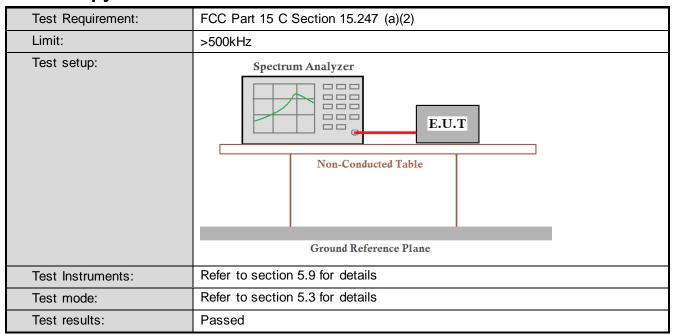
Product name:	4G TABLET PC	Product model:	102S
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿u₹	<u>dB</u>	<u>d</u> B	₫B	dBu₹	dBu∜	<u>d</u> B	
1	0.174	26.78	-0.68	0.00	10.77	36.87	64.77	-27.90	QP
2	0.614	15.97	-0.64	0.04	10.77	26.14	46.00	-19.86	Average
2	0.630	31.58	-0.64	0.04	10.77	41.75	56.00	-14.25	QP
4 5 6 7	0.637	19.64	-0.64	0.04	10.77	29.81	46.00	-16.19	Average
5	0.647	31.61	-0.64	0.04	10.77	41.78	56.00	-14.22	QP
6	0.809	16.14	-0.66	0.06	10.81	26.35	46.00	-19.65	Average
7	1.511	17.84	-0.70	0.13	10.92	28.19	46.00	-17.81	Average
8	14.828	28.39	-0.81	3.05	10.90	41.53	60.00	-18.47	QP
8 9	15.635	30.00	-0.88	2.71	10.90	42.73	60.00	-17.27	QP
10	15.801	12.92	-0.89	2.62	10.91	25.56	50.00	-24.44	Average
11	16.839	13.42	-1.00	1.96	10.91	25.29			Average
12	17.109	29.90	-1.02	1.80	10.91	41.59		-18.41	


Notes:

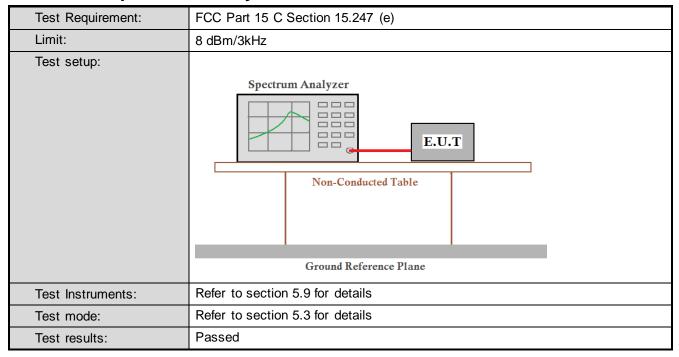
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



Measurement Data: Refer to Appendix A - BLE

6.4 Occupy Bandwidth



Measurement Data: Refer to Appendix A - BLE

6.5 Power Spectral Density

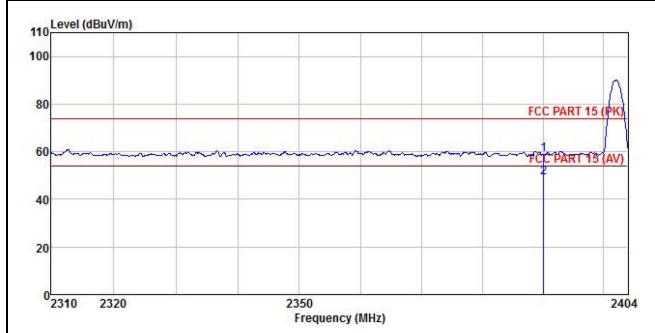
Measurement Data: Refer to Appendix A - BLE

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

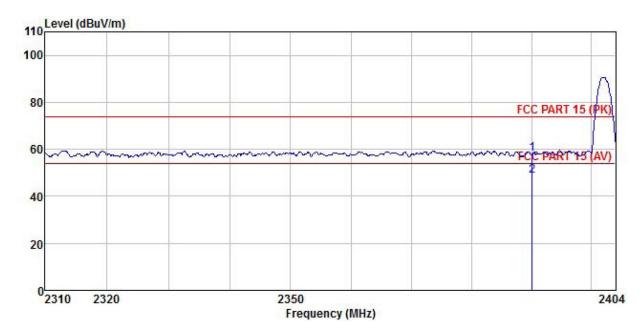
Measurement Data: Refer to Appendix A - BLE



6.6.2 Radiated Emission Method

6.6.2 Radiated Emission	wethod							
Test Requirement:	FCC Part 15 (FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz				
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Limit:	Frequer	RMS	1MHz mit (dBuV/m @3	3MHz	Average Value Remark			
Littit.			54.00		verage Value			
	Above 10	GHz	74.00		Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horizmake the 4. For each case and meters are to find the 5. The test-Specified 6. If the emite the limits of the EU have 10 centers.	d at a 3 meter ine the position was set 3 meter which was more many height is want to determine zontal and vertice measurement. Suspected emit then the antend the rota table maximum reareceiver system Bandwidth with ssion level of the specified, then the trould be repaired.	camber. The tall of the highest ers away from the unted on the top aried from one in the maximum vical polarizations assion, the EUT in a was turned from the was turned from the ewas turned from the	ble was rotated radiation. The interference of a variable meter to four value of the first of the anteres of the anteres of the arranged of the ights from 0 degrees of the was a rounded. The was a rounded the emissione by one united the emissione by one united radiation.	meters above eld strength. In a are set to did to its worst in 1 meter to 4 is to 360 degrees inction and did lower than did the peak values ons that did not sing peak, quasi-			
Test setup:	AE INGENIE	furntable) Ground Test Receiver	Horn Antenna Reference Plane Pre- Amplifier Control	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for detail	S					
Test mode:	Refer to section	on 5.3 for detail	S					
Test results:	Passed							
· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					

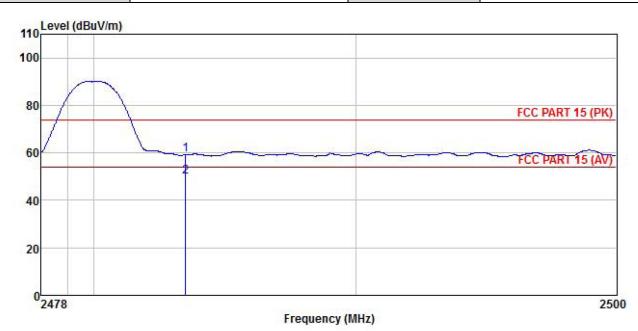
Product Name:	4G TABLET PC	Product Model:	102S
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%



Freq		Antenna Factor					Over Limit	
MHz	dBu∜	<u>dB</u> /π	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
2390.000 2390.000								

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

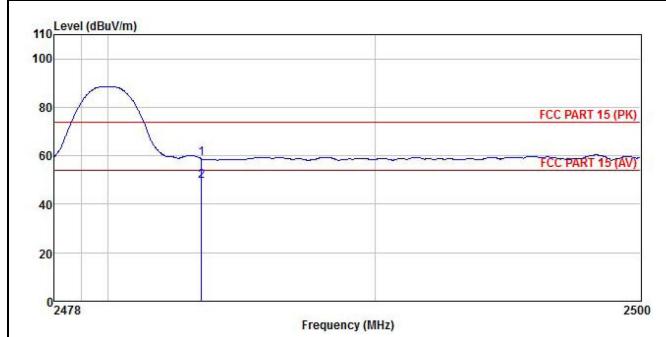
Product Name:	4G TABLET PC	Product Model:	102S
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%



Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBu₹	<u>dB</u> /m		<u>dB</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
2390.000 2390.000										

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G TABLET PC	Product Model:	102S		
Test By:	Janet	Test mode:	BLE Tx mode		
Test Channel:	Highestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%		



	Freq		Antenna Factor					Over Limit	
	MHz	—dBu∜	— <u>d</u> B/π	 <u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	4G TABLET PC	Product Model:	102S
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

	Freq		Antenna Factor					Limit Line		
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500									

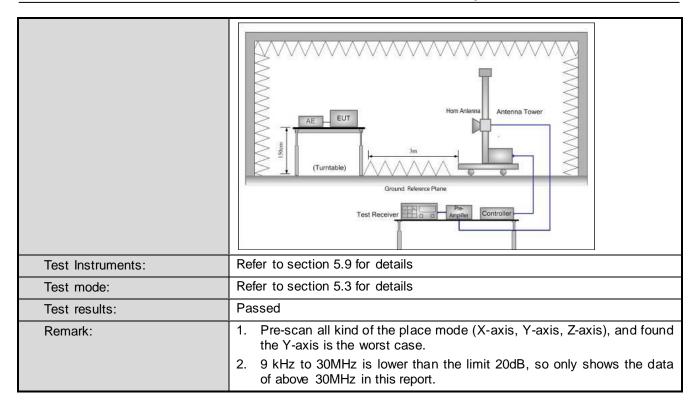
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data: Refer to Appendix A - BLE



6.7.2 Radiated Emission Method

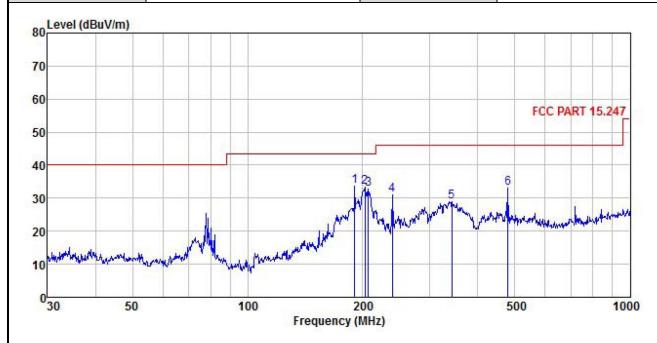
Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW		Remark
· ·	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value
	Above 1G112	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	y L	imit (dBuV/m @	3m)		Remark
	30MHz-88M		40.0			uasi-peak Value
	88MHz-216N		43.5			uasi-peak Value
	216MHz-960N		46.0			uasi-peak Value
	960MHz-1G	Hz	54.0			uasi-peak Value
	Above 1GH	lz —	54.0			Average Value
Test Procedure:	1. The EUT		74.0			Peak Value table 0.8m(below
	 The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 					
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m lm			Search Antenna Test reiver —	



Measurement Data (worst case):

Below 1GHz:

Product Name:	4G TABLET PC	Product Model:	102S
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%


	Freq					Preamp Factor		Limit Line		Remark
	MHz	dBu∀			<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	32.979	45.27	12.29	0.36	0.00	29.96	27.96	40.00	-12.04	QP
2	78.965	43.91	12.53	0.47	0.00	29.65	27.26	40.00	-12.74	QP
3	140.342	45.50	13.81	0.60	0.00	29.27	30.64	43.50	-12.86	QP
4	145.861	50.21	13.98	0.61	0.00	29.24	35.56	43.50	-7.94	QP
5	239.147	44.75	18.46	0.76	0.00	28.60	35.37	46.00	-10.63	QP
6	478.846	45.66	19.32	1.08	0.00	28.92	37.14	46.00	-8.86	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	4G TABLET PC	Product Model:	102S
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

Freq							Limit Line		Remark
MHz	dBu₹			<u>ab</u>	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>ab</u>	
190.405	44.35	17.45	0.70	0.00	28.90	33.60	43.50	-9.90	QP
202.810	43.17	18.31	0.72	0.00	28.81	33.39	43.50	-10.11	QP
207.123	42.54	18.33	0.73	0.00	28.78	32.82	43.50	-10.68	QP
239.147	40.38	18.46	0.76	0.00	28.60	31.00	46.00	-15.00	QP
341.979	37.90	18.78	0.92	0.00	28.54	29.06	46.00	-16.94	QP
478.846	41.49	19.32	1.08	0.00	28.92	32.97	46.00	-13.03	QP
	MHz 190.405 202.810 207.123 239.147 341.979	Freq Level MHz dBuV 190.405 44.35 202.810 43.17 207.123 42.54 239.147 40.38 341.979 37.90	Freq Level Factor MHz dBuV dB/m 190.405 44.35 17.45 202.810 43.17 18.31 207.123 42.54 18.33 239.147 40.38 18.46 341.979 37.90 18.78	MHz dBuV dB/m dB 190.405 44.35 17.45 0.70 202.810 43.17 18.31 0.72 207.123 42.54 18.33 0.73 239.147 40.38 18.46 0.76 341.979 37.90 18.78 0.92	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 190.405 44.35 17.45 0.70 0.00 202.810 43.17 18.31 0.72 0.00 207.123 42.54 18.33 0.73 0.00 239.147 40.38 18.46 0.76 0.00 341.979 37.90 18.78 0.92 0.00	Freq Level Factor Loss Factor Factor MHz dBuV dB/m dB dB dB 190.405 44.35 17.45 0.70 0.00 28.90 202.810 43.17 18.31 0.72 0.00 28.81 207.123 42.54 18.33 0.73 0.00 28.78 239.147 40.38 18.46 0.76 0.00 28.60 341.979 37.90 18.78 0.92 0.00 28.54	MHz dBuV dB/m dB dB <t< td=""><td>Freq Level Factor Loss Factor Factor Level Line MHz dBuV dB/m dB dB dB dBuV/m d3.50 20.50 28.81 33.39 43.50 29.81 29.82 43.50 28.81 33.39 43.50 29.82 43.50 29.82 43.50 29.82 43.50 29.82 43.50<td>Freq Level Factor Loss Factor Factor Level Line Limit MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB 190.405 44.35 17.45 0.70 0.00 28.90 33.60 43.50 -9.90 202.810 43.17 18.31 0.72 0.00 28.81 33.39 43.50 -10.11 207.123 42.54 18.33 0.73 0.00 28.78 32.82 43.50 -10.68 239.147 40.38 18.46 0.76 0.00 28.60 31.00 46.00 -15.00 341.979 37.90 18.78 0.92 0.00 28.54 29.06 46.00 -16.94</td></td></t<>	Freq Level Factor Loss Factor Factor Level Line MHz dBuV dB/m dB dB dB dBuV/m d3.50 20.50 28.81 33.39 43.50 29.81 29.82 43.50 28.81 33.39 43.50 29.82 43.50 29.82 43.50 29.82 43.50 29.82 43.50 <td>Freq Level Factor Loss Factor Factor Level Line Limit MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB 190.405 44.35 17.45 0.70 0.00 28.90 33.60 43.50 -9.90 202.810 43.17 18.31 0.72 0.00 28.81 33.39 43.50 -10.11 207.123 42.54 18.33 0.73 0.00 28.78 32.82 43.50 -10.68 239.147 40.38 18.46 0.76 0.00 28.60 31.00 46.00 -15.00 341.979 37.90 18.78 0.92 0.00 28.54 29.06 46.00 -16.94</td>	Freq Level Factor Loss Factor Factor Level Line Limit MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB 190.405 44.35 17.45 0.70 0.00 28.90 33.60 43.50 -9.90 202.810 43.17 18.31 0.72 0.00 28.81 33.39 43.50 -10.11 207.123 42.54 18.33 0.73 0.00 28.78 32.82 43.50 -10.68 239.147 40.38 18.46 0.76 0.00 28.60 31.00 46.00 -15.00 341.979 37.90 18.78 0.92 0.00 28.54 29.06 46.00 -16.94

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

ABOVE TOTIL	3010 1012									
			Te		el: Lowest c					
				Detecto	or: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	48.94	30.78	6.80	2.44	41.81	47.15	74.00	-26.85	Vertical	
4804.00	48.98	30.78	6.80	2.44	41.81	47.19	74.00	-26.81	Horizontal	
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	40.60	30.78	6.80	2.44	41.81	38.81	54.00	-15.19	Vertical	
4804.00	40.76	30.78	6.80	2.44	41.81	38.97	54.00	-15.03	Horizontal	
	Test channel: Middle channel									
				Detecto	r: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	48.15	30.96	6.86	2.47	41.84	46.60	74.00	-27.40	Vertical	
4884.00	48.25	30.96	6.86	2.47	41.84	46.70	74.00	-27.30	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	40.16	30.96	6.86	2.47	41.84	38.61	54.00	-15.39	Vertical	
4884.00	40.63	30.96	6.86	2.47	41.84	39.08	54.00	-14.92	Horizontal	
			T.		ala I l'arba a s	h 1				
			16		el: Highest c					
	Dood	Antonno	Cabla		or: Peak Val	ue	Limit	Over		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.97	31.11	6.91	2.49	41.87	47.61	74.00	-26.39	Vertical	
4960.00	48.85	31.11	6.91	2.49	41.87	47.49	74.00	-26.51	Horizontal	
				Detector	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	40.92	31.11	6.91	2.49	41.87	39.56	54.00	-14.44	Vertical	
4960.00	40.33	31.11	6.91	2.49	41.87	38.97	54.00	-15.03	Horizontal	
	·		·	· · · · · · · · · · · · · · · · · · ·	·	·	·	·		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Appendix A - BLE Test Data

Maximum Conducted Output Power


Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power	Factor	Power	(dBm)	
		,		(dBm)	(dB)	(dBm)	,	
NVNT	BLE	2402	Ant1	-1.119	0	-1.119	30	Pass
NVNT	BLE	2442	Ant1	0.676	0	0.676	30	Pass
NVNT	BLE	2480	Ant1	1.805	0	1.805	30	Pass

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

VAD BAHAWIAH								
Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict		
		(MHz)		(MHz)	Bandwidth (MHz)			
NVNT	BLE	2402	Ant1	0.67	0.5	Pass		
NVNT	BLE	2442	Ant1	0.673	0.5	Pass		
NVNT	BLE	2480	Ant1	0.675	0.5	Pass		

JianYan Testing Group Shenzhen Co., Ltd.

No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

-6dB Bandwidth NVNT BLE 2442MHz Ant1

Occupied Channel Bandwidth

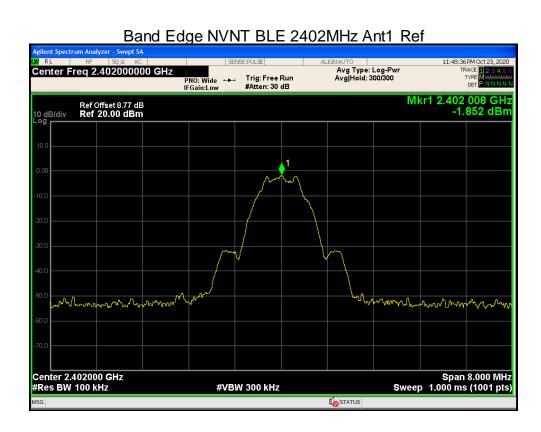
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)					
NVNT	BLE	2402	Ant1	1.039733938					
NVNT	BLE	2442	Ant1	1.04368364					
NVNT	BLE	2480	Ant1	1.036409568					

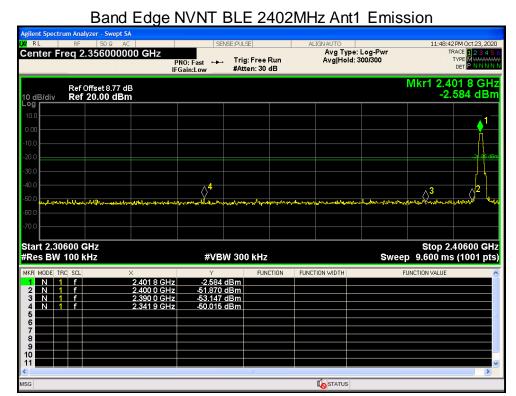
OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-16.045	8	Pass
NVNT	BLE	2442	Ant1	-14.217	8	Pass
NVNT	BLE	2480	Ant1	-13.104	8	Pass

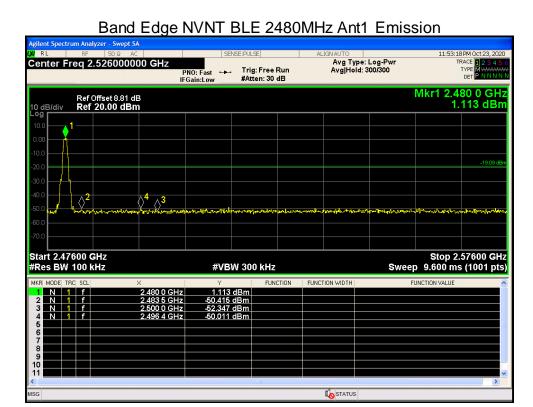
PSD NVNT BLE 2442MHz Ant1

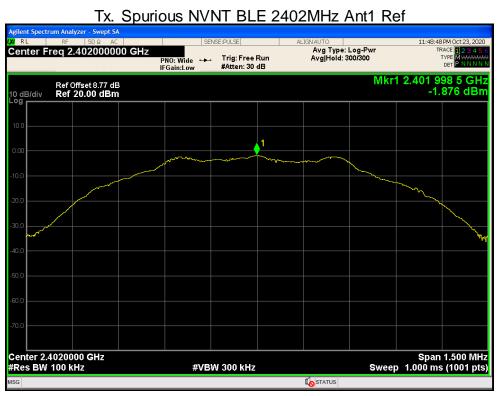


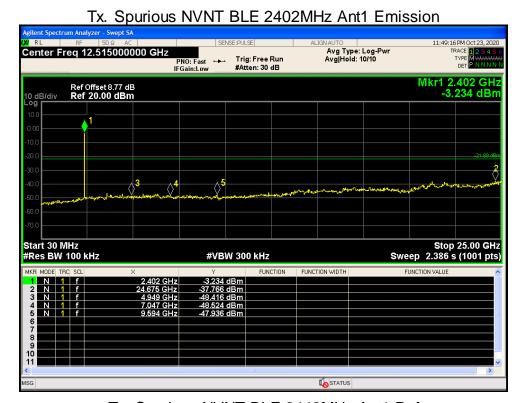


Band Edge

24.14 2490						
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-48.16	-20	Pass
NVNT	BLE	2480	Ant1	-50.92	-20	Pass

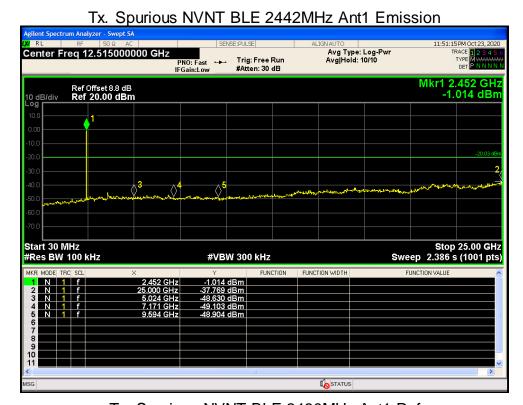


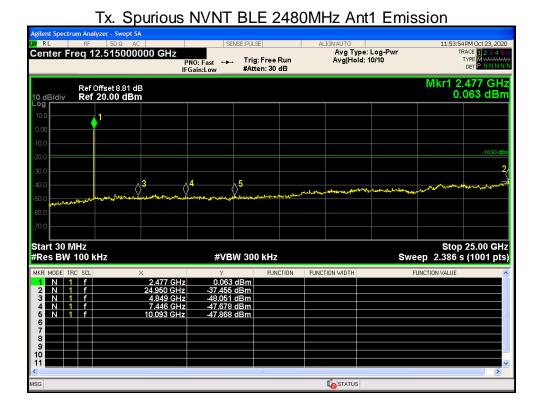




Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-35.88	-20	Pass
NVNT	BLE	2442	Ant1	-37.73	-20	Pass
NVNT	BLE	2480	Ant1	-38.52	-20	Pass





----End of report-----