

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 E-mail: ctl@ctl-lab.com

1 P				
TI	EST REPORT			
	PART 15 SUBPART C 15.24	7		
Report Reference No	CTL2206071043-WF			
Compiled by:	Happy Guo	Happy Gue		
(position+printed name+signature)	Happy Guo (File administrators)	Happy Guo Gary Gao Tran Nie		
Tested by:	Gary Gao	Game Gao		
(position+printed name+signature)		uary		
Approved by:	Ivan Xie	Turn Nie		
(position+printed name+signature)	(Manager)	YVW(/ UIC		
Product Name:	Smart Desk Lamp			
Model/Type reference				
List Model(s)				
Trade Mark				
FCC ID:	2AXT8-DL2201			
Applicant's name:	Felion Technologies Company Li	mited.		
Address of applicant	304,3/F, Fuxing Office Building, No.6 Binglang Road, Fubao Community, Futian District, Shenzhen, China			
	Community, r utian District, Shenzh			
Test Firm:	Community, Futian District, Onenzi			
	Shenzhen CTL Testing Technolog	jy Co., Ltd. ark, No.3011, Shahexi Road,		
Test Firm:	Shenzhen CTL Testing Technolog Floor 1-A, Baisha Technology Pa	jy Co., Ltd. ark, No.3011, Shahexi Road,		
Test Firm: Address of Test Firm: Test specification	Shenzhen CTL Testing Technolog Floor 1-A, Baisha Technology Pa	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055		
Test Firm : Address of Test Firm : Test specification : Standard :	Shenzhen CTL Testing Technology Floor 1-A, Baisha Technology Pa Nanshan District, Shenzhen, China 47 CFR FCC Part 15 Subpart C 19 RSS-247 Issue 2, February 2017	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055 5.247		
Test Firm : Address of Test Firm : Test specification : Standard :	Shenzhen CTL Testing Technology Pa Nanshan District, Shenzhen, China 47 CFR FCC Part 15 Subpart C 19 RSS-247 Issue 2, February 2017 Shenzhen CTL Testing Technology	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055 5.247		
Test Firm : Address of Test Firm : Test specification : Standard : TRF Originator :	Shenzhen CTL Testing Technology Floor 1-A, Baisha Technology Pa Nanshan District, Shenzhen, China 47 CFR FCC Part 15 Subpart C 19 RSS-247 Issue 2, February 2017 Shenzhen CTL Testing Technology Dated 2011-01	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055 5.247		
Test Firm : Address of Test Firm : Test specification : Standard : TRF Originator : Master TRF :	Shenzhen CTL Testing Technology Floor 1-A, Baisha Technology Pa Nanshan District, Shenzhen, China 47 CFR FCC Part 15 Subpart C 18 RSS-247 Issue 2, February 2017 Shenzhen CTL Testing Technology Dated 2011-01 June 07, 2022	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055 5.247		
Test Firm : Address of Test Firm : Test specification : Standard : TRF Originator : Master TRF : Date of receipt of test item :	Shenzhen CTL Testing Technology Pa Nanshan District, Shenzhen, China 47 CFR FCC Part 15 Subpart C 19 RSS-247 Issue 2, February 2017 Shenzhen CTL Testing Technology Dated 2011-01 June 07, 2022 June 07, 2022	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055 5.247		
Test Firm : Address of Test Firm : Test specification : Standard : TRF Originator : Master TRF : Date of receipt of test item : Date of sampling :	Shenzhen CTL Testing Technology Floor 1-A, Baisha Technology Pa Nanshan District, Shenzhen, China 47 CFR FCC Part 15 Subpart C 19 RSS-247 Issue 2, February 2017 Shenzhen CTL Testing Technology Dated 2011-01 June 07, 2022 June 07, 2022 June 07, 2022-July 24, 2022	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055 5.247		
Test Firm : Address of Test Firm : Test specification : Standard : TRF Originator : Master TRF : Date of receipt of test item : Date of sampling : Date of Test Date :	Shenzhen CTL Testing Technology Pa Nanshan District, Shenzhen, China 47 CFR FCC Part 15 Subpart C 19 RSS-247 Issue 2, February 2017 Shenzhen CTL Testing Technology Dated 2011-01 June 07, 2022 June 07, 2022 June 07, 2022-July 24, 2022 July 25, 2022	gy Co., Ltd. ark, No.3011, Shahexi Road, 518055 5.247		

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Page 2 of 35

TEST REPORT

Test Report No.:	СТ	L2206071043-WF	July 25, 2022 Date of issue
Equipment under Test	:	Smart Desk Lamp	
Sample No.		CTL220607104-1-S001(No CTL220607104-1-S002(Er	· ,
Model /Type		DL2201	
Listed Models		N/A	
Applicant	:	Felion Technologies Cor	npany Limited.
Address	:	304,3/F, Fuxing Office Buil Fubao Community, Futian	lding, No.6 Binglang Road, District, Shenzhen, China
Manufacturer	:	Felion Technologies Cor	npany Limited.
Address	:	304,3/F, Fuxing Office Buil Fubao Community, Futian	lding, No.6 Binglang Road, District, Shenzhen, China

Test result

Pass *

* In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

Page 3 of 35

** Modified History **

				· - ·
Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2022-07-25	CTL2206071043-WF	Tracy Q
			6	
	0.40			
				6
		S-		

Table of Contents

Page

1. SUI	MMARY	-
1.1.	TEST STANDARDS	
1.2.	TEST DESCRIPTION	
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. GE	NERAL INFORMATION	8
2.1.	ENVIRONMENTAL CONDITIONS	8
2.2.	GENERAL DESCRIPTION OF EUT	8
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	8
2.4.	EQUIPMENTS USED DURING THE TEST	9
2.5.	RELATED SUBMITTAL(S) / GRANT (S)	
2.6.	Modifications	
3. TES	ST CONDITIONS AND RESULTS	
3.1.	Conducted Emissions Test	11
3.2.	RADIATED EMISSIONS AND BAND EDGE	
3.3.	MAXIMUM CONDUCTED OUTPUT POWER	23
3.4.	Power Spectral Density	24
3.5.	6dB Bandwidth	25
3.6.	OUT-OF-BAND EMISSIONS	27
3.7.	Antenna Requirement	
4. TES	ST SETUP PHOTOS OF THE EUT	
5. PH	OTOS OF THE EUT	

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spreda Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules

RSS-247-Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus

1.2. Test Description

FCC PART 15.247&RSS-247		
FCC Part 15.207 RSS-Gen 8.8	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2) RSS-247 5.2 (1) RSS GEN 6.7	6dB Bandwidth	PASS
FCC Part 15.247(d) RSS-247 5.5	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b) RSS-Gen 6.8 RSS-247 5.4 (4)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e) RSS-247 5.2 (2)	Power Spectral Density	PASS
FCC Part 15.205/ 15.209 RSS-Gen 6.11	Radiated Emissions	PASS
FCC Part 15.247(d) RSS-Gen 8.10	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

LTL

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B on Jan. 22, 2019.

FCC-Registration No.: 399832 Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Measurement Uncertainty	Notes	
Transmitter power conducted	±0.57 dB	(1)	
Transmitter power Radiated	±2.20 dB	(1)	
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)	
Occupied Bandwidth	±0.01ppm	(1)	
Radiated Emission 30~1000MHz	±4.10dB	(1)	
Radiated Emission Above 1GHz	±4.32dB	(1)	

Hereafter the best measurement capability for CTL laboratory is reported:

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Smart Desk Lamp
Model/Type reference:	DL2201
Power supply:	DC 12V from adapter
Adapter information:	Model: XY12SA-120100VQ-UW Input:100-240V~50/60Hz 0.3A Max. Output:12V1.0A
Hardware version:	LB-PD-2686
Software version:	1.137.2
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20):OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	PCB Antenna
Antenna gain:	0dBi

Note1: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software (CMD Command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 11 channels provided to the EUT and Channel 01/06/11 were selected for 802.11b/802.11g/802.11n(H20)/test. Channel 03/06/09 were selected for 802.11n(H40) test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	10 10	
6	2437		
7	2442		

Operation Frequency WIFI :

Note: The line display in grey were the channel selected for testing

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation

has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power Power Spectral Density	11b/DSSS	1 Mbps	1/6/11
6dB Bandwidth Spurious RF conducted emission Radiated Emission 9kHz~1GHz& Radiated Emission 1GHz~10th Harmonic	11g/OFDM	6 Mbps	1/6/11
	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11

Power setting during the test:

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters:

Test Software Version	CMD Command					
Frequency	2412MHz		2437MHz		2452MHz	
802.11b	Default	Default	Default	Default	Default	Default
802.11g	Default	Default	Default	Default	Default	Default
802.11n(Ht20)	Default	Default	Default	Default	Default	Default

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.12	2022/05/06	2023/05/05
LISN	R&S	ESH2-Z5	860014/010	2022/05/06	2023/05/05
Double Cone logarithmic antenna	Schwarzbeck	VULB 9168	824	2020/04/07	2023/04/06
Active Loop Antenna	Da Ze	ZN30900A	/	2021/05/13	2024/05/12
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2021/12/23	2024/12/22
Horn Antenna	Ocean Microwave	OBH100400	26999002	2019/11/28	2022/11/27
EMI Test Receiver	R&S	ESCI	1166.5950.03	2022/05/06	2023/05/05
Spectrum Analyzer	Agilent	N9020	US46220290	2022/05/07	2023/05/06
Spectrum Analyzer	RS	FSP	1164.4391.38	2022/05/07	2023/05/06
Controller	EM Electronics	EM 1000	060859	2022/05/20	2023/05/19
Amplifier	Agilent	8449B	3008A02306	2022/05/07	2023/05/06
Amplifier	Agilent	8447D	2944A10176	2022/05/06	2023/05/05
Amplifier	Brief&Smart	LNA-4018	2104197	2022/05/07	2023/05/06

Temperature/Humi dity Meter	Ji Yu	MC501		/	2022/05/07	2023/05/06	
Power Sensor	Agilent	U20	21XA	MY55130004	2022/05/07	2023/05/06	
Power Sensor	Agilent	U20	21XA	MY55130006	2022/05/07	2023/05/06	
Power Sensor	Agilent	U20	21XA	MY54510008	2022/05/07	2023/05/06	
Power Sensor	Agilent	U20	21XA	MY55060003	2022/05/07	2023/05/06	
High-Pass Filter	micro-tranics	HPM	50108	G174	2022/05/07	2023/05/06	
High-Pass Filter	micro-tranics	HPM50111		G142	2022/05/07	2023/05/06	
Coaxial Cables	HUBER+SUHNE R	SUCOFLEX 104PEA-10M		10m	2022/05/07	2023/05/06	
Coaxial Cables	HUBER+SUHNE R		DFLEX EA-3M	3m	2022/05/07	2023/05/06	
Coaxial Cables	HUBER+SUHNE R		DFLEX EA-3M	3m	2022/05/07	2023/05/06	
RF Cable	Megalon	RF-	A303	N/A	2022/05/07	2023/05/06	
Test Software							
Name	of Software		Version				
Т	ST-PASS		1.0.5				
EZ_EMC	C(Below 1GHz)		V1.1.4.2				
EZ_EMO	C(above 1GHz)		V1.1.4.2				

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

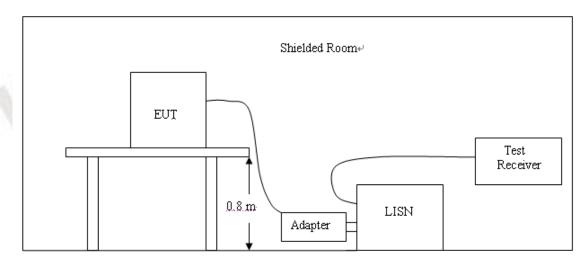
This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

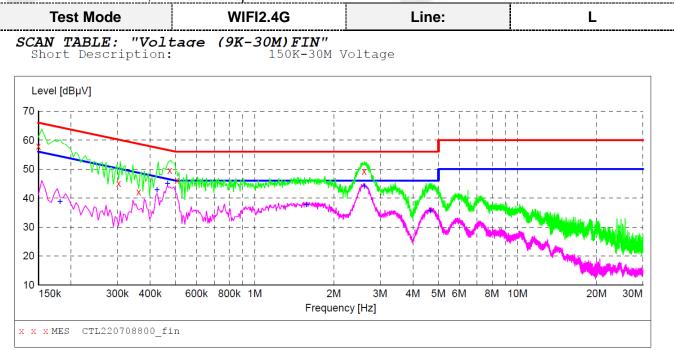

<u>LIMIT</u>

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

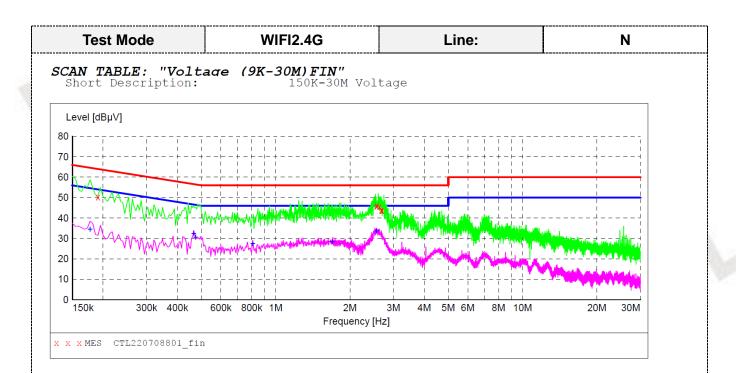

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark:

- 1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b lowest channel was reported as below:
- 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


MEASUREMENT RESULT: "CTL220708800 fin"

7/8/2022	1:56PM						
Frequer	ncy Le	vel Trans	sd Limit	Margin	Detector	Line	PE
Ν	1Hz d	BµV c	lB dBµV	dB			
0.1500	00 58	.00 10.	0 66	8.0	QP	L1	GND
0.3030	000 45	.10 10.	0 60	15.1	QP	L1	GND
0.3615	500 42	.10 10.	0 59	16.6	QP	L1	GND
0.4740	00 49	.50 10.	0 56	6.9	QP	L1	GND
0.5055	500 46	.10 10.	1 56	9.9	QP	L1	GND
2.6070	00 49	.30 10.	3 56	6.7	QP	L1	GND

MEASUREMENT RESULT: "CTL220708800 fin2"

7/8/2022 1:5	6PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.181500	38.80	10.0	54	15.6	AV	L1	GND
0.424500	42.80	10.0	47	4.6	AV	L1	GND
0.465000	45.00	10.0	47	1.6	AV	L1	GND
1.572000	37.70	10.2	46	8.3	AV	L1	GND
2.611500	44.10	10.3	46	1.9	AV	L1	GND
4.645500	35.70	10.3	46	10.3	AV	L1	GND

MEASUREMENT RESULT: "CTL220708801 fin"

7/8/2022 2:00PM Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 0.190500 50.20 10.0 45.80 10.3 64 13.8 QP Ν GND 2.557500 56 10.2 QP Ν GND 2.575500 46.00 10.3 56 10.0 QP Ν GND N 10.3 10.3 10.3 45.50 56 2.634000 10.5 QP GND 2.674500 43.80 56 12.2 QP Ν GND N 2.697000 43.70 12.3 QP 56 GND

MEASUREMENT RESULT: "CTL220708801_fin2"

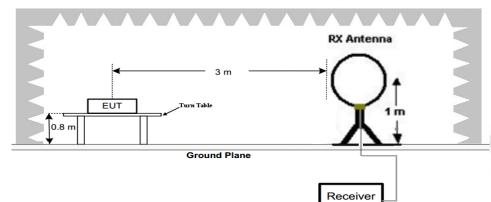
7/8/2022 2:0	0PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.177000	34.60	10.0	55	20.0	AV	Ν	GND
0.465000	32.40	10.0	47	14.2	AV	Ν	GND
0.474000	30.50	10.0	46	15.9	AV	Ν	GND
0.807000	27.50	10.1	46	18.5	AV	Ν	GND
1.693500	28.40	10.2	46	17.6	AV	Ν	GND
2.562000	33.70	10.3	46	12.3	AV	Ν	GND

3.2. Radiated Emissions and Band Edge

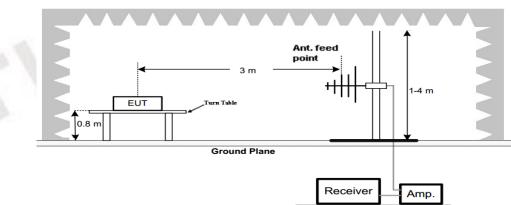
Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

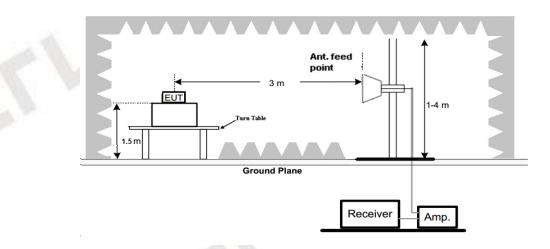
In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


For intentional device, according to RSS-Gen section 8.9, the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in RSS-Gen section 8.10, must also comply with the radiated emission limits specified in RSS-Gen section 8.9


Radiated emission limits										
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)							
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)							
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)							
1.705-30	3	20log(30)+ 40log(30/3)	30							
30-88	3	40.0	100							
88-216	3	43.5	150							
216-960	3	46.0	200							
Above 960	3	54.0	500							

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

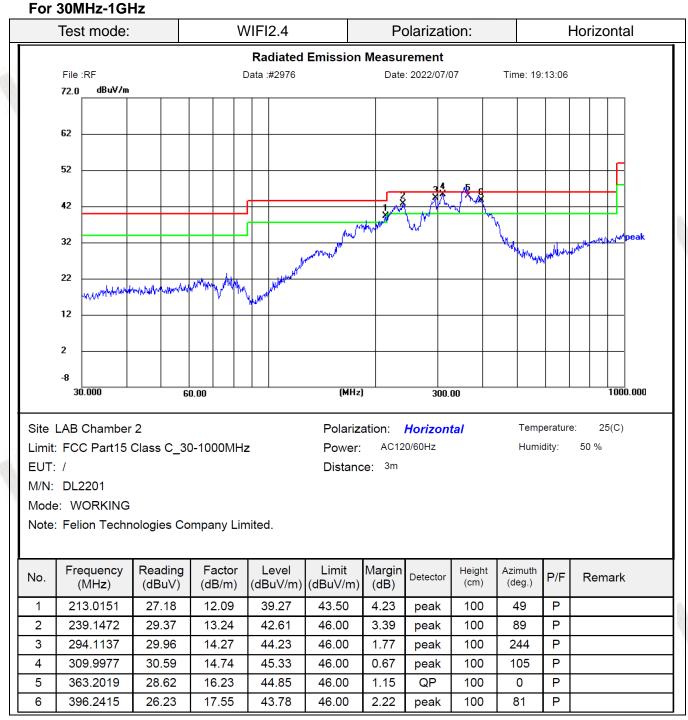
(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

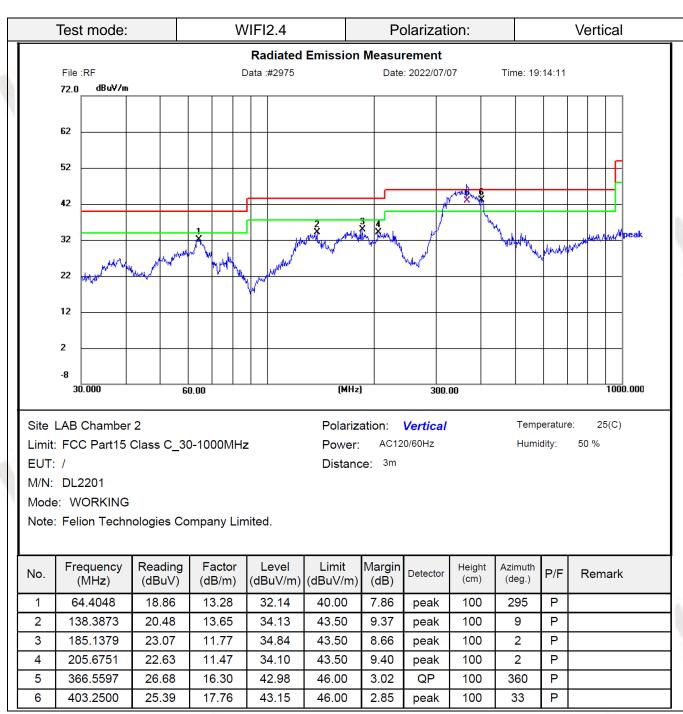
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1


7. Setting test receiver/spectrum as following table states:

0 1	0	
Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep	QP
301VINZ-10NZ	time=Auto	QF
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Deek
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

TEST RESULTS

Remark:


- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and The emission levels from 9kHz to 30MHz are attenuated 20dB below the limit and not recorded in report.
- 2. For below 1GHz measurement, all three channels (lowest/middle/highest) of each mode were tested and recorded worst case at 802.11b mode channel 01.
- 3. For above 1GHz measurement, all three channels (lowest/middle/highest) of each mode were tested and recorded worst case at 802.11b mode.

Remark: Level(dBuV/m)=Reading(dBuV)+Factor(dB/m) Margin= Level(dBuV/m)-Limit(dBuV/m)

For 1GHz to 25GHz

Frequency(MHz):			2412		Polarity:			HORIZONTAL		
Frequency (MHz)	Emiss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
4824.00	51.19	PK	74	22.81	64.13	33.52	6.92	53.38	-12.94	
4824.00		AV	54							
7236.00	48.01	PK	74	25.99	54.90	37.10	9.19	53.18	-6.89	
7236.00		AV	54							

Frequency(MHz):			2412		Polarity:			VERTICAL		
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
4824.00	52.39	PK	74	21.61	65.33	33.52	6.92	53.38	-12.94	
4824.00		AV	54							
7236.00	48.81	PK	74	25.19	55.70	37.10	9.19	53.18	-6.89	
7236.00		AV	54							

Frequency(MHz):			2437		Polarity:			HORIZONTAL		
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
4874.00	51.57	PK	74	22.43	64.37	33.59	6.95	53.34	-12.80	
4874.00		AV	54							
7311.00	47.34	PK	74	26.66	53.87	37.44	9.22	53.19	-6.53	
7311.00		AV	54							

Frequency(MHz):			2437		Polarity:			VERTICAL		
Frequency (MHz)	Emiss Lev (dBu∖	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
4874.00	52.87	PK	74	21.13	65.67	33.59	6.95	53.34	-12.80	
4874.00		AV	54							
7311.00	47.94	PK	74	26.06	54.47	37.44	9.22	53.19	-6.53	
7311.00		AV	54							

Frequency(MHz):			2462		Polarity:			HORIZONTAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4924.00	52.19	PK	74	21.81	64.79	33.71	6.98	53.29	-12.60
4924.00		AV	54						
7386.00	48.15	PK	74	25.85	54.48	37.61	9.25	53.19	-6.33
7386.00		AV	54				-		

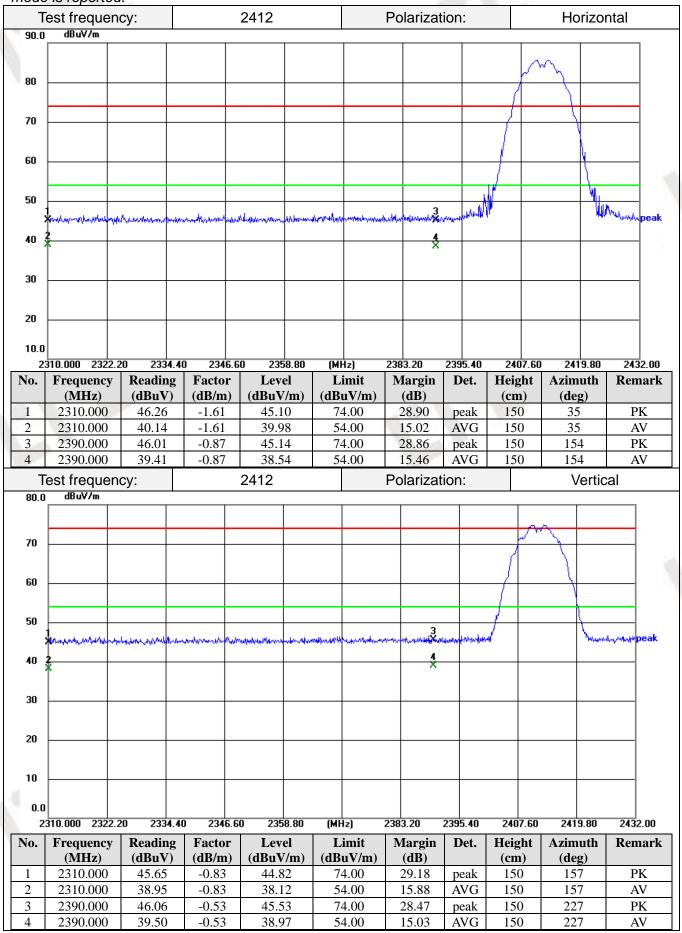
Frequency(MHz):			2462		Polarity:			VERTICAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4924.00	53.49	PK	74	20.51	66.09	33.71	6.98	53.29	-12.60
4924.00		AV	54			10-			
7386.00	49.05	PK	74	24.95	55.38	37.61	9.25	53.19	-6.33
7386.00		AV	54						

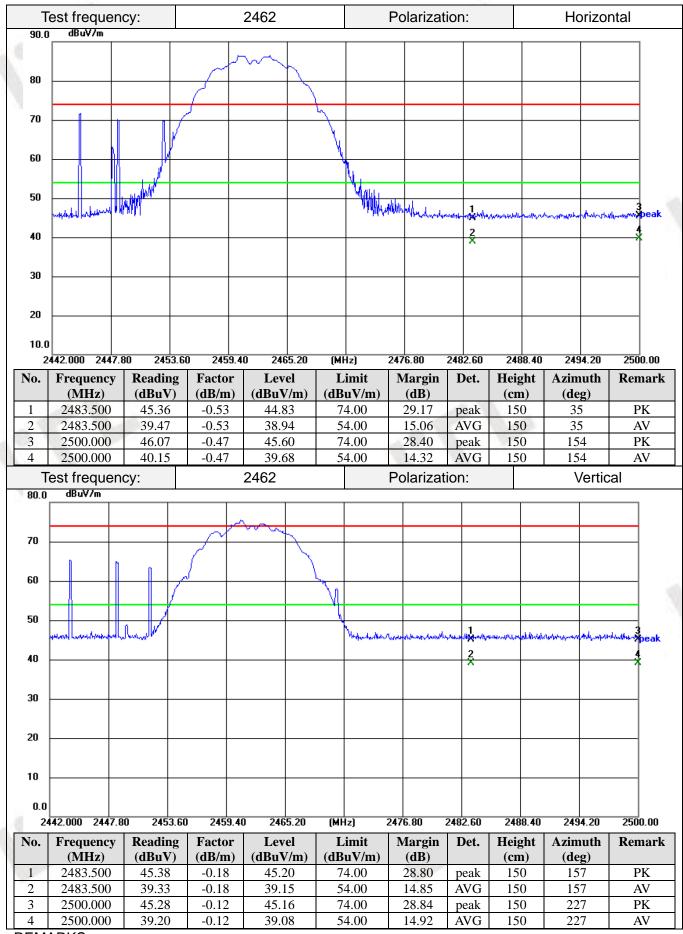
REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Limit value- Emission level.


4. -- Mean the PK detector measured value is below average limit.


5. Other emission levels are attenuated 20dB below the limit and not recorded in report.

6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

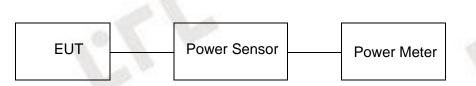
Note: 802.11b/802.11g/802.11n (H20) /802.11n (H40) all have been tested, only worse case 802.11b mode is reported.

REMARKS:

- 1. Level (dBuV/m) =Reading (dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value-Level value.

- Other emission levels are attenuated 20dB below the limit and not recorded in report.
 RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

3.3. Maximum Conducted Output Power


<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

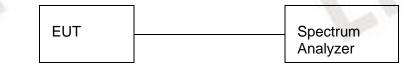
Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power Meter.

Test Configuration

Test Results

Raw data reference to Section 3 from Appendix.

3.4. Power Spectral Density


<u>Limit</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \ge 3 kHz.
- 3. Set the VBW \ge 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

Raw data reference to Section 4 from Appendix.

3.5. 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Raw data reference to Section 2 from Appendix.

3.6. Occupied Bandwidth

<u>Limit</u>

N/A

Test Procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW VBW=approximately 3 X RBW Detector=Peak Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

Test Configuration

Test Results

Raw data reference to Section 2 from Appendix.

3.7. Out-of-band Emissions

<u>Limit</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Raw data reference to Section 5 from Appendix.

3.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

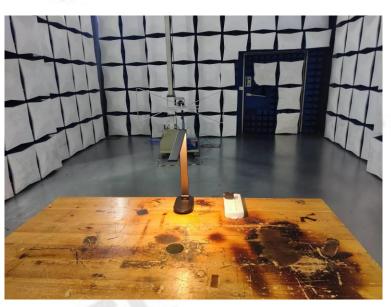
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c)(1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

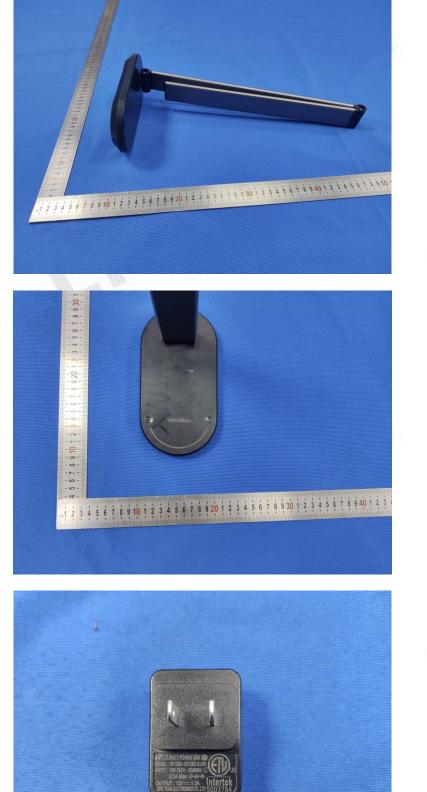
The device used an integral antenna, it is layout on the PCB and the maximum gain is 0dBi.

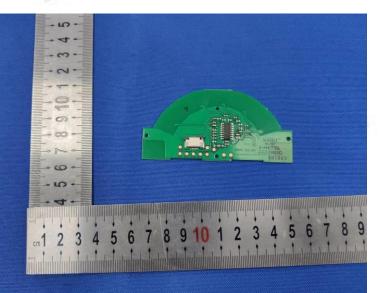


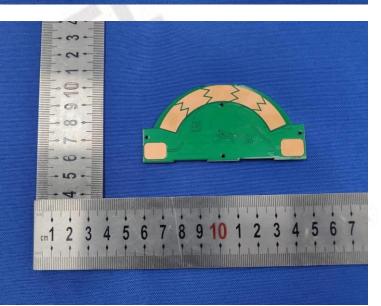
4. Test Setup Photos of the EUT

5. Photos of the EUT

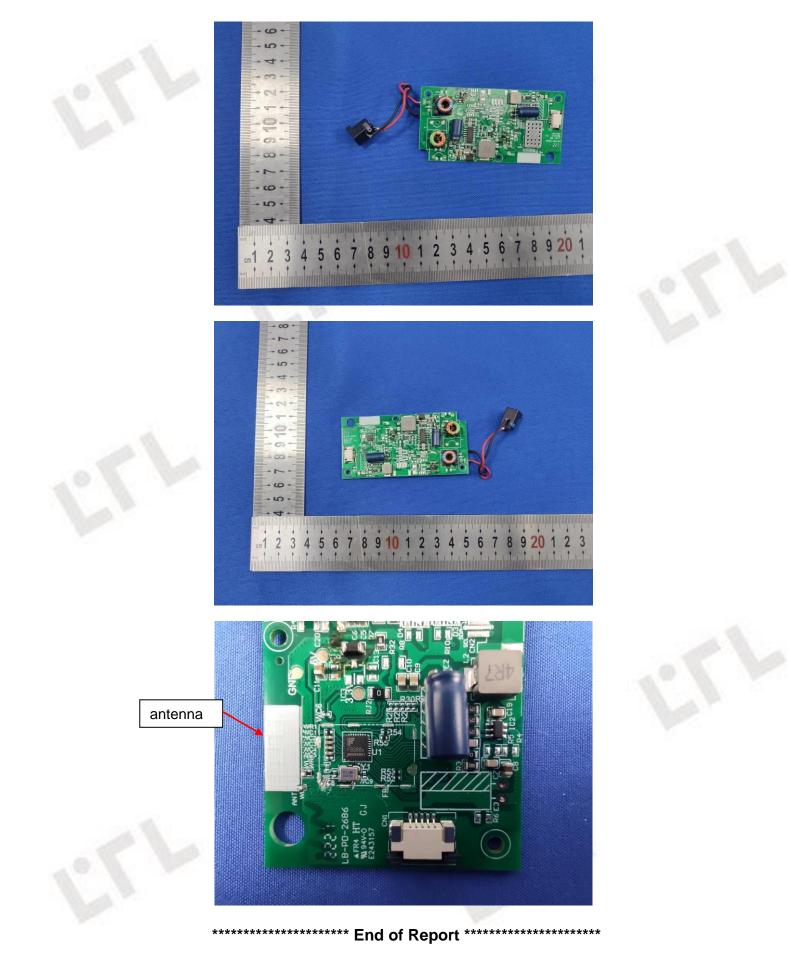
Page 31 of 35







Internal Photos of EUT



Report No.: CTL2206071043-WF

