

Page 1 of 55

TEST REPORT

Product Name	:	ATUVOS TAG
Brand Mark	:	N/A
Model No.	:	AT2301
Extension model	:	VT2201
Report Number	:	BLA-EMC-202303-A11302
FCC ID	:	2AXT8-T2301
Date of Sample Receipt	:	2023/3/27
Date of Test	:	2023/3/27 to 2023/4/6
Date of Issue	:	2023/4/6
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Felion Technologies Company Limited 304,3/F, Fuxing Office Building, No.6 Binglang Road, Fubao Community, Futian District, Shenzhen Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by:

Approved by:

Jozu 13 hue Theng

Review by:

Date:

weels

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description
00	2023/4/6	Original

TABLE OF CONTENTS

1	T	TEST SUMMARY				
2	G	GENERAL INFORMATION				
3	C	GENERAL DESCRIPTION OF E.U.T				
4	Т	TES	ſ ENVIRONMENT	8		
5	Т	TES	ſ MODE	8		
6	N	MEA	SUREMENT UNCERTAINTY	8		
7	C	DES	CRIPTION OF SUPPORT UNIT	9		
8			ORATORY LOCATION			
9			I INSTRUMENTS LIST			
10			DUCTED BAND EDGES MEASUREMENT			
	10.1		LIMITS			
_	LO.1	_	BLOCK DIAGRAM OF TEST SETUP			
_	10.3	_	TEST DATA			
11	F	RAD	IATED SPURIOUS EMISSIONS	14		
1	11.1		LIMITS			
_	L1.2	_	BLOCK DIAGRAM OF TEST SETUP			
1	L1.3	3	PROCEDURE			
1	11.4	4	TEST DATA	17		
12	F	RAD	IATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	. 25		
1	12.1	1	LIMITS	25		
1	12.2	2	BLOCK DIAGRAM OF TEST SETUP	26		
1	12.3	3	PROCEDURE	26		
1	12.4	4	TEST DATA	28		
13	C	CON	DUCTED SPURIOUS EMISSIONS	32		
1	L3.1	1	LIMITS	32		
1	13.2	2	BLOCK DIAGRAM OF TEST SETUP	32		
1	L3.3	3	TEST DATA	33		
14	F	POW	/ER SPECTRUM DENSITY	. 34		
1	L4.1	1	LIMITS	34		
1	L4.2	2	BLOCK DIAGRAM OF TEST SETUP	34		

14.3	TEST DATA	34
15 CO	NDUCTED PEAK OUTPUT POWER	35
15.1	LIMITS	35
15.2	BLOCK DIAGRAM OF TEST SETUP	35
15.3	TEST DATA	
16 MIN	IIMUM 6DB BANDWIDTH	37
16.1	LIMITS	
16.2	BLOCK DIAGRAM OF TEST SETUP	37
16.3	TEST DATA	
17 AN	TENNA REQUIREMENT	
17.1	CONCLUSION	
18 API	PENDIX	39
APPEND	DIX A: PHOTOGRAPHS OF TEST SETUP	54
APPEND	NX B: PHOTOGRAPHS OF EUT	55

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

2 GENERAL INFORMATION

Applicant	Felion Technologies Company Limited	
Address	304,3/F, Fuxing Office Building, No.6 Binglang Road, Fubao Community, Futian District, Shenzhen	
Manufacturer	Felion Technologies Company Limited	
Address	304,3/F, Fuxing Office Building, No.6 Binglang Road, Fubao Community, Futian District, Shenzhen	
Factory	Felion Technologies Company Limited	
Address	304,3/F, Fuxing Office Building, No.6 Binglang Road, Fubao Community, Futian District, Shenzhen	
Product Name	ATUVOS TAG	
Test Model No.	AT2301	
Extension model	VT2201	
Note	All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are model name for commercial purpose.	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	N/A	
Software Version	N/A	
Operation Frequency:	2402MHz-2480MHz	
Modulation Type:	GFSK	
Channel Spacing:	2MHz	
Number of Channels:	40	
Antenna Type:	Internal Antenna	
Antenna Gain:	1.13dBi (Provided by the applicant)	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
: :	: :	: :	: :	: :	: :	: :	: :
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Γ 1 1 c

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25 °C	DC3V

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION	
ТХ	Keep the EUT in transmitting mode	
Remark:Only the data of the worst mode would be recorded in this report.		

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
N/A	N/A	N/A	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at: BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

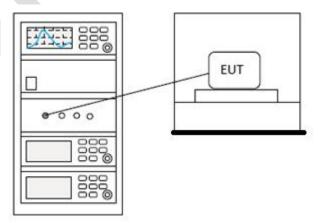
Г

٦

9 TEST INSTRUMENTS LIST

Test Equipn	nent Of Radiated S	purious Emissions			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14
Receiver	R&S	ESR7	101199	2022/09/15	2023/09/14
Receiver	R&S	ESPI7	101477	2022/07/16	2023/07/15
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/09/15	2023/09/14
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2022/07/16	2023/07/15
Amplifier	SKET	PA-000318G-45	N/A	2022/09/13	2023/09/12
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2022/07/14	2023/07/13
Filter group	SKET	2.4G/5G Filter group r	N/A	2022/07/16	2023/07/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2022/9/14	2025/9/13
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A
	\mathcal{O}				

Test Equipment Of RF Conducted Test									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S FSP40		100817	2022/09/15	2023/09/14				
Spectrum	Agilent	N9020A	MY49100060	2022/09/07	2023/09/06				
Spectrum	KEYSIGHT	N9030A	MY52350152	2022/07/01	2023/06/30				
Spectrum	KEYSIGHT	N9010A	MY54330814	2022/07/01	2023/06/30				
Signal Generator	Agilent	N5182A	MY47420955	2022/09/07	2023/09/06				
Signal Generator	Agilent	E8257D	MY44320250	2022/07/01	2023/06/30				
Signal Generator	Agilent	N5181A	MY46240904	2022/08/02	2023/08/01				
Signal Generator	R&S	CMW500	132429	2022/09/07	2023/09/06				
BluetoothTester	Anritsu	MT8852B	06262047872	2022/09/07	2023/09/06				
Power probe	DARE	RPR3006W	14100889SN042	2022/09/07	2023/09/06				
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2022/09/14	2023/09/13				
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2022/09/14	2023/09/13				
2.4GHz/5GHz RF Test sorfware	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A				
Audio Analyzer	Audioprecision	N/A	ATSI-41094	2022/7/1	2023/6/30				


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

10 CONDUCTED BAND EDGES MEASUREMENT

10.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

10.2 BLOCK DIAGRAM OF TEST SETUP

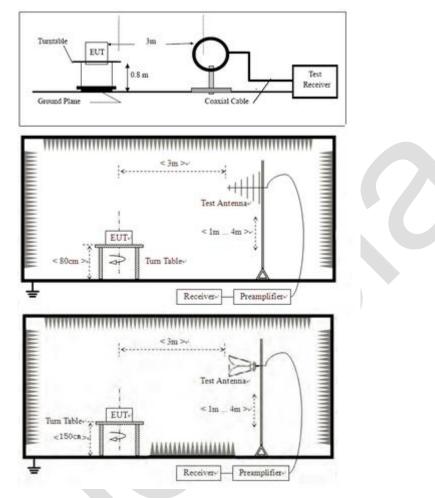
Report No.: BLA-EMC-202303-A11302 Page 13 of 55

10.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

11 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Tester	Jozu
Temperature	25°C
Humidity	60%


11.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

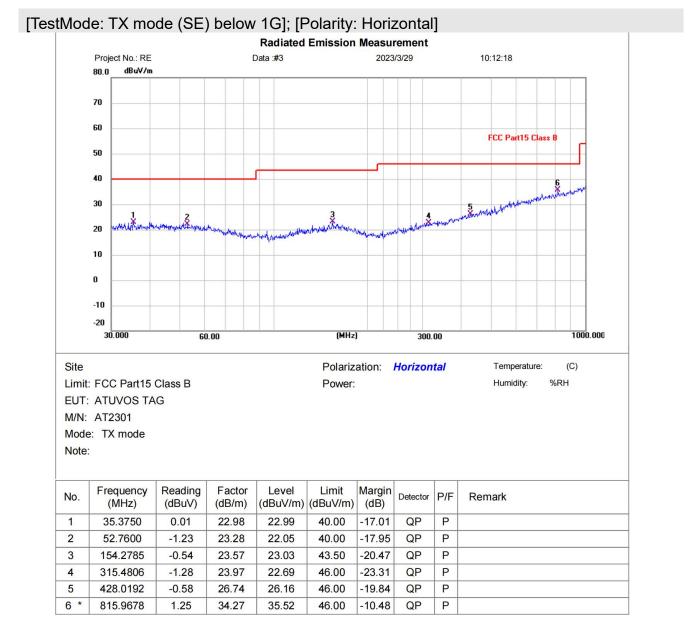
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

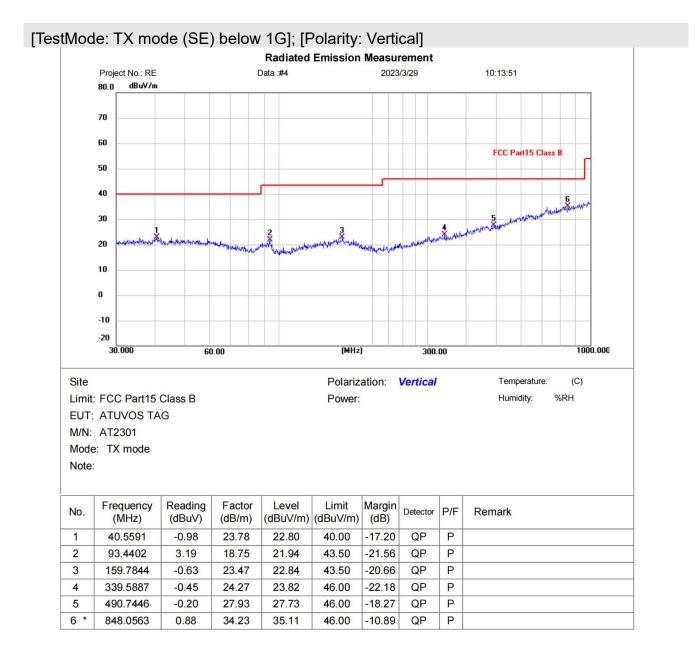
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

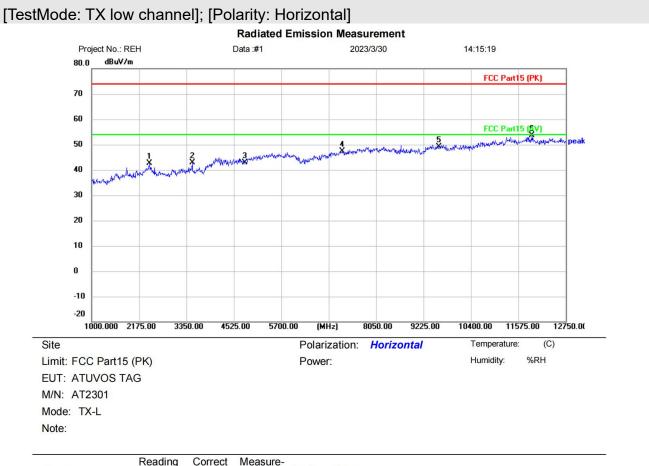

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.

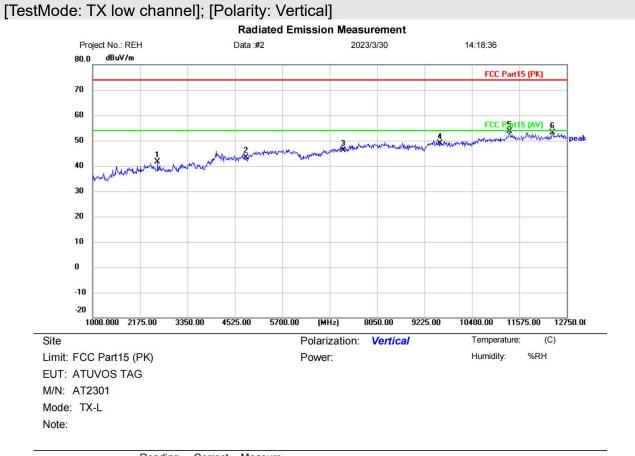
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



11.4 TEST DATA

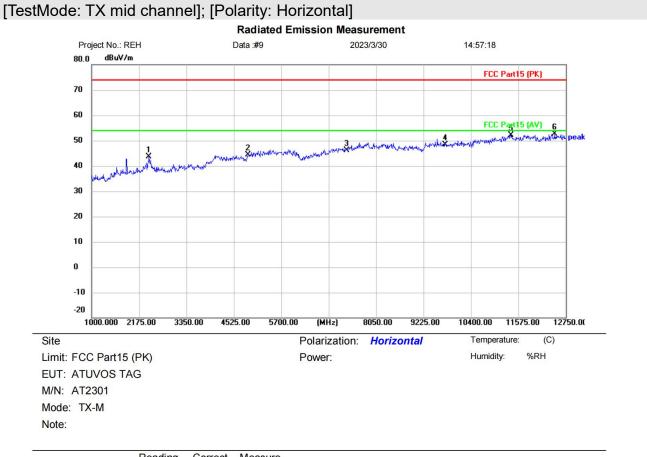


*:Maximum data x:Over limit !:over margin



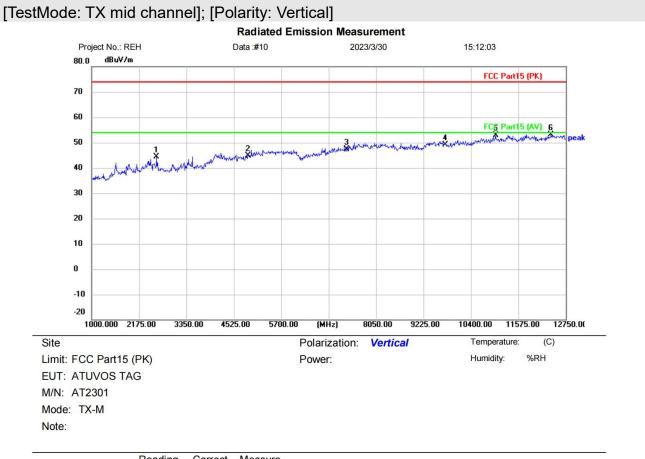
No.	Mk	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2433.500	44.15	-1.52	42.63	74.00	-31.37	peak	
2		3491.000	44.13	-1.21	42.92	74.00	-31.08	peak	
3		4804.000	38.94	4.05	42.99	74.00	-31.01	peak	
4		7206.000	39.48	7.93	47.41	74.00	-26.59	peak	
5		9608.000	38.32	10.90	49.22	74.00	-24.78	peak	
6	*	11915.750	39.68	13.86	53.54	74.00	-20.46	peak	

(Reference Only



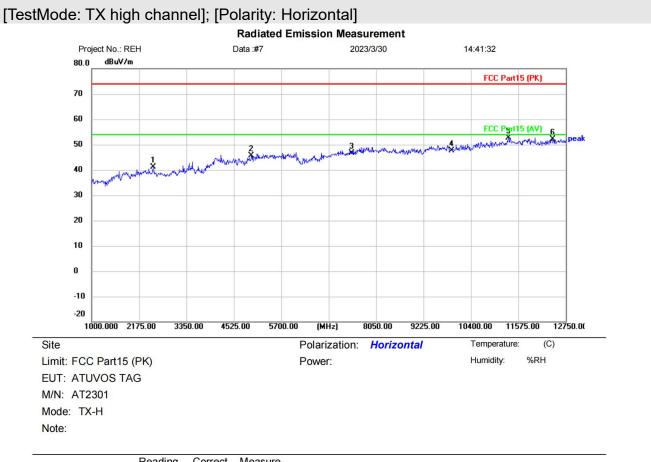
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2609.750	44.29	-2.75	41.54	74.00	-32.46	peak	
2		4804.000	39.26	4.05	43.31	74.00	-30.69	peak	
3		7206.000	38.26	7.93	46.19	74.00	-27.81	peak	
4		9608.000	37.88	10.90	48.78	74.00	-25.22	peak	
5	*	11328.250	40.04	13.59	53.63	74.00	-20.37	peak	
6	1.33	12397.500	39.16	13.88	53.04	74.00	-20.96	peak	

(Reference Only



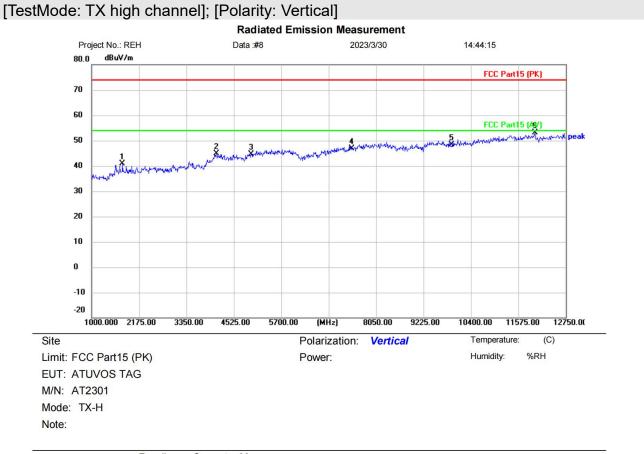
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2421.750	44.98	-1.39	43.59	74.00	-30.41	peak		
2		4884.000	39.99	4.37	44.36	74.00	-29.64	peak		
3		7326.000	38.02	8.21	46.23	74.00	-27.77	peak		
4		9768.000	37.04	11.31	48.35	74.00	-25.65	peak		
5		11398.750	38.61	13.63	52.24	74.00	-21.76	peak		
6	*	12479.750	38.77	13.88	52.65	74.00	-21.35	peak		

(Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2609.750	47.22	-2.75	44.47	74.00	-29.53	peak	
2		4884.000	40.53	4.37	44.90	74.00	-29.10	peak	
3		7326.000	39.20	8.21	47.41	74.00	-26.59	peak	
4		9768.000	37.90	11.31	49.21	74.00	-24.79	peak	
5	13	11011.000	39.35	13.45	52.80	74.00	-21.20	peak	
6	*	12385.750	39.14	13.89	53.03	74.00	-20.97	peak	

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2527.500	43.60	-2.40	41.20	74.00	-32.80	peak		
2		4960.000	40.30	5.42	45.72	74.00	-28.28	peak		
3		7440.000	38.17	8.48	46.65	74.00	-27.35	peak		
4		9920.000	36.00	11.69	47.69	74.00	-26.31	peak		
5	*	11328.250	39.14	13.59	52.73	74.00	-21.27	peak		
6	i à	12421.000	38.22	13.88	52.10	74.00	-21.90	peak		

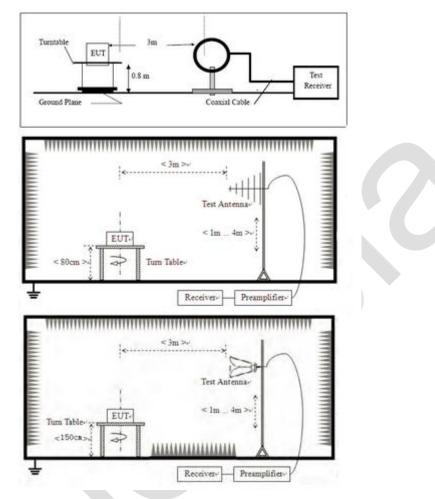
(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		1763.750	45.91	- <mark>5.14</mark>	40.77	74.00	-33.23	peak	
2		4090.250	42.30	2.63	44.93	74.00	-29.07	peak	
3		4960.000	39.27	5.42	44.69	74.00	-29.31	peak	
4		7440.000	38.38	8.48	46.86	74.00	-27.14	peak	
5		9920.000	36.65	11.69	48.34	74.00	-25.66	peak	
6	*	11986.250	39.21	13.90	53.11	74.00	-20.89	peak	

(Reference Only

12 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

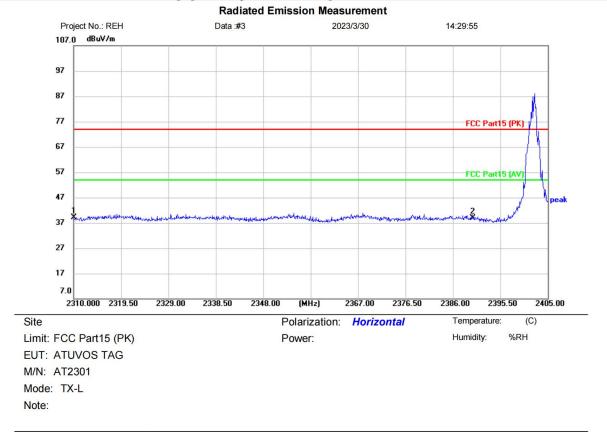
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

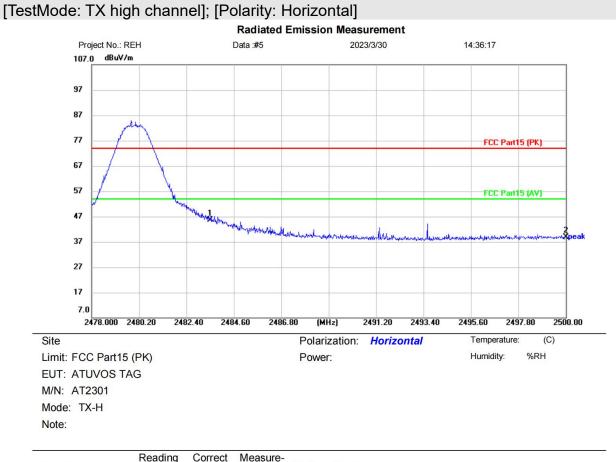
12.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2310.000	43.32	-4.27	39.05	74.00	-34.95	peak	
2		2390.000	42.62	-3.82	38.80	74.00	-35.20	peak	

*:Maximum data x:Over limit !:over margin

(Reference Only



No.	Mk.	Freq.	Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	43.03	-4.27	38.76	74.00	-35.24	peak	
2	*	2390.000	43.12	-3.82	39.30	74.00	-34.70	peak	

(Reference Only

No.	Mk.	Freq.	Level	Factor	Measure- ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	49.58	-3.96	45.62	74.00	-28.38	peak		
2		2500.000	42.89	-4.00	38.89	74.00	-35.11	peak		

(Reference Only