

RADIO TEST REPORT FCC ID: 2AXP2-GK29

Product: GMMK 3 Trade Mark: GLORIOUS Model No.: GMMK 3 PRO 100% WIRELESS Family Model: GMMK 3 100% WIRELESS Report No.: S24041703558002 Issue Date: May 21. 2024

Prepared for

Glorious LLC

13809 Research Blvd Suite 500 PMB 93206 Austin, TX 78750, USA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	3
2	SUMMARY OF TEST RESULTS4	ŀ
3	FACILITIES AND ACCREDITATIONS5	5
3.1 3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS	5
4	GENERAL DESCRIPTION OF EUT	Ś
5	DESCRIPTION OF TEST MODES	3
6	SETUP OF EQUIPMENT UNDER TEST)
6.1 6.2 6.3	SUPPORT EQUIPMENT. 10 EQUIPMENTS LIST FOR ALL TEST ITEMS. 11) [
7	TEST REQUIREMENTS13	3
7.1 7.2 7.4 7.5 7.6 7.7 7.8 7.9	RADIATED SPURIOUS EMISSION166DB BANDWIDTH25DUTY CYCLE26PEAK OUTPUT POWER28POWER SPECTRAL DENSITY29CONDUCTED BAND EDGE MEASUREMENT31SPURIOUS RF CONDUCTED EMISSIONS32ANTENNA APPLICATION33	5559123
8	TEST RESULTS	
8.1 8.2 8.3 8.4 8.5	-6DB BANDWIDTH	5 3)
8.6		

TEST RESULT

Complied

1 TEST RESULT CERTIFICATION

Glorious LLC
13809 Research Blvd Suite 500 PMB 93206 Austin, TX 78750,USA
Glorious LLC
13809 Research Blvd Suite 500 PMB 93206 Austin, TX 78750,USA
GMMK 3
GMMK 3 PRO 100% WIRELESS
GMMK 3 100% WIRELESS
S240417035058
Apr 17. 2024 ~ May 21. 2024

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared . By ^{···}	Mary Hu Mary Hu (Project Engineer)	Reviewed By [:] –	Aaron Cheng Aaron Cheng (Supervisor)	Approved : Alex Li By : Alex Li (Manager)

FCC Part15 (15.247), Subpart C							
Standard Section	Test Item	Verdict	Remark				
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b) Peak Output Power PASS							
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS					
15.247 (e)	PASS						
15.247 (d)	Band Edge Emission	PASS					
15.247 (d) Spurious RF Conducted Emission PASS							
15.203	Antenna Requirement	PASS					

Remark:

 "N/A" denotes test is not applicable in this Test Report.
All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted, PSD	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±4.7%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment	GMMK 3				
Trade Mark	GLORIOUS				
FCC ID	2AXP2-GK29				
Model No.	GMMK 3 PRO 100% WIRELESS				
Family Model	GMMK 3 100% WIRELESS				
Model Difference	All models have the same circuit and RF module, except for the shell color, shaft, and keycap.				
Operating Frequency	2402MHz~2479MHz				
Modulation	GFSK				
Number of Channels	78 Channels				
Antenna Type	PCB Antenna				
Antenna Gain	1.16dBi				
Power supply	DC 3.7Vfrom battery or DC 5V from type-c port				
Adapter	N/A				
HW Version	2.0				
SW Version	V1025				
FW Version	N/A				

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History Report No. Version Description **Issued Date** Initial issue of report S24041703558002 Rev.01 May 21. 2024

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

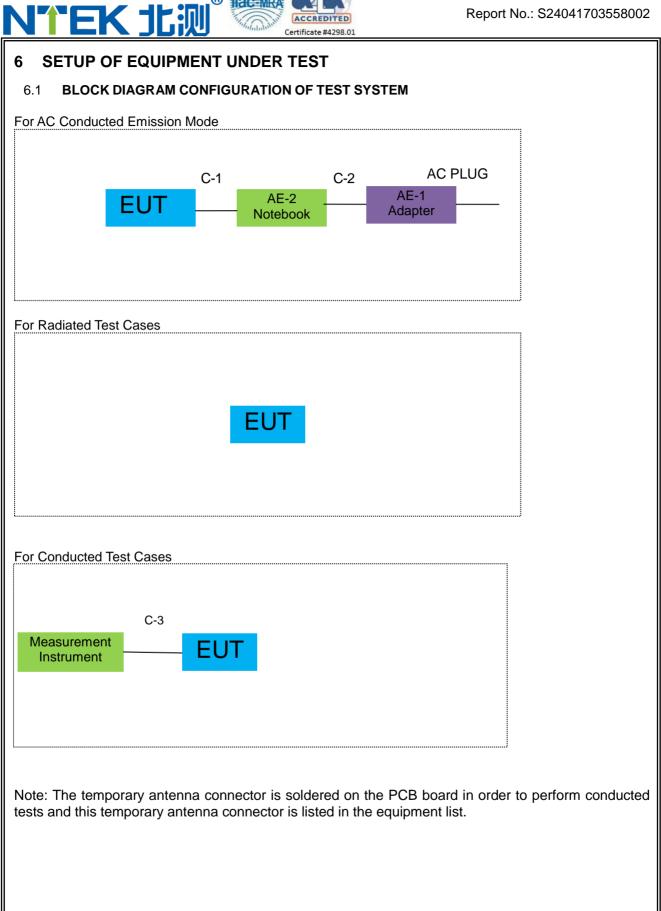
Those data rates (2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
1	2402
2	2403
38	2439
39	2440
40	2441
78	2479

Note: fc=2402MHz+k×1MHz k=1 to 78


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases				
Test Item	Data Rate/ Modulation			
AC Conducted Emission	Mode 1: normal link mode			
	Mode 1: normal link mode			
Radiated Test	Mode 2: GFSK Tx Ch01_2402MHz_2Mbps			
Cases	Mode 3: GFSK Tx Ch45_2446MHz_2Mbps			
	Mode 4: GFSK Tx Ch79_2479MHz_2Mbps			
Conducted Test	Mode 2: GFSK Tx Ch01_2402MHz_2Mbps			
Conducted Test Cases	Mode 3: GFSK Tx Ch45_2446MHz_2Mbps			
Cases	Mode 4: GFSK Tx Ch79_2479MHz_2Mbps			

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	DELL	HA65NS5-00	N/A	Peripherals
AE-2	AE-2 Notebook DELL		Inspiron 5493	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Type-C cable	NO	YES	2.0m
C-2	Power cable	NO	NO	1.0m
C-3	-3 RF Cable YES		NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

N

Radiatio	on& Conducted 1	est equipment					
Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratio n period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2025.03.30	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2022.06.17	2025.06.16	3 year
16	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

て 王氏 北沢

7.1 CONDUCTED EMISSIONS TEST

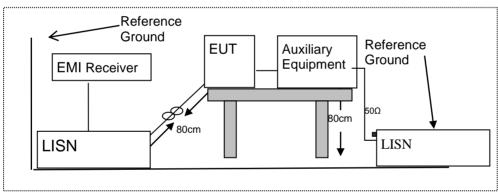
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 **Conformance Limit**

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

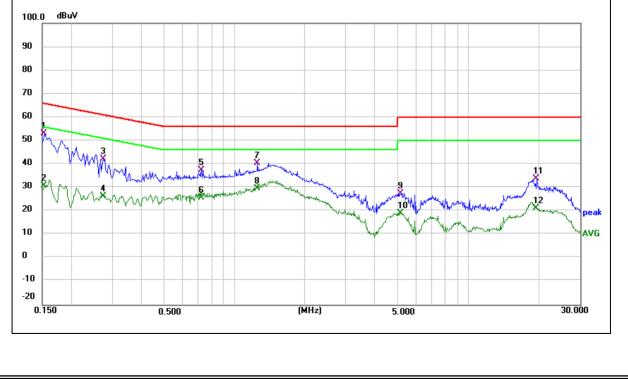
7.1.4 **Test Configuration**

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	GMMK 3	INIOGEI Name	GMMK 3 PRO 100% WIRELESS
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Notebook Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	43.22	9.93	53.15	65.79	-12.64	QP
0.1539	20.93	9.93	30.86	55.79	-24.93	AVG
0.2740	32.12	10.18	42.30	61.00	-18.70	QP
0.2740	16.04	10.18	26.22	51.00	-24.78	AVG
0.7220	26.28	11.09	37.37	56.00	-18.63	QP
0.7220	14.57	11.09	25.66	46.00	-20.34	AVG
1.2500	28.42	12.16	40.58	56.00	-15.42	QP
1.2500	17.43	12.16	29.59	46.00	-16.41	AVG
5.1340	17.98	9.67	27.65	60.00	-32.35	QP
5.1340	9.59	9.67	19.26	50.00	-30.74	AVG
19.4980	24.02	9.72	33.74	60.00	-26.26	QP
19.4980	11.56	9.72	21.28	50.00	-28.72	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

UT:	GMMK 3		ſ	Nodel	Name :	GMMK 3 PRO WIRELESS	100%
emperature:	22 ℃		F	Relativ	e Humidity:	57%	
ressure:	1010hPa			Phase		N	
est Voltage :	DC 5V from AC 120V/6	n Notebook Ad 0Hz	apter	Test M	ode:	Mode 1	
Frequency	Reading Level	Correct Factor	Measure	-ment	Limits	Margin	During
(MHz)	(dBµV)	(dB)	(dBµ'	V)	(dBµV)	(dB)	Remark
0.1580	42.39	9.95	52.3	34	65.57	-13.23	QP
0.1580	23.10	9.95	33.0		55.57	-22.52	AVG
0.2481	34.78	10.14	44.9		61.82	-16.90	QP
0.2481	16.76	10.14	26.9		51.82	-24.92	AVG
0.7260	28.08	11.11	39.1		56.00	-16.81	QP
0.7260	14.74	11.11	25.8		46.00	-20.15	AVG
1.4940	28.19	12.64	40.8		56.00	-15.17	QP
1.4940	20.58	12.64	33.2		46.00	-12.78	AVG
4.8900	19.29	9.67	28.9		56.00	-27.04	QP
4.8900	11.54	9.67	21.2		46.00	-24.79	AVG
18.7660	25.40	9.72	35.1		60.00	-24.88	QP
18.7660	15.08	9.72	24.8		50.00	-25.20	AVG
		able Loss.					
100.0 dBuV 90 80 70 60 50 40 30	MMM more man				3		
90 80 70 60 50 40 2		5			9 10		peak AVG
90 80 70 60 50 40 30 20 10 0		5	(MHz)		9 9 10 10 5.000		A F

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 di t13.203, Restileted ballas					
MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

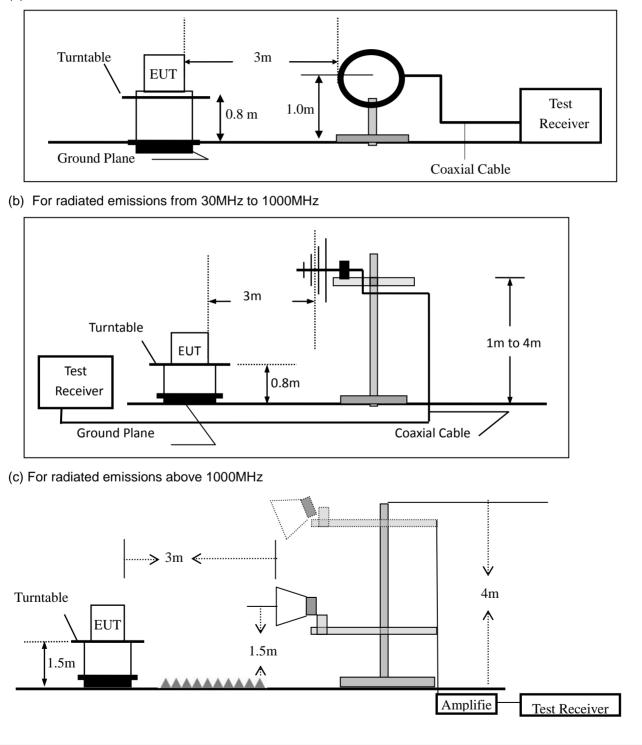
Fraguanay (MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:						
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth			
30 to 1000	QP	120 kHz	300 kHz			
Ab aug 1000	Peak	1 MHz	1 MHz			
Above 1000	Average	1 MHz	1 MHz			

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	GMMK 3		GMMK 3 PRO 100% WIRELESS
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	GMMK 3	Model Name	GMMK 3 PRO 100% WIRELESS
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	GFSK (2M) CH01
Test Voltage :	DC 3.7V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	39.5757	7.23	18.55	25.78	40.00	-14.22	QP
V	57.1914	5.89	19.29	25.18	40.00	-14.82	QP
V	95.0930	4.88	16.45	21.33	43.50	-22.17	QP
V	137.4202	10.31	14.31	24.62	43.50	-18.88	QP
V	279.0436	8.25	19.81	28.06	46.00	-17.94	QP
V	796.1830	6.62	29.09	35.71	46.00	-10.29	QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	56.9912	6.22	19.27	25.49	40.00	-14.51	QP	
Н	150.5378	11.07	14.09	25.16	43.50	-18.34	QP	
Н	216.7828	11.21	18.79	30.00	46.00	-16.00	QP	
Н	279.0436	15.31	19.81	35.12	46.00	-10.88	QP	
Н	543.2742	5.04	25.76	30.80	46.00	-15.20	QP	
Н	893.8567	8.83	29.90	38.73	46.00	-7.27	QP	
Remark Emission 80.0	mission Level= Meter Reading+ Factor, Margin= Emission Level - Limit							
70	dBuV/m							
60								
50								
40							6 William	
30	where we are the standing of the	JAh	2	Sample Market	n Jergen Brith I water 191 - Mary 194	Service of the servic		
20		and the second of the second o	monormal address Add	hillester				
10								
0.0 30.0	00 en).00		MHz)	300.00		1000.000	

Spurious EUT:		n Above MMK 3	1GHz (1Gł		GHz) del No.:	CNAN		100% WIF	
				_	ative Humidity		IN 3 PRU		XELESS
Temperature									
Test Mode:	Mo	de2/Mo	de3/Mode4	le	st By:	Mary	Hu		
	Pood	Cable	Antonno	Droom	Emission				
Frequency	Read Level	loss	Antenna Factor	Pream Factor	Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	. ,		
	n	r	Low Chan	nel (240	2 MHz)(GFSK)Above 1		1	1
4804.21	68.20	5.21	35.59	44.30	64.70	74.00	-9.30	Pk	Vertical
4804.21	45.48	5.21	35.59	44.30	41.98	54.00	-12.02	AV	Vertical
7206.87	67.39	6.48	36.27	44.60	65.54	74.00	-8.46	Pk	Vertical
7206.87	45.72	6.48	36.27	44.60	43.87	54.00	-10.13	AV	Vertical
4804.28	64.21	5.21	35.55	44.30	60.67	74.00	-13.33	Pk	Horizontal
4804.28	46.12	5.21	35.55	44.30	42.58	54.00	-11.42	AV	Horizontal
7206.28	66.02	6.48	36.27	44.52	64.25	74.00	-9.75	Pk	Horizontal
7206.28	44.83	6.48	36.27	44.52	43.06	54.00	-10.94	AV	Horizontal
Mid Channel (2446 MHz)(GFSK)Above 1G									
4892.14	65.98	5.21	35.66	44.20	62.65	74.00	-11.35	Pk	Vertical
4892.14	46.66	5.21	35.66	44.20	43.33	54.00	-10.67	AV	Vertical
7338.21	65.56	7.10	36.50	44.43	64.73	74.00	-9.27	Pk	Vertical
7338.21	44.54	7.10	36.50	44.43	43.71	54.00	-10.29	AV	Vertical
4892.12	68.89	5.21	35.66	44.20	65.56	74.00	-8.44	Pk	Horizontal
4892.12	44.76	5.21	35.66	44.20	41.43	54.00	-12.57	AV	Horizontal
7338.26	68.61	7.10	36.50	44.43	67.78	74.00	-6.22	Pk	Horizontal
7338.26	46.79	7.10	36.50	44.43	45.96	54.00	-8.04	AV	Horizontal
			High Chan	nel (247	9 MHz)(GFSK) Above '	G		
4958.22	64.82	5.21	35.52	44.21	61.34	74.00	-12.66	Pk	Vertical
4958.22	44.68	5.21	35.52	44.21	41.20	54.00	-12.80	AV	Vertical
7338.24	67.22	7.10	36.53	44.60	66.25	74.00	-7.75	Pk	Vertical
7338.24	45.33	7.10	36.53	44.60	44.36	54.00	-9.64	AV	Vertical
4958.43	64.41	5.21	35.52	44.21	60.93	74.00	-13.07	Pk	Horizontal
4958.43	44.86	5.21	35.52	44.21	41.38	54.00	-12.62	AV	Horizontal
7338.41	66.29	7.10	36.53	44.60	65.32	74.00	-8.68	Pk	Horizontal
7338.41	45.73	7.10	36.53	44.60	44.76	54.00	-9.24	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

UT:	GMMK	3		N	lode	l No.:		GMN	GMMK 3 PRO 100% WIRELESS		
Cemperature:	20 ℃			R	Relati	ive Humidi	ty:	48%			
Test Mode:	ode: Mode2/ Mode4			Т	est I	By:		Mary	′ Hu		
				_							
Frequency	Meter Reading	Cable Loss	Antenna Factor	Prear Facto		Emission Level	Lim	iits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB	5)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
2Mbps(GFSK)											
2310.00	65.86	2.97	27.80	43.8	30	52.83	74	4	-21.17	Pk	Horizonta
2310.00	44.87	2.97	27.80	43.8	30	31.84	54	4	-22.16	AV	Horizonta
2310.00	64.84	2.97	27.80	43.8	30	51.81	74	4	-22.19	Pk	Vertical
2310.00	44.75	2.97	27.80	43.8	30	31.72	54	4	-22.28	AV	Vertical
2390.00	65.22	3.14	27.21	43.8	30	51.77	74	4	-22.23	Pk	Vertical
2390.00	44.21	3.14	27.21	43.8	30	30.76	54	4	-23.24	AV	Vertical
2390.00	67.19	3.14	27.21	43.8	30	53.74	74	4	-20.26	Pk	Horizontal
2390.00	45.35	3.14	27.21	43.8	30	31.90	54	4	-22.10	AV	Horizontal
2483.50	65.62	3.58	27.70	44.0)0	52.90	74	4	-21.10	Pk	Vertical
2483.50	46.92	3.58	27.70	44.0	00	34.20	54	4	-19.80	AV	Vertical
2483.50	67.23	3.58	27.70	44.0	00	54.51	74	4	-19.49	Pk	Horizonta
2483.50	46.96	3.58	27.70	44.0	00	34.24	54	4	-19.76	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

EUT:	GMM	K 3		I	Mode	l No.:		GMM	K 3 PRO	100% WI	RELESS
Femperature:	20 ℃			I	Relative Humidity:			48%			
Fest Mode:	est Mode: Mode2/ Mode4			-	Test E	By:		Mary I	Hu		
Frequency	Reading Level	Cable Loss	Antenna Factor		amp ctor	Emission Level	Li	mits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	IB)	(dBµV/m)	(dB	µV/m)	(dB)	Туре	
3260	65.78	4.04	29.57	44	.70	54.69		74	-19.31	Pk	Vertical
3260	44.30	4.04	29.57	44	.70	33.21	:	54	-20.79	AV	Vertical
3260	67.05	4.04	29.57	44	.70	55.96		74	-18.04	Pk	Horizontal
3260	44.61	4.04	29.57	44	.70	33.52	:	54	-20.48	AV	Horizonta
3332	67.48	4.26	29.87	44	.40	57.21		74	-16.79	Pk	Vertical
3332	44.89	4.26	29.87	44	.40	34.62	:	54	-19.38	AV	Vertical
3332	66.46	4.26	29.87	44	.40	56.19		74	-17.81	Pk	Horizonta
3332	46.65	4.26	29.87	44	.40	36.38	:	54	-17.62	AV	Horizonta
17797	53.89	10.99	43.95	43	5.50	65.33		74	-8.67	Pk	Vertical
17797	32.21	10.99	43.95	43	5.50	43.65		54	-10.35	AV	Vertical
17788	51.29	11.81	43.69	44	.60	62.19		74	-11.81	Pk	Horizonta
17788	34.24	11.81	43.69	44	.60	45.14		54	-8.86	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 **Conformance Limit**

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	GMMK 3	INIODELNIO .	GMMK 3 PRO 100% WIRELESS
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 **Test Procedure**

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	GMMK 3		GMMK 3 PRO 100% WIRELESS
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 **Conformance Limit**

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 **Test Procedure**

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	GMMK 3	INIOGELINIO .	GMMK 3 PRO 100% WIRELESS
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	GMMK 3	IMODELNO .	GMMK 3 PRO 100% WIRELESS
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	GMMK 3	INIOGELINO .	GMMK 3 PRO 100% WIRELESS
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

Below -20dB of the highest emission level in operating band.
Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

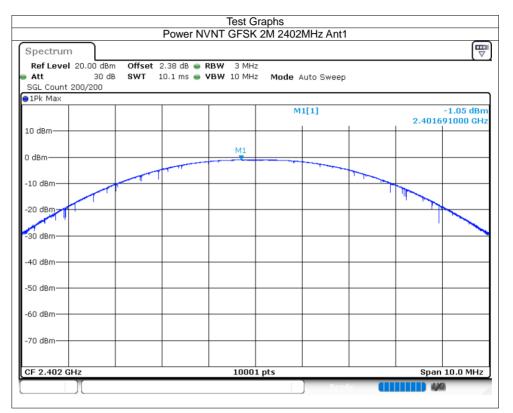
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

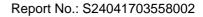
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

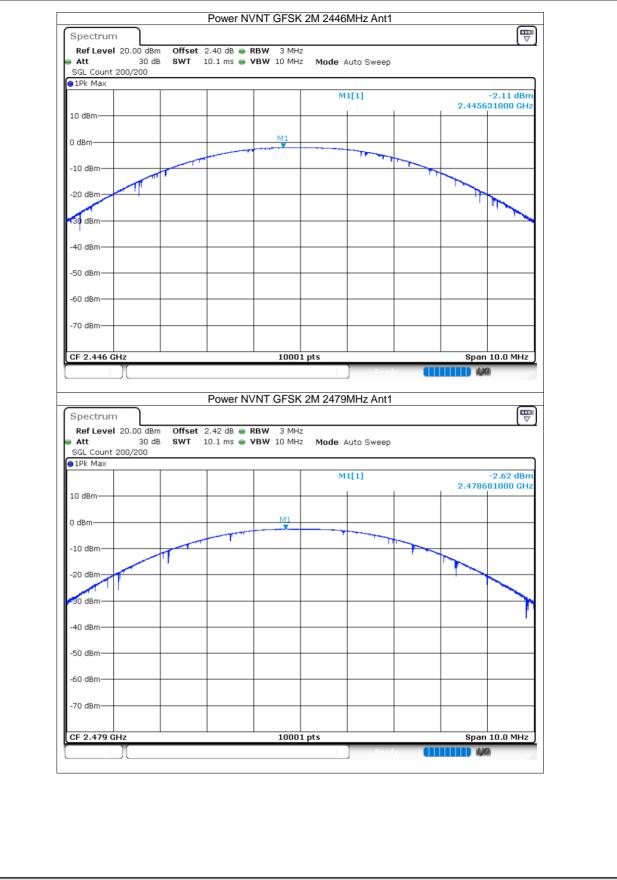
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 **Result**

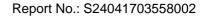

The EUT antenna is permanent attached PCB Antenna (Gain:1.16 dBi). It comply with the standard requirement.



8 TEST RESULTS


8.1 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	GFSK 2M	2402	Ant1	-1.05	30	Pass
NVNT	GFSK 2M	2446	Ant1	-2.11	30	Pass
NVNT	GFSK 2M	2479	Ant1	-2.62	30	Pass

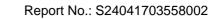


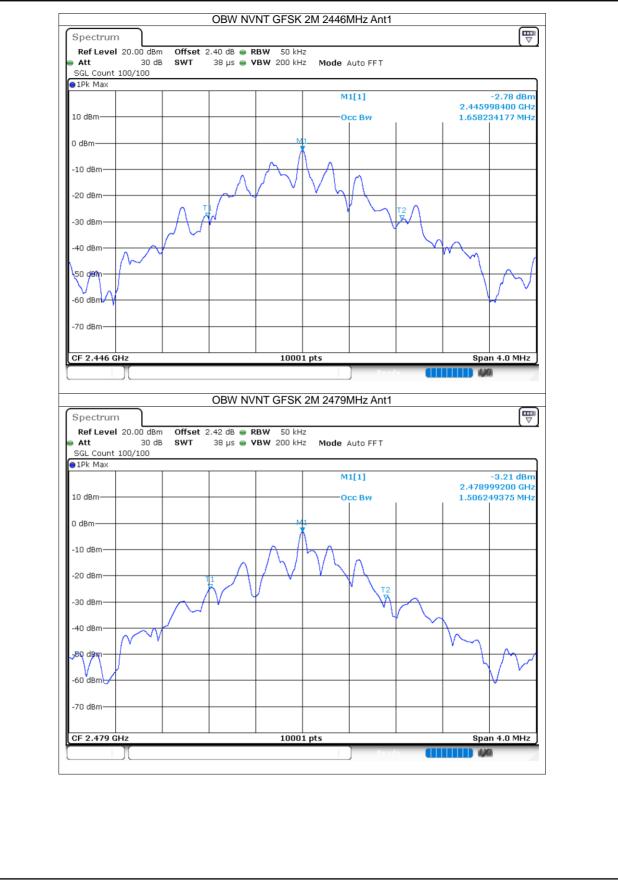
8.2 -6dB Bandwidth Antenna Condition Mode Frequency -6 dB Bandwidth Limit -6 dB Verdict (MHz) (MHz) **Bandwidth (MHz)** NVNT GFSK 2M 2402 0.584 0.5 Pass Ant1 NVNT GFSK 2M 2446 0.555 0.5 Pass Ant1 NVNT GFSK 2M 2479 Ant1 0.796 0.5 Pass Test Graphs -6dB Bandwidth NVNT GFSK 2M 2402MHz Ant1 ₽ Spectrum Ref Level 20.00 dBm Offset 2.38 dB 🖷 RBW 100 kHz Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 ⊖1Pk Max M1[1] -2.31 dBm 2.401995200 GHz 10 dBm M2[1] -8.29 dBm 2.401694000 GHz 0 dBm МЗ 7 -10 dBm -20 dBm 30 dBm 40 dBm -50 d8n -60 dBm--70 dBm-CF 2.402 GHz 10001 pts Span 4.0 MHz Marker Type | Ref | Trc X-value 2.4019952 GHz Y-value -2.31 dBm Function **Function Result** M1 1 M2 2.401694 GHz -8.29 dBm 1 МЗ 2.402278 GHz -8.28 dBm 1 100

ACCREDITED Certificate #4298.01

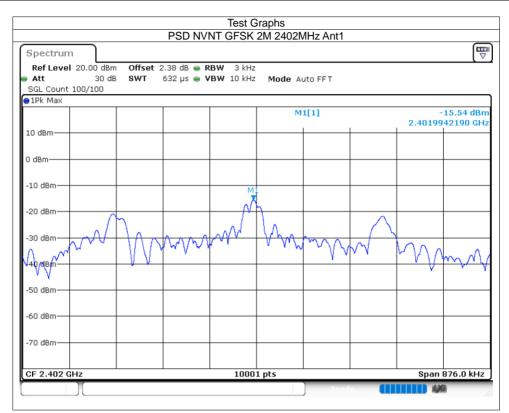
® Hac-MR

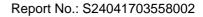
ITEK 北测

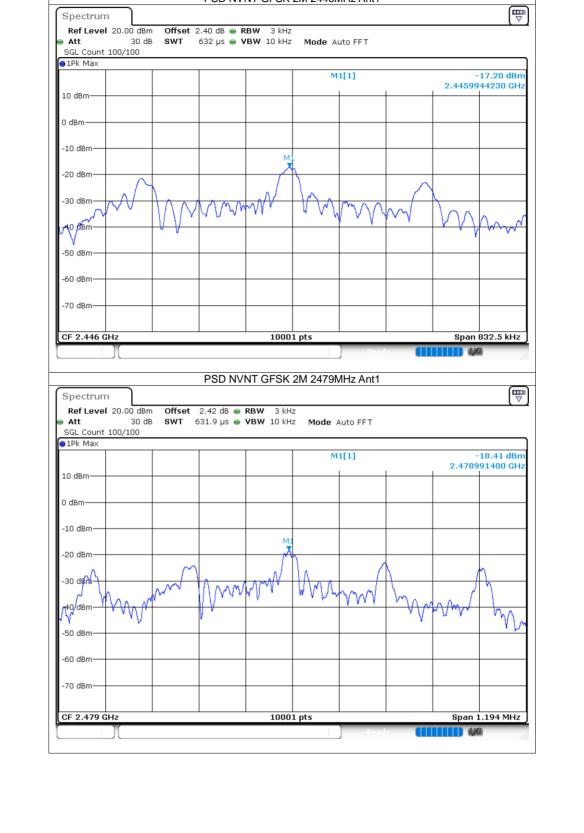


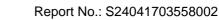


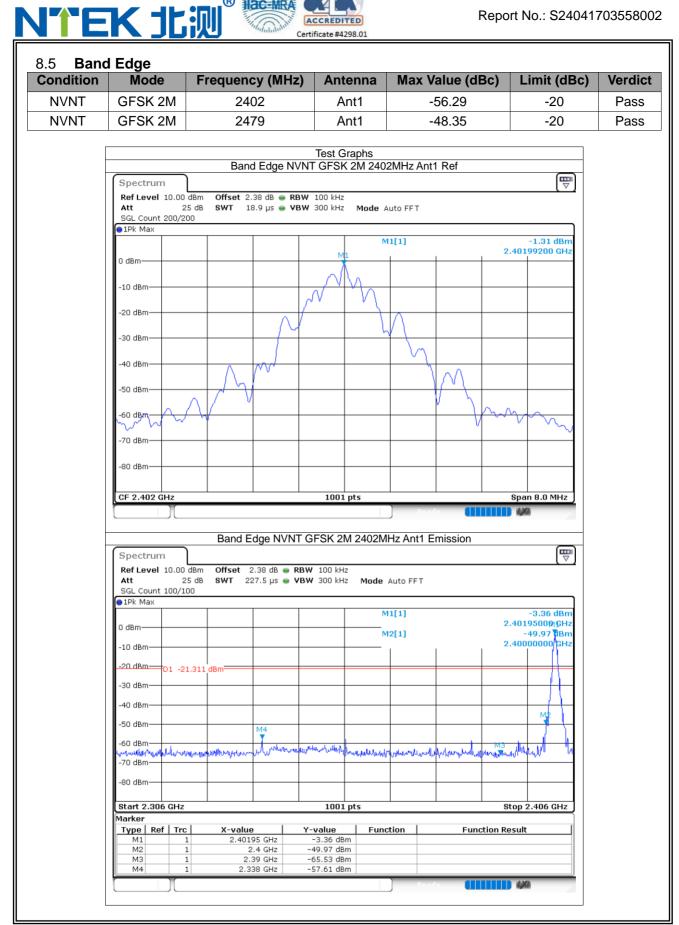
® ilac-MF






8.4 Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	GFSK 2M	2402	Ant1	-15.54	8	Pass
NVNT	GFSK 2M	2446	Ant1	-17.2	8	Pass
NVNT	GFSK 2M	2479	Ant1	-18.41	8	Pass

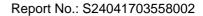


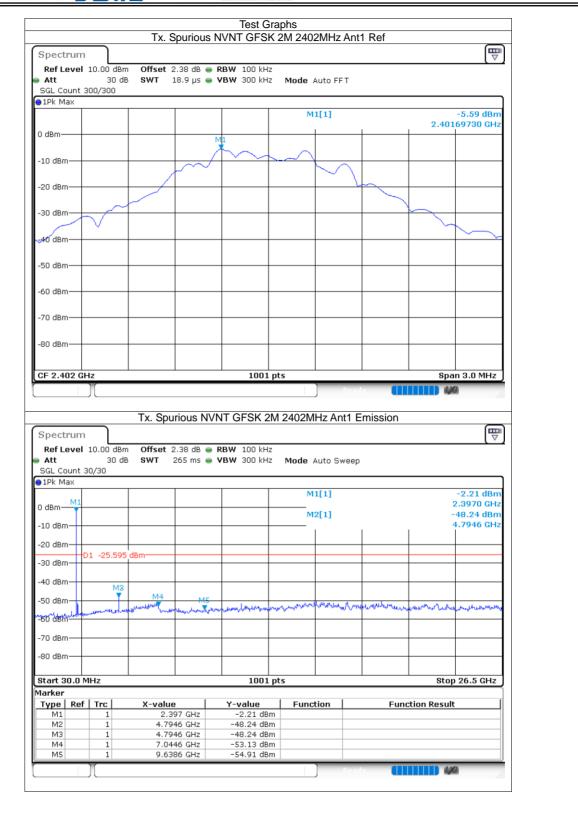
R

ilac-MR

ACCREDITED Certificate #4298.01

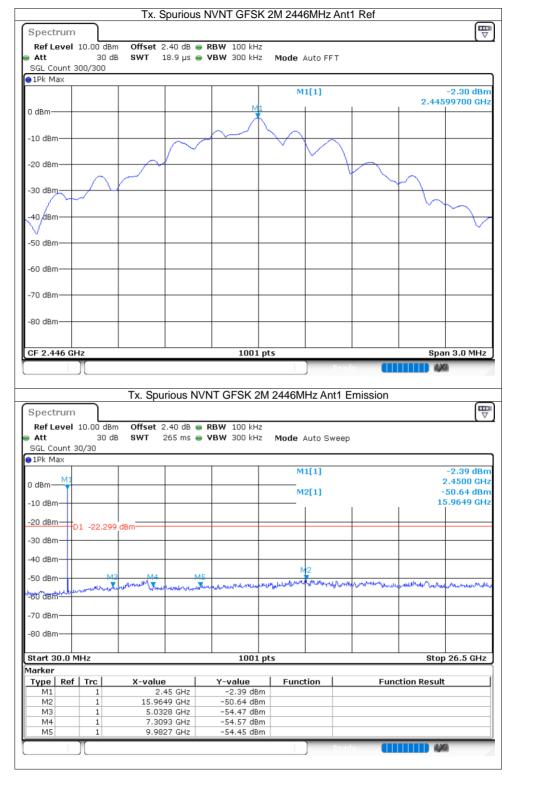
Report No.: S24041703558002

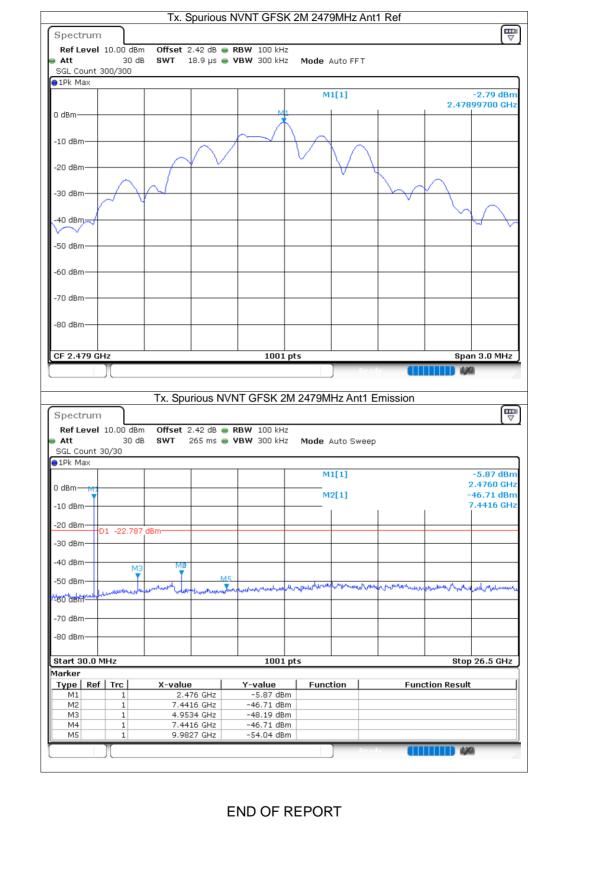

Ref Level Att SGL Count	35 dB			RBW 100 kHz VBW 300 kHz		ito FFT			
1Pk Max	200,200								
					M1	[1]			-3.93 dBm
10 dBm							 	2.478	399200 GHz
D dBm				M	1				
-10 dBm					9				
-20 dBm									
20 02			Δ		4 J	۸			
-30 dBm			— A			4			
			\sim			4			
-40 dBm			\mathcal{N}			-Wh	Δ		
50 dBm							M		
-50 dBm	man.	$\gamma \sim \gamma \gamma$						man	mar
-60 dBm		ř í						1	v~~~
-70 dBm									
CF 2.479 G	Hz	1 1		1001	pts		1	Spa	an 8.0 MHz
	Υ.					Read	v 🔳		0
Spectrum		Band E	dge NVI	NT GFSK 21	M 2479MH	lz Ant1 E	mission		
Ref Level Att	20.00 dBm 35 dB	Offset 2	.42 dB 👄	NT GFSK 21 RBW 100 kH: VBW 300 kH:	z		mission		
Ref Level	20.00 dBm 35 dB	Offset 2	.42 dB 👄	RBW 100 kH:	z		mission		
Ref Level Att SGL Count	20.00 dBm 35 dB	Offset 2	.42 dB 👄	RBW 100 kH:	z z Mode A		mission		-7.64 dBm
Ref Level Att SGL Count	20.00 dBm 35 dB	Offset 2	.42 dB 👄	RBW 100 kH:	z Mode A M1	uto FFT	mission		-7.64 dBm 905000 GHz
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB	Offset 2	.42 dB 👄	RBW 100 kH:	z Mode A M1	uto FFT	mission		-7.64 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm dBm	20.00 dBm 35 dB	Offset 2	.42 dB 👄	RBW 100 kH:	z Mode A M1	uto FFT	mission		-7.64 dBm 905000 GHz -56.74 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 35 dB	Offset 2	.42 dB 👄	RBW 100 kH:	z Mode A M1	uto FFT			-7.64 dBm 905000 GHz -56.74 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB	Offset 2 SWT 22	.42 dB 👄	RBW 100 kH:	z Mode A M1	uto FFT			-7.64 dBm 905000 GHz -56.74 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.42 dB 👄	RBW 100 kH:	z Mode A M1	uto FFT			-7.64 dBm 905000 GHz -56.74 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.42 dB 👄	RBW 100 kH:	z Mode A M1	uto FFT			-7.64 dBm 905000 GHz -56.74 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.42 dB	RBW 100 kH; VBW 300 kH;	Z Mode A M1 M2	uto FFT [1] 2[1]		2.483	-7.64 dBm 905000 GHz -56.74 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4	Offset 2 SWT 22	.42 dB ● 7.5 µs ●	RBW 100 kH; VBW 300 kH;	Z Mode A M1 M2	uto FFT [1] 2[1]		2.483	-7.64 dBm 905000 GHz -56.74 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4	Offset 2 SWT 22	.42 dB ● 7.5 µs ●	RBW 100 kH; VBW 300 kH;	z Mode A M1	uto FFT [1] 2[1]		2.483	-7.64 dBm 005000 GHz -56.74 dBm 350000 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4	Offset 2 SWT 22	.42 dB ● 7.5 µs ●	RBW 100 kH; VBW 300 kH;	Z Mode A M1 M2	uto FFT [1] 2[1]		2.483	-7.64 dBm 005000 GHz -56.74 dBm 350000 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4 www.hujum	Offset 2 SWT 22	.42 dB ● 7.5 µs ●	RBW 100 kH; VBW 300 kH;	2 Mode A M3 M2 M2 M2	uto FFT [1] 2[1]		2.48:	-7.64 dBm 905000 GHz -56.74 dBm 350000 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4 www.hujum	Offset 2 SWT 22	.42 dB ● 7.5 µs ●	RBW 100 kH; VBW 300 kH;	2 Mode A M3 M2 M2 M2	uto FFT [1] 2[1]		2.48:	-7.64 dBm 005000 GHz -56.74 dBm 350000 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4 100-23.929	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	RBW 100 kH; VBW 300 kH;	2 Mode A M3 M2 M2 M2	uto FFT [1] 2[1]		2.48:	-7.64 dBm 905000 GHz -56.74 dBm 350000 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4 1///////////////////////////////////	Offset 2 SWT 22	.42 dB 7.5 μs 	RBW 100 kH; VBW 300 kH; Image: state stat	2 2 Mode A M1 M2 M2 M2 Pts pts	uto FFT [1] 2[1]		2.48:	-7.64 dBm 905000 GHz -56.74 dBm 350000 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 cBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4 100-700 M4 100-700 M4 100-700 M4	Offset 2 SWT 22 dBm- dBm- dBm- dBm- dBm- dBm- dBm- dBm-	.42 dB 7.5 μs 	RBW 100 kH; VBW 300 kH; Image: state st	2 Mode A M3 M2 M2 pts Funct m m	uto FFT [1] 2[1]		2.48:	-7.64 dBm 905000 GHz -56.74 dBm 350000 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -70 dBm 50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB 100/100 D1 -23.929 M4 100-23.930 M4 100-23.930 M4 100-23.930 M4 100-23.930 M4 100-23.930 M4 100-23.930 M4 100-25.930 M4 100-25.930 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.9300 M4 100-25.93000 M4 100-25.93000 M4 100-25.93000 M4 100-25.93000 M4 100-25.930000 M4 100-25.93000000000000000000000000000000000000	Offset 2 SWT 22	.42 dB 7.5 μs 	RBW 100 kH; VBW 300 kH; Image: Second seco	2 Mode ۸ M1 M2 M2 M3 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	uto FFT [1] 2[1]		2.48:	-7.64 dBm 905000 GHz -56.74 dBm 350000 GHz


<u>NTEK 北测</u>

8.6 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	GFSK 2M	2402	Ant1	-42.64	-20	Pass
NVNT	GFSK 2M	2446	Ant1	-48.34	-20	Pass
NVNT	GFSK 2M	2479	Ant1	-43.91	-20	Pass




Report No.: S24041703558002

Report No.: S24041703558002

