

NAL Research Corporation

SHOUT sp Handheld Iridium Smartphone

FCC 15.247:2022 Bluetooth Low energy (DTS) Radio

Report: PCTE0003.4, Issue Date: May 15, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA, NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

Last Date of Test: May 4, 2022 NAL Research Corporation EUT: SHOUT sp Handheld Iridium Smartphone

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2022	ANSI C63 10:2013 ECC KDB 558074 v05r02:2010
FCC 15.247:2022	ANSI C63.10.2013, FCC KDB 556074 905102.2019

Results

Test Description	Result	Specification Section(s)	Method Section(s)	Comments
Powerline Conducted Emissions	Pass	15.207	6.2	
Occupied Bandwidth (99%)	Pass	KDB 558074 -2.1	6.9.3	
Duty Cycle	Pass	KDB 558074 -6.0	11.6	
DTS Bandwidth (6 dB)	Pass	15.247(a)(2), KDB 558074 -8.2	11.8.2	
Equivalent Isotropic Radiated Power	Pass	15.247(b)(3), KDB 558074 -8.3.2	11.9.1.1	
Output Power	Pass	15.247(b)(3), KDB 558074 -8.3.2	11.9.1.1	
Power Spectral Density	Pass	15.247(e), KDB 558074 -8.4	11.10.2	
Band Edge Compliance	Pass	15.247(d), KDB 558074 -8.5	11.11	
Spurious Conducted Emissions	Pass	15.247(d), KDB 558074 -8.5	11.11	
Spurious Radiated Emissions	Pass	15.247(d), KDB 558074 - 8.6, 8.7	11.12.1, 11.13.2, 6.5, 6.6	

Deviations From Test Standards

None

Approved By:

Cole Ghizzone, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description		Date (yyyy-mm-dd)	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE						
For details on the Scopes of our Accreditations, please visit:						
California	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600				
		A2LA						
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06				
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1				
		BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R				
	VCCI							
A-0029	A-0109	A-0108	A-0201	A-0110				
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	US0017	US0191	US0157				

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

42.6

+

28.6

71.2

=

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	NAL Research Corporation
Address:	11100 Endeavor Ct. Suite 300
City, State, Zip:	Manassas, VA 20109
Test Requested By:	Andy Schiltz
EUT:	SHOUT sp Handheld Iridium Smartphone
First Date of Test:	April 19, 2022
Last Date of Test:	May 4, 2022
Receipt Date of Samples:	May 3, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Handheld Iridium Smartphone with 1.6 GHz radio and 802.11/Bluetooth radio.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

\ \ /			
Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
On-ground MID Chip	Manufacturer	2400 – 2485	3.0

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Туре	Channel		Frequency (MHz)	Power Setting
	DTC	0	Low Channel	2402	
GFSK/ T Mops	015	20	Mid Channel	2442	7 dBm
		39	High channel	2480	

CONFIGURATIONS

Configuration PCTE0021-1

Software/Firmware Running During Test	
Description	Version
HCI Tester	3.0.0.37

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
SHOUT sp Handheld Iridium Smartphone	NAL Research Corporation	433-93281-001	3000425060205200		
Antenna	18942	HARRIS-NEXGEN	8960263-1		

Peripherals in Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Earbuds	Betron	MK23	None		
Laptop	Dell	Latitude E5450	5z9B063		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Headphones	No	1.2 m	No	SHOUT sp Handheld Iridium Smartphone	Earbuds	
USB Cable (Power)	Yes	1.8 m	No	SHOUT sp Handheld Iridium Smartphone	Laptop	
USB Cable Extension	Yes	3.0 m	No	USB Cable (Coms)	Laptop	
USB Cable (Coms)	Yes	1.0 m	No	SHOUT sp Handheld Iridium Smartphone	USB Extension Cable	
USB Cable x2	Yes	1.0 m	No	SHOUT sp Handheld Iridium Smartphone	unterminated	

CONFIGURATIONS

Configuration PCTE0021-2

Software/Firmware Running During Test	
Description	Version
HCI Tester	3.0.0.37

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
SHOUT sp Handheld Iridium Smartphone	NAL Research Corporation	433-93281-001	FCC 3		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
USB Cable x2	Yes	1.0 m	No	SHOUT sp Handheld Iridium Smartphone	unterminated	
USB Cable (Coms)	Yes	1.0 m	No	SHOUT sp Handheld Iridium Smartphone	Laptop	
USB Cable (Power)	Yes	1.0 m	No	SHOUT sp Handheld Iridium Smartphone	Laptop	

CONFIGURATIONS

Configuration PCTE0021-3

Software/Firmware Running During Test	
Description	Version
HCI Tester	3.0.0.37

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
SHOUT sp Handheld Iridium Smartphone	NAL Research Corporation	433-93281-001	3000425060205200		
Antenna	18942	HARRIS-NEXGEN	8960263-1		

Peripherals in Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Earbuds	Betron	MK23	None			
AC Adaptor	Sony	AC-UUD12	1901AQ2032484			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Haadabaaaa	No	1.2 m	No	SHOUT sp Handheld	Forbudo	
Headphones	INO	1.2 m	INU	Iridium Smartphone	Ealbuus	
LISE Coble v2	Voo	1.0 m	No	SHOUT sp Handheld	Lanton	
	165			Iridium Smartphone	Laptop	
LISE (Power)	Voc	1 9 m	No	SHOUT sp Handheld		
USB (FOWER)	res	1.0 111	INU	Iridium Smartphone	AC Adaptor	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-04-19	Occupied Bandwidth (99%)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-04-19	DTS Bandwidth (6 dB)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-04-19	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-04-19	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2022-04-19	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2022-04-19	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2022-04-19	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2022-05-03	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
9	2022-05-04	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss Instruments	TDEMI 30M	ARN	2022-04-20	2023-04-20
LISN	Solar Electronics	9252-50-R-24-BNC	LIP	2021-09-10	2022-09-10
Cable - Conducted Cable Assembly	Northwest EMC	EVG, HHD, RKT	EVGA	2022-01-04	2023-01-04

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.2 dB	-3.2 dB

CONFIGURATIONS INVESTIGATED

PCTE0021-3

MODES INVESTIGATED

BTLE Continuous Tx: Low Ch = 2402 MHz, Mid Ch = 2442 MHz, High Ch = 2480 MHz

EUT:	SHOUT sp H	landheld Iri	dium Smartphone		Work Order:	PCTE0021	
Serial Number:	3000425060	205200			Date:	2022-05-04	
Customer:	NAL Research Corporation				Temperature:	23.3°C	
Attendees:	None				Relative Humidity:	41%	
Customer Project:	None				Bar. Pressure (PMSL):	1017 mb	
Tested By:	Jeff Alcoke				Job Site:	EV07	
Power:	5.0 VDC via	USB			Configuration:	PCTE0021-3	
TEST SPECIFIC	CATIONS						
Specification:				Method:			
FCC 15.207:2022				ANSI C63.	10:2013		
TEST PARAME	TERS						
Run #: 3		Line:	Neutral		Add. Ext. Attenuation (dB)): 0	
COMMENTS							
None							
EUT OPERATING MODES							
BTLE Continuous Tx: Mid Ch = 2442 MHz							
DEVIATIONS FROM TEST STANDARD							

Average Data - vs - Average Limit

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.152	39.3	20.1	59.4	65.9	-6.5			
17.376	32.2	20.6	52.8	60.0	-7.2			
17.942	31.3	20.6	51.9	60.0	-8.1			
18.685	29.7	20.6	50.3	60.0	-9.7			
16.076	29.2	20.5	49.7	60.0	-10.3			
0.184	32.7	20.0	52.7	64.3	-11.6			
0.225	30.6	20.0	50.6	62.6	-12.0			
29.716	26.1	21.1	47.2	60.0	-12.8			
29.839	26.1	21.1	47.2	60.0	-12.8			
29.954	26.0	21.1	47.1	60.0	-12.9			
24.000	25.4	20.9	46.3	60.0	-13.7			
0.623	22.2	19.8	42.0	56.0	-14.0			
6.209	24.5	20.2	44.7	60.0	-15.3			
6.433	24.4	20.2	44.6	60.0	-15.4			
0.577	20.6	19.8	40.4	56.0	-15.6			
0.275	25.1	19.9	45.0	61.0	-16.0			
3.838	19.4	20.0	39.4	56.0	-16.6			
0.417	20.8	19.8	40.6	57.5	-16.9			
5.135	22.7	20.2	42.9	60.0	-17.1			
3.228	18.6	20.0	38.6	56.0	-17.4			
0.339	21.5	19.8	41.3	59.2	-17.9			
20.483	21.1	20.7	41.8	60.0	-18.2			
12.916	21.2	20.4	41.6	60.0	-18.4			
2.542	16.6	20.0	36.6	56.0	-19.4			
0.756	16.3	19.9	36.2	56.0	-19.8			

Average Data - vs - Average Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
17.382	22.1	20.6	42.7	50.0	-7.3			
24.000	21.3	20.9	42.2	50.0	-7.8			
17.445	21.2	20.6	41.8	50.0	-8.2			
16.082	19.3	20.5	39.8	50.0	-10.2			
18.685	18.1	20.6	38.7	50.0	-11.3			
0.620	14.6	19.8	34.4	46.0	-11.6			
29.954	16.7	21.1	37.8	50.0	-12.2			
0.152	22.5	20.1	42.6	55.9	-13.3			
14.793	13.1	20.4	33.5	50.0	-16.5			
0.554	9.1	19.8	28.9	46.0	-17.1			
20.484	11.3	20.7	32.0	50.0	-18.0			
3.784	7.8	20.0	27.8	46.0	-18.2			
0.225	14.1	20.0	34.1	52.6	-18.5			
0.193	15.2	20.0	35.2	53.9	-18.7			
6.209	10.8	20.2	31.0	50.0	-19.0			
6.371	10.3	20.2	30.5	50.0	-19.5			
3.228	6.3	20.0	26.3	46.0	-19.7			
2.483	6.2	20.0	26.2	46.0	-19.8			
0.739	6.1	19.9	26.0	46.0	-20.0			
1.920	6.0	20.0	26.0	46.0	-20.0			
12.979	9.6	20.4	30.0	50.0	-20.0			
5.023	9.7	20.2	29.9	50.0	-20.1			
1.979	5.5	20.0	25.5	46.0	-20.5			
1.183	4.9	19.9	24.8	46.0	-21.2			
0.280	9.6	19.9	29.5	50.8	-21.3			

CONCLUSION

Pass

Tested By

EUT:	SHOUT sp H	SHOUT sp Handheld Iridium Smartphone Work Order: PCTE0021					
Serial Number:	3000425060205200				Date:	2022-05-04	
Customer:	NAL Researc	ch Corpora	tion		Temperature:	23.3°C	
Attendees:	None				Relative Humidity:	41%	
Customer Project:	None				Bar. Pressure (PMSL):	1017 mb	
Tested By:	Jeff Alcoke				Job Site:	EV07	
Power:	5.0 VDC via	USB			Configuration:	PCTE0021-3	
TEST SPECIFIC	CATIONS			_			
Specification:				Method:			
FCC 15.207:2022				ANSI C63.	10:2013		
TEST PARAME	TERS						
Run #: 4		Line:	High Line		Add. Ext. Attenuation (dB): 0	
COMMENTS							
None							
EUT OPERATING MODES							
BTLE Continuous Tx: Mid Ch = 2442 MHz							
DEVIATIONS FROM TEST STANDARD							
None							

Average Data - vs - Average Limit

RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
18.007	27.9	20.6	48.5	60.0	-11.5			
17.384	27.5	20.6	48.1	60.0	-11.9			
18.037	26.6	20.6	47.2	60.0	-12.8			
16.638	26.2	20.6	46.8	60.0	-13.2			
29.954	25.7	21.1	46.8	60.0	-13.2			
24.000	25.6	20.9	46.5	60.0	-13.5			
0.152	30.6	20.1	50.7	65.9	-15.2			
19.297	23.2	20.6	43.8	60.0	-16.2			
0.625	19.3	19.8	39.1	56.0	-16.9			
0.187	26.2	20.0	46.2	64.2	-18.0			
5.847	20.0	20.2	40.2	60.0	-19.8			
0.231	22.6	20.0	42.6	62.4	-19.8			
6.468	19.9	20.2	40.1	60.0	-19.9			
3.897	15.3	20.0	35.3	56.0	-20.7			
5.068	19.1	20.2	39.3	60.0	-20.7			
0.272	20.3	19.9	40.2	61.1	-20.9			
3.157	14.0	20.0	34.0	56.0	-22.0			
12.158	17.5	20.4	37.9	60.0	-22.1			
0.512	13.9	19.8	33.7	56.0	-22.3			
0.330	17.3	19.8	37.1	59.5	-22.4			
0.473	13.8	19.8	33.6	56.5	-22.9			
2.533	13.0	20.0	33.0	56.0	-23.0			
0.740	11.5	19.9	31.4	56.0	-24.6			
1.914	11.1	20.0	31.1	56.0	-24.9			
7.793	14.8	20.2	35.0	60.0	-25.0			

Average Data - vs - Average Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
24.000	21.5	20.9	42.4	50.0	-7.6			
29.943	16.5	21.1	37.6	50.0	-12.4			
18.007	16.5	20.6	37.1	50.0	-12.9			
16.635	16.3	20.6	36.9	50.0	-13.1			
0.626	10.7	19.8	30.5	46.0	-15.5			
18.071	13.9	20.6	34.5	50.0	-15.5			
3.923	3.4	20.0	23.4	46.0	-22.6			
3.452	2.7	20.0	22.7	46.0	-23.3			
13.742	6.2	20.4	26.6	50.0	-23.4			
5.846	6.3	20.2	26.5	50.0	-23.5			
2.536	2.5	20.0	22.5	46.0	-23.5			
6.433	6.1	20.2	26.3	50.0	-23.7			
0.152	11.7	20.1	31.8	55.9	-24.1			
0.536	2.1	19.8	21.9	46.0	-24.1			
5.069	5.4	20.2	25.6	50.0	-24.4			
1.912	1.3	20.0	21.3	46.0	-24.7			
0.739	1.1	19.9	21.0	46.0	-25.0			
1.949	0.7	20.0	20.7	46.0	-25.3			
1.174	0.2	19.9	20.1	46.0	-25.9			
0.449	1.1	19.8	20.9	46.9	-26.0			
0.187	8.1	20.0	28.1	54.2	-26.1			
0.339	3.2	19.8	23.0	49.2	-26.2			
1.566	-0.2	19.9	19.7	46.0	-26.3			
0.226	6.0	20.0	26.0	52.6	-26.6			
0.272	4.6	19.9	24.5	51.1	-26.6			

CONCLUSION

Pass

Tested By

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2013, 6.9.3, the spectrum analyzer was configured as follows:

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The EUT was set to the channels and modes listed in the datasheet.

The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

					TbtTx 2021.12.14.1	XMit 2022.02.07.0
EUT:	SHOUT sp Handheld Irid	ium Smartphone		Work Order:	PCTE0021	
Serial Number:	FCC 3			Date:	19-Apr-22	
Customer:	NAL Research Corporati	on		Temperature:	22.1 °C	
Attendees:	None			Humidity:	40.9% RH	
Project:	None			Barometric Pres.:	1020 mbar	
Tested by:	Jeff Alcoke		Power: 5.0 VDC via USB	Job Site:	EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247:2022			ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM	M TEST STANDARD					
None						
			- / h.			
Configuration #	2	(1 at 11			
		Signature	CAT ATTA			
					Limit	
				Value	(≥)	Result
BLE/GFSK 1 Mbps						
	Low Channel, 2402 MHz			683.994 kHz	500 kHz	Pass
	Mid Channel, 2442 MHz			708.899 kHz	500 kHz	Pass
	High Channel, 2480 MHz			681.526 kHz	500 kHz	Pass
	-					

-73.0 Center 2.442000 GHz #Res BW 100 kHz		#VE	SW 300 kH	z		Span	5.000 MHz
Occupied Bandwidth	י 0419 MHz	Total P	ower	13.2 di	Зm		
Transmit Freq Error	-468 Hz	% of O	3W Power	99.00) %		
x dB Bandwidth	708.9 kHz	x dB		-6.00	dB		
MSG				Le STATUS			

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

							TbtTx 2021.12.14.1	XMit 2022.02.07.0
EUT:	SHOUT sp Handheld Iridi	um Smartphone				Work Order:	PCTE0021	
Serial Number:	FCC 3					Date:	19-Apr-22	
Customer:	NAL Research Corporation	on				Temperature:	22.2 °C	
Attendees:	None					Humidity:	40.8% RH	
Project:	None					Barometric Pres.:	1020 mbar	
Tested by:	Jeff Alcoke		Power: 5.0 VDC via USB			Job Site:	EV06	
TEST SPECIFICAT	IONS		Test Method					
FCC 15.247:2022			ANSI C63.10:2013					
COMMENTS								
None								
DEVIATIONS FROM	M TEST STANDARD							
None								
Configuration #	2	Signature	Tot the					
				Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
BLE/GFSK 1 Mbps								
	Low Channel, 2402 MHz			7.129	3	10.129	36	Pass
	Mid Channel, 2442 MHz			7.443	3	10.443	36	Pass
	High Channel, 2480 MHz			6.925	3	9.925	36	Pass

Out Pwr Antenna EIRP EIRP Limit						
		(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
		7.443	3	10.443	36	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

				TbITx 2021.12.14.1	XMit 2022.02.07.0
EUT:	SHOUT sp Handheld Iridium Smartphone		Work Order:	PCTE0021	
Serial Number:	FCC 3		Date:	19-Apr-22	
Customer:	NAL Research Corporation		Temperature:	23.2 °C	
Attendees:	None		Humidity:	41% RH	
Project:	None		Barometric Pres.:	1018 mbar	
Tested by:	Jeff Alcoke	Power: 5.0 VDC via USB	Job Site:	EV06	
TEST SPECIFICAT	IONS	Test Method			
FCC 15.247:2022		ANSI C63.10:2013			
COMMENTS					
None					
DEVIATIONS FROM	M TEST STANDARD				
None					
Configuration #	2 Signature	Tof the			
			Out Pwr (dBm)	Limit (dBm)	Result
BLE/GFSK 1 Mbps					
	Low Channel, 2402 MHz		7.129	30	Pass
	Mid Channel, 2442 MHz		7.443	30	Pass
	High Channel, 2480 MHz		6.925	30	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

							TbtTx 2021.12.14.1	XMit 2022.02.07.0
EUT:	SHOUT sp Handheld Iridium S	Smartphone				Work Order:	PCTE0021	
Serial Number:	FCC 3					Date:	4-May-22	
Customer:	NAL Research Corporation					Temperature:	23.2 °C	
Attendees:	None					Humidity:	41% RH	
Project:	None					Barometric Pres.:	1017 mbar	
Tested by:	Jeff Alcoke		Power:	5.0 VDC via USB		Job Site:	EV06	
TEST SPECIFICAT	IONS			Test Method				
FCC 15.247:2022				ANSI C63.10:2013				
COMMENTS								
None								
DEVIATIONS FROM	M TEST STANDARD							
None								
Configuration #	2	Signature	JA					
				Frequency	Measured	Max Value	Limit	
				Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
BLE/GFSK 1 Mbps								
	Low Channel, 2402 MHz			Fundamental	2402.24	N/A	N/A	N/A
	Low Channel, 2402 MHz			30 MHz - 12.5 GHz	4804.25	-54.98	-20	Pass
	Low Channel, 2402 MHz			12.5 GHz - 25 GHz	24983.21	-54.67	-20	Pass
	Mid Channel, 2442 MHz			Fundamental	2442.24	N/A	N/A	N/A
	Mid Channel, 2442 MHz			30 MHz - 12.5 GHz	4883.42	-55.11	-20	Pass
	Mid Channel, 2442 MHz			12.5 GHz - 25 GHz	24061.47	-54.44	-20	Pass
	High Channel, 2480 MHz			Fundamental	2480.24	N/A	N/A	N/A
	High Channel, 2480 MHz			30 MHz - 12.5 GHz	4959.54	-54.65	-20	Pass
	High Channel, 2480 MHz			12.5 GHz - 25 GHz	24960.32	-53.94	-20	Pass

	BLE/GFSK 1 Mbps, Low Ch	annel, 2402 MHz		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)		≤ (dBc)	Result
Fundamentai	2402.24	IN/A	N/A	N/A
🧱 Keysight Spectrum Analyzer - Element Materials Techn	ology			
KI RE 50 Ω DC	SENSE:INT	ALIGN OFF	: Voltage	04:32:40 PM Apr 19, 2022 TRACE 1 2 3 4 5 6
	PNO: Wide Trig: Free Run IFGain:Low #Atten: 10 dB			
Ref Offset 23.62 dB			Mkr1 2.4	402 244 23 GHz
	· · · · · · · · · · · · · · · · · · ·			0.25 GDil
0.00			``	
-10.0				
-20.0				
-30.0				
-40.0				
-50.0				
-60.0				
-70.0				
-80.0				
Center 2.4020000 GHz #Res BW 100 kHz	#\/B\W 300 kHz		Sweep 1	Span 1.000 MHz
MSG	#VBW 300 KH2	STATUS	Sweep	1052-1115 (0192 pts)
Frequency	BLE/GFSK 1 Mbps, Low Ch	annel, 2402 MHz	Limit	
Range	Fred (MHz)	(dBc)	≤ (dBc)	Result
Tange	7 4804.25	-54.98	-20	Pass
30 MHz - 12.5 GH	2 4004.2J			
30 MHz - 12.5 GH.	4004.23			
30 MHz - 12.5 GH		A LIGN OFF		04-33:57 PM Apr 19, 2022

LXI R	L	RF	50 Ω D	C CORREC		S	ENSE:INT	<u>∧</u> A	LIGN OFF		04:33:57	PM Apr 19, 2022
				I	PNO: Fast FGain:Low	Ģ	Trig: Free #Atten: 10	Run dB	#Avg Type:	Voltage	TF	ACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P
10 dE	3/div	Ref Of Ref 8	ffset 22 dB 1.38 dBm								Mkr1 4.8 -48	04 3 GHz 3.69 dBm
LOg												
-1.62												
-11.6												
-21.6												
-31.6												
-41.6												
51.0												
-51.6					in the states		بإناميانيها			إحاباني والتربية المأو		
-61.6			ake hitsen a start									
-71.6												
-81.6												
Stor	+ 20 M							L			Ston	2 500 CH-
#Re	s BW 1	00 kl	Iz		#	VBV	V 300 kHz			Swe	ep 1.192 s	s (8192 pts)
MSG						-			STATUS			

	BL	E/GFSK 1 Mbps, Low Chan	nel, 2402 MHz		
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
	12.5 GHz - 25 GHz	24983.21	-54.67	-20	Pass
Keysight Spec	ctrum Analyzer - Element Materials Technology RF 50 Ω DC CORREC	SENSE:INT	ALIGN OFF		04:34:53 PM Apr 19, 2022
	PNO	: Fast Trig: Free Run	#Avg Type	: Voltage	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P
	Ref Offset 22 dB			Mkr	1 24.983 2 GHz -48 38 dBm
	Rei 8.38 übili				
-1.62					
-11.6					
-21.6					
-31.6					
-41.6					1
-51.6		مسلساته البري ل	un linkinin muha lada	ومتعاد الأرباع ويستعاد والمستحاب	In Lense 1 Land Distances in Low Villey State
Charles and			And the state of the state of the state	A REAL PROPERTY AND A REAL	Alter provide the second s
-61.6					
-71.6					
94.6					
-61.6					
Start 12.50 #Res BM	00 GHZ 100 kHz	#V/BM/ 300 kHz		Sween	Stop 25.000 GHz
MSG		WODW-9W0M1/4	To STATUS	Gweep	
			Normal Street		
	BL	E/GFSK 1 Mbps, Mid Chan	nel, 2442 MHz		
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBc)	<u>≤ (dBc)</u>	Result
	Fundamental	2442.24	N/A	N/A	N/A

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
Fundamental	2442.24	N/A	N/A	N/A

Keysight Spectrum A	Analyzer - Element Materials Techno	ology					
KL RF	50 Ω DC	PNO: Wide CP	Trig: Free Run #Atten: 10 dB	ALIGN OFF #Avg Type:	Voltage	04:38:44 TR T	PM Apr 19, 2022 ACE 1 2 3 4 5 6 YPE M WWWWW DET P P P P P P
Ref 10 dB/div Ref	Offset 23.62 dB f 10.00 dBm				Mkr1 2	2.442 242	2 40 GHz 6.60 dBm
0.00							And the second
-10.0							
-20.0							
-30.0							
-40.0							
-50.0							
-70.0							
-80.0							
Center 2.4420 #Res BW 100	000 GHz kHz	#VBV	V 300 kHz		Sweep	Span 1.092 ms	1.000 MHz (8192 pts)
MSG				STATUS			

BLE/GFSK 1	Mbps, Mid Chanr	nel, 2442 MHz		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
12.5 GHz - 25 GHz	24061.47	-54.44	-20	Pass

Key	vsight Spectrun	n Analyzer - Eleme	nt Materials Techno	ology						
LXI R	- F	RF 50 Ω	DC CORREC		SENSE:INT	Al 🕂	IGN OFF #Ava Type:	Voltage	04:40:50 TR	PM Apr 19, 2022
				PNO: Fast G	Trig: Free R #Atten: 10 d	un B			1	
10 dE	Re 3/div R e	of Offset 22 d ef 8.38 dBr	B n					N	1kr1 24.0 -47	61 5 GHz ′.84 dBm
Log					Ť					
-1.62										
-11.6										
-21.6										
-31.6										
-41.6										
-51.6						يوز أن المحمد قاط	Lines	o Jakes Constants	a costa constitución	
01.0	ملوطيني الإطوار	de la companya de la	level of the provide the state			ويقتر من يوغا وقصر قام العان	and a site of a second second	And the second states		
-61.6										
-71.6										
-81.6										
Star #Re:	t 12.500 (s BW 1 <u>00</u>	GHz kHz		#VB	W 300 kHz			Swe	Stop 2 ep 1.19 <u>5 s</u>	5.000 GHz (8192 pts)
MSG							To STATUS			

	Frequency	Measured Free (MHz)	Max Value	Limit	Pocult
	Fundamental	2480.24	N/A	<u> </u>	N/A
		1			1
Keysight Spectrum Ana	lyzer - Element Materials Technology				
KI RE RF	50 Ω DC	SENSE:INT	ALIGN OFF #Avg Type:	Voltage	04:15:39 PM Apr 19, 2022
	PNO: W IFGain:	/ide Trig: Free Run Low #Atten: 10 dB	a .jp		TYPE MWWWW DET P P P P P P
Ref 0	ffset 23.62 dB			Mkr1 2.4	80 240 32 GHz 6.09 dBm
		Ť		1	
0.00					
-10.0					
-20.0					
-30.0					
-40.0					
-50.0					
-60.0					
-70.0					
-80.0					
Center 2 48000	Of GHZ				Span 1 000 MHz
#Res BW 100 ki	lz	#VBW 300 kHz		Sweep 1	.092 ms (8192 pts)
MSG			STATUS		
		OFOK A Mhase Llist Of			
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBc)	<u>≤ (dBc)</u>	Result
	30 MHz - 12.5 GHz	4959.54	-54.65	-20	Pass

LXI R	L	RF	50 Ω DC	CORREC	·9)	S	ENSE:INT	<u>∧</u> A	LIGN OFF		04:16:35	PM Apr 19, 2022
				I	PNO: Fast FGain:Low	Ģ	Trig: Free #Atten: 10	Run dB	#Avg Type:	Voltage	TR 1	ACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P
10 dE	3/div	Ref Offse Ref 8.3	et 22 dB 8 dBm								Mkr1 4.9 -48	59 5 GHz 3.56 dBm
-1.62												
-11.6												
-21.6												
-31.6												
-41.6							1					
-51.6			المريري	والمراجع والمتعادية والمتعاد	والمراجع المراجع		وريافا ومعاقد ومع	ويتأكرونوني التقلي	والأفائة ومعاقلته والتأقص	ومغافلتين المعرور والتقرر	والاس تواريسانيا والم	and the second second second
-61.6	فاجتليتهم			a di tanggan di Kabupatèn di Kabu	And the state				and the second	And States of Street, and States.		n hill site (a file an a file a
-71.6												
-81.6												
Star #Res	t 30 MH s BW 1	lz 00 kHz			#	VBV	V 300 kHz			Swe	Stop 1 ep 1.192 s	2.500 GHz (8192 pts)
MSG									STATUS			

		Fred	uencv		Measu	ired	Max Value	Limit		
		R	ange		Frea (M	/Hz)	(dBc)	≤ (dBc)	Res	ult
		12.5 GH	z - 25 GHz		24960	.32	-53.94	-20	Pas	SS
Keysi	ight Spectrum A	Analyzer - Element	Materials Technolo	gy	SENSE:INT		ALIGN OFF		04:18:00 P	- P 2022
				PNO: Fast	Trig: Free	Run	#Avg Type	: Voltage	TRAC TY D	DE 1 2 3 4 5 6 PE M WWWWW ET P P P P P P
	Ref	Offset 22 dB	"	Gam.Low				M	kr1 24.96	0 3 GHz
Log r	div Ref	8.38 dBm						1	-4/.	
-1.62										
-11.6										
-21.6										
-31.6										
-41.6										1
-51.6							. Labor Massard L. order sound	والمتعادية والمتعادين	الالتكرفينيون التربيتهما	Alley Hard Rept rokers in the
	بالبيليس ويباد			and the second	ine a bilden diffe	on a fill it on other	and the shift of the start of the second section	And the second states of the	and the second sec	a second discontinuous
-61.6										
71.6										
-81.6										
Start	12.500 G	Hz							Stop 25	.000 GHz
#Res	BW 100 I	kHz		#VB	W 300 kHz			Swee	p 1.195 s ((8192 pts)

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2021-12-09	2022-12-09
Antenna - Biconilog	EMCO	3142B	AXJ	2021-03-03	2023-03-03
Antenna - Double Ridge	EMCO	3115	AHC	2020-07-01	2022-07-01
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-09	AIV	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2021-11-17	2022-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2021-11-17	2022-11-17
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2021-11-17	2022-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2021-11-17	2022-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	2021-07-16	2022-07-16
Cable	N/A	Bilog Cables	EVA	2021-11-17	2022-11-17
Cable	N/A	Double Ridge Horn Cables	EVB	2022-02-15	2023-02-15
Cable	None	Standard Gain Horn Cables	EVF	2021-11-17	2022-11-17
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	EVY	2021-07-16	2022-07-16
Attenuator	Coaxicom	3910-20	AXZ	2022-02-10	2023-02-10
Filter - High Pass	Micro-Tronics	HPM50111	HFO	2021-11-17	2022-11-17

MEASUREMENT UNCERTAINTY

 Description

 Expanded k=2
 5.2 dB
 -5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 26400 MHz

POWER INVESTIGATED

5.0 VDC via USB

CONFIGURATIONS INVESTIGATED

PCTE0021-1

MODES INVESTIGATED

BTLE Continuous Tx: Low Ch = 2402 MHz, Mid Ch = 2442 MHz, High Ch = 2480 MHz

EUT:	SHOUT sp Har	dheld Iridium Smartphor	ne	Work Order:	PCTE0021
Serial Number:	300042506020	5200		Date:	2022-05-03
Customer:	NAL Research	Corporation		Temperature:	21.8°C
Attendees:	None	·		Relative Humidity:	42.7%
Customer Project:	None			Bar. Pressure (PMSL):	1029 mb
Tested By:	Jeff Alcoke			Job Site:	EV01
Power:	5.0 VDC via US	SB		Configuration:	PCTE0021-1
TEST SPECIFIC	JATIONS				
Specification:			Method:		
-CC 15.247:2022			ANSI C63	.10:2013	
ΤΕϚΤ ΡΔΡΔΜΕ	TERS				
		Test Distance (m)	2	Apt Height(a) (m);	$1 \pm 1/m$
(uii #.	3	Test Distance (III).	3	Ant. Height(s) (III).	1 10 4(11)
COMMENTS					
See comments belo	ow for channel an	d EUT orientation			
EUT OPERATII					
3TLE Continuous T	x: Low Ch = 240	2 MHz, Mid Ch = 2442 N	IHz, High Ch = 248	80 MHz	
	DOM TEOT O				
JEVIATIONS F	ROM IESI S	IANDARD			
Vone					
80					
					<u>→</u>
70					
60					
50					
E ٽ					
\geq					
σ				▶ ▶	
30					
20					
20					
10					

RESULTS - Run #3

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Tvne	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7437.958	27.8	15.1	1.5	73.0	3.0	0.0	Horz	AV	0.0	42.9	54.0	-11.1	High Ch, EUT Vert
7325.600	28.2	14.6	1.5	131.0	3.0	0.0	Horz	AV	0.0	42.8	54.0	-11.2	Mid Ch, EUT Vert
7438.258	27.7	15.1	1.5	106.0	3.0	0.0	Vert	AV	0.0	42.8	54.0	-11.2	High Ch, EUT Vert
7323.917	28.1	14.5	1.5	22.0	3.0	0.0	Vert	AV	0.0	42.6	54.0	-11.4	Mid Ch, EUT Vert
4801.842	30.4	8.2	1.5	121.0	3.0	0.0	Horz	AV	0.0	38.6	54.0	-15.4	Low Ch, EUT Vert
4801.792	30.3	8.2	2.56	195.0	3.0	0.0	Vert	AV	0.0	38.5	54.0	-15.5	Low Ch, EUT Vert
4959.350	29.5	8.4	1.5	234.0	3.0	0.0	Horz	AV	0.0	37.9	54.0	-16.1	High Ch, EUT Vert
4959.567	29.5	8.4	1.5	172.0	3.0	0.0	Vert	AV	0.0	37.9	54.0	-16.1	High Ch, EUT Vert
4883.683	29.5	8.2	1.5	179.0	3.0	0.0	Horz	AV	0.0	37.7	54.0	-16.3	Mid Ch, EUT Vert
4883.808	29.4	8.2	2.13	197.0	3.0	0.0	Vert	AV	0.0	37.6	54.0	-16.4	Mid Ch, EUT Vert
7439.433	39.8	15.1	1.5	73.0	3.0	0.0	Horz	PK	0.0	54.9	74.0	-19.1	High Ch, EUT Vert
7440.833	39.2	15.1	1.5	106.0	3.0	0.0	Vert	PK	0.0	54.3	74.0	-19.7	High Ch, EUT Vert
7324.825	39.5	14.5	1.5	131.0	3.0	0.0	Horz	PK	0.0	54.0	74.0	-20.0	Mid Ch, EUT Vert
7324.600	39.4	14.5	1.5	22.0	3.0	0.0	Vert	PK	0.0	53.9	74.0	-20.1	Mid Ch, EUT Vert
12399.650	29.5	0.5	1.5	0.0	3.0	0.0	Horz	AV	0.0	30.0	54.0	-24.0	High Ch, EUT Vert
12399.970	29.5	0.5	2.03	232.0	3.0	0.0	Vert	AV	0.0	30.0	54.0	-24.0	High Ch, EUT Vert
12399.650	29.5	0.5	1.5	0.0	3.0	0.0	Horz	AV	0.0	30.0	54.0	-24.0	High Ch, EUT Vert
12399.970	29.5	0.5	2.03	232.0	3.0	0.0	Vert	AV	0.0	30.0	54.0	-24.0	High Ch, EUT Vert
12210.610	29.8	0.0	1.3	264.0	3.0	0.0	Horz	AV	0.0	29.8	54.0	-24.2	Mid Ch, EUT Vert
12008.920	29.9	-0.2	1.5	154.0	3.0	0.0	Horz	AV	0.0	29.7	54.0	-24.3	Low Ch, EUT Vert
12212.390	29.7	0.0	1.5	208.0	3.0	0.0	Vert	AV	0.0	29.7	54.0	-24.3	Mid Ch, EUT Vert
4802.025	41.4	8.2	1.5	121.0	3.0	0.0	Horz	PK	0.0	49.6	74.0	-24.4	Low Ch, EUT Vert
12008.120	29.7	-0.2	1.51	62.0	3.0	0.0	Vert	AV	0.0	29.5	54.0	-24.5	Low Ch, EUT Vert
4803.108	41.1	8.2	2.56	195.0	3.0	0.0	Vert	PK	0.0	49.3	74.0	-24.7	Low Ch, EUT Vert
4961.317	40.9	8.4	1.5	234.0	3.0	0.0	Horz	PK	0.0	49.3	74.0	-24.7	High Ch, EUT Vert
4961.458	40.7	8.4	1.5	172.0	3.0	0.0	Vert	PK	0.0	49.1	74.0	-24.9	High Ch, EUT Vert
4886.475	40.7	8.2	1.5	179.0	3.0	0.0	Horz	PK	0.0	48.9	74.0	-25.1	Mid Ch, EUT Vert
4885.292	40.3	8.2	2.13	197.0	3.0	0.0	Vert	PK	0.0	48.5	74.0	-25.5	Mid Ch, EUT Vert
12211.880	42.2	0.0	1.3	264.0	3.0	0.0	Horz	PK	0.0	42.2	74.0	-31.8	Mid Ch, EUT Vert
12398.810	41.0	0.5	2.03	232.0	3.0	0.0	Vert	PK	0.0	41.5	74.0	-32.5	High Ch, EUT Vert
12398.810	41.0	0.5	2.03	232.0	3.0	0.0	Vert	PK	0.0	41.5	74.0	-32.5	High Ch, EUT Vert
12399.040	40.8	0.5	1.5	0.0	3.0	0.0	Horz	PK	0.0	41.3	74.0	-32.7	High Ch, EUT Vert
12399.040	40.8	0.5	1.5	0.0	3.0	0.0	Horz	PK	0.0	41.3	74.0	-32.7	High Ch, EUT Vert
12009.780	41.4	-0.2	1.51	62.0	3.0	0.0	Vert	PK	0.0	41.2	74.0	-32.8	Low Ch, EUT Vert
12008.630	41.0	-0.2	1.5	154.0	3.0	0.0	Horz	PK	0.0	40.8	74.0	-33.2	Low Ch, EUT Vert
12210.860	40.7	0.0	1.5	208.0	3.0	0.0	Vert	PK	0.0	40.7	74.0	-33.3	Mid Ch, EUT Vert

CONCLUSION

Pass

Tested By

Report No. PCTE0003.4

EUT:	SHOUT sp Handheld Iridium Smartphone	Work Order:	PCTE0021
Serial Number:	3000425060205200	Date:	2022-05-03
Customer:	NAL Research Corporation	Temperature:	21.8°C
Attendees:	None	Relative Humidity:	42.7%
Customer Project:	None	Bar. Pressure (PMSL):	1029 mb
Tested By:	Jeff Alcoke	Job Site:	EV01
Power:	5.0 VDC via USB	Configuration:	PCTE0021-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2022	ANSI C63.10:2013

TEST PARAMETERS

Run #:	4	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS

See comments below for channel and EUT orientation

EUT OPERATING MODES

BTLE Continuous Tx: Low Ch = 2402 MHz, Mid Ch = 2442 MHz, High Ch = 2480 MHz

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #4

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Tvne	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.787	31.4	-1.6	1.5	118.0	3.0	20.0	Horz	AV	0.0	49.8	54.0	-4.2	High Ch, EUT Vert
2484.130	31.3	-1.6	1.5	113.0	3.0	20.0	Vert	AV	0.0	49.7	54.0	-4.3	High Ch, EUT Vert
2389.747	31.2	-1.6	1.5	190.0	3.0	20.0	Horz	AV	0.0	49.6	54.0	-4.4	Low Ch, EUT Vert
2389.920	31.2	-1.6	1.5	41.0	3.0	20.0	Vert	AV	0.0	49.6	54.0	-4.4	Low Ch, EUT Vert
2485.310	31.0	-1.5	1.5	28.0	3.0	20.0	Horz	AV	0.0	49.5	54.0	-4.5	High Ch, EUT on Side
2484.413	31.1	-1.6	1.5	106.0	3.0	20.0	Horz	AV	0.0	49.5	54.0	-4.5	High Ch, EUT Horz
2483.967	31.0	-1.6	2.22	360.0	3.0	20.0	Vert	AV	0.0	49.4	54.0	-4.6	High Ch, EUT on Side
2483.940	31.0	-1.6	1.5	191.0	3.0	20.0	Vert	AV	0.0	49.4	54.0	-4.6	High Ch, EUT Horz
2389.033	42.8	-1.6	1.5	41.0	3.0	20.0	Vert	PK	0.0	61.2	74.0	-12.8	Low Ch, EUT Vert
2485.177	42.6	-1.5	1.5	113.0	3.0	20.0	Vert	PK	0.0	61.1	74.0	-12.9	High Ch, EUT Vert
2388.317	42.7	-1.6	1.5	190.0	3.0	20.0	Horz	PK	0.0	61.1	74.0	-12.9	Low Ch, EUT Vert
2484.300	42.5	-1.6	1.5	118.0	3.0	20.0	Horz	PK	0.0	60.9	74.0	-13.1	High Ch, EUT Vert
2484.993	42.4	-1.6	1.5	106.0	3.0	20.0	Horz	PK	0.0	60.8	74.0	-13.2	High Ch, EUT Horz
2484.820	42.3	-1.6	2.22	360.0	3.0	20.0	Vert	PK	0.0	60.7	74.0	-13.3	High Ch, EUT on Side
2484.673	42.2	-1.6	1.5	28.0	3.0	20.0	Horz	PK	0.0	60.6	74.0	-13.4	High Ch, EUT on Side
2484.203	41.8	-1.6	1.5	191.0	3.0	20.0	Vert	PK	0.0	60.2	74.0	-13.8	High Ch, EUT Horz

CONCLUSION

Pass

Tested By

End of Test Report