

Nexxiot AG RF Exposure Exhibit

SCOPE OF WORK

EMC TESTING - Vector sensor, Model: HSV.1A

REPORT NUMBER

105220135MPK-006

ISSUE DATE

REVISED DATE

January 31, 2023

N/A

PAGES

10

DOCUMENT CONTROL NUMBER

Non-Specific Radio Report Shell Rev. December 2017 MPK © 2017 INTERTEK

RF Exposure Exhibit (mobile devices)

Report Number: 105220135MPK-006 Project Number: G105220135

Report Issue Date: January 31, 2023

Product Designation: Vector sensor Model Tested: HSV.1A

FCC ID: %%FCC IC: %%IC

to

47CFR 2.1091 RSS-102 Issue 5

for

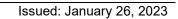
Nexxiot AG

Tested by:

Intertek 1365 Adams Court Menlo Park, CA 94025 USA Client:

Nexxiot AG
Prime Tower Hardstrasse 201
8005 Zurich SWITZERLAND

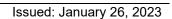
Report prepared by:


Report reviewed by:

Bryce Toma / Engineer

Byce Jona

Minh Ly / EMC Team Lead


This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

REPORT NUMBER: 105220135MPK-006

Report No. 105220135MPK-006				
Equipment Under Test:	Vector sensor			
Model(s) Tested:	HSV.1A			
Applicant:	Nexxiot AG			
Contact:	Florencia Roshardt			
Address:	Nexxiot AG Prime Tower Hardstrasse 201 8005 Zurich			
Country:	SWITZERLAND			
Email:	Florencia.roshardt@nexxiot.com			
Applicable Regulation:	47CFR 2.1091 RSS-102 Issue 5			

REPORT NUMBER: 105220135MPK-006

TABLE OF CONTENTS

RF Exposure Summary
RF Exposure Limits
Test Results (Mobile Configuration)
Document History10

REPORT NUMBER: 105220135MPK-006 Issued: January 26, 2023

1.0 RF Exposure Summary

Test	Reference FCC	Reference Industry Canada	Result
Radio frequency Radiation Exposure Evaluation	47 CFR§2.1091	RSS-102 Issue 5	Complies

2.0 RF Exposure Limits

In this document, we evaluate the RF Exposure to human body due the intentional transmission from the transmitter (EUT). The limits for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 and RSS-102 are followed.

2.1 FCC Limits

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)			
	(A)Limits For	Occupational / Cont	rol Exposures				
0.3 – 3.0	614	1.63	*100	6			
3.0 – 30	1842/f	4.89/f	*900/f²	6			
30-300	61.4	0.163	1.0	6			
300 - 1500			F/300	6			
1500 - 100,000			5	6			
	(B)Limits For General Population / Uncontrolled Exposure						
0.3 – 1.34	614	1.63	*100	30			
1.34 – 30	824/f	2.19/f	*180/f ²	30			
30 – 300	27.5	0.073	0.2	30			
300 - 1500			F/1500	30			
1500 - 100,000			1.0	30			

F = Frequency in MHz

^{* =} plane wave equivalent density

Issued: January 26, 2023

2.2 Industry Canada Limits

According to RSS-102, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6.

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)						
Frequency Range	Electric Field	Electric Field Magnetic Field		Reference Period		
(MHz)	(V/m rms)	(A/m rms)	(W/m ²)	(minutes)		
0.003-10	83	90	-	Instantaneous*		
0.1-10	-	0.73/ f	-	6**		
1.1-10	87/ f ^{0.5}	-	-	6**		
10-20	27.46	0.0728	-2	6		
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f0.5	6		
48-300	22.06	0.05852	1.291	6		
300-6000	3.142 f ^{0.3417}	$0.008335 f^{0.3417}$	$0.02619 \ f^{\ 0.6834}$	6		
6000-15000	61.4	0.163	10	6		
15000-150000	61.4	0.163	10	616000/ f ^{1.2}		
150000-300000	0.158 f ^{0.5}	4.21 x 10-4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}		

Note: f is frequency in MHz.

^{*} Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

REPORT NUMBER: 105220135MPK-006

Issued: January 26, 2023

3.0 Test Results (Mobile Configuration)

3.1 Classification

Radio is installed inside a mobile host device. The antenna of the product, under normal use condition, is at least 20 cm away from the body of the user and accessible to the end user. Warning statement to the user for keeping at least 20 cm or more separation distance with the antenna should be included in user's manual.

3.2 EIRP calculations

The EUT, Model: HSV.1A consists of a single radio that transmits either a BLE signal or OQPSK signal. The two signals cannot be broadcasted at the same time.

3.3 Maximum RF Power

Frequency Range (MHz)	RF Output (dBm)	Antenna Gain ¹ (dBi)	Note
2402-2480 (BLE)	5.51	3.0	Conducted power measurements were taken from Report # 105220135MPK-001.
2405-2480 (OQPSK)	5.46	3.0	Conducted power measurements were taken from Report # 105220135MPK-003.

¹As declared by the manufacturer.

REPORT NUMBER: 105220135MPK-006 Issued: January 26, 2023

3.4 RF Exposure Calculation

3.4.1 RF Exposure calculation for BLE radio.

Calculations for this report are based on highest power measured for BLE.

Frequency Range (MHz)	EIRP¹ (dBm)	EIRP¹ (mW)	Power Density (W/m²) @20 cm	RSS Limit (W/m²)	Results
2402-2480	8.51	7.096	0.01412	5.469	Complies

Frequency Range (MHz)	EIRP¹ (dBm)	EIRP¹ (mW)	Power Density (mW/cm²) @20 cm	FCC Limit (mW/cm²)	Results
2402-2480	8.51	7.096	0.00141	1	Complies

¹Note: Antenna gains below 0 are considered as 0dBi.

Calculations for this report are based on highest power measured for OQPSK.

Frequency Range (MHz)	EIRP¹ (dBm)	EIRP¹ (mW)	Power Density (W/m²) @20 cm	RSS Limit (W/m²)	Results
2405-2480	8.46	7.015	0.01396	5.469	Complies

Frequency Range (MHz)	EIRP¹ (dBm)	EIRP¹ (mW)	Power Density (mW/cm²) @20 cm	FCC Limit (mW/cm²)	Results
2405-2480	8.46	7.015	0.00140	1	Complies

¹Note: Antenna gains below 0 are considered as 0dBi.

REPORT NUMBER: 105220135MPK-006 Issued: January 26, 2023

Appendix A: Power Density Calculation

The Power Density can be calculated using the formula

 $S = EIRP/4\pi D^2$

Where: S is Power Density in mW/cm²
D is the distance from the antenna in cm.

REPORT NUMBER: 105220135MPK-006 Issued: January 26, 2023

4.0 Document History

Revision/ Job Number	Writer Initials	Reviewer Initials	Date	Change
1.0/ G105220135	BT	ML	January 31, 2023	Original document