Section 9. Radio Frequency Exposure

Name of Test:	Radio Frequency Exposure	Test Standard:	FCC OET Bulletin 65
Tested By:	WEI LI	Test Date:	08/24-10/16/2020

Minimum Standard:	Public Exposure to Radio Frequency Energ Limits:	gy Levels (1.1307 (b)(1))		
	From §1.1310 Table 1 (B), for Public S = 1.0 mW/cm^2 for Professional, S = 5.0 mW/cm^2			
Method of Measurement:	$d = 0.282 * 10 \land ((P + G) / 20) / \sqrt{S}$ $S = 0.0795 * 10 \land ((P + G)/10) / d^{2}$ where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power \text{ Density Limit in } mW/cm^{2}$	Equation (1) Equation (2)		
	Equation (1) and the measured peak power is used to calculate the MPE distance.			

Equation (2) and the measured peak power is used to calculate the Power density.

Test Result:

Complies

Test Data:

Calculation

CALCULATIONS

```
Given
      E = \sqrt{(30 * P * G)} / d
and
       S = E^{2}/3770
where
      E = Field Strength in Volts/meter
      P = Power in Watts
      G = Numeric
       antenna gain
      d = Distance in
       meters
       S = Power Density in milliwatts/square centimeter
```

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using: P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)vields $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$ where d = distance in cm

P = Power in mWG = Numeric antenna gain $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using: $P(mW) = 10 \wedge (P(dBm) /$ 10) and

G (numeric) = 10 ^ (G (dBi) / 10)

yields

 $d = 0.282 * 10 \wedge ((P + G) / 20) / \sqrt{S}$ Equation (1) $S = 0.0795 * 10^{(P+G)/10)} d^2$ Equation (2) where d = MPE distance in cm P = Power in dBmG = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance. Equation (2) and the measured peak power is used to calculate the Power density.

APPLICABLE LIMITS for separation >= 20cm

FCC: From §1.1310 Table 1 (B), for Public S = 1.0 mW/cm² ; for Professional, S = 5.0 mW/cm²

RESULTS

No non-compliance noted:

For FCC, the worst case for this EUT, P+G=23.30+1.2=24.50dBm, and d=20cm

Plug all three items into equation (2), yielding,

Power Density Limit (mV/cm ²)	Output Power (dBm)	Antenna] Gain (dBi)	Power Density (mW/ cm ²)	Meet min. PD Limit
1.0/5.0	23.30	1.2	0.0564	Yes

Therefore, all of results are below the FCC limit.

NOTE: For mobile or fixed location transmitters, the minimum separation distance between the antenna & radiating structures of the device and nearby persons is 20 cm, even if calculations indicate that the MPE distance would be less.