

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 1 of 34

FCC Test Report

Applicant : Shenzhen Moldull Acoustic Technology Co.,Ltd.

403 Huiyi Wealth Center No.9, Zhongxin

Address : Road, Dalang, Longhua New Area, Shenzhen

City, Guangdong Province, China

Product Name : Smart Sport Watch

Report Date : Apr. 19, 2024

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited



Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 2 of 34

Contents

1. General Information	And wek above And whitek
1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes	
2. Antenna requirement	1 And Andrews Andrews Andrews (1
2.1. Conclusion	1
3. Conducted Emission at AC power line	1: hor him his horse
3.1. EUT Operation	
4. Occupied Bandwidth	And and Andrew Andrew 11
4.1. EUT Operation	
5. Maximum Conducted Output Power	anboter Anbo Anbo 1
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	
6. Power Spectral Density	Arbore Arib 1
5.2. Test Setup 5.3. Test Data 6. Power Spectral Density 6.1. EUT Operation 6.2. Test Setup 6.3. Test Data 7. Emissions in non-restricted frequency bands	
7. Emissions in non-restricted frequency bands	hotek Anbore 1
7.1. EUT Operation	Andrew Andrew Andrew Andrew Andrew Andrew Andrew
7.3. Test Data	stek Anborek Anbo sk hotek Aži
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	
9. Emissions in frequency bands (below 1GHz)	nborek Anbor 2
9.1. EUT Operation	

Report No.: 18220WC40047502	FCC ID:	2AXPW-N	MC009	Page 3	3 of 34
10. Emissions in frequency bands (above 1GH	lz)	Aupore,	Pur Pur	k VVpo,	29
10.1. EUT Operation	k , , , , , o, ,	ek Pupe	D., D.,	nek no	⁵⁰ ¹⁸ 29
18°0 - 18°'.	b1		boter And		30
10.3. Test Data	otek <u>an</u>	00, P		oboter.	31
APPENDIX I TEST SETUP PHOTOGRAPH	stel ^k	Anbotek	Aupo	hotek	
APPENDIX II EXTERNAL PHOTOGRAPH	'upo	otek.	anbore	VIII	34
APPENDIX III INTERNAL PHOTOGRAPH	poise	Anbo	otek	VUPOL	34

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 4 of 34

TEST REPORT

Applicant : Shenzhen Moldull Acoustic Technology Co.,Ltd.

Manufacturer : Shenzhen Moldull Acoustic Technology Co.,Ltd.

Product Name : Smart Sport Watch

Test Model No. : MC009

Reference Model No. : Y66, Y66A, Y66B, Y66C, Y66D, Y66E

Trade Mark : N/A

Rating(s) : Input: 5V == 200mA (with DC 3.7V, 300mAh battery inside)

47 CFR Part 15.247

Test Standard(s) : KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Mar. 19, 2024
Anbotek Anbotek Anbot All abotek	Anbotek Anbotek Anbotek Anbot
Date of Test:	Mar. 20, 2024 to Apr. 03, 2024
Anbotek Anbotek Anbotek Anbotek Anbote	Ella Liang
Prepared By:	otek Anborek Anbo
	(Ella Liang)
	Idward pan
Approved & Authorized Signer:	And Ando Ando
W. Yek Upoles Vup	(Edward Pan)

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 5 of 34

Revision History

Report Version		Description	Issued Date		
	Anbore R00 potek Ant	Original Issue.	Apr. 19, 2024		
3	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Ant		
/0	or Anbotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter		

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 6 of 34

1. General Information

1.1. Client Information

~ //	Villa Color Villa
Applicant	: Shenzhen Moldull Acoustic Technology Co.,Ltd.
Address	403 Huiyi Wealth Center No.9, Zhongxin Road, Dalang, Longhua New Are Shenzhen City, Guangdong Province, China
Manufacturer	: Shenzhen Moldull Acoustic Technology Co.,Ltd.
Address	403 Huiyi Wealth Center No.9, Zhongxin Road, Dalang, Longhua New Are Shenzhen City, Guangdong Province, China
Factory	: Shenzhen Moldull Acoustic Technology Co.,Ltd.
Address	403 Huiyi Wealth Center No.9, Zhongxin Road, Dalang, Longhua New Are Shenzhen City, Guangdong Province, China

1.2. Description of Device (EUT)

211		- VI
Product Name		Smart Sport Watch
Test Model No.	:	MC009
Reference Model No.	:	Y66, Y66A, Y66B, Y66C, Y66D, Y66E (Note: All samples are the same except the model number, so we prepare "MC009" for test only.)
Trade Mark	:	N/A Anbore Anborek Anborek Anborek Anborek Anborek
Test Power Supply	:	AC 120V/60Hz for Adapter; DC 3.7V Battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A stek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency		2402MHz to 2480MHz
Number of Channel	:	40 Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type	:	GFSK Andrew Andrew Andrew Andrew
Antenna Type		FPC antenna
Antenna Gain(Peak)	:	-1.72dBi Anborek Anborek Anborek Anborek

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 7 of 34

1.3. Auxiliary Equipment Used During Test

Title Manufacturer		Model No.	Serial No.	
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J	

1.4. Operation channel list

Operation Band:

Operation L	Janu.	1. Va.	01 AII		Ter Up		40
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Aupoton	2402	10 ^k	2422	20	2442	And 30 tek	2462
AUAoisk	2404	1,50tek	2424	21	2444	31	2464
2.nbote	2406	12 nbote	2426	22	2446	32	2466
ek 3 Anbc	2408	otek 13 Ant	2428	23	2448	33	2468
botek 4 A	2410	, e14	2430	24	2450	34	2470
nbot5	2412	15	2432	25	2452	35	2472
16 tek	2414	16	2434	26	2454	36	2474
7,botek	2416	17 bote	2436	27	2456	37	2476
k 8 anbo	2418	18	2438	28	2458	38 Anbc	2478
otek 9 Ar	2420	19	2440	29	2460	o ^{rtel*} 39	2480

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anborek TM1Anbo otek	Keep the EUT works in continuously transmitting mode (BLE 1M)
ek Anbore TM2 Anborrek	Keep the EUT works in continuously transmitting mode (BLE 2M)

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 8 of 34

1.6. Measurement Uncertainty

Parameter	Uncertainty		
Conducted emissions (AMN 150kHz~30MHz)	3.4dB		
Occupied Bandwidth	925Hz		
Conducted Output Power	0.76dB		
Power Spectral Density	0.76dB		
Conducted Spurious Emission	1.24dB		
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB		
Radiated emissions (Below 30MHz)	3.53dB And Andrew Andrew Andrew		
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB		

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status	
Antenna requirement	tek upylek Aupo	PATT	
Conducted Emission at AC power line	Mode1,2	bos P	
Occupied Bandwidth	Mode1,2	Anbor P. ek	
Maximum Conducted Output Power	Mode1,2	AND TEN	
Power Spectral Density	Mode1,2	Photo	
Emissions in non-restricted frequency bands	Mode1,2	P Anb	
Band edge emissions (Radiated)	Mode1,2	P	
Emissions in frequency bands (below 1GHz)	Mode1,2	Anbore P	
Emissions in frequency bands (above 1GHz)	Mode1,2	Anhore.	
Note: P: Pass N: N/A, not applicable	Anbotek Anbotek	Anbore Anbore	

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 9 of 34

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 10 of 34

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3 _{of}	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alooiek	Anborotek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density
Emissions in non-restrict

Emissions in non-restricted frequency bands

Emis	sions in non-restricte	a trequency bands	, rek	700,0	- K	~018r
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 _{An} l	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
An4ore	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-10-12	2024-10-11
5nb	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 11 of 34

	edge emissions (Ra sions in frequency ba		Aupotek	Anborek	Aupotek	Anborek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 0.0	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbole 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anbotek	Aupolek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
*e ¹ 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emissions in frequency bands (below 1GHz)									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date			
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22			
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16			
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22			
Antotel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11			
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	y Aupon	k Anbotek			

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 12 of 34

2. Antenna requirement

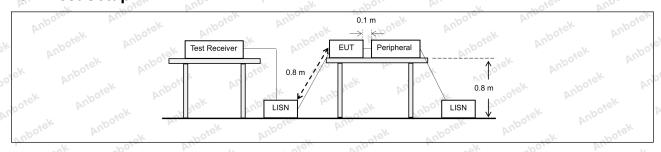
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a FPC antenna which permanently attached, and the best case gain of the antenna is - 1.72dBi. It complies with the standard requirement.

FCC ID: 2AXPW-MC009 Report No.: 18220WC40047502 Page 13 of 34

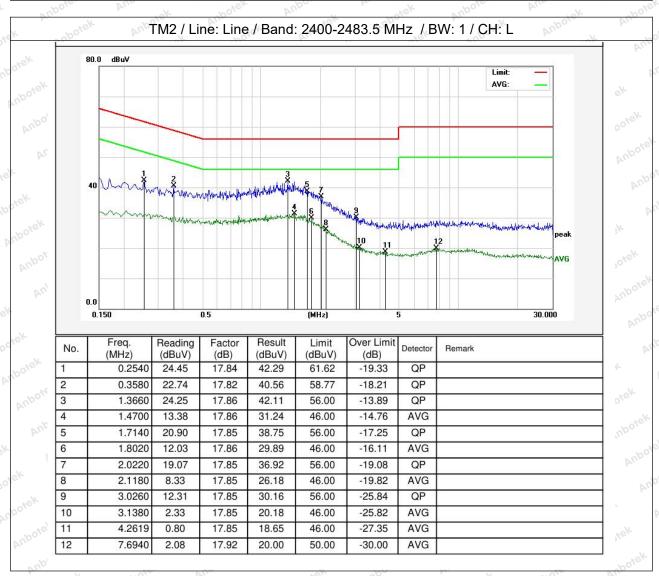

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the result back onto the AC power line on are band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage tha ny frequency or frequencie t exceed the limits in the f	nnected to the at is conducted es, within the following table, as				
shotek Anbore	Frequency of emission (MHz)	Conducted limit (dBµV)					
Ans sek abotek	Anbore Anbore	Quasi-peak	Average				
Anbore Arr.	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5 tek nbote Am	56 Borel An	46				
Ant both	5-30 And State of Sta	60	50 reh				
k Wuporg Wu.	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2020 section 6.2	Projek Auporen	Ans				
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un						

3.1. EUT Operation

Operating Envir	onment:	Aupo,	γ _γ • γ _γ	otek	Aupole	AUR	rick	Anboiek	Anbo.
Vupo stek		de(BLE 1M): Keep th	e EUT w	orks in o	continuou	sly trans	mitting mo	de (BLE
Test mode:	1M) 2: TX mod	de(BLE 2M): Keep th	e EUT w	orks in o	continuou	sly trans	mittina ma	de (BLE
Motek Anbore	2M)	hotek	Inbote	AUD.	*ek	anbotek	Aupo		hotek

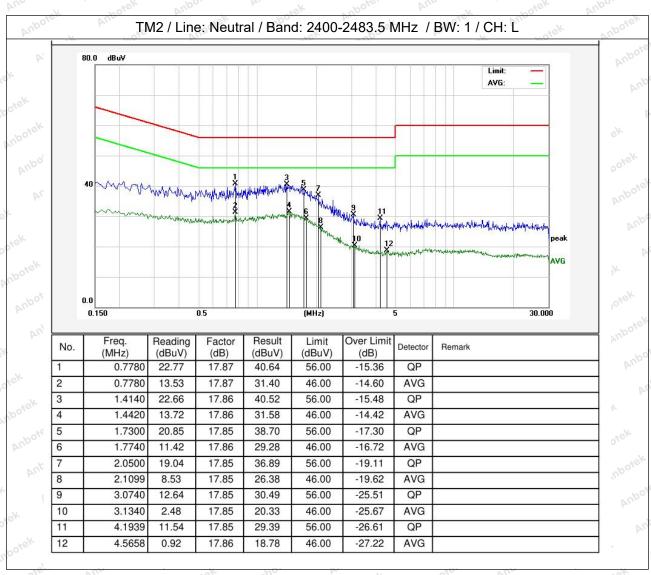
3.2. Test Setup


Hotline

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 14 of 34

3.3. Test Data

Temperature: 22.2	°C Humid	ity: 56 %	Atmospheric Pressure:	101 kPa
-------------------	----------	-----------	-----------------------	---------

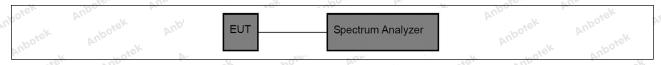


Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 15 of 34

Temperature: 22.2 °C Humidity: 56 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 16 of 34


4. Occupied Bandwidth

47 CFR 15.247(a)(2)
Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be
employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the

4.1. EUT Operation

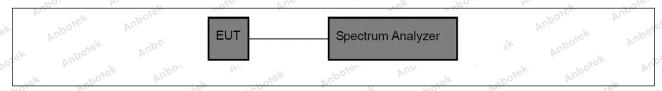
Operating Envi	ironment: Anbore	And	Anbote	Anb.	· ek	aboiek	Aupore	\.
Test mode:	1: TX mode(BL 1M) 2: TX mode(BL	otek Anbo			abotek	Aupo	V	
Anboren	2M)	inbotek Ar	.ok	hotek	Anboile	ARTON	g mede (~upot

4.2. Test Setup

4.3. Test Data

Temperature: 25	25.3°C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
-----------------	--------	-----------	------	-----------------------	---------

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 17 of 34


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

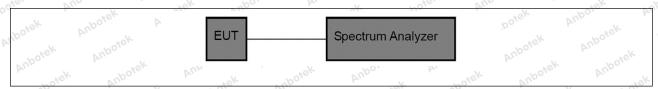
Operating Envi	ronment:	Ar. abotek	Anbote	Aug	Anbotek	Aupo,	
Test mode:	1M)	Anbo	- NO	works in cont	bru.	ek anbo	ien. Vi

5.2. Test Setup

5.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 18 of 34


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

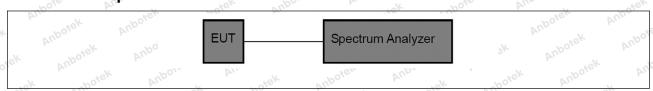
Operating Envir	onment:	hotek	Anboten	Anba	Yek.	anbotek	Aupo.	V. Vie	hoiek
Test mode:	1: TX mod 1M) 2: TX mod	Anboro	bu.				-V-	botek	Anbord
Anbo	2M)	ie(DLE Zi	ivi). Keep t	potek	MOLKS III	Continuot	isiy ilalisi	mitting mod	TE (DLE)

6.2. Test Setup

6.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
36.	-/-	NO.	Par.	760.	1.

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 19 of 34


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit: Anborek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Envir	onment:	hotek	Anbore	Ans	anborek	Vupo,	r 200
Test mode:	1: TX mode(E 1M) 2: TX mode(E 2M)	Anbo	. W. w0		by.	*ek abo	otek, bi

7.2. Test Setup

7.3. Test Data

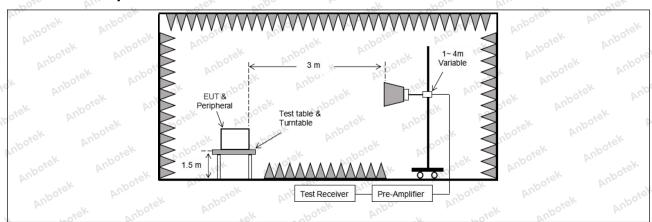
		100.0			
T	25 2 00 100	I la consistita a se	10 0/ 2007	Atual and and Duane water	404 l-D-
Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 20 of 34

8. Band edge emissions (Radiated)

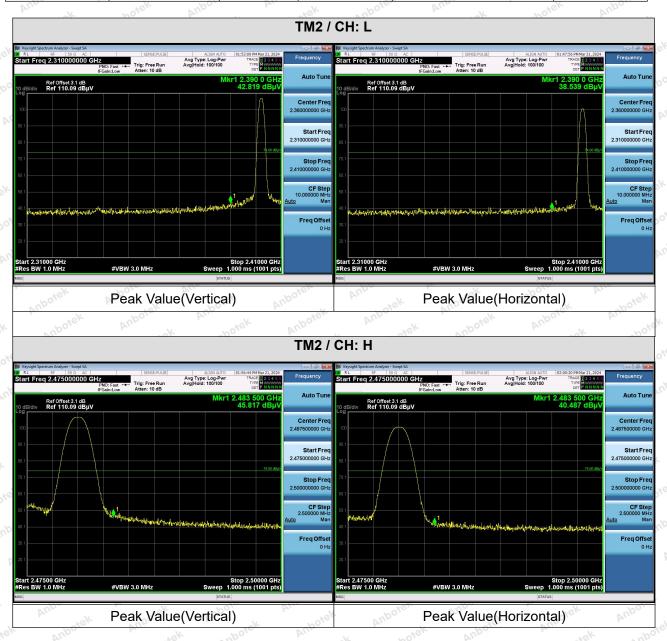
OD K	701 Al.	YOU UP	-k 601
Test Requirement:	restricted bands, as defined	In addition, radiated emissions in § 15.205(a), must also comp	ly with the
V Vupo, W Vupo,	Frequency (MHz)	ecified in § 15.209(a)(see § 15.209) Field strength (microvolts/meter)	Measurement distance
	Tok upojek Vupo	An Anboter	(meters)
	0.009-0.490	2400/F(kHz)	300
aboren And	0.490-1.705	24000/F(kHz)	30 Stell
tek upoje.	1.705-30.0	30	30
	30-88	100 **	3,ek nbote
	88-216	150 **	3
	216-960	200 **	3 botel And
	Above 960	500 MARIO ARIO	3 30
	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a	ragraph (g), fundamental emissing under this section shall not be z, 76-88 MHz, 174-216 MHz or a hese frequency bands is permitting 15.231 and 15.241. The tighter limit applies at the bein the above table are based on beak detector except for the frequency 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. sed under other band edges. measurements uency bands 9—sion limits in
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		sk Wpoles
Procedure:	ANSI C63.10-2020 section		OLC. DU.

8.1. EUT Operation


oie	Operating Envir	onment:	Anbotek	Anbe	F	notek A	upore Ar	siek vi
o'n,	Test mode:	1: TX mode(BLE 1M)	1M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE
9	inbounde.	2: TX mode(BLE 2M)	2M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 21 of 34

8.2. Test Setup



Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 22 of 34

8.3. Test Data

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Remark

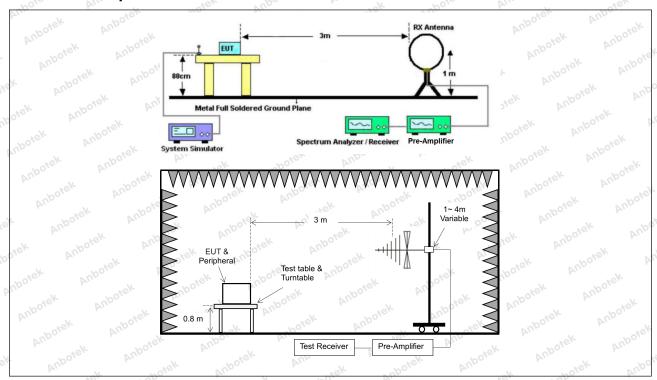
- 1. During the test, pre-scan all modes, the report only record the worse case mode.
- 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 23 of 34

9. Emissions in frequency bands (below 1GHz)

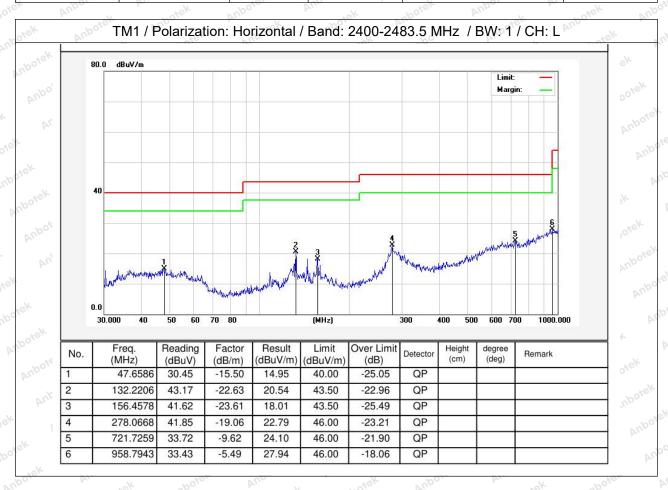
Test Requirement:	restricted bands, as defin radiated emission limits s	pecified in § 15.209(a)(see § 15	.205(c)).
ek Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	64 300 Mporto
Joseph Ande	0.490-1.705	24000/F(kHz)	30 Sotel
	1.705-30.0	30	30
	30-88	100 **	3,ek Anbo
	88-216	150 **	AT 3
	216-960	200 **	3 bote, An
	Above 960	500 sorter ambou	3
Test Limit:	intentional radiators opera frequency bands 54-72 M	paragraph (g), fundamental emis ating under this section shall not Hz, 76-88 MHz, 174-216 MHz o	be located in the or 470-806 MHz.
Test Limit: Anbotek Anbotek	intentional radiators opera frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and	paragraph (g), fundamental emis ating under this section shall not Hz, 76-88 MHz, 174-216 MHz on these frequency bands is perm	be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in
Test Method:	intentional radiators opera frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and these three bands are base	paragraph (g), fundamental emistating under this section shall not Hz, 76-88 MHz, 174-216 MHz on these frequency bands is perming \$\frac{8}{3}\$ 15.231 and 15.241. If the tighter limit applies at the in the above table are based of the interpretation in the above table are based of the free above 1000 MHz. Radiated emisted on measurements employing 16.6.4	be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in

9.1. EUT Operation


oie	Operating Envir	onment:	Anbotek	Anbe	F	notek A	upore Ar	siek vi
o'n,	Test mode:	1: TX mode(BLE 1M)	1M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE
9	inbounde.	2: TX mode(BLE 2M)	2M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 24 of 34

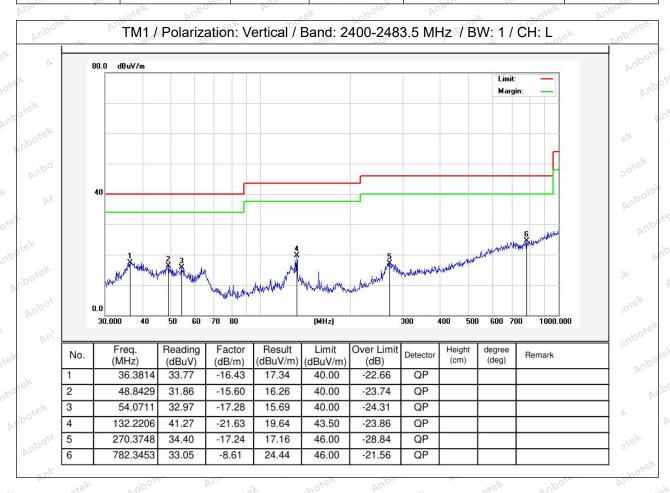
9.2. Test Setup



Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 25 of 34

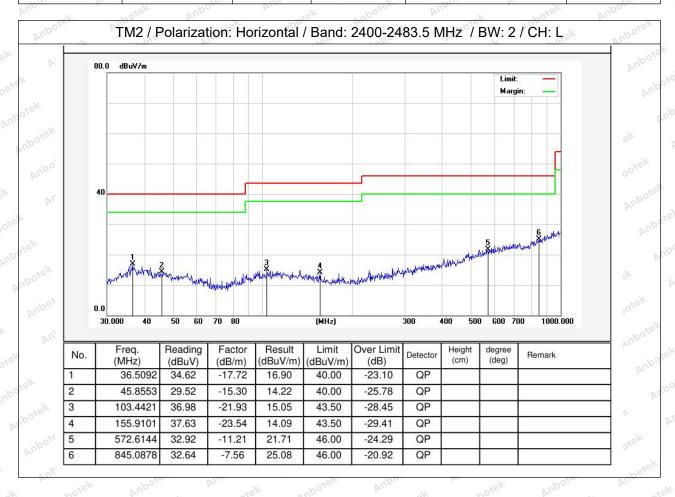
9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.


Temperature:	25.3 °C	VUp,	Humidity:	48 %	Atmospheric Pressure:	101 kPa
				1.0	7 10.1.00 1.101.10 1.100 1.101	ΛΨ

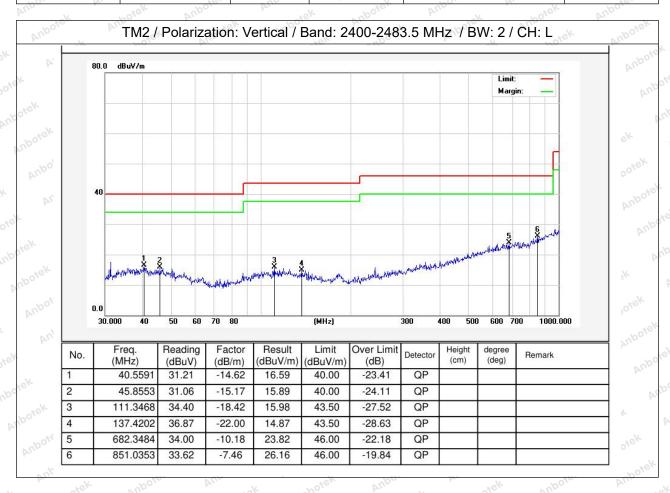
Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 26 of 34

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 27 of 34

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 28 of 34

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

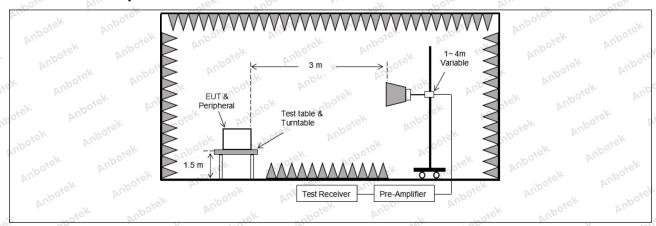
Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 29 of 34

10. Emissions in frequency bands (above 1GHz)

Test Requirement:	in § 15.205(a), must also in § 15.209(a)(see § 15.2	comply with the radiated emissi (05(c)).`	on limits specified
ek Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 mbott
otek And	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30° h.	30
	30-88	100 **	3,ek anbor
anborek Anbe	88-216	150 **	ATOS
	216-960	200 **	3 bote, An
	Above 960	500 hotek Anbou	3
	intentional radiators oper frequency bands 54-72 M	paragraph (g), fundamental emis ating under this section shall not IHz, 76-88 MHz, 174-216 MHz o	be located in the or 470-806 MHz.
	intentional radiators oper frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table abo The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and	ating under this section shall not 1Hz, 76-88 MHz, 174-216 MHz on these frequency bands is perm	t be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in
Test Limit:	intentional radiators open frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and these three bands are ba	ating under this section shall not the section in the above table are based of the section in the section shall not section shall not section section shall not section section shall not shall not section shall not section shall not section shall not shall no	t be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in

10.1. EUT Operation

o'l	Operating Envir	onment:	anbotek	Aupo	K	notek An	pore An	ojek on
0,0	Test mode:	1: TX mode(BLE 1M)	And			Vupo,	pi, otek	Vupote.
	Anbore House. Anbor	2: TX mode(BLE 2M)	2M): Keep	the EUT	works in	continuously	transmitting	mode (BLE



Hotline

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 30 of 34

10.2. Test Setup

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 31 of 34

10.3. Test Data

Temperature: 25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Yur ok	hotek Anb		stek anboti	Ans.	ok hotek	Anbo.
			TM2 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.13	15.27	43.40	74.00	-30.60	Vertical
7206.00	28.25	18.09	46.34	74.00	-27.66	Vertical
9608.00	28.98	23.76	52.74	74.00	-21.26	Vertical
12010.00	Anbore * A	iek.	abotek Anb	74.00	otek Anbote	Vertical
14412.00	VUPO*Sk	Aupo, ok	Potek b	74.00	otek onk	Vertical
4804.00	27.82	15.27	43.09	74.00	-30.91	Horizontal
7206.00	28.65	18.09	46.74	74.00	-27.26	Horizontal
9608.00	27.97	23.76	51.73	74.00	-22.27	Horizontal
12010.00	otek * Anbo	V. 20	iek Aupote	74.00	s abotek	Horizontal
14412.00	hotek* An	DOJE VILL	tek ab	74.00	ok hote	Horizontal
Average value: Frequency	Reading	Factor	Result	Limit	Over Limit	polarization
(MHz) 4804.00	(dBuV) 16.40	(dB/m)	(dBuV/m) 31.67	(dBuV/m) 54.00	(dB) -22.33	Vertical
7206.00	17.30	18.09	35.39	54.00	-22.33 -18.61	Vertical
9608.00	18.45	23.76	V-1	54.00	V1.	Vertical
12010.00	**	23.76	42.21 M	54.00	-11.79	Vertical
14412.00	Anbore.	7un Jek	Vupatek Vi	54.00	hotek Anbe	Vertical
4804.00	16.15	15.27	31.42	54.00	-22.58	Horizontal
7206.00	17.68	18.09	35.77	54.00	-18.23	Horizontal
9608.00	17.08	23.76	41.24	54.00	-10.23	Horizontal
12010.00	*	otek Anbot	X 71.240	54.00	-12.100°	Horizontal
14412.00	Upolok * bup	otek Ant	otek Anbot	54.00	ek Aupolek	Horizontal

Page 32 of 34 Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009

				hotek	Anbor	rek
			TM2 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	27.68	15.42	43.10	74.00	-30.90	Vertical
7320.00	28.22	18.02	46.24	74.00	-27.76	Vertical
9760.00	28.48	23.80	52.28	74.00	-21.72	Vertical
12200.00	ek * nbotek	Anbor	hotek	74.00	And	Vertical
14640.00	* **	ick Aupote	Vun	74.00	Vupo	Vertical
4880.00	27.63	15.42	43.05	74.00	-30.95	Horizontal
7320.00	28.52	18.02	46.54	74.00	-27.46	Horizontal
9760.00	27.69	23.80	51.49	74.00	-22.51	Horizontal
12200.00	* ořek	Anbores	And	74.00	rupo, ek	Horizontal
14640.00	Pur Siek	nbotek	Aupo	74.00	Anbore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	16.49	15.42	31.91	54.00	-22.09	Vertical
7320.00	17.16	18.02	35.18	54.00	-18.82 Am	Vertical
9760.00	18.30	23.80	42.10	54.00	-11.90	Vertical
12200.00	k ¥upor	An Siek	anbotek	54.00	boiek	Vertical
14640.00	otek * Anboti	And	ek abotek	54.00	pi, notek	Vertical
4880.00	16.26	15.42	31.68	54.00	-22.32	Horizontal
7320.00	18.03	18.02	36.05	54.00	-17.95	Horizontal
9760.00	17.78	23.80	41.58	54.00	12.42 M	Horizontal
12200.00	Anbotek	Anbo	abotek	54.00	work a	Horizontal
14640.00	* botek	Anbo	B. Olek	54.00	And	Horizontal

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 33 of 34

Er AUD	iek .	"upo,	VII.	-poter	And	ate ^K
		٦	ГМ2 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	27.81	15.58	43.39	74.00	-30.61 ······	Vertical
7440.00	28.38	17.93	46.31	74.00	-27.69	Vertical
9920.00	29.18	23.83	53.01	74.00	-20.99	Vertical
12400.00	* * Sofek	Aupotes	Anb	74.00	Anborr	Vertical
14880.00	* 400	ek nbotel	Anbo	74.00	Aupote	Vertical
4960.00	27.77 And	15.58	43.35	74.00	-30.65	Horizontal
7440.00	28.73	17.93	46.66	74.00	-27.34	Horizontal
9920.00	28.07	23.83	51.90	74.00	-22.10	Horizontal
12400.00	AUD * "SK	abotek	Aupo, k	74.00	Tupose, Vu	Horizontal
14880.00	W. Po.	hotek	Anbores	74.00	anbotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	17.61	15.58	33.19	54.00	-20.81	Vertical
7440.00	18.43	17.93	36.36	54.00	300°-17.64 M	Vertical
9920.00	18.95	23.83	42.78	54.00	-11.22	Vertical
12400.00	k * potek	Aupo,	hotek	54.00	And	Vertical
14880.00	* * *	k Aupole.	Ann	54.00	Vupo,	Vertical
4960.00	17.44	15.58	33.02	54.00	-20.98	Horizontal
7440.00	18.83	17.93	36.76	54.00	-17.24	Horizontal
9920.00	17.93	23.83	41.76	54.00	-12.24	Horizontal
12400.00	* tok	Anbore	Vur Jiek	54.00	ipo. br	Horizontal
14880.00	An*	^{anbotek}	Anbo	54.00	Anboro	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 18220WC40047502 FCC ID: 2AXPW-MC009 Page 34 of 34

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

