Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.9	$5.42 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.6 \pm 6 \%$	$5.60 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL at 5300 MHz

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.36 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 3 . 3} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(k=2)$

SAR averaged over $10 \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ g)}$ of Body TSL	condition	
SAR measured	100 mW input power	$2.06 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 0 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%$ (k=2)

Body TSL parameters at 5500 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.6	$5.65 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.2 \pm 6 \%$	$5.87 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Body TSL at 5500 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.86 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 8 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%$ (k=2)

SAR averaged over $\left.10 \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	100 mW input power	$2.17 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \% \mathbf{(k = 2)}$

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.5	$5.77 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.0 \pm 6 \%$	$6.01 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots-$	$\ldots-$

SAR result with Body TSL at 5600 MHz

SAR averaged over $\mathbf{1 \mathrm { cm } ^ { \mathbf { 3 } } \mathbf { 1 } \mathbf { ~ g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.72 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 6 . 8} \mathbf{W} / \mathbf{k g} \pm 19.9 \%(\mathbf{k}=2)$

SAR averaged over $10 \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g) ~ o f ~ B o d y ~ T S L ~}$	condition	
SAR measured	100 mW input power	$2.15 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%$ (k=2)

Body TSL parameters at 5750 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.3	$5.94 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.8 \pm 6 \%$	$6.22 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL at 5750 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.61 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 5 . 7} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Body TSL	condition	
SAR measured	100 mW input power	$2.11 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.2	$6.00 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.7 \pm 6 \%$	$6.29 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Body TSL at 5800 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.42 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 3 . 9 \mathrm { W } / \mathrm { kg } \pm 1 9 . 9 \% (\mathbf { k } = \mathbf { 2 })}$

SAR averaged over $\left.10 \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	100 mW input power	$2.04 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 0 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$48.8 \Omega-6.5 \mathrm{j} \Omega$
Return Loss	-23.6 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$48.0 \Omega-4.6 \mathrm{j} \Omega$
Return Loss	-25.7 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$47.2 \Omega-3.5 \mathrm{j} \Omega$
Return Loss	-26.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$49.8 \Omega-3.6 j \Omega$
Return Loss	-28.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$54.4 \Omega+0.4 \mathrm{j} \Omega$
Return Loss	-27.5 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$52.1 \Omega-1.3 \mathrm{j} \Omega$
Return Loss	-32.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$51.2 \Omega-3.1 \mathrm{j} \Omega$
Return Loss	-29.6 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	$48.4 \Omega-5.5 \mathrm{j} \Omega$
Return Loss	-24.6 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	$47.2 \Omega-3.2 \mathrm{j} \Omega$
Return Loss	-27.1 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	$47.0 \Omega-2.0 \mathrm{j} \Omega$
Return Loss	-28.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	$50.6 \Omega-2.4 \mathrm{j} \Omega$
Return Loss	-32.3 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$54.5 \Omega+0.4 \mathrm{j} \Omega$
Return Loss	-27.3 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	$52.5 \Omega-0.8 \mathrm{j} \Omega$
Return Loss	-32.0 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$52.1 \Omega-2.4 \mathrm{j} \Omega$
Return Loss	-30.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5300
MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.47 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.52 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.57 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=4.77 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.88 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.03 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.09 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.8, $5.8,5.8) @ 5200 \mathrm{MHz}, \operatorname{ConvF}(5.5,5.5,5.5) @ 5250 \mathrm{MHz}$, ConvF($5.49,5.49,5.49$) @ $5300 \mathrm{MHz}, \operatorname{ConvF}(5.25,5.25,5.25) @ 5500 \mathrm{MHz}, \operatorname{ConvF}(5.1,5.1,5.1)$ @ $5600 \mathrm{MHz}, \operatorname{ConvF}(5.08,5.08,5.08) @ 5750 \mathrm{MHz}, \operatorname{ConvF}(5.01,5.01,5.01) @ 5800 \mathrm{MHz}$; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, d z=1.4 \mathrm{~mm}$
Reference Value $=77.61 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.94 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.26 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=68.7 \%$
Maximum value of SAR (measured) $=18.2 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5250 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=79.07 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.08 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.30 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=69.5 \%$
Maximum value of SAR (measured) $=18.4 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, $\mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube $0:$ Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=78.56 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.22 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 3} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=68.3 \%$
Maximum value of SAR $($ measured $)=19.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, $\mathrm{f}=\mathbf{5 5 0 0} \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=78.44 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.66 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.42 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65.9 \%$
Maximum value of SAR $($ measured $)=20.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=78.89 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.37 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.37 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.8 \%$
Maximum value of SAR (measured) $=20.2 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist=10mm, $\mathrm{f}=5750 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=75.69 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.09 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.29 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65 \%$
Maximum value of SAR $($ measured $)=19.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=75.77 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.16 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.28 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=64.8 \%$
Maximum value of SAR $($ measured $)=20.1 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz)

Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz)

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060
Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5300 MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=5.46 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=5.53 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=5.6 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=5.87 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=6.01 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=6.22 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=6.29 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz , ConvF(5.26, 5.26, 5.26) @ 5250 $\mathrm{MHz}, \operatorname{ConvF}(5.23,5.23,5.23) @ 5300 \mathrm{MHz}, \operatorname{ConvF}(4.84,4.84,4.84) @ 5500 \mathrm{MHz}, \mathrm{ConvF}(4.79$, $4.79,4.79) @ 5600 \mathrm{MHz}, \operatorname{ConvF}(4.66,4.66,4.66)$ @ $5750 \mathrm{MHz}, \operatorname{ConvF}(4.62,4.62,4.62)$ @ 5800 MHz ; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$ Reference Value $=67.58 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$ Peak SAR $($ extrapolated $)=27.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 3} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.04 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67.4 \%$
Maximum value of SAR (measured) $=17.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=67.59 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 4 5} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.09 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=6.9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.5 \%$
Maximum value of SAR $($ measured $)=17.4 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=67.12 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.36 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.06 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.1 \%$
Maximum value of SAR (measured) $=17.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, $\mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 x 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.41 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 8 6} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.17 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=64.2 \%$
Maximum value of SAR $($ measured $)=19.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, $\mathrm{dist}=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, d z=1.4 \mathrm{~mm}$
Reference Value $=67.25 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.72 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.15 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=63.4 \%$
Maximum value of SAR (measured) $=18.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$ Reference Value $=65.67 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=34.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 6 1} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.11 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=62 \%$
Maximum value of SAR $($ measured $)=18.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} / \mathrm{Zoom}$ Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.55 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 4 2} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.04 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=62.5 \%$
Maximum value of SAR (measured) $=18.2 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500 MHz)

Impedance Measurement Plot for Body TSL (5600, $5750,5800 \mathrm{MHz})$

ANNEX I Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

 1/,
 Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0
Telecommunication Technology Labs, CAICT
Beijing
China
is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for

Electromagnetic Compatibility \& Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

