

RF-TEST REPORT

Type / Model Name : KY-LOC 1D.02.01

Product Description: Radar sensor

Applicant: Kymati GmbH

Address : Am Hochacker 5

85630 GRASBRUNN, GERMANY

Manufacturer : Kymati GmbH

Address : Am Hochacker 5

85630 GRASBRUNN, GERMANY

Test Result according to the standards listed in clause 1 test standards:

POSITIVE

Test Report No.:

T46910-00-04HS

19. January 2021

Date of issue

Contents

1	TEST STANDARDS	3
2	SUMMARY	4
2.1	General remarks	4
2.2	Summary for all EMC tests	4
2.3	Final assessment	4
3	EQUIPMENT UNDER TEST	5
3.1	Information provided by the Client	5
3.2	Sampling Sampling	5
3.3	Photo documentation of the EUT – Detailed photos see ATTACHMENT A	5
3.4	Power supply system utilised	5
3.5	Highest internal frequency	5
3.6	Short description of the Equipment under Test (EUT)	5
3.7	EUT operation mode(genauen Betriebszustand definieren!!! nicht praxisgerecht)	5
3.8	EUT configuration	6
4	TEST ENVIRONMENT	7
4.1	Address of the test laboratory	7
4.2	Environmental conditions	7
4.3	Statement of the measurement uncertainty	7
4.4	Conformity Decision Rule	7
4.5	Measurement protocol for FCC and ISED	7
5	TEST CONDITIONS AND RESULTS	12
5.1	Conducted emission	12
5.2	Radiated emission < 1 GHz (electric field)	15
5.3	Radiated emission > 1 GHz (electric field)	19
6	USED TEST EQUIPMENT AND ACCESSORIES	24
7	DETAILED MEASUREMENT UNCERTAINTY	25
7.1	Overview	25
7.2	Definitions and symbols	25
7.3	Measurement uncertainty	25

Attachment A as seperate supplement

1 TEST STANDARDS

The tests were performed according to following	g standards:	
FCC Rules and Regulations Part 15 Subpart	B - Unintentional Radiators (Sep	tember 2020)
Part 15, Subpart B, Section 15.107	AC Line conducted emission Class A device	☐ Class B device
Part 15, Subpart B, Section 15.109	Radiated emission, general require	ements Class B device
ANSI C63.4: 2014	Methods of Measurement of Ra Voltage Electrical and Electronic Ed 40 GHz.	
CISPR 16-4-2: 2011 + A1: 2014 EN 55016-4-2: 2011	Uncertainty in EMC measurement	
ISED Canada Rules and Regulations - Inform	nation Technology Equipment (In	cluding Digital Apparatus)
ICES-003, Issue 6, January 19, 2016	AC Power Line Conducted Emission Class A device	ons Class B device
ICES-003, Issue 6, January 19, 2016	Radiated emission Class A device	⊠ Class B device
ANSI C63.4: 2014	Methods of Measurement of Ra Voltage Electrical and Electronic Ed 40 GHz.	

2 SUMMARY

2.1 General remarks

The EUT is a radar device and has no receive only mode and no standby mode. For testing the device is connected with power supply but not configured for transmitting, so no transmit is started.

2.2 Summary for all EMC tests

	Type of test	Test result
Emissi	on:	
A4	Conducted emission (AC mains power / DC power)	passed
A5	Radiated emission (< 1 GHz)	passed
SER 3	Radiated emission (> 1 GHz)	passed

2.3 Final assessment

The equipment under test fulfills the	req	uirements cited in clause 1 to	est stand	dards.	
Date of receipt of test sample	:	acc. to storage records		-	
Testing commenced on	:	04 December 2020		-	
Testing concluded on	:	09 December 2020		-	
Checked by:			Teste	ed by:	
Klaus Gegenfurtner Teamleader Radio				Hermann Smetana Radio Team	

3 EQUIPMENT UNDER TEST

3.1 Information provided by the Client

Please note, we do not take any responsibility for information provided by the client or his representative which may have an influence on the validity of the test results.

3.2 Sampling

The customer is responsible for the choice of sample. Sample configuration, start-up and operation is carried out by the customer or according his/her instructions.

3.3 Photo documentation of the EUT – Detailed photos see ATTACHMENT A

3.4 Power supply system utilised

Power supply voltage : 120 VAC, 60 Hz

Alternative power supply PoE : 55 VDC

All tests were carried out with a supply voltage of 120 V, 60 Hz unless otherwise stated.

3.5 Highest internal frequency

Highest internal frequency : 40 MHz

3.6 Short description of the Equipment under Test (EUT)

The EUT is a radar sensor in the operating band 61.0 GHz to 61.5 GHz. It determines the distance in primary or secondary radar mode.

Number of tested samples:

Serial number:

00002005

3.7 EUT operation mode

The equipment under test was operated during the measurement under the following conditions:

- Not set for TX, PoE power supply
- Not set for TX, power supply

3.8 EUT configuration

(The CDF filled by the applicant can be viewed at the test laboratory.)

The following peripheral devices and interface cables were connected during the measurements:

- Notebook Fujitsu Model: Lifebook, 02-01/01-13-014

- PoE switch, ZYXEL Model: GS1005HP

Power supply PoE, 55 VDC, Topow Model: TPA187-72550-T3

Power supply, 24 VDC Model: XP Power, VER18US240-JA

Port Cable **Screening Transmission Status** Length AC power line unshielded analogue active 3 m 2 LAN shielded digital active 5 m

Modifications during the EMC test: None

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 °C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k=2. The true value is located in the corresponding interval with a probability of 95 % The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 / 2011 + A1 / 2014 "Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, CSA Group Bayern GmbH, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

4.4 Conformity Decision Rule

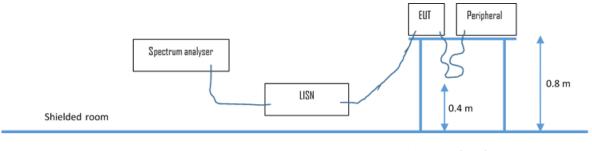
The conformity decision rule is based on the ILAC G8 published at the time of reporting.

4.5 Measurement protocol for FCC and ISED

4.5.1 General information

CSA Group Bayern GmbH is recognized as wireless testing laboratory under the CAB identifier:

FCC: DE 0011 ISED: DE0009


File No. **T46910-00-04HS**, page **7** of **25**

4.5.2 Details of test procedures

4.5.2.1 Conducted emission

Test setup according ANSI C63.4

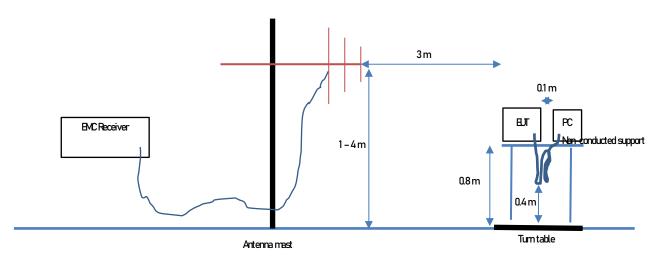
Non-conducted support

Description of measurement

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the Spectrum analyser. This level is compared to the limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

 $dB\mu V = 20(log \mu V)$ $\mu V = log(dB\mu V/20)$


Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with 50 Ω / 50 μ H (CISPR 16) characteristics. The receiver is protected by means of an impedance matched pulse limiter connected directly to the RF input. Table top equipment is placed on a non-conducting table 80 centimetres above the floor and is positioned 40 centimetres from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emission is re-measured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

4.5.2.2 Radiated emission

4.5.2.2.1 OATS1 test site (30 MHz - 1 GHz)

Test setup according ANSI C63.4

Description of measurement

Spurious emission from the EUT is measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 metre non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The setup of the equipment under test is established in accordance with ANSI C63.4. The interface cables that are closer than 40 centimetres to the ground plane are bundled in the centre in a serpentine fashion so that they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the centre of the table and to a screened room located outside the test area.

The antenna is positioned 3 or 10 metres horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 metres, measurement scans are made with both horizontal and vertical antenna polarization planes and the EUT is rotated 360 degrees.

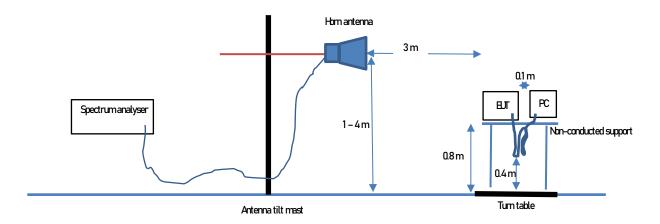
The final level is calculated in a calculation sheet by taking the reading from the EMI receiver (Level $dB\mu V$) and adding the correction factors and cable loss factor (Factor dB) on to it. The limit is subtracted from this result in order to provide the limit margin listed in the measurement protocols.

Example:

Frequency	Reading	+	Correction*	=	Level	-	Limit	=	Dlimit
(MHz)	(dBµV)		(dB/m)		(dBµV/m)		(dBµV/m)		(dB)
719.0	75.0	+	32.6	=	107.6	-	110.0	=	-2.4

^{*}Correction Factor = Antenna Factor + Cable Attenuation = 30 dB/m + 2.6 dB = 32.6 dB/m

The resolution bandwidth during the measurement is as follows:

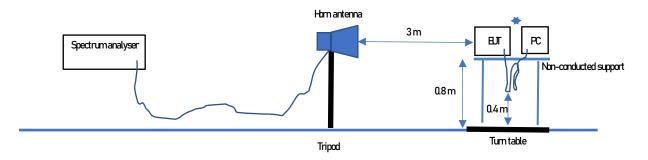

30 MHz – 1000 MHz: RBW: 120 kHz

File No. **T46910-00-04HS**, page **9** of **25**

4.5.2.2.2 Anechoic chamber 1, 1000 MHz - 18000 MHz

Test setup according ANSI C63.4

Description of measurement


Radiated emission from the EUT are measured in the frequency range of 1 GHz to the maximum frequency as specified in 47 CFR Part 15 Subpart A section 15.33, using a tuned receiver (spectrum analyser) and appropriate linearly polarized antennas. Table top equipment is placed on a 0.65 X 1.0 metre non-conducting table 80 centimetres above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12).

The interface cables that are closer than 40 centimetres to the ground plane are bundled in the centre in a serpentine fashion, so they are at least 40 centimetres from the ground plane. Measurements are made in both the horizontal and vertical polarization planes in a fully anechoic room using a spectrum analyser set to a peak detector function and a RBW= 1 MHz and VBW = 3 MHz. All tests are performed at a test distance of 3 metres. Hand-held or bodyworn devices are rotated around three orthogonal axes in order to determine the position, angle and configuration having the maximum emission. The antenna height is then adjusted from 1 m to 4 m maximizing the measured value. The antenna is mounted to a boresight axis, so the antenna centre always points to the EUT. The turntable is rotated 360° until the spectrum analyser displays the maximum level at the observed frequency. The antenna height is then adjusted from 1 m to 4 m maximizing the measured value. The turntable is re-adjusted to re-affirm the maximum emission value which is then recorded. This procedure is repeated for all frequencies of interest.

4.5.2.2.3 Anechoic chamber 1, 18 GHz - 40 GHz

Test setup according ANSI C63.4

Description of measurement

Radiated emission from the EUT are measured in the frequency range of 1 GHz to the maximum frequency as specified in 47 CFR Part 15 Subpart A section 15.33, using a tuned receiver (spectrum analyser) and appropriate linearly polarized antennas. Table top equipment is placed on a 0.65 X 1.0 metre non-conducting table 80 centimetres above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12).

The interface cables that are closer than 40 centimetres to the ground plane are bundled in the centre in a serpentine fashion, so they are at least 40 centimetres from the ground plane. Measurements are made in both the horizontal and vertical polarization planes in a fully anechoic room using a spectrum analyser set to a peak detector function and an RBW= 1 MHz and VBW = 3 MHz. All tests are performed at a test distance of 3 metres. Hand-held or bodyworn devices are rotated around three orthogonal axes in order to determine the position, angle and configuration having the maximum emission. The turntable is rotated 360° until the spectrum analyser displays the maximum level at the observed frequency, the maximum emission value is then recorded. This procedure is repeated for all frequencies of interest.

Where appropriate in frequency range 18 GHz - 40 GHz, the test distance may be reduced to 1 m in order to reduce the noise level to hold a minimum distance between noise level and limit. The limit will be adopted to the measurement distance.

TEST CONDITIONS AND RESULTS

Conducted emission

For test instruments and accessories used see section 6 Part A 4.

Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test setup

5.1.3 **Test result**

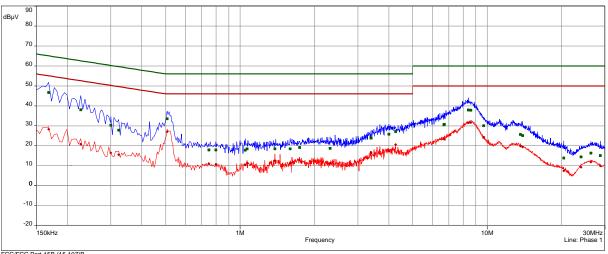
Frequency range: 0.15 MHz - 30 MHz Min. limit margin -18.2 dB at 0.155 MHz

The requirements are **FULFILLED**.

Remarks: For detailed results, please see the following page(s).

For description of the measurement see 4.5.2.

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory



5.1.4 Test protocol

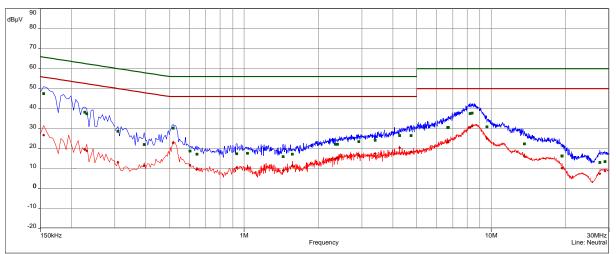
Test point: L1 Result: passed

Operation mode: Not set for TX, power supply Remarks: -

FCC/FCC Part 15B (15.107) B - Average/
FCC/FCC Part 15B (15.107) B - QPeak/
Meas.Peak (Phase 1)
Mes. CISPR AVG (Phase 1)
QuasiPeak (Finals) (Phase 1)
CISPR AV (Finals) (Phase 1)

FCC/FCC Part 15B (15.107)	В
---------------------------	---

freq	SR	QP	margin	limit	AV	margin	limit	line	corr
MHz		dB(μV)	dB	dB	dB(μV)	dB	dB		dB
0.168	1	46.8	-18.3	65.1	28.3	-26.8	55.1	Phase 1	10.1
0.227	1	38.0	-24.6	62.6	20.8	-31.8	52.6	Phase 1	10.1
0.300	2	30.3	-29.9	60.2	16.5	-33.8	50.2	Phase 1	10.1
0.323	2	27.8	-31.9	59.6	15.6	-34.1	49.6	Phase 1	10.1
0.507	2	33.5	-22.5	56.0	27.1	-18.9	46.0	Phase 1	10.2
0.749	3	17.9	-38.1	56.0	10.9	-35.1	46.0	Phase 1	10.2
0.798	3	18.0	-38.1	56.0	10.7	-35.3	46.0	Phase 1	10.2
1.050	3	17.8	-38.2	56.0	10.4	-35.7	46.0	Phase 1	10.2
1.068	3	18.5	-37.5	56.0	11.3	-34.7	46.0	Phase 1	10.2
1.385	4	18.5	-37.5	56.0	12.6	-33.4	46.0	Phase 1	10.3
1.596	4	18.5	-37.5	56.0	11.4	-34.6	46.0	Phase 1	10.3
1.740	4	19.2	-36.8	56.0	12.8	-33.2	46.0	Phase 1	10.3
2.312	4	18.7	-37.3	56.0	11.3	-34.7	46.0	Phase 1	10.3
3.386	5	24.0	-32.0	56.0	16.8	-29.2	46.0	Phase 1	10.4
3.390	5	23.9	-32.1	56.0	16.4	-29.7	46.0	Phase 1	10.4
4.007	5	25.8	-30.2	56.0	17.3	-28.7	46.0	Phase 1	10.4
4.259	5	27.2	-28.8	56.0	20.7	-25.3	46.0	Phase 1	10.4
6.686	6	30.5	-29.5	60.0	23.4	-26.6	50.0	Phase 1	10.6
6.708	6	30.7	-29.3	60.0	23.4	-26.6	50.0	Phase 1	10.6
8.387	6	37.9	-22.1	60.0	31.6	-18.5	50.0	Phase 1	10.7
8.589	6	37.8	-22.2	60.0	31.7	-18.3	50.0	Phase 1	10.7
9.681	7	30.0	-30.0	60.0	24.3	-25.8	50.0	Phase 1	10.7
13.637	7	25.7	-34.3	60.0	19.8	-30.2	50.0	Phase 1	11.1
13.911	7	25.1	-34.9	60.0	19.4	-30.6	50.0	Phase 1	11.1
20.429	8	13.8	-46.2	60.0	7.4	-42.6	50.0	Phase 1	11.5
23.997	8	14.4	-45.6	60.0	9.2	-40.8	50.0	Phase 1	11.6
26.292	8	16.3	-43.7	60.0	11.9	-38.1	50.0	Phase 1	11.7
28.713	8	15.1	-44.9	60.0	9.9	-40.1	50.0	Phase 1	11.7



Test point: N Result: passed

Operation mode: Not set for TX, power supply

Remarks: -

FCC/FCC Part 15B (15.107) B - Average/
FCC/FCC Part 15B (15.107) B - QPeak/
Meas.Peak (Neutral)
Mes. CISPR AVG (Neutral)
QuasiPeak (Finals) (Neutral)
CISPR AV (Finals) (Neutral)

FCC/FCC Part 15B (15.107)B

freq	SR	QP	margin	limit	AV	margin	limit	line	corr
MHz		dB(μV)	dB	dB	dB(μV)	dB	dB		dB
0.155	9	47.5	-18.2	65.8	26.7	-29.1	55.8	Neutral	10.1
0.227	9	38.2	-24.4	62.6	19.5	-33.1	52.6	Neutral	10.1
0.231	9	37.4	-25.1	62.4	18.8	-33.6	52.4	Neutral	10.1
0.309	10	28.5	-31.5	60.0	13.1	-36.9	50.0	Neutral	10.1
0.395	10	21.9	-36.1	58.0	11.4	-36.6	48.0	Neutral	10.2
0.516	10	30.1	-25.9	56.0	22.8	-23.2	46.0	Neutral	10.2
0.605	11	18.7	-37.3	56.0	11.6	-34.4	46.0	Neutral	10.2
0.645	11	17.1	-38.9	56.0	9.6	-36.4	46.0	Neutral	10.2
0.933	11	17.3	-38.7	56.0	10.4	-35.7	46.0	Neutral	10.2
1.032	11	17.6	-38.4	56.0	10.1	-35.9	46.0	Neutral	10.2
1.439	12	15.9	-40.1	56.0	8.9	-37.1	46.0	Neutral	10.3
1.569	12	17.2	-38.8	56.0	11.4	-34.7	46.0	Neutral	10.3
2.348	12	22.1	-34.0	56.0	14.9	-31.1	46.0	Neutral	10.3
2.388	12	22.0	-34.0	56.0	15.2	-30.8	46.0	Neutral	10.3
2.913	13	23.4	-32.6	56.0	16.4	-29.6	46.0	Neutral	10.3
3.390	13	24.2	-31.9	56.0	17.5	-28.5	46.0	Neutral	10.4
4.259	13	26.5	-29.5	56.0	20.3	-25.7	46.0	Neutral	10.4
4.740	13	26.5	-29.5	56.0	18.2	-27.8	46.0	Neutral	10.4
6.668	14	30.5	-29.5	60.0	23.1	-26.9	50.0	Neutral	10.6
6.708	14	30.5	-29.5	60.0	23.2	-26.8	50.0	Neutral	10.6
8.220	14	37.5	-22.5	60.0	30.5	-19.5	50.0	Neutral	10.6
8.378	14	37.7	-22.3	60.0	31.2	-18.8	50.0	Neutral	10.6
9.614	15	30.9	-29.1	60.0	24.9	-25.1	50.0	Neutral	10.7
13.646	15	22.3	-37.8	60.0	16.1	-34.0	50.0	Neutral	10.9
19.358	16	16.3	-43.7	60.0	10.2	-39.8	50.0	Neutral	11.2
19.362	16	16.2	-43.8	60.0	10.2	-39.8	50.0	Neutral	11.2
27.539	16	12.9	-47.1	60.0	7.3	-42.7	50.0	Neutral	11.2
28.902	16	13.4	-46.6	60.0	8.7	-41.3	50.0	Neutral	11.1

5.2 Radiated emission < 1 GHz (electric field)

For test instruments and accessories used see section 6 Part A 5.

5.2.1 Description of the test location

Test location: OATS 1
Test distance: 3 m

5.2.2 Photo documentation of the test setup

PoE power supply:

Power supply:

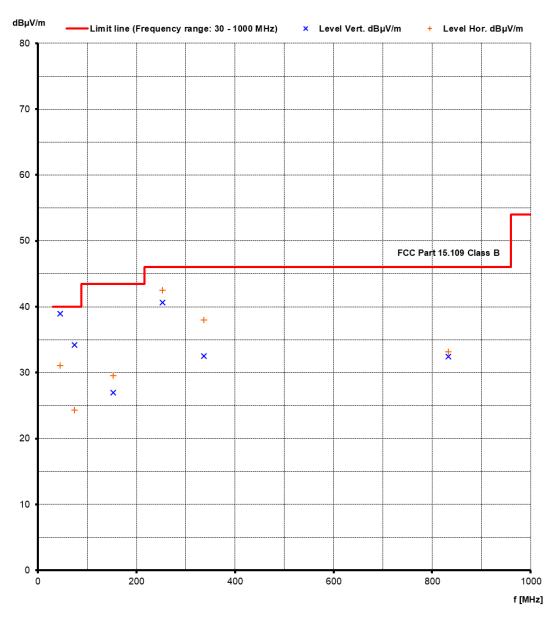
5.2.3 Test result

Frequency range: 30 MHz - 1000 MHz Min. limit margin -1.1 dB at 44.6 MHz

The requirements are **FULFILLED**.

Remarks: For detailed results, please see the following page(s).

For description of the measurement see 4.5.2.

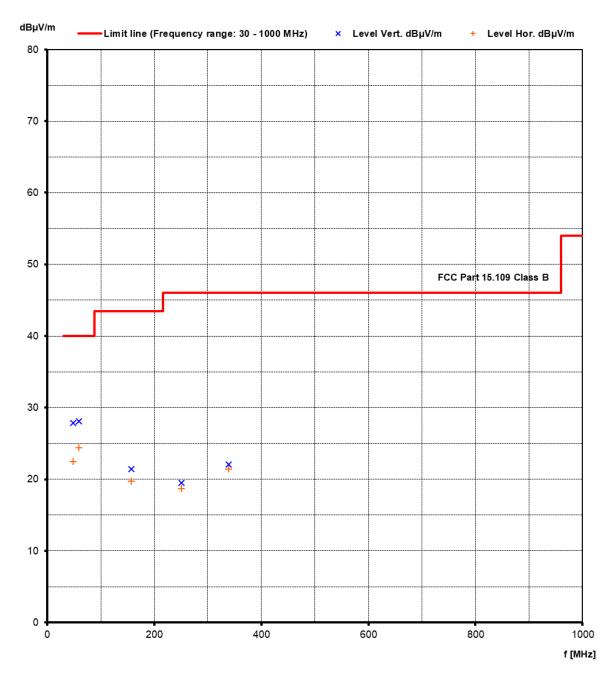

5.2.4 Test protocol

Operation mode: Not set for TX, PoE power supply Result: passed

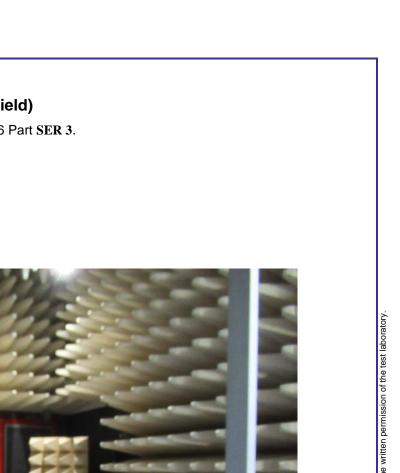
Remarks: -

Tested by: Hermann Smetana

Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
44.60	24.1	15.6	14.8	15.4	38.9	31.0	40.0	-1.1
74.50	21.8	11.6	12.4	12.7	34.2	24.3	40.0	-5.8
152.60	10.2	13.4	16.8	16.1	27.0	29.5	43.5	-14.0
252.60	24.9	26.7	15.8	15.8	40.7	42.5	46.0	-3.5
336.60	14.2	19.4	18.3	18.6	32.5	38.0	46.0	-8.0
832.60	3.7	4.1	28.7	29.1	32.4	33.2	46.0	-12.8



Operation mode: Not set for TX, power supply


Remarks: -

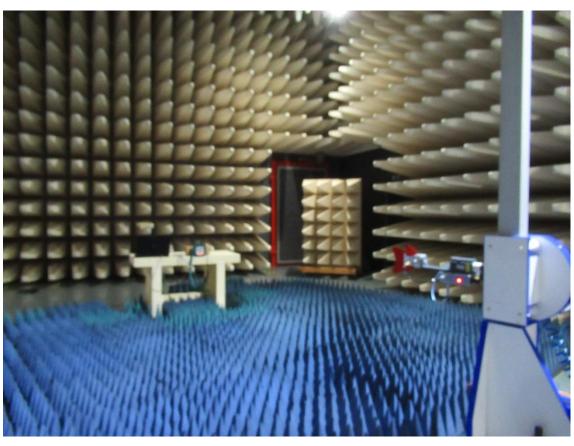
Tested by: Hermann Smetana

Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
48.40	13.3	6.8	14.5	15.6	27.8	22.4	40.0	-12.2
59.00	13.9	9.2	14.2	15.2	28.1	24.4	40.0	-11.9
156.50	4.5	3.4	16.9	16.3	21.4	19.7	43.5	-22.1
251.00	3.8	3.0	15.7	15.7	19.5	18.7	46.0	-26.5
339.00	3.7	2.7	18.4	18.7	22.1	21.4	46.0	-23.9

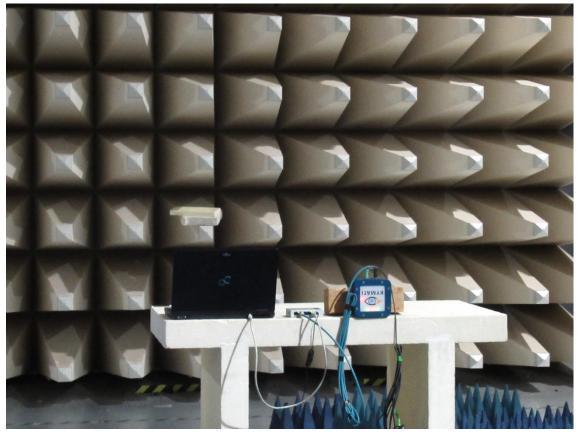
Result: passed

5.3 Radiated emission > 1 GHz (electric field)

For test instruments and accessories used see section 6 Part SER 3.

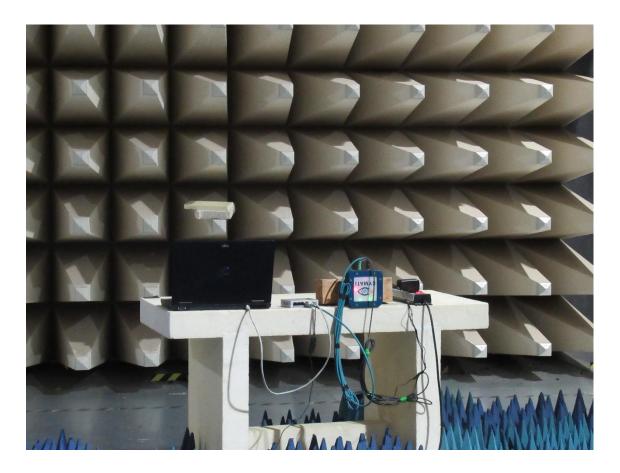

5.3.1 Description of the test location

Test location: Anechoic chamber 1


Test distance: 3 m

5.3.2 Photo documentation of the test setup

PoE



Power supply

5.3.3 Test result

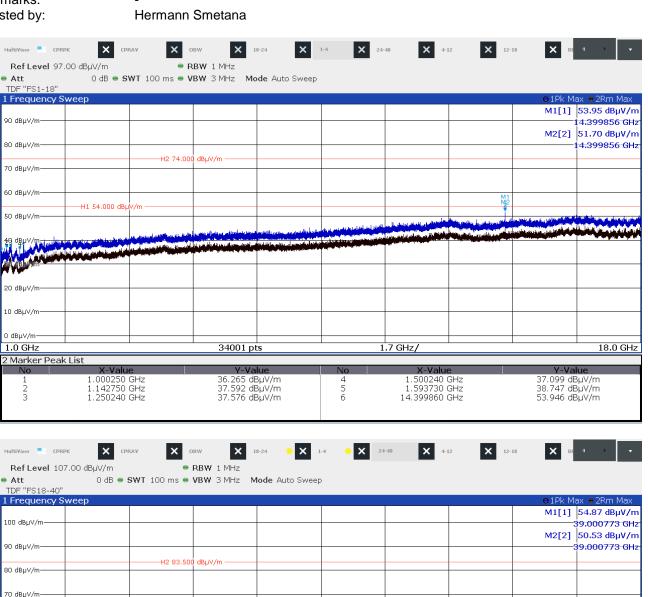
Frequency range: 1 - 40 GHz

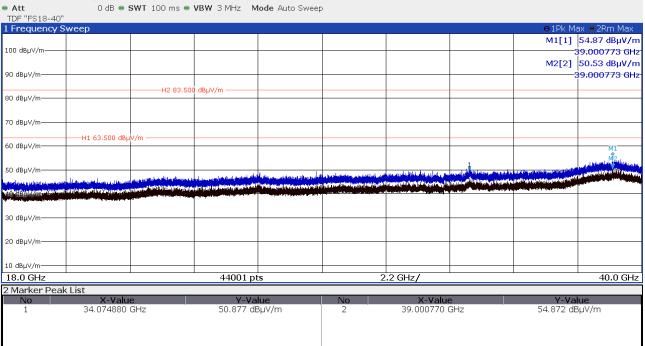
Min. limit margin, PoE -2.3 dB at 14.399 GHz
Min. limit margin, power supply -1.7 dB at 14.399 GHz

The requirements are **FULFILLED**.

Remarks: For detailed results, please see the following page(s).

For description of the measurement see 4.5.2.

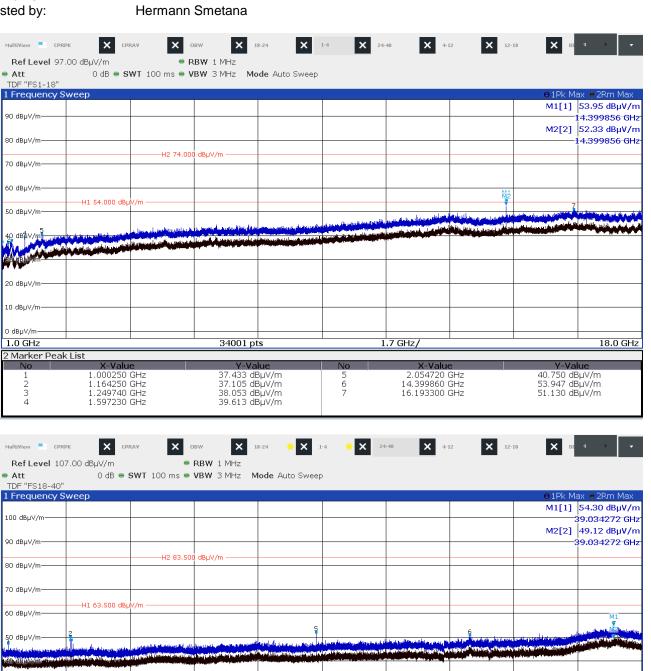



5.3.4 Test protocol

Operation mode: Not set for TX, PoE power supply Result: passed

Remarks:

Tested by:



Operation mode: Not set for TX, power supply Result: passed

Remarks:

Tested by:

30 dBµV/m 20 dBµV/m

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

Test ID A 4	Model Type BAT-EMC 3.19.1.24 ESCI ESH 2 - Z 5 N-4000-BNC N-1500-N	Kind of Equipment Nexio Software EMI Test Receiver LISN RF Cable RF Cable	Manufacturer EMCO Elektronik GmbH Rohde & Schwarz Münch Rohde & Schwarz Münch CSA Group Bayern GmbH CSA Group Bayern GmbH	Equipment No. 01-02/68-13-001 02-02/03-15-001 02-02/20-05-004 02-02/50-05-138 02-02/50-05-140	Next Calib. 24/06/2021 31/10/2021	Last Calib. 24/06/2020 31/10/2019	Next Verif. 05/05/2021	Last Verif. 05/11/2020
	ESH 3 - Z 2 6430 KMS116-GL140SE-KMS	Pulse Limiter Programmable AC Sourc Cable DC-40GHz	Rohde & Schwarz Münch Power Control Electronic GigaLane Co., Ltd.	02-02/50-05-155 02-02/50-13-014 02-02/50-20-026	13/11/2022	13/11/2019	10/05/2021	10/11/2020
A 5	ESVS 30 VULB 9168 NW-2000-NB KK-EF393/U-16N-21N20 m KK-SD_7/8-2X21N-33,0M KMS116-GL140SE-KMS	EMI Test Receiver Trilog Broadband Antenn RF Cable RF Cable 20m RF Cable 33 m Cable DC-40GHz	Rohde & Schwarz Münch Schwarzbeck Mess-Elekt Huber + Suhner Huber + Suhner Huber + Suhner AG GigaLane Co., Ltd.	02-02/03-05-006 02-02/24-05-005 02-02/50-05-113 02-02/50-12-018 02-02/50-15-028 02-02/50-20-026	15/07/2021 19/09/2020	15/07/2020 19/07/2019		
SER 3	FSW43 AMF-6D-01002000-22-10P LNA-40-18004000-33-5P	Amplifier 18-40 GHz	Rohde & Schwarz Müncher MITEQ, Inc. MITEQ, Inc.	02-02/17-15-004 02-02/17-20-002	02/04/2021	02/04/2020		
	3117 BBHA 9170 18N-20 BAM 4.5-P NCD KMS116-GL140SE-KMS BAT-EMC 3.19.1.24	Horn Antenna 1 - 18 GH SHF-EHF Horn Antenna Coax Attenuator 20dB Antenna Mast Controller for Antenna M Cable DC-40GHz Nexio Software	EMCO Elektronik GmbH Schwarzbeck Mess-Elekt Tactron Elektronik maturo GmbH maturo GmbH GigaLane Co., Ltd. EMCO Elektronik GmbH	02-02/24-05-009 02-02/24-05-013 02-02/50-17-003 02-02/50-17-024 02-02/50-17-025 02-02/50-20-026 02-02/68-13-001	18/06/2021 19/05/2023	18/06/2020 19/05/2020	14/01/2021	14/01/2020

permined to copy extracts of these test results without the withert permission of the test laborat

7 <u>Detailed measurement uncertainty</u>

7.1 Overview

Measurement instrumentation uncertainty shall be taken into account when determining compliance or non-compliance with a disturbance limit.

The measurement instrumentation uncertainty for a test laboratory shall be evaluated. The standard uncertainty u(xi) in decibels and the sensitivity coefficient ci shall be evaluated for the estimate xi of each quantity. The combined standard uncertainty uc(y) of the estimate y of the measurand shall be calculated as

$$u_{\rm c}(y) = \sqrt{\sum_i c_i^2 \ u^2(x_i)}$$

The expanded measurement instrumentation uncertainty U_{lab} for a test laboratory shall be calculated as $U_{lab} = 2 u_{c}(y)$

$$U_{\text{lab}} = 2 u_{\text{c}}(y)$$

Compliance or non-compliance with a disturbance limit shall be determined in the following manner:

If *U*lab is less than or equal to *U*cispr in the table below, then:

- compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If *U*lab is greater than *U*cispr in the table below, then:

- compliance is deemed to occur if no measured disturbance, increased by (Ulab Ucispr), exceeds the disturbance limit.
- non-compliance is deemed to occur if any measured disturbance, increased by (Ulab Ucispr), exceeds the
 disturbance limit.

7.2 Definitions and symbols

Xi Input quantity xi estimate of Xi

u(xi) standard uncertainty of xici sensitivity coefficient

uc(y) (combined) standard uncertainty of y

Y result of a measurement, (the estimate of the measured), corrected for all recognised significant systematic effects

expanded uncertainty of y

7.3 Measurement uncertainty

Measure	ment	U _{lab} [dB]					
Conducte	d disturbance	+ 2.53 / - 2.77					
Radiated of	disturbance (electric field)						
- 10	m test distance	+ 3.16 / - 3.22					
- 3 r	n test distance	+ 3.16 / - 3.22					
- Fre	equency range: 30 MHz – 200 MHz						
Radiated of	disturbance (electric field)						
- 10	m test distance	+ 4.51 / - 4.51					
- 3 r	n test distance	+ 4.51 / - 4.51					
- Fre	equency range: 200 MHz – 1000 MHz						
Radiated of	Radiated disturbance (electric field)						
- 3 r	n test distance	+ 5.07 / -3.70					
- Fre	equency range: 1 GHz – 30 GHz						

File No. **T46910-00-04HS**, page **25** of **25**