fcc SAR TESTREPORT

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Computer

ISSUED TO Hexagon Metrology, Inc.

250 Circuit Drive North Kingstown RI US 02852

Tested by: Mo Bra Zong Liyac Date Alt. 22. Test Approved by: Maxi Wei Yanquar (Chief Engineer) Test C Date אירי פרא Da

Report No.:	BL-EC2030004-701
EUT Name:	Computer
odel Name:	dCC (Digital Control Center) Wired Jogbox
and Name:	HEXAGON
FCC ID:	2AXRK-HEX01DCC
t Standard:	FCC 47 CFR Part 2.1093
	ANSI C95.1: 1999; IEEE 1528: 2013
mum SAR:	Body (1 g): 1.058 W/kg
A Salaras	Limbs (10 g): 0.875 W/kg
Conclusion:	Pass
Test Date:	Apr. 03, 2020 ~ Apr. 16, 2021
te of Issue:	Apr. 20, 2021

NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271 Email: qc@baluntek.com 1/55

www.baluntek.com

Revision History

Version	Issue Date	Revisions Content
<u>Rev. 01</u> <u>Rev. 02</u>	<u>Mar. 16, 2021</u> <u>Apr. 20, 2021</u>	Initial Issue Update Conducted Output Power and Test Results

TABLE OF CONTENTS

1	ADMIN	STRATIVE DATA (GENERAL INFORMATION)	4
	1.1	Identification of the Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	4
	1.3	Test Environment Condition	4
	1.4	Announce	4
2	PRODU	ICT INFORMATION	5
	2.1	Applicant Information	5
	2.2	Manufacturer Information	5
	2.3	Factory Information	5
	2.4	General Description for Equipment under Test (EUT)	5
	2.5	Ancillary Equipment	5
	2.6	Technical Information	6
3	SUMMA	ARY OF TEST RESULTS	7
	3.1	Test Standards	7
	3.2	Device Category and SAR Limit	8
	3.3	Test Result Summary	9
	3.4	Test Uncertainty	. 10
4	SAR MI	EASUREMENT SYSTEM	.12
	4.1	Definition of Specific Absorption Rate (SAR)	. 12
	4.2	SATIMO SAR System	.12
5	SYSTE	M VERIFICATION	.21
	5.1	Antenna Port Test Requirement	.21
	5.2	Purpose of System Check	.21
	5.3	System Check Setup	.21
6	EUT TE	ST POSITION CONFIGURATUONS	.22

Report No.: BL-EC2030004-701

	6.1	Body-worn Position Conditions	22
7	SAR MI	EASUREMENT PROCEDURES	23
	7.1	SAR Measurement Process Diagram	23
	7.2	SAR Scan General Requirements	24
	7.3	SAR Measurement Procedure	25
	7.4	Area & Zoom Scan Procedures	25
8	CONDL	JCTED RF OUPUT POWER	26
	8.1	WIFI	26
9	EUT AN	ITENNA LOCATION SKETCH	29
	9.1	SAR Test Exclusion Consider Table	30
1	0 TEST R	ESULTS	32
	10.1	WIFI 2.4GHz Body SAR	32
	10.2	WIFI 2.4GHz Limbs SAR	32
	10.3	WIFI 5GHz Body SAR	33
	10.4	WIFI 5GHz Limbs SAR	33
1	1 SAR Me	easurement Variability	34
1	2 SIMULT	TANEOUS TRANSMISSION	35
1	3 TEST E	QUIPMENTS LIST	36
A	NNEX A	SIMULATING LIQUID VERIFICATION RESULT	37
A	NNEX B	SYSTEM CHECK RESULT	38
A	NNEX C	TEST DATA	47
A	NNEX D	EUT EXTERNAL PHOTOS	. 55
A	NNEX E	SAR TEST SETUP PHOTOS	. 55
A	NNEX F	CALIBRATION REPORT	55

1 ADMINSTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Addroop	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Addroop	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
	All measurement facilities used to collect the measurement data are
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe
Description	Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.
	China 518055

1.3 Test Environment Condition

Ambient Temperature	20°⊂ to 23°⊂
Ambient Relative Humidity	34% to 50%
Ambient Pressure	100 to 102KPa

1.4 Announce

- (1) The test report reference to the report template version v2.3.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (7) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Hexagon Metrology, Inc.
Address	250 Circuit Drive North Kingstown RI US 02852

2.2 Manufacturer Information

Manufacturer	Advantech Technology(CHINA) Co., LTD.
Address	NO.600, Hanpu-Road, Kunshan, Jiangsu. China

2.3 Factory Information

Factory	Advantech Technology(CHINA) Co., LTD.
Address	NO.600, Hanpu-Road, Kunshan, Jiangsu. China

2.4 General Description for Equipment under Test (EUT)

EUT Name	Computer
Model Name Under Test	dCC (Digital Control Center) Wired Jogbox
Series Model Name	N/A
Description of Model	
name differentiation	N/A
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.5 Ancillary Equipment

Note: Not applicable.

2.6 Technical Information

Network and Wireless	WIFI 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac
connectivity	U-NII-1/2A/2C/3

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	2.4G WLAN, 5G WLA	2.4G WLAN, 5G WLAN				
	802.11b/g /n(HT20/HT40)	2412 ~ 2	462 MHz			
Frequency Range	802.11a/	5150 ~ 5	250 MHz			
Trequency Mange	/n(HT20/HT40)	5250 ~ 5	350 MHz			
	/ac(VHT20/VHT40/	5470 ~ 5	725 MHz			
	VHT80)	5725 ~ 5	850 MHz			
Antenna Type	WLAN: PIFA Antenna					
Hotspot Function	N/A					
Power Reduction	N/A					
Exposure Category	General Population/U	ncontrolle	d exposure			
EUT Stage	Portable Device					
Draduat	Туре					
Product	Production unit		Identical prototype			

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules	
1	47 OFR Fail 2	and Regulations	
2	ANSI/IEEE Std.	IEEE Standard for Safety Levels with Respect to Human Exposure	
2	C95.1-1999	to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz	
	IEEE Std.	Recommended Practice for Determining the Peak Spatial-Average	
3	1528-2013	Specific Absorption Rate (SAR) in the Human Head from Wireless	
	1526-2015	Communications Devices: Measurement Techniques	
4	FCC KDB 447498	Mobile and Portable Device RF Exposure Procedures and	
4	D01 v06	Equipment Authorization Policies	
5	FCC KDB 865664	SAR Measurement 100 MHz to 6 GHz	
5	D01 v01r04	SAR Measurement 100 MHZ to 6 GHZ	
6	FCC KDB 865664	DE Expedure Departing	
0	D02 v01r02	RF Exposure Reporting	
7	KDB 248227 D01	SAD Cuidenes for IEEE 902 11 (M/i Ei) Tronomittors	
	v02r02	SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters	

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

	SAR Value (W/Kg)					
Body Position	General Population/	Occupational/				
	Uncontrolled Exposure	Controlled Exposure				
Whole-Body SAR	0.09	0.4				
(averaged over the entire body)	0.08	0.4				
Partial-Body SAR	1.60	0 0				
(averaged over any 1 gram of tissue)	1.80	8.0				
SAR for hands, wrists, feet and						
ankles	4.0	20.0				
(averaged over any 10 grams of tissue)						

Table	of Ex	posure	L	_imits:
			_	

NOTE:

General Population/Uncontrolled: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR (1 g Value)

Frequency Band		Maximum Report SAR (W/kg) 1 g Body SAR (Separation 10 mm)			
	2.4 G	0.013			
WIFI	5.2 G	1.058			
VVIEI	5.6 G	0.678			
	5.8 G	0.771			
Li	mits (W/kg)	1.6			
Т	est Verdict	Pass			

3.3.2 Highest SAR (10 g Value)

Frequency Band		Maximum Report SAR (W/kg) 10 g Limbs SAR (Separation 0 mm)			
	2.4 G	0.019			
WIFI	5.2 G	0.658			
VVIEI	5.6 G	0.481			
	5.8 G	0.875			
Limits (W/kg)		4.0			
Т	est Verdict	Pass			

3.4 Test Uncertainty

3.4.1 Measurement uncertainly evaluation for SAR test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

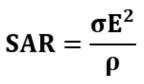
Uncertainty Component		Prob. Dist.	Div.	Ci (1g)	Ci (10 g)	1g Ui (+-%)	10 g Ui (+-%)	Vi Veff	
Measurement System									
Probe calibration	5.8	Ν	1	1	1	5.80	5.80	8	
Axial Isotropy	3.5	R	$\sqrt{3}$	0.7	0.7	1.41	1.41	∞	
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0.7	0.7	2.38	2.38	8	
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8	
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8	
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8	
Modulation response	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8	
Readout Electronics	0.5	Ν	1	1	1	0.50	0.50	8	
Response Time	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞	
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞	
RF ambient Conditions - Noise		R	$\sqrt{3}$	1	1	1.73	1.73	∞	
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8	
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8	
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞	
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8	
Test sample Related									
Test sample positioning	2.6	Ν	1	1	1	2.60	2.60	N-1	
Device Holder Uncertainty	3.0	Ν	1	1	1	3.00	3.00	N-1	
Output power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8	
SAR scaling	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8	
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞	
SAR correction for deviation(in permittivity and conductivity)	2.0	N	1	1	0.84	2.00	1.68	8	
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.03	8	
Liquid conductivity - measurement uncertainty	5.0	N	1	0.78	0.71	3.90	3.55	М	
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞	
Liquid permittivity - measurement uncertainty	5.0	N	1	0.23	0.26	1.15	1.30	М	
Combined Standard Uncertainty	-	RSS		-		10.72	10.56	-	
Expanded Uncertainty (95% Confidence interval)	-	k		-		21.45	21.11	-	

3.4.2 Measurement uncertainly evaluation for system check

This measurement uncertainty budget is suggested by IEEE 1528. The break down of the individual uncertainties is as follows:

Uncertainty Component	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
	(+- %)	Dist.	Dim	(1g)	(10g)	(+-%)	(+-%)	•1
Measurement System	1						ľ	
Probe calibration	5.8	N	1	1	1	5.80	5.30	8
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	8
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	8
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.56	8
Probe Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Modulation response	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	8
Readout Electronics	0.5	Ν	1	1	1	0.50	0.50	8
Response Time	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	8
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	8
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, interpolation and integration Algoritms for		R	$\sqrt{3}$	1	1	1.33	1 2 2	8
Max. SAR Evaluation	2.3	ĸ	<i>ν</i> 5	1	I	1.55	1.33	3
Dipole								
Deviation of experimental dipole	5.5	Ν	1	1	1	5.00	5.00	8
Dipole axis to liquid distance	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8
Power drift	0.5	R	$\sqrt{3}$	1	1	0.29	0.29	8
Phantom and Tissue Parameters	·							
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	8
SAR correction for deviation(in permittivity and	2.0	N	1	1	0.84	2.00	1.68	8
conductivity)	2.0		1		0.04	2.00	1.00	~
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	8
Liquid conductivity - measurement uncertainty	5.0	N	1	0.78	0.71	3.90	3.55	М
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	8
Liquid permittivity - measurement uncertainty	5.0	Ν	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty	-	RSS		-		10.43	10.25	
Expanded Uncertainty	_	k				20.86	20.51	
(95% Confidence interval)		n n		-		20.00	20.51	_

4 SAR MEASUREMENT SYSTEM

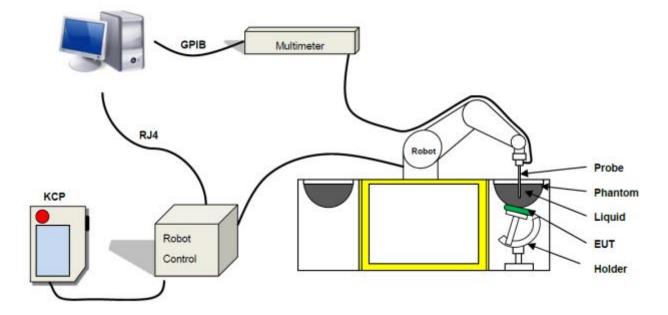

4.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational / controlled exposure limits are higher than the limits for general population /uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by



Where: $\boldsymbol{\sigma}$ is the conductivity of the tissue,

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

4.2 SATIMO SAR System

4.2.1 SATIMO SAR System Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ± 0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

4.2.2 Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

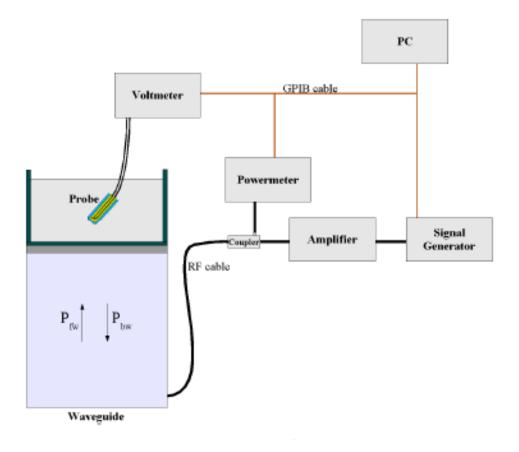
- High precision (repeatability ±0.035 mm)
- · High reliability (industrial design)
- · Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

4.2.3 E-Field Probe

For the measurements the Specific Dosimetric E-Field Probe SN 34/15 EPGO 265 with following specifications is used

- -- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm

- Lower detection limit : 10 mW/kg


- (repeatability better than +/- 1mm)
- Probe linearity: +/- 0.07 dB
- Calibration range: 300 MHz to 6000 MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30 $^\circ$

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the IEC62209-1/2 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^2\left(\pi \frac{y}{a}\right) c^{(2\pi/\sigma)}$$

Where :

Pfw = Forward Power Pbw = Backward Power a and b = Waveguide Dimensions I = Skin Depth

Keithley configuration

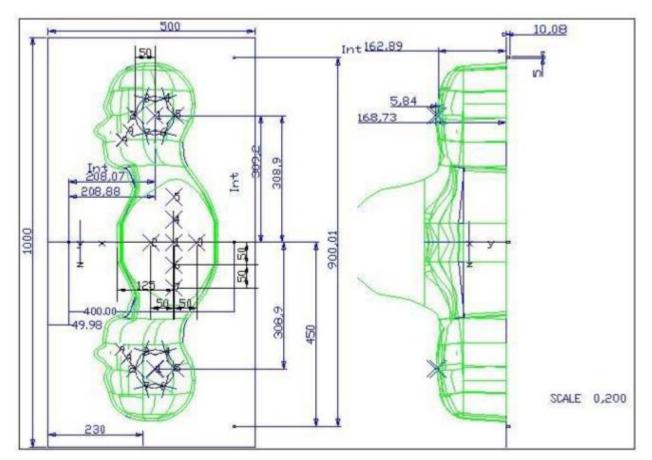
Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using $Vlin(N)=V(N)^*(1+V(N)/DCP(N))$ (N=1,2,3) Where the DCP is the diode compression point in mV.


0.02

4.2.4 Phantoms

SN 30/13 SAM104


For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

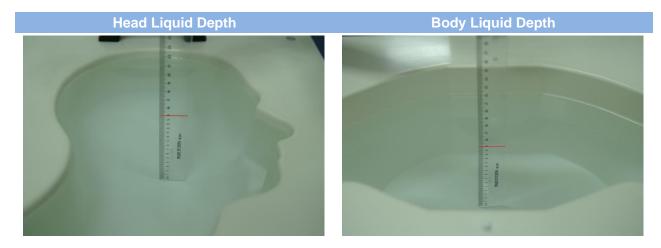
Gelcoat with fiberglass

3.4

Serial Number	Left Head			Right Head		Flat Part	
	2	2.00	2	2.03	1	2.09	
	3	2.02	3	2.05	2	2.10	
	4	2.04	4	2.04	3	2.09	
SN 30/13 SAM103	5	2.04	5	2.07	4	2.11	
SIN 30/13 SAIVI103	6	2.02	6	2.07	5	2.11	
	7	2.01	7	2.09	6	2.09	
	8	2.04	8	2.10	7	2.11	
	9	2.02	9	2.09	I	-	
	2	2.05	2	2.06	1	2.03	
	3	2.08	3	2.03	2	2.03	
	4	2.05	4	2.03	3	2.01	
SN 30/13 SAM104	5	2.06	5	2.02	4	2.03	
5N 30/13 3AW104	6	2.08	6	2.02	5	2.03	
	7	2.06	7	2.04	6	2.00	
	8	2.07	8	2.04	7	1.98	
	9	2.07	9	2.05	-	-	

4.2.5 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


Serial Number	Holder Material	Permittivity	Loss Tangent	
SN 25/13 MSH87	Deirin	3.7	0.005	
SN 25/13 MSH88	Deirin	3.7	0.005	

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

4.2.6 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

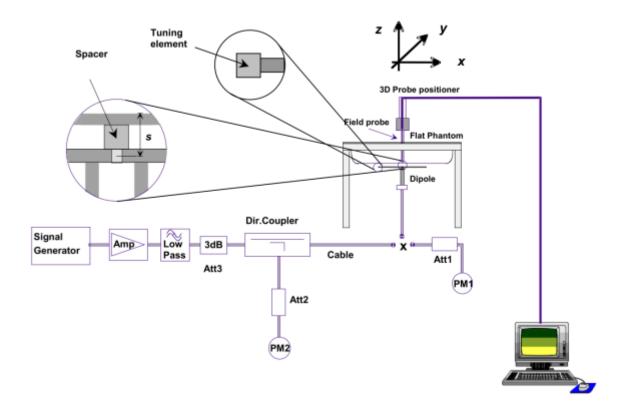
Head (Reference IEEE1528)									
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3	
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9	
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5	
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5	
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0	
2450	55.0	0	0	0.1	0	44.9	1.80	39.2	
2600	54.9	0	0	0.1	0	45.0	1.96	39.0	
	Water	ŀ	lexyl Carbito	bl	Triton	X-100	Conductivity	Permittivity	
Frequency(MHz)	(%)		(%)		(%)		σ (S/m)	3	
5200	62.52		17.24		17.24		4.66	36.0	
5800	62.52		17.24		17.24		5.27	35.3	
		Body (Fro	om instrun	nent man	ufacturer)				
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3	
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5	
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2	
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0	
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3	
2450	68.6	0	0	0.1	0	31.3	1.95	52.7	
2600	68.2	0	0	0.1	0	31.7	2.16	52.5	

Report No.: BL-EC2030004-701

Frequency(MHz)	Water	DGBE (%)	Salt (%)	Conductivity σ (S/m)	Permittivity ε
5200	78.60	21.40	/	5.54	47.86
5800	78.50	21.40	0.1	6.0	48.20

5 SYSTEM VERIFICATION

5.1 Antenna Port Test Requirement


The SATIMO SAR system is equipped with one or more system validation kits. These units together with the predefined measurement procedures within the SATIMO software enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

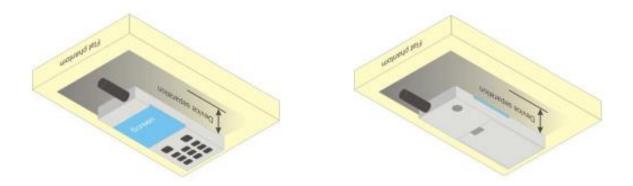
5.2 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.3 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

6 EUT TEST POSITION CONFIGURATUONS


According to KDB 648474 D04 Handset , handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

6.1 Body-worn Position Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.


Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

7 SAR MEASUREMENT PROCEDURES

7.1 SAR Measurement Process Diagram

7.2 SAR Scan General Requirements

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

		≤3GHz	>3GHz	
losest meas	surement point	E 1 mm	1/ 5 ln(2) 0 5 mm	
e sensors) to	o phantom surface	5±1 mm	½·δ·ln(2)±0.5 mm	
m probe axi	s to phantom surface	200+10	20°±1°	
nt location		50 ±1	20 11	
		≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm	
		2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm	
		When the x or y dimension of t	he test device, in the	
al resolutior	n: Δx Area , Δy Area	measurement plane orientation	n, is smaller than the above, the	
		measurement resolution must	be \leqslant the corresponding x or y	
		dimension of the test device w	th at least one measurement	
		point on the test device.		
tial readuitia		≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*	
tial resolutio	п: Дх 200т , Ду 200т	2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*	
			3–4 GHz: ≤ 4 mm	
uniforr	m grid: Δz Zoom (n)	≤ 5 mm	4–5 GHz: ≤ 3 mm	
			5–6 GHz: ≤ 2 mm	
	Δ z Zoom (1): between		3–4 GHz: ≤ 3 mm	
	1st two points closest	< 4 mm	4–5 GHz: ≤ 2.5 mm	
graded	to phantom surface	2 4 11111	5–6 GHz: ≤ 2 mm	
grid	∆ z Zoom (n>1):	≤ 1.5·Δz 2	Zoom (n-1)	
	between subsequent			
	points			
			3–4 GHz: ≥ 28 mm	
	x, y, z	≥30 mm	4–5 GHz: ≥ 25 mm	
	·		5–6 GHz: ≥ 22 mm	
	e sensors) to m probe axi nt location al resolution tial resolution uniforn	al resolution: Δx Area , Δy Area tial resolution: Δx Zoom , Δy Zoom uniform grid: Δz Zoom (n) graded grid Δ z Zoom (1): between 1st two points closest to phantom surface Δ z Zoom (n>1): between subsequent points	losest measurement point a sensors) to phantom surface m probe axis to phantom surface nt location $30^{\circ}\pm1^{\circ}$ $\leq 2 \text{ GHz: } \leq 15 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 12 \text{ mm}$ When the x or y dimension of t measurement plane orientation measurement resolution must dimension of the test device wi point on the test device. $\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$ 4 mm^*	

1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

2. * When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 SAR Measurement Procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8 CONDUCTED RF OUPUT POWER

8.1 WIFI

8.1.1 2.4GWIFI

Band	Mode	Channel	Freq.	Conducted	Tune-up	SAR Test
(GHz)			(MHz)	Power (dBm)	Limit (dBm)	Require.
		1	2412	16.55	17.00	Yes
	802.11b	6	2437	16.68	17.00	Yes
		11	2462	16.27	17.00	Yes
		1	2412	14.78	15.00	No
	802.11g	6	2437	18.55	19.00	No
2.4		11	2462	14.57	15.00	No
(2.4~2.4835)		1	2412	15.21	16.00	No
	802.11n(HT20)	6	2437	18.65	19.00	No
		11	2462	14.47	15.00	No
		3	2422	14.29	15.00	No
	802.11n(HT40)	6	2437	16.66	17.00	No
		9	2452	14.36	15.00	No

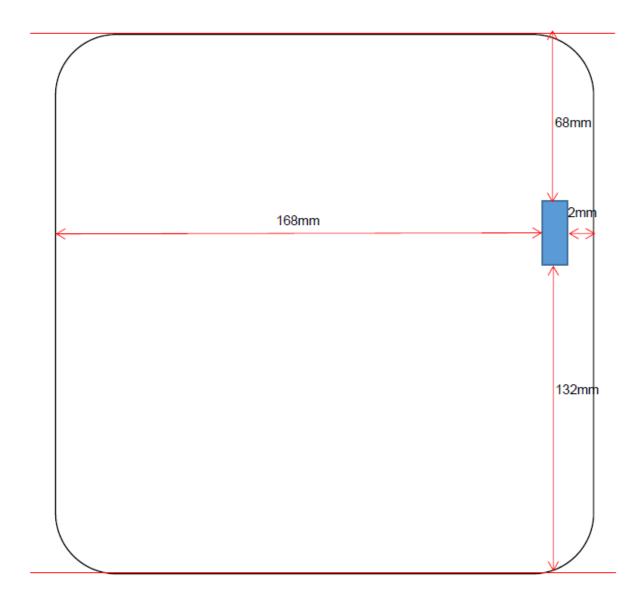
8.1.2 5GWIFI

Band	Mode	Channel	Freq.	Conducted	Tune-up	SAR Test
(GHz)		0.00	(MHz)	Power (dBm)	Limit (dBm)	Require.
		36	5180	16.11	17.00	Yes
	802.11a	40	5200	17.14	19.00	Yes
		48	5240	16.40	17.00	Yes
		36	5180	15.46	16.00	No
	802.11n(HT20)	44	5220	17.35	19.00	No
		48	5240	17.32	18.00	No
5.2	802.11n(HT40)	38	5190	11.74	13.00	No
(5.15~5.25)	002.111(1140)	46	5230	16.33	17.00	No
		36	5180	15.98	17.00	No
	802.11ac(VHT20)	40	5200	17.90	19.00	No
		48	5240	17.67	18.00	No
		38	5190	12.28	13.00	No
	802.11ac(VHT40)	46	5230	16.23	17.00	No
	802.11ac(VHT80)	42	5210	12.27	13.00	No
		52	5260	18.46	18.50	No
	802.11a	60	5300	17.79	18.50	No
		64	5320	18.07	18.50	No
		52	5260	17.87	18.50	No
	802.11n(HT20)	60	5300	17.90	18.50	No
		64	5320	16.98	18.50	No
5.3		54	5270	17.95	18.50	No
(5.25~5.35)	802.11n(HT40)	62	5310	12.58	13.00	No
		52	5260	18.14	18.50	No
	802.11ac(VHT20)	60	5300	17.18	18.50	No
		64	5320	17.52	18.50	No
		54	5270	18.72	18.80	No
	802.11ac(VHT40)	62	5310	13.14	14.00	No
	802.11ac(VHT80)	58	5290	11.53	12.00	No
		100	5500	16.57	17.00	Yes
	802.11a	116	5580	19.33	19.50	Yes
		140	5700	16.87	17.50	Yes
		100	5500	17.64	18.00	No
	802.11n(HT20)	116	5580	18.63	19.00	No
		140	5700	14.85	15.50	No
5.6		102	5510	13.32	14.00	No
(5.47~5.725)	802.11n(HT40)	118	5590	16.19	17.00	No
		134	5670	16.19	17.00	No
		100	5500	17.47	18.00	No
	802.11ac(VHT20)	116	5580	18.64	19.00	No
		140	5700	14.59	15.50	No
		102	5510	13.73	14.00	No
	802.11ac(VHT40)	118	5590	15.93	17.00	No

		134	5670	15.64	17.00	No
		106	5530	12.56	13.00	No
	802.11ac(VHT80)	122	5610	18.12	18.50	No
		138	5690	17.25	18.00	No
		149	5745	18.08	18.50	Yes
	802.11a	157	5785	17.93	18.50	Yes
		165	5825	17.19	18.50	Yes
		149	5745	17.38	18.00	No
	802.11n(HT20)	157	5785	18.06	18.50	No
		165	5825	17.16	18.00	No
5.8	000 44	151	5755	17.59	18.00	No
(5.725~5.850)	802.11n(HT40)	159	5795	17.31	18.00	No
		149	5745	17.07	18.00	No
	802.11ac(VHT20)	157	5785	17.34	18.00	No
		165	5825	17.42	18.00	No
		151	5755	17.23	18.00	No
	802.11ac(VHT40)	159	5795	17.05	18.00	No
	802.11ac(VHT80)	155	5775	16.76	17.00	No

Note: When multiple channel bandwidth configurations in a frequency band have the same maximum Tune-Up output power, the test configuration is determined by applying the following steps sequentially.

1) The largest channel bandwidth configuration is selected among the multiple configurations in a frequency band with the same maximum Tune-Up output power.


2) If multiple configurations have the same maximum Tune-Up output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.

3) If multiple configurations have the same maximum Tune-Up output power, largest channel bandwidth and lowest order modulation is selected.

4) When multiple transmission modes (802.11a/n/ac) have the same maximum Tune-Up output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then ac.

9 EUT ANTENNA LOCATION SKETCH

WLAN TX Antenna

9.1 SAR Test Exclusion Consider Table

According with FCC KDB 447498 D01, Appendix A, <SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and \leq 50 mm> Table, this Device SAR test configurations consider as following :

		May Da	ak Dawar		Te	est Position	Configurati	ions	
Band	Mode	IVIAX. Pe	eak Power	Frant	Deek	Left	Right	Тор	Bottom
		dBm	mW			Edge	Edge	Edge	Edge
	Distan	ce to User		<5mm	75mm	168mm	<5mm	68mm	132mm
	802.11b	17.0	50.12	Yes	No	No	Yes	No	No
WLAN 2.4 G	802.11g	19.0	79.43	No	No	No	No	No	No
2.4 G	802.11n(HT20)	19.0	79.43	No	No	No	No	No	No
	802.11n(HT40)	17.0	50.12	No	No	No	No	No	No
	Distan	ce to User		<5mm	75mm	168mm	<5mm	68mm	132mm
	802.11a	19.0	79.43	Yes	No	No	Yes	No	No
	802.11n(HT20)	19.0	79.43	No	No	No	No	No	No
WLAN 5.2G	802.11n(HT40)	17.0	50.12	No	No	No	No	No	No
	802.11ac(HT20)	19.0	79.43	No	No	No	No	No	No
	802.11ac(HT40)	17.0	50.12	No	No	No	No	No	No
	802.11ac(HT80)	13.0	19.95	Yes	No	No	Yes	No	No
	Distan	ce to User		<5mm	75mm	168mm	<5mm	68mm	132mm
	802.11a	18.5	70.79	No	No	No	No	No	No
	802.11n(HT20)	18.5	70.79	No	No	No	No	No	No
WLAN 5.3G	802.11n(HT40)	18.5	70.79	No	No	No	No	No	No
	802.11ac(HT20)	18.5	70.79	No	No	No	No	No	No
	802.11ac(HT40)	18.8	75.86	No	No	No	No	No	No
	802.11ac(HT80)	12.0	15.85	Yes	No	No	Yes	No	No
	Distan	ce to User		<5mm	75mm	168mm	<5mm	68mm	132mm
	802.11a	19.5	89.13	Yes	No	No	Yes	No	No
	802.11n(HT20)	19.0	79.43	No	No	No	No	No	No
WLAN 5.6G	802.11n(HT40)	17.0	50.12	No	No	No	No	No	No
	802.11ac(HT20)	19.0	79.43	No	No	No	No	No	No
	802.11ac(HT40)	17.0	50.12	No	No	No	No	No	No
	802.11ac(HT80)	18.5	70.79	No	No	No	Yes	No	No
	Distan	ce to User		<5mm	75mm	168mm	<5mm	68mm	132mm
	802.11a	18.5	70.79	Yes	No	No	Yes	No	No
	802.11n(HT20)	18.5	70.79	No	No	No	No	No	No
WLAN 5.8G	802.11n(HT40)	18.0	63.10	No	No	No	No	No	No
	802.11ac(HT20)	18.0	63.10	No	No	No	No	No	No
	802.11ac(HT40)	18.0	63.10	No	No	No	No	No	No
	802.11ac(HT80)	17.0	50.12	No	No	No	No	No	No
Note:									

Note:

1. Maximum power is the source-based time-average power and represents the maximum RF output power including tune-up tolerance among production units

- 2. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is <
 5mm, 5mm is used to determine SAR exclusion threshold
- 4. Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- a. f(GHz) is the RF channel transmit frequency in GHz
- b. Power and distance are rounded to the nearest mW and mm before calculation
- c. The result is rounded to one decimal place for comparison
- d. For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.

This formula is [3.0] / $[\sqrt{f}(GHz)]$ ·[(min. test separation distance, mm)] = exclusion threshold of mW.

- 5. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz
- 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.8. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate
- 7. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions.
 - a. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.
- 8. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions.
 - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
 - b. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

10 TEST RESULTS

10.1 WIFI 2.4GHz Body SAR

Mode Body	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle Setting	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body	Front Side	10	6	2437	2.99	0.002	16.68	17.00	1.076	100	1.000	0.002	1
802.11b		10	6	2437	-0.78	0.012	16.68	17.00	1.076	100	1.000	0.013	1#
002.110	Right Edge	10	1	2412	-0.95	0.008	16.55	17.00	1.109	100	1.000	0.009	1
		10	11	2462	-1.81	0.009	16.27	17.00	1.183	100	1.000	0.011	1
Note: Refe	r to ANNEX C f	or the deta	iled test	data for each	test configu	ration.							

10.2WIFI 2.4GHz Limbs SAR

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	10g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle Setting	Duty cycle Factor	10g Scaled SAR (W/kg)	Meas. No.
LIIIIDS	Front Side	0	6	2437	2.39	0.004	16.68	17.00	1.076	100	1.000	0.004	,
	FIOIIL Side	0	0	2437	2.39	0.004	10.00	17.00	1.076	100	1.000	0.004	1
802.11b		0	6	2437	-1.84	0.017	16.68	17.00	1.076	100	1.000	0.018	2#
002.110	Right Edge	0	1	2412	-2.74	0.010	16.55	17.00	1.109	100	1.000	0.011	/
		0	11	2462	-1.65	0.016	16.27	17.00	1.183	100	1.000	0.019	/
Note: Refe	r to ANNEX C f	or the deta	iled test	data for each	n test configu	ration.							

led test data for each test configur

10.3WIFI 5GHz Body SAR

Fre. Band	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle Setting	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body														
		Front Side	10	40	5200	2.23	0.242	17.14	19.00	1.535	99.80	1.002	0.372	/
5.2G	802.11a		10	40	5200	-3.68	0.688	17.14	19.00	1.535	99.80	1.002	1.058	3#
5.20	802.118	Right Edge	10	36	5180	2.11	0.342	16.11	17.00	1.227	99.80	1.002	0.421	/
			10	48	5240	2.64	0.442	16.40	17.00	1.148	99.80	1.002	0.509	/
		Front Side	10	116	5580	-3.45	0.326	19.33	19.50	1.040	99.80	1.002	0.340	/
5.6G	802.11a		10	116	5580	-2.96	0.651	19.33	19.50	1.040	99.80	1.002	0.678	4#
5.6G	802.118	Right Edge	10	100	5500	0.94	0.485	16.57	17.00	1.104	99.80	1.002	0.537	/
			10	140	5700	2.04	0.497	16.87	17.50	1.156	99.80	1.002	0.576	/
		Front Side	10	149	5745	-1.01	0.223	18.08	18.50	1.102	99.80	1.002	0.246	/
5.00	000 44-		10	149	5745	-0.95	0.359	18.08	18.50	1.102	99.80	1.002	0.396	/
5.8G	802.11a	Right Edge	10	157	5785	2.59	0.426	17.93	18.50	1.140	99.80	1.002	0.487	/
			10	165	5825	-3.37	0.569	17.19	18.50	1.352	99.80	1.002	0.771	5#
Note: Re	fer to ANNE>	C for the deta	iled test	data for e	each test c	onfiguratio	n.	-	-	•		-	-	

10.4 WIFI 5GHz Limbs SAR

Fre. Band	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	10g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle Setting	Duty cycle Factor	10g Scaled SAR (W/kg)	Meas. No.
Limbs														
		Front Side	0	40	5200	-3.49	0.204	17.14	19.00	1.535	99.80	1.002	0.314	/
E 00	802.11a		0	40	5200	-1.08	0.428	17.14	19.00	1.535	99.80	1.002	0.658	6#
5.2G	802.11a	Right Edge	0	36	5180	-3.30	0.282	16.11	17.00	1.227	99.80	1.002	0.347	/
			0	48	5240	-0.88	0.403	16.40	17.00	1.148	99.80	1.002	0.464	/
		Front Side	0	106	5530	-1.32	0.162	19.33	19.50	1.040	99.80	1.002	0.169	/
5.00	000 44 -		0	116	5580	-1.76	0.462	19.33	19.50	1.040	99.80	1.002	0.481	7#
5.6G	802.11a	Right Edge	0	100	5500	0.63	0.371	16.57	17.00	1.104	99.80	1.002	0.410	/
			0	140	5700	-2.43	0.408	16.87	17.50	1.156	99.80	1.002	0.473	/
		Front Side	0	149	5745	-2.80	0.318	18.08	18.50	1.102	99.80	1.002	0.351	/
	000 //		0	149	5745	1.25	0.613	18.08	18.50	1.102	99.80	1.002	0.677	/
5.8G	802.11a	Right Edge	0	157	5785	1.64	0.620	17.93	18.50	1.140	99.80	1.002	0.708	/
			0	165	5825	2.72	0.646	17.19	18.50	1.352	99.80	1.002	0.875	8#
Note: Re	fer to ANNE>	C for the deta	iled test	data for e	each test c	onfiguratio	า.	•						

11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent media. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Note 1: For 1g SAR, the highest measured 1g SAR is 0.688 < 0.80 W/kg, repeated measurement is not required.

Note 2: For product Limbs 10g SAR, the highest measured 10g SAR is 0.646 < 2.0 W/kg, repeated measurement is not required.

12 SIMULTANEOUS TRANSMISSION

Note: The product has only one antenna for WLAN, so simultaneous transmission evaluation is not required in this report.

13 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
Test Software	SATIMO	OpenSAR	V4_02_31	N/A	N/A
2450MHz Dipole	SATIMO	SID 2450	S/N 11/17 DIP 2G450-452	2019/03/20	2021/03/19
Waveguide	SATIMO	SWG5500	S/N 49/16 DIP WGA42	2019/03/20	2021/03/19
E-Field Probe	MVG	SSE2	S/N 34/15 EPGO 265	2019/05/16	2020/05/15
MultiMeter	Keithley	MultiMeter 2000	4024022	2019/06/17	2020/06/16
Signal Generator	R&S	SMBV100A	260592	2019/06/13	2020/06/12
Power Meter	R&S	NRVD-B2	7250BJ-0112/2011	2019/10/30	2020/10/29
Power Sensor	R&S	NRV-Z4	100381	2019/10/30	2020/10/29
Power Sensor	R&S	NRV-Z2	100211	2019/10/30	2020/10/29
Network Analyzer	R&S	ZVL-6	101380	2019/06/20	2020/06/19
Thermometer	Elitech	RC-4HC	N/A	2019/11/02	2020/11/01
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 25/13 OCPG56	N/A	N/A
Antenna	SATIMO	ANTA3	SN 17/13 ZNTA45	N/A	N/A
Phantom1	SATIMO	SAM	SN 11/17 SAM133	N/A	N/A
Phantom2	SATIMO	ELLI	SN 11/17 ELLI42	N/A	N/A
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation Verification, BALUN LAB has adopted 3 years calibration intervals. On annual

basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;

2. System validation with specific dipole is within 10% of calibrated value;

3. Return-loss in within 20% of calibrated measurement.

4. Impedance (real or imaginary parts) in within 5 Ohms of calibrated measurement.

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.

Date	Liquid Type	Fre. (MHz)	Temp. (°C)	Meas. Conductivity (σ) (S/m)	Meas. Permittivity (ε)	Target Conductivity (σ) (S/m)	Target Permittivity (ε)	Conductivity Tolerance (%)	Permittivity Tolerance (%)
2020.04.03	Head	2450	21.5	1.83	39.67	1.80	39.20	1.67	1.20
2020.04.05	Head	5200	21.4	4.62	36.76	4.66	35.99	-0.86	2.14
2020.04.05	Head	5600	21.4	5.12	35.74	5.07	35.53	0.99	0.59
2020.04.06	Head	5800	21.3	5.39	34.48	5.27	35.30	2.28	-2.32
Note: The tolerance limit of Conductivity and Permittivity is± 5%.									

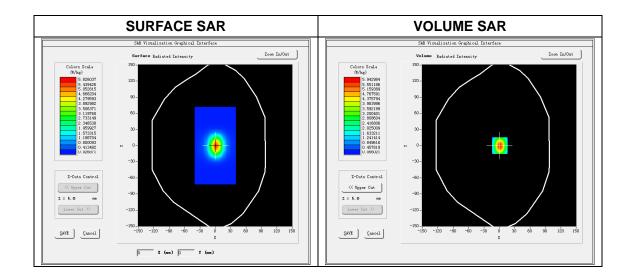
ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10%.

(for 1 g)

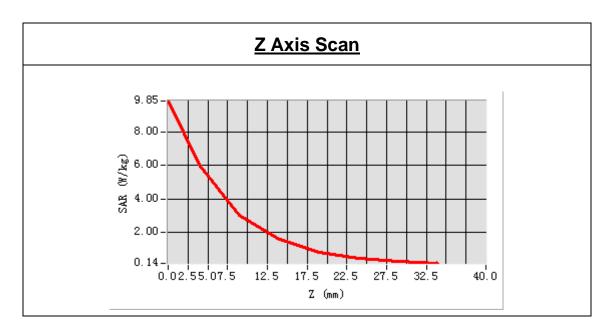
Date	Liquid	Freq.	Power	Measured	Normalized	Dipole SAR	Tolerance	Targeted	Tolerance
	Туре	(MHz)	(mW)	SAR (W/kg)	SAR (W/kg)	(W/kg)	(%)	SAR(W/kg)	(%)
2020.04.03	Head	2450	100	5.431	54.31	54.31	0.00	52.40	3.65
2020.04.05	Head	5200	100	15.389	153.89	161.03	-4.43	159.00	-3.21
2020.04.05	Head	5600	100	18.155	181.55	175.43	3.49	173.80	4.46
2020.04.06	Head	5800	100	18.212	182.12	182.30	-0.10	181.20	0.51
Note: The tolerance limit of System validation ±10%.									

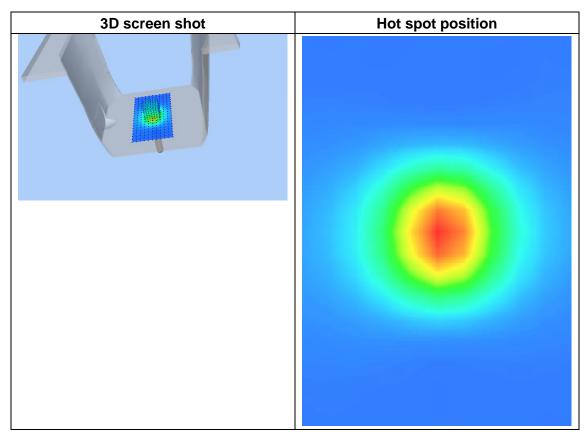
(for 10 g)


Date	Liquid	Freq.	Power	Measured	Normalized	Dipole SAR	Tolerance	Targeted	Tolerance
Date	Туре	(MHz)	(mW)	SAR (W/kg)	SAR (W/kg)	(W/kg)	(%)	SAR(W/kg)	(%)
2020.04.03	Head	2450	100	2.542	25.42	24.20	5.04	24.00	5.92
2020.04.05	Head	5200	100	5.403	54.03	56.23	-3.91	56.90	-5.04
2020.04.05	Head	5600	100	6.093	60.93	59.94	1.65	59.97	1.60
2020.04.06	Head	5800	100	6.018	60.18	61.84	-2.68	61.50	-2.15
Note: The tolerance limit of System validation ±10%.									

System Performance Check Data(2450MHz)

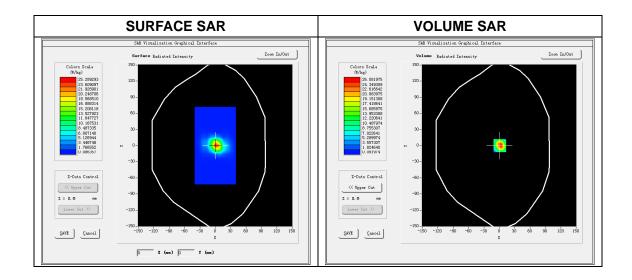
Type: Phone measurement (Complete) E-Field Probe: SN 34/15 EPGO265 Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2020.04.03 Measurement duration: 18 minutes 40 seconds


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	2450MHz
Signal	CW
Frequency (MHz)	2450.000000
Relative permittivity (real part)	39.673270
Conductivity (S/m)	1.826795
Power drift (%)	-0.470000
Ambient Temperature:	22.3°C
Liquid Temperature:	21.5°C
ConvF:	2.55
Crest factor:	1:1



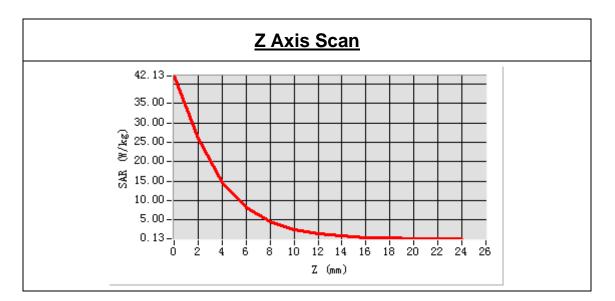
Maximum location: X=1.00, Y=0.00 SAR Peak: 9.74 W/kg

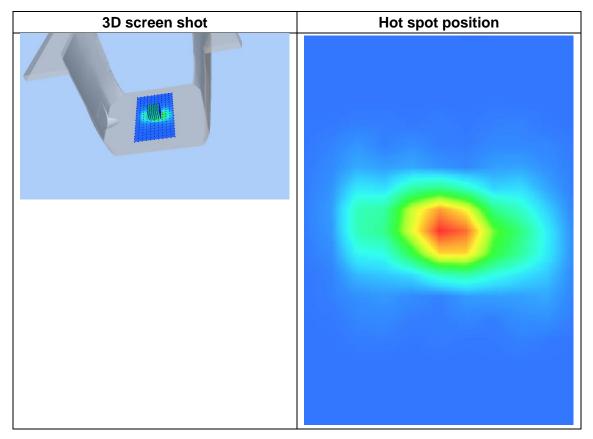
SAR 10g (W/Kg)	2.541745
SAR 1g (W/Kg)	5.430925



System Performance Check Data(5200 MHz)

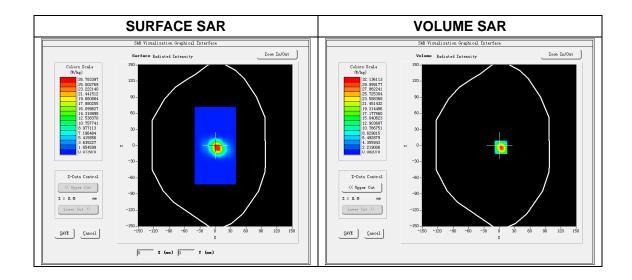
Type: Phone measurement (Complete) E-Field Probe: SN 34/15 EPGO265 Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2020.04.05 Measurement duration: 29 minutes 18 seconds


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5200 MHz
Signal	CW
Frequency (MHz)	5200.000000
Relative permittivity (real part)	36.757209
Conductivity (S/m)	4.616341
Power drift (%)	-0.180000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.4°C
ConvF:	2.09
Crest factor:	1:1



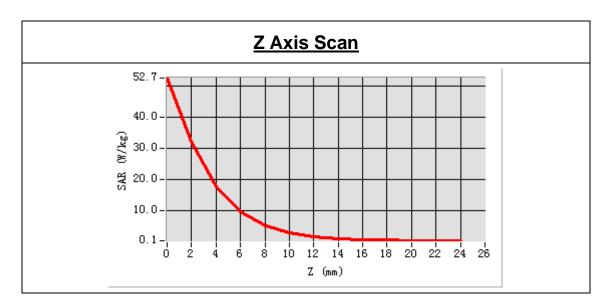
Maximum location: X=1.00, Y=0.00 SAR Peak: 44.35 W/kg

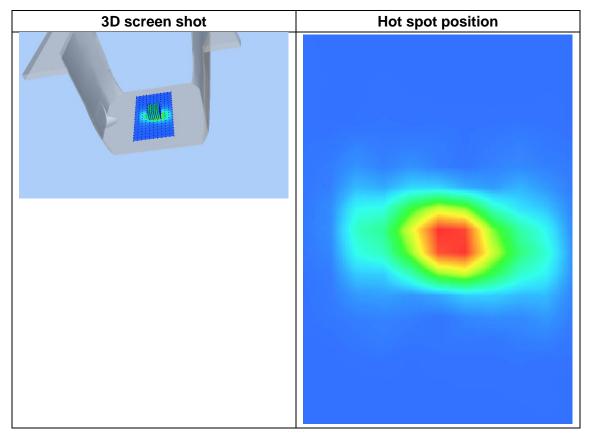
SAR 10 g (W/Kg)	5.403392
SAR 1 g (W/Kg)	15.389196



System Performance Check Data(5600 MHz)

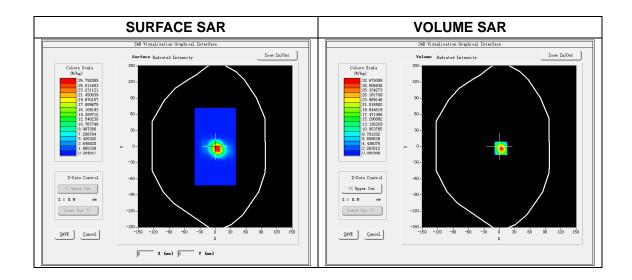
Type: Phone measurement (Complete) E-Field Probe: SN 34/15 EPGO265 Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2020.04.05 Measurement duration: 29 minutes 52 seconds


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5600 MHz
Signal	CW
Frequency (MHz)	5600.000000
Relative permittivity (real part)	35.744286
Conductivity (S/m)	5.124066
Power drift (%)	-0.370000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.4°C
ConvF:	2.20
Crest factor:	1:1



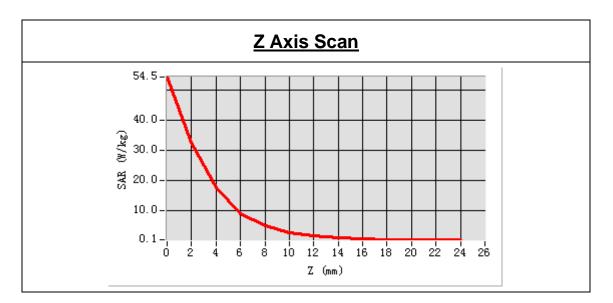
Maximum location: X=3.00, Y=-3.00 SAR Peak: 55.1 W/kg

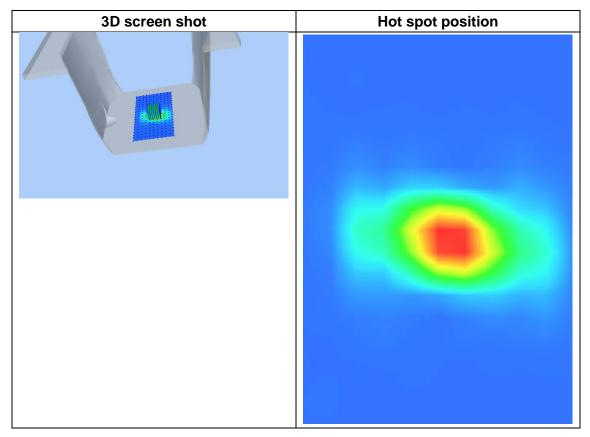
SAR 10 g (W/Kg)	6.092752
SAR 1 g (W/Kg)	18.155321



System Performance Check Data(5800 MHz)

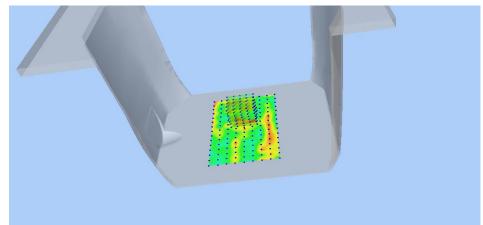
Type: Phone measurement (Complete) E-Field Probe: SN 34/15 EPGO265 Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2020.04.06 Measurement duration: 30 minutes 15 seconds


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5800 MHz
Signal	CW
Frequency (MHz)	5800.00000
Relative permittivity (real part)	34.482176
Conductivity (S/m)	5.390524
Power drift (%)	-0.150000
Ambient Temperature:	22.5°C
Liquid Temperature:	21.3℃
ConvF:	2.17
Crest factor:	1:1

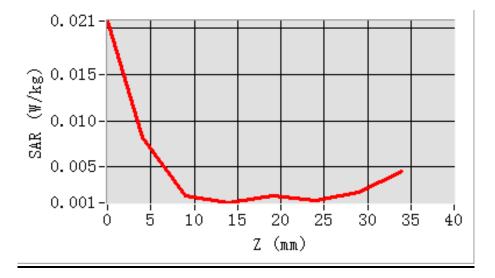


Maximum location: X=3.00, Y=-3.00 SAR Peak: 56.82 W/kg

SAR 10 g (W/Kg)	6.017899
SAR 1 g (W/Kg)	18.211866



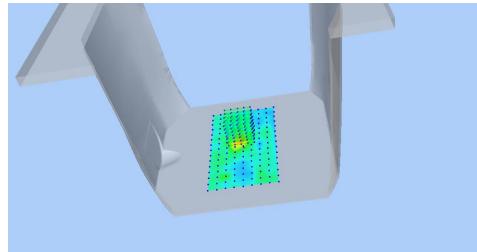
ANNEX C TEST DATA

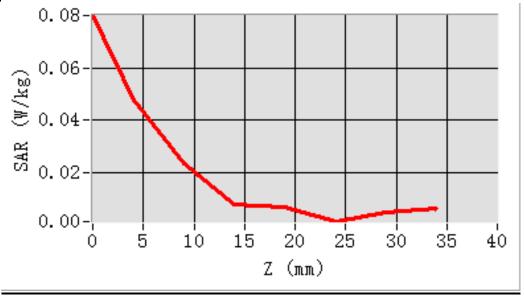

MEAS. 1 Body Plane with Right Edge 10mm on Middle Channel in IEEE 802.11b

mode

Test Date:	3/4/2020
Measurement duration:	12 minutes 51 seconds
Signal:	WLAN, f=2437.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 39.89; Conductivity: 1.81 S/m
Test condition:	Ambient Temperature: 22.3°C, Liquid Temperature: 21.5℃
Probe:	SN 34/15 EPGO265, ConvF: 2.55
Area Scan:	sam_direct_droit2_surf10mm.txt, h= 5.00 mm
Zoom Scan:	5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete
Maximum location:	X=0.000000, Y=18.000000
SAR 10g (W/Kg):	0.006748
SAR 1g (W/Kg):	0.012053
Power drift (%):	-0.78
3D screen shot	

<u>Z Axis Scan</u>

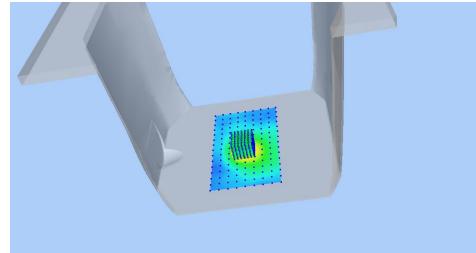


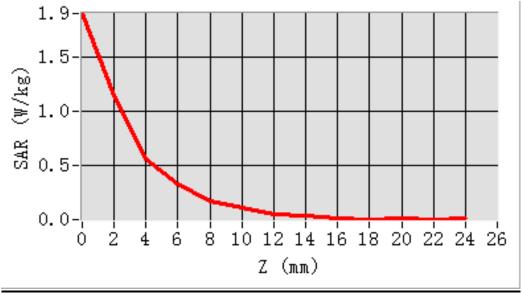


MEAS. 2 Body Plane with Right Edge 0mm on Middle Channel in IEEE 802.11b

mode

Test Date: Measurement duration: Signal: Liquid Parameters: Test condition: Probe: Area Scan: Zoom Scan: Maximum location: SAR 10g (W/Kg): SAR 1g (W/Kg): Power drift (%): 3D screen shot 3/4/202012 minutes 36 seconds WLAN, f=2437.0 MHz, Duty Cycle: 1:1.0 Permittivity: 39.89; Conductivity: 1.81 S/m Ambient Temperature: 22.3°C, Liquid Temperature: 21.5°C SN 34/15 EPGO265, ConvF: 2.55 sam_direct_droit2_surf10mm.txt, h= 5.00 mm 5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete X=0.000000, Y=18.000000 0.016796 0.041650 -1.84

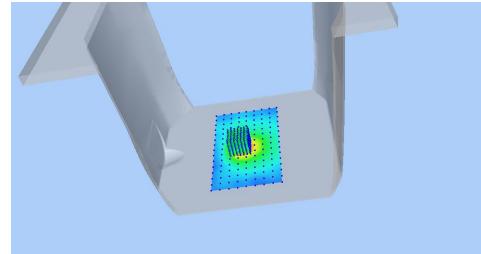


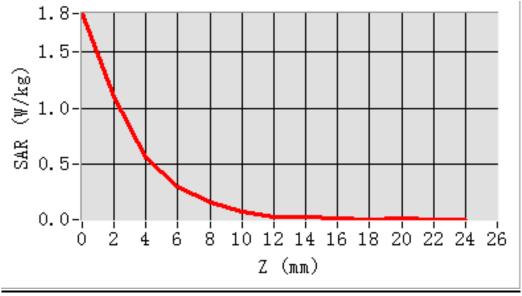


MEAS. 3 Body Plane with Right Edge 10mm on Channel 40 in IEEE 802.11a

mode

Test Date: Measurement duration: Signal: Liquid Parameters: Test condition: Probe: Area Scan: Zoom Scan: Maximum location: SAR 10g (W/Kg): SAR 1g (W/Kg): Power drift (%): 3D screen shot 5/4/2020 29 minutes 23 seconds WLAN, f=5200.0 MHz, Duty Cycle: 1:1.002 Permittivity: 36.76; Conductivity: 4.62 S/m Ambient Temperature: 22.6°C, Liquid Temperature: 21.4°C SN 34/15 EPGO265, ConvF: 2.09 sam_direct_droit2_surf10mm.txt, h= 5.00 mm 7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete X=0.000000, Y=-12.000000 0.275776 0.688489 -3.68

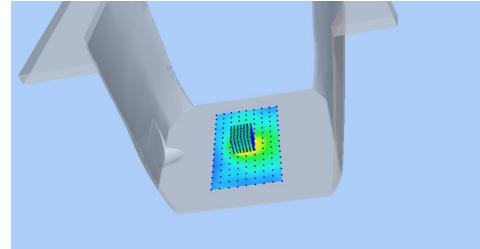


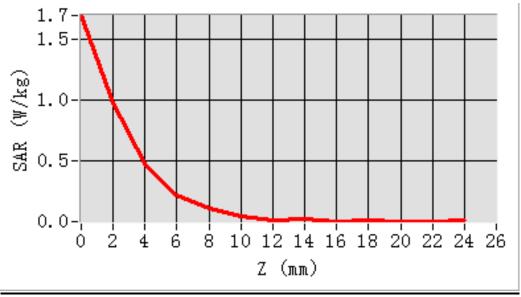

MEAS. 4 Body Plane with Right Edge 10mm on Channel 116 in IEEE 802.11a

mode

Test Date:
Measurement duration:
Signal:
Liquid Parameters:
Test condition:
Probe:
Area Scan:
Zoom Scan:
Maximum location:
SAR 10g (W/Kg):
SAR 1g (W/Kg):
Power drift (%):
3D screen shot

5/4/2020 26 minutes 56 seconds WLAN, f=5580.0 MHz, Duty Cycle: 1:1.002 Permittivity: 35.97; Conductivity: 5.07 S/m Ambient Temperature: 22.6°C, Liquid Temperature: 21.4°C SN 34/15 EPGO265, ConvF: 2.20 sam_direct_droit2_surf10mm.txt, h= 5.00 mm 7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete X=-10.000000, Y=-2.000000 0.257851 0.651173 -2.96

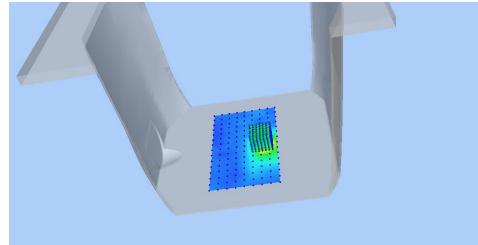


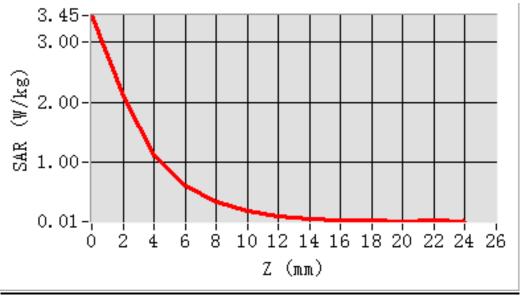

MEAS. 5 Body Plane with Right Edge 10mm on Channel 165 in IEEE 802.11a

mode

Test Date:
Measurement duration:
Signal:
Liquid Parameters:
Test condition:
Probe:
Area Scan:
Zoom Scan:
Maximum location:
SAR 10g (W/Kg):
SAR 1g (W/Kg):
Power drift (%):
3D screen shot

6/4/2020 28 minutes 55 seconds WLAN, f=5825.0 MHz, Duty Cycle: 1:1.002 Permittivity: 34.37; Conductivity: 5.43 S/m Ambient Temperature: 22.5°C, Liquid Temperature: 21.3°C SN 34/15 EPGO265, ConvF: 2.17 sam_direct_droit2_surf10mm.txt, h= 5.00 mm 7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete X=0.000000, Y=-2.000000 0.226407 0.569464 -3.37

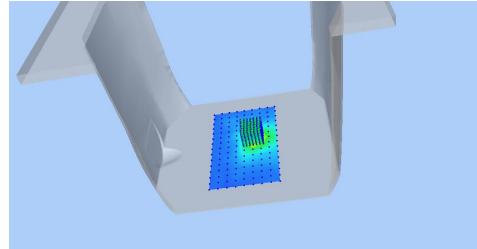


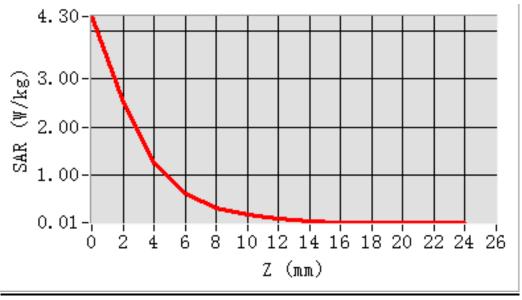


MEAS. 6 Body Plane with Right Edge 0mm on Channel 40 in IEEE 802.11a

mode

Test Date: Measurement duration: Signal: Liquid Parameters: Test condition: Probe: Area Scan: Zoom Scan: Maximum location: SAR 10g (W/Kg): SAR 1g (W/Kg): Power drift (%): 3D screen shot 5/4/2020 19 minutes 55 seconds WLAN, f=5200.0 MHz, Duty Cycle: 1:1.002 Permittivity: 36.76; Conductivity: 4.62 S/m Ambient Temperature: 22.6°C, Liquid Temperature: 21.4°C SN 34/15 EPGO265, ConvF: 2.09 sam_direct_droit2_surf10mm.txt, h= 5.00 mm 7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete X=20.000000, Y=-2.000000 0.428147 1.180241 -1.08

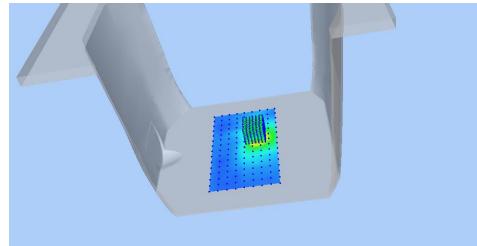


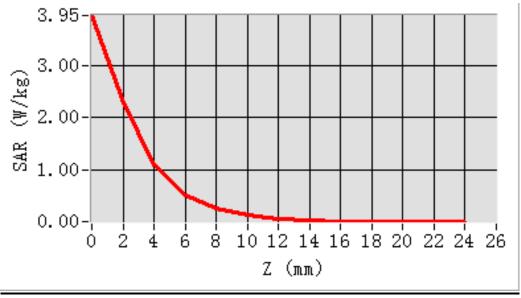

MEAS. 7 Body Plane with Right Edge 0mm on Channel 116 in IEEE 802.11a

mode

Test Date:
Measurement duration:
Signal:
Liquid Parameters:
Test condition:
Probe:
Area Scan:
Zoom Scan:
Maximum location:
SAR 10g (W/Kg):
SAR 1g (W/Kg):
Power drift (%):
3D screen shot

5/4/2020 25 minutes 44 seconds WLAN, f=5580.0 MHz, Duty Cycle: 1:1.002 Permittivity: 35.97; Conductivity: 5.07 S/m Ambient Temperature: 22.6°C, Liquid Temperature: 21.4°C SN 34/15 EPGO265, ConvF: 2.20 sam_direct_droit2_surf10mm.txt, h= 5.00 mm 7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete X=10.000000, Y=8.000000 0.462217 1.385330 -1.76




MEAS. 8 Body Plane with Right Edge 0mm on Channel 165 in IEEE 802.11a

mode

Test Date:
Measurement duration:
Signal:
Liquid Parameters:
Test condition:
Probe:
Area Scan:
Zoom Scan:
Maximum location:
SAR 10g (W/Kg):
SAR 1g (W/Kg):
Power drift (%):
3D screen shot

6/4/2020 23 minutes 54 seconds WLAN, f=5825.0 MHz, Duty Cycle: 1:1.002 Permittivity: 34.37; Conductivity: 5.43 S/m Ambient Temperature: 22.5°C, Liquid Temperature: 21.3°C SN 34/15 EPGO265, ConvF: 2.17 sam_direct_droit2_surf10mm.txt, h= 5.00 mm 7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete X=10.000000, Y=18.000000 0.645644 1.382598 2.72

ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-EC2030004-AW.pdf".

ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-EC2030004-AS.pdf".

ANNEX F CALIBRATION REPORT

Please refer the document "CALIBRATION REPORT.pdf".

--END OF REPORT--