

Page 40 of 76

Report No.: HK2406042927-1E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

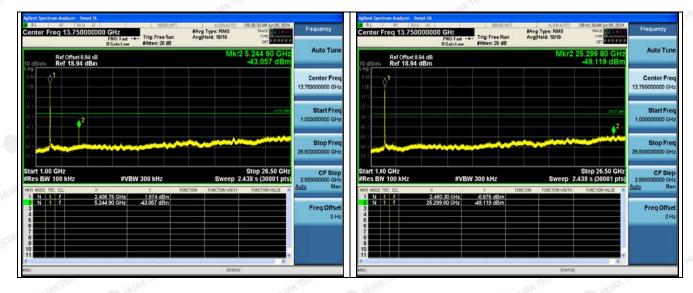
Page 41 of 76

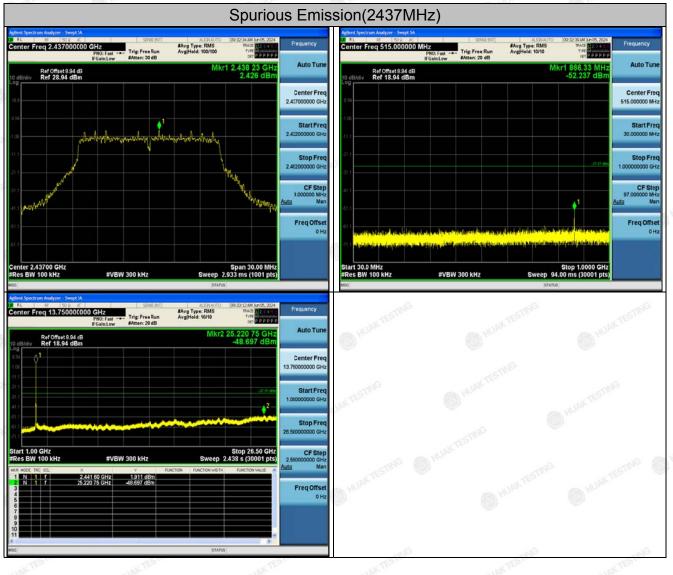
HST ⊢FF

802.11g Modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



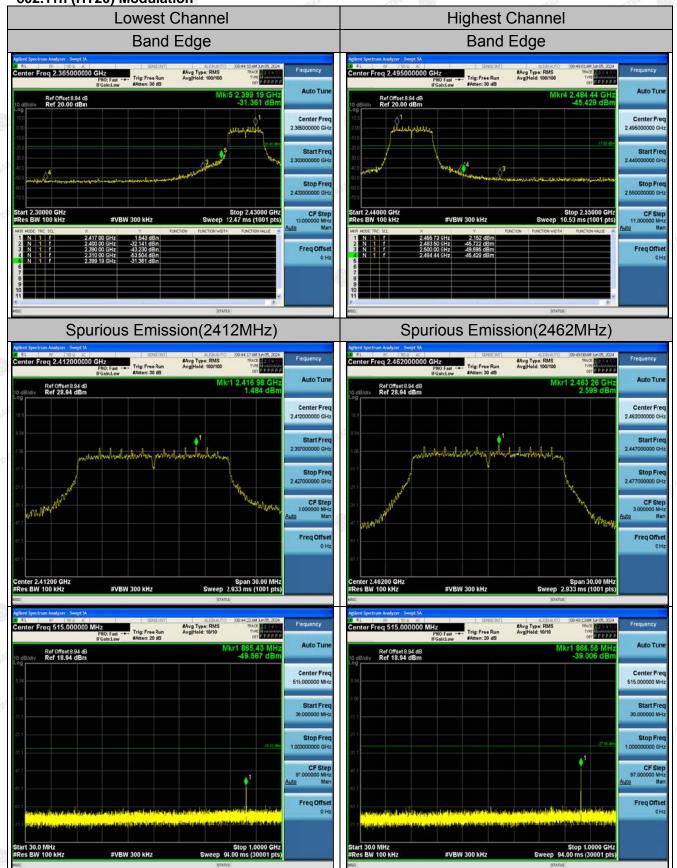

Page 42 of 76

Report No.: HK2406042927-1E

NG

IК °PB

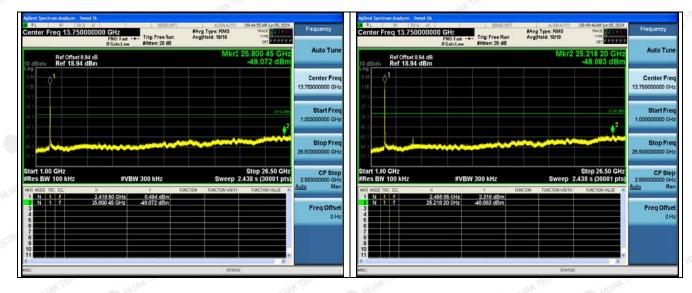
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

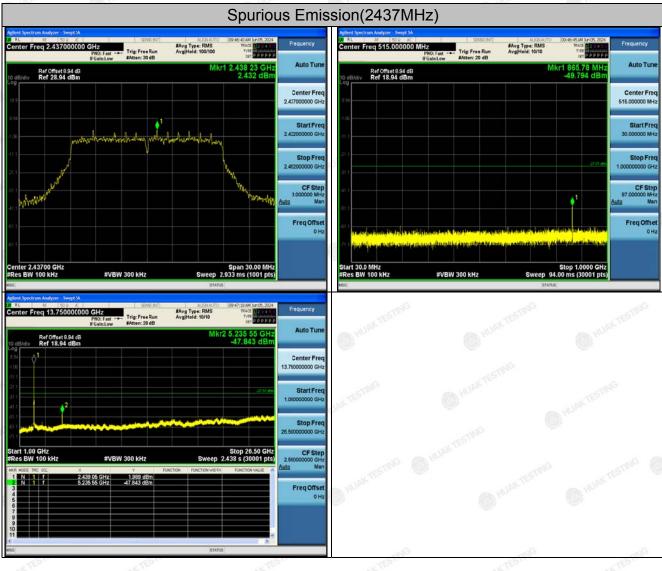

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 43 of 76

J.

802.11n (HT20) Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 44 of 76

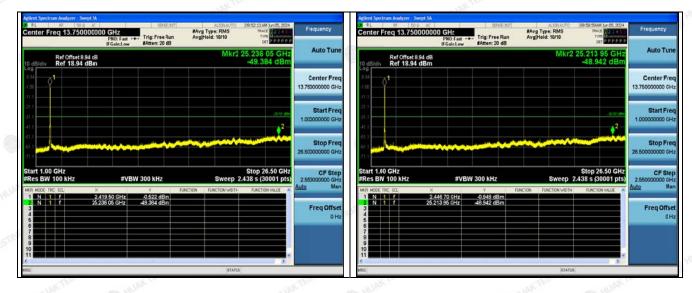
Report No.: HK2406042927-1E

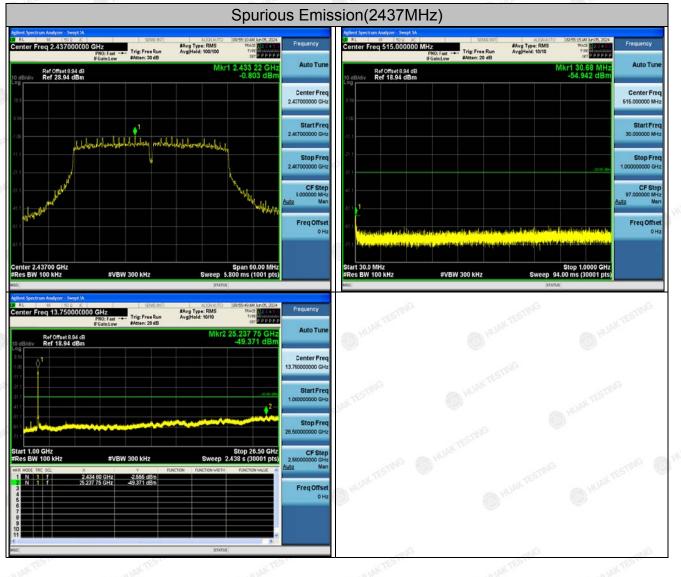

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

802.11n (HT40) Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

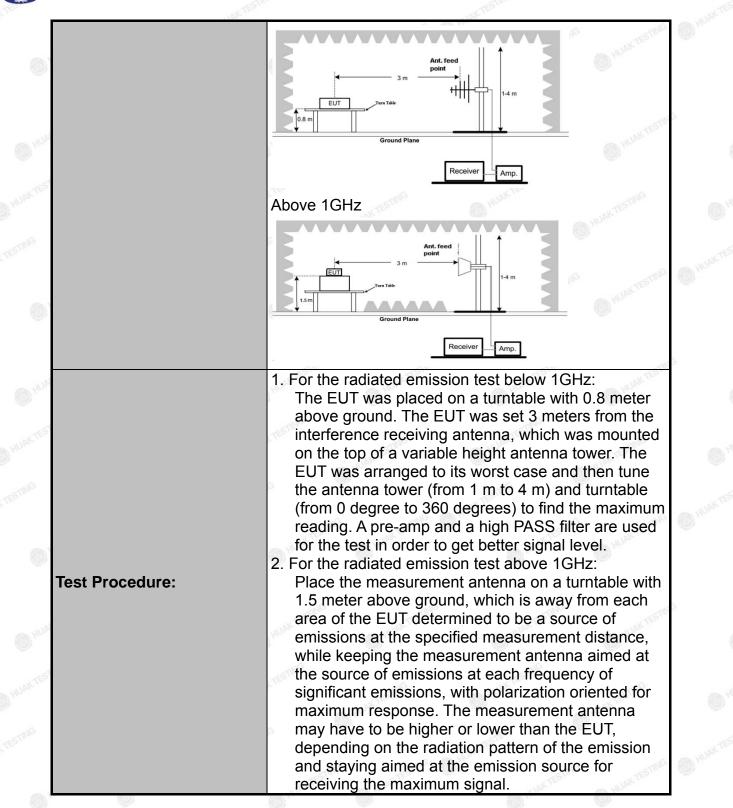

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 46 of 76

Report No.: HK2406042927-1E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


4.7. Radiated Spurious Emission Measurement

Test Specification

FCC Part15	C Section	15.209	TESTI	1G	. 15
ANSI C63.10): 2013	(HUAN		O HUAR
9 kHz to 25 (GHz		STING		
3 m	" TESTING	(m) HI	AKTE		TESTING
Horizontal &	Vertical		.6	0	HOME
Transmitting	mode with	modulat	ion		
Frequency	Detector	RBW	VBW	Remark	
9kHz- 150kHz 150kHz- 30MHz	Quasi-peak Quasi-peak	200Hz 9kHz	1kHz 30kHz		i-peak Valu i-peak Valu
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quas	i-peak Valu
	Peak	1MHz	3MHz	-	eak Value
Above IGHZ	Peak	1MHz	10Hz	Ave	erage Value
TES I II		(microvolts	/meter)	Measurement Distance (meters)	
					300
and the second s			KHZ)	(63)	30 30
			INC		30
					3
216-960		200	1	STING	3 15
Above 960		500	500		3
Frequency		Strength volts/meter)		ce	Detector
Above 1GHz	7		3		Average Peak
For radiated	amissions 3 m Turs Tale Ground Plane				unk restruc
30MHz to 10	GHz				
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Transmitting Frequency 9kHz-150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.5 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with	9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulat Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz Quasi-peak 120KHz 30MHz Quasi-peak 120KHz 30MHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Field Strength 0.009-0.490 2400/F(theta) 0.009-0.490 2400/F(theta) 0.4bove 1GHz 1500 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 5000 5000 For radiated emissions below 30	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulation	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Т 691

Test results:	PASS
	 Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. 6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
	 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW;
	of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

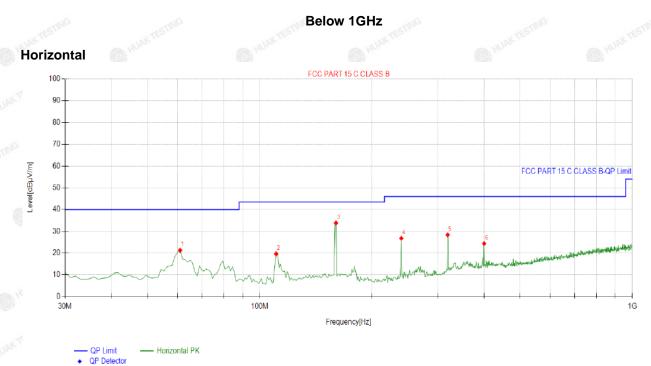
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Instruments

	Radiated Em	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 19, 2025
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 19, 2025
Preamplifier	EMCI	EMC051845 S	HKE-006	Feb. 19, 2025
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2026
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 19, 2025
6d Attenuator	Pasternack	6db	HKE-184	Feb. 19, 2025
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 19, 2025
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 20, 2026
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 20, 2026
Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 20, 2026
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	ALTESTING / MUNK TESTING
RSE Test Software	Tonscend	JS36-RSE 5. 0.0	HKE-184	1

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

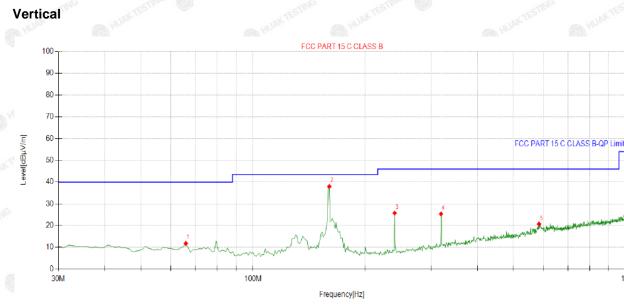
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:


	Suspe	cted List								
8	NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
8	1	61.071071	-18.39	39.70	21.31	40.00	18.69	100	171	Horizontal
	2	110.59059	-20.42	40.09	19.67	43.50	23.83	100	263	Horizontal
	3	160.11011	-17.16	51.01	33.85	43.50	9.65	100	207	Horizontal
8	4	239.72973	-19.54	46.34	26.80	46.00	19.20	100	71	Horizontal
	5	319.34934	-17.06	45.43	28.37	46.00	17.63	100	121	Horizontal
\$	6	399.93994	-15.07	39.44	24.37	46.00	21.63	100	164	Horizontal

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

QP Limit Vertical PK QP Detector

Sus	pecte	d Lis
-----	-------	-------

2	Suspe									
st.	NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	65.925926	-19.02	30.84	11.82	40.00	28.18	100	9	Vertical
80	2	160.11011	-17.16	55.13	37.97	43.50	5.53	100	117	Vertical
	3	239.72973	-19.54	45.30	25.76	46.00	20.24	100	275	Vertical
	4	319.34934	-17.06	42.46	25.40	46.00	20.60	100	32	Vertical
1	5	585.39539	-11.57	32.28	20.71	46.00	25.29	100	248	Vertical
	6	998.05805	-5.23	29.61	24.38	54.00	29.62	100	208	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Free	quency (MHz)	Level@3m	(dBµV/m)	Limit@3m	n (dBµV/m)
				NK TESTIN	-
NG	- CUNG O HU		STING OH	-	NG STING
LAK TES !!	HUAK TE	I LAN TEST	HUAKTE	NAK TEST	HUAKTER
0		0	2	0	

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FIF

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:	HUM	HUM	HUM	6	HOM	HUM
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	51.83	-3.64	48.19	74	-25.81	peak
4824	42.82	-3.64	39.18	54	-14.82	AVG
7236	52.45	-0.95	51.5	74	-22.5	peak
7236	40.27	-0.95	39.32	54	-14.68	AVG

Vertical: Frequency Reading Result Factor **Emission Level** Limits Margin Detector Туре (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 4824 51.77 -3.64 48.13 74 -25.87 peak 4824 42.35 -3.64 38.71 54 -15.29 AVG 50.99 50.04 7236 -0.95 74 -23.96 peak 37.97 54 7236 -0.95 37.02 -16.98 AVG Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Levell imit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

imit

NG

¦K ≥PR

MID CH6 (802.11b Mode)/2437

Horizontal:		w.	Ŷ		w.	<u> </u>
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	52.02	-3.51	48.51	74	-25.49	peak
of 4874	42.08	-3.51	38.57	54	-15.43	AVG
7311	50.11	-0.82	49.29	74	-24.71	peak
7311	39.06	-0.82	38.24	54	-15.76	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss –	Pre-amplifier; Lev	el = Reading +	Factor; Margir	ı = Level-

Vertical:	HUAKTESI	ALAN AND AND AND AND AND AND AND AND AND A	TESTING HUAN TEST		NIAKTESTIN	HUAKTES
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.4	-3.51	49.89	74	-24.11	peak
4874	42.21	-3.51	38.7	54	-15.3	AVG
a ⁶⁶ 7311	52.1	-0.82	51.28	74	-22.72	peak
7311	39.16	-0.82	38.34	54	-15.66	AVG
Remark: Factor	r = Antenna Factor +	· Cable Loss	- Pre-amplifier; Lev	el = Reading +	Factor; Margin	= Level-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11b Mode)/2462

Reading Result (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
125				(JD)	
51.86	-3.43	48.43	74	-25.57	peak
43	-3.43	39.57	54	-14.43	AVG
o ⁶⁰ 51.34	-0.75	50.59	74	-23.41	peak
37.77	-0.75	37.02	54	-16.98	AVG
	43 51.34 37.77	43 -3.43 51.34 -0.75 37.77 -0.75	43 -3.43 39.57 51.34 -0.75 50.59 37.77 -0.75 37.02	43 -3.43 39.57 54 51.34 -0.75 50.59 74 37.77 -0.75 37.02 54	43 -3.43 39.57 54 -14.43 51.34 -0.75 50.59 74 -23.41 37.77 -0.75 37.02 54 -16.98

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:	ANTESTING C		resting way test	u. O	W TESTING	LAK TES
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.14	-3.43	49.71	sta 74	-24.29	peak
4924	43.79	-3.43	40.36	54	-13.64	AVG
7386	50.25	-0.75	49.5	74	-24.5	peak
7386	39.8	-0.75	39.05	54	-14.95	AVG

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

LOW CH1 (802.11g Mode)/2412

Horizontal:	<i>9</i>		V		I A A A A A A A A A A A A A A A A A A A	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	[∞] (dBµV/m)	(dB)	Туре
4824	53.76	-3.64	50.12	74	-23.88	peak
4824 ⁽¹⁾	43.43	-3.64	39.79	54	-14.21	AVG
7236	51.84	-0.95	50.89	74	-23.11	peak
7236	38.39	-0.95	37.44	54	-16.56	AVG

Vertical:						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.76	-3.64	50.12	74	-23.88	peak
4824	43.43	-3.64	39.79	54	-14.21	AVG
7236	51.84	-0.95	50.89	74	-23.11	peak
7236	38.39	-0.95	37.44	54	-16.56	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 57 of 76

FICATION

MID CH6 (802.11g Mode)/2437

Horizontal:		w.	Ŷ		w.	-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	[∭] (dBµV/m)	(dB)	Туре
4874	51.19	-3.51	47.68	74	-26.32	peak
4874	42.14	-3.51	38.63	54	-15.37	AVG
7311	50.93	-0.82	50.11	74	-23.89	peak
7311	39.27	-0.82	38.45	54	-15.55	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier; Lev	el = Reading +	Factor; Margir	ו = Level-

Limit.

ventical.	MAR	ta.	I MURIT		· Mar	un por
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.89	-3.51	48.38	^{MIG} 74	-25.62	peak
4874	43.7	-3.51	40.19	54	-13.81	AVG
7311	51.87	-0.82	51.05	74	-22.95	peak
7311	37.94	-0.82	37.12	54	-16.88	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11g Mode)/2462

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.75	-3.43	50.32	74	-23.68	peak
4924	42.99	-3.43	39.56	54	-14.44	AVG
7386	51.81	-0.75	51.06	74	-22.94	peak
7386	39.85	-0.75	39.1	54	-14.9	AVG

Vertical:	UUAK TESTING	. inst	TESTING UNAK TESTIN		10K TESTING	- UUAK TESTIN
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.75	-3.43	50.32	74	-23.68	peak
4924	42.99	-3.43	39.56	54	-14.44	AVG
7386 ⁷	51.81	-0.75	51.06	74	-22.94	peak
7386	39.85	-0.75	39.1	54	-14.9	AVG
Remark: Factor	r = Antenna Factor +	Cable Loss	– Pre-amplifier; Lev	el = Reading +	Factor; Margin	= Level-

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

EST FiF

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:	HU	HUAN	HU	6	HUAD	AD HO.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.34	-3.64	49.7	74	-24.3	peak
4824	43.28	-3.64	39.64	54	-14.36	AVG
7236	50.05	-0.95	49.1	74	-24.9	peak
7236	40.64	-0.95	39.69	54	-14.31	AVG

Vertical:	TESTING OT		STING	0.	ESTING	TESTING
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	50.98	-3.64	47.34	6 74	-26.66	peak
4824	41.75	-3.64	38.11	54	-15.89	AVG
7236	50.38	-0.95	49.43	74	-24.57	peak
7236	40.07	-0.95	39.12	54	-14.88	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

IK PB

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:			Ŵ			w.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.90	-3.51	48.39	74.00	-25.61	peak
4874 ⁴	41.86	-3.51	38.35	54.00	-15.65	AVG
7311	51.63	-0.82	50.81	74.00	-23.19	peak
7311	38.34	-0.82	37.52	54.00	-16.48	AVG

Vertical:						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.35	-3.51	49.84	74.00	-24.16	peak
4874	42.22	-3.51	38.71	54.00	-15.29	AVG
7311	51.92	-0.82	51.10	74.00	-22.90	peak
7311	40.41	-0.82	39.59	54.00	-14.41	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 61 of 76

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:		۲			w.	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
4924	51.66	-3.43	48.23	74	-25.77	peak
4924	41.97	-3.43	38.54	54	-15.46	AVG
7386	52.37	-0.75	51.62	74	-22.38	peak
7386	37.77	-0.75	37.02	54	-16.98	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	HUAKTES	100	IN TESTIN		WAKTESTI	HUAKTES
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	– Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924	51.6	-3.43	48.17	5 ¹¹⁰ 74	-25.83	peak
4924	42.16	-3.43	38.73	54	-15.27	AVG
⁶⁶ 7386	50.5	-0.75	49.75	74	-24.25	peak
7386	40.51	-0.75	39.76	54	-14.24	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

LOW CH3 (802.11n/H40 Mode)/2422

Horizonta	al:		Ŵ			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	52.25	-3.63	48.62	74	-25.38	peak
4844	41.53	-3.63	37.9	54	-16.1	AVG
7266	51.65	-0.94	50.71	74	-23.29	peak
7266	39.28	-0.94	38.34	54	-15.66	AVG
		~51		~5		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

HUAN	HUAK	C HUAN		HUAKIL	CO HUAN
Meter Reading	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
51.33	-3.63	47.7	74	-26.3	peak
42.33	-3.63	38.7	54	-15.3	AVG
51.45	-0.94	50.51	74	-23.49	peak
37.86	-0.94	36.92	54	-17.08	AVG
	(dBµV) 51.33 42.33 51.45	(dBµV) (dB) 51.33 -3.63 42.33 -3.63 51.45 -0.94	(dBµV) (dB) (dBµV/m) 51.33 -3.63 47.7 42.33 -3.63 38.7 51.45 -0.94 50.51	(dBµV) (dB) (dBµV/m) (dBµV/m) 51.33 -3.63 47.7 74 42.33 -3.63 38.7 54 51.45 -0.94 50.51 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dBµV/m) 51.33 -3.63 47.7 74 -26.3 42.33 -3.63 38.7 54 -15.3 51.45 -0.94 50.51 74 -23.49

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

MID CH6 (802.11n/HT40 Mode)/2437

Horizonta	al:	w.			w.	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	51.32	-3.51	47.81	74	-26.19	peak
4874	41.45	-3.51	37.94	54	-16.06	AVG
7311	50.41	-0.82	49.59	74	-24.41	peak
7311	38.61	-0.82	37.79	54	-16.21	AVG
		100		182		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	HUAN	HUAK	O HUAN		HUAX	O HUAN
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	51.48	-3.51	47.97	74	-26.03	peak
4874	42.48	-3.51	38.97	54	-15.03	AVG
7311	51.48	-0.82	50.66	74	-23.34	peak
7311	38.32	-0.82	37.5	54	-16.5	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH9 (802.11n/HT40 Mode)/2452

Horizontal:

11011201118	al.					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type
4904	53.24	-3.43	49.81	74	-24.19	peak
4904	43.08	-3.43	39.65	54	-14.35	AVG
7356	50.62	-0.75	49.87	74	-24.13	peak
7356	40.64	-0.75	39.89	54	-14.11	AVG
		-CIV		-61"		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	52.6	-3.43	49.17	74	-24.83	peak
4904 ^{مرو}	43.71	-3.43	40.28	54	-13.72	AVG
7356	51.57	-0.75	50.82	74	-23.18	peak
7356	38.07	-0.75	37.32	54	-16.68	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
 (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.02	-5.81	49.21	74	-24.79	peak
2310	STING O HUA	-5.81	ALG I STILL	54	1	AVG
2390	54.21	-5.84	48.37	74	-25.63	peak
2390	1	-5.84	1	54	1	AVG
2400	56.33	-5.84	50.49	م 74	-23.51	peak
2400	AUAN TEAM	-5.84	- HUAK TE	54	NAK TED	AVG

/ertical:	ESTING	HUAN	KTESTING	HUA		K TESTING
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.21	-5.81	48.4	74	-25.6	peak
2310	/	-5.81	 ,	54	1	AVG
2390	53.26	-5.84	47.42	74	-26.58	peak
2390	WAX TESTING	-5.84	I JAK TEST	54	LAK TESTIMA	AVG
2400	51.45	-5.84	45.61	74	-28.39	peak
2400	/	-5.84	/	54	ESTING /	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

IF.

Operation Mode: TX CH High (2462MHz)

н	ori	izo	n	tal	ŀ
				u	

Frequency	Meter Reading	Factor	Emission Level	🖉 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
2483.50	52	-5.65	46.35	74	-27.65	peak
2483.50	ESTING /	-5.65	KIESTING	54	1	AVG
2500.00	51.31	-5.65	45.66	74	-28.34	peak
2500.00	1	-5.65	/	54	/	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	52.2	-5.65	46.55	74	-27.45	peak
2483.50	ISTNG /	-5.65	/ TESTING	54	1	AVG
2500.00	51.01	-5.65	45.36	74	-28.64	peak
2500.00	1	-5.65	/	54	1	AVG

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

املم ما م	
Horizontal	2

Frequency	Meter Reading	Factor	Emission Level	🥬 Limits	Margin	Detector Ture
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
o 2310	53.34	-5.81	47.53	74	-26.47	peak
2310	STING /	-5.81	A TESTING	54	1	AVG
2390	51.33	-5.84	45.49	74	-28.51	peak
2390	/ HUAN	-5.84	1	54	/	AVG
2400	50.76	-5.84	44.92	74	-29.08	peak
2400	/	-5.84	· /	54		AVG

Vertical:	HUAK	HUAK	HUAK .		HUAK	HUAK
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	51.16	-5.81	45.35	74	-28.65	peak
2310	/	-5.81	/	54	/	AVG
2390	51.59	-5.84	45.75	74	-28.25	peak
2390	1	-5.84	· · · · · · · · · · · · · · · · · · ·	54	1	AVG
2400	51.95	-5.84	46.11	74	-27.89	peak
2400	WAR TESTIN	-5.84	"IAK TEST	54	NAK TESTIN	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode:	TX CH High	(2462MHz)
-----------------	------------	-----------

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.84	-5.65	48.19	74	-25.81	peak
2483.50	1	-5.65	1	54	restruce /	AVG
2500.00	51.14	-5.65	45.49	74	-28.51	peak
2500.00	/	-5.65	/	54	1	AVG

Vertical:	<u>г</u>		w.		W	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	[∭] (dBµV/m)	(dB)	Detector Type
2483.50	51.71	-5.65	46.06	74	-27.94	peak
⁶⁶ 2483.50	1	-5.65	1	54	TESTING /	AVG
2500.00	52.15	-5.65	46.5	74	-27.5	peak
2500.00	/	-5.65	· · · · · · · · · · · · · · · · · · ·	54		AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

lorizontal:		w.				
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310	53.43	-5.81	47.62	74	-26.38	peak
2310	1	-5.81	1	54	ESTING /	AVG
2390	54.16	-5.84	48.32	74	-25.68	peak
2390	1	-5.84	1	54	1	AVG
2400	52.71	-5.84	46.87	74	-27.13	peak
2400	1	-5.84	I Jan	54	HUAKTE	AVG

Vertical: **Emission Level** Frequency Meter Reading Factor Limits Margin **Detector Type** (dBµV/m) (dBµV/m) (MHz) (dBµV) (dB) (dB) 2310 53.54 -5.81 47.73 74 -26.27 peak 2310 1 1 -5.81 54 AVG 1 2390 52.04 -5.84 46.2 74 -27.8 peak 2390 1 -5.84 1 54 P AVG 2400 52.29 -5.84 46.45 74 -27.55 peak -5.84 2400 1 1 54 AVG 1

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Horizontal:		S				
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Delector Type
2483.50	52.89	-5.65	47.24	74	-26.76	peak
2483.50	1	-5.65	1	54	A TESTING	AVG
2500.00	53.81	-5.65	48.16	74	-25.84	peak
2500.00	/	-5.65	1	54	G 1	AVG

Vertical:						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turc
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.15	-5.65	48.5	74	-25.5	peak
2483.50	1	-5.65	/	54	K TESTING	AVG
2500.00	52.93	-5.65	47.28	74	-26.72	peak
2500.00	/	-5.65	/	54	NG /	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

AVG

2400

1

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal:			Ψ.		Ŷ	.
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turs
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	52.49	-5.81	46.68	74	-27.32	peak
2310	TING I	-5.81	/	54	ESTING /	AVG
2390	56.62	-5.84	50.78	74	-23.22	peak
2390	1	-5.84	1	54	1	AVG
2400	55.41	-5.84	49.57	74	-24.43	peak
2400	/	-5.84	٥,٣	54	D HOM /	AVG
/ertical:	r = Antenna Factor	+ Cable Loss -	Pre-ampliner; Lev	ei = Reading +	Factor; Margir	i = Levei-Limit.
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.16	-5.81	48.35	74	-25.65	peak
2310	ING MUN	-5.81	1	54	1	AVG
2390	56.38	-5.84	50.54	74	-23.46	peak
2390	1	-5.84	1	54	1	AVG
2400	55.55	-5.84	49.71	_o 74	-24.29	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

1

54

1

-5.84

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2452MHz)

Horizontal:		ý				
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.16	-5.65	48.51	74	-25.49	peak
2483.50	-mus /	-5.65	/	54	restine /	AVG
2500.00	53.59	-5.65	47.94	74	-26.06	peak
2500.00	/	-5.65	1	54	1	AVG
	NG MO		-C	A HO		GIA

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:		Y			<i></i>	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.79	-5.65	48.14	74	-25.86	peak
2483.50	ESTING /	-5.65	/ TESTING	54	1	AVG
2500.00	54.16	-5.65	48.51	74	-25.49	peak
2500.00	I HUR	-5.65	1	54	1	AVG
100	CIT VSHI		100	NS207	- TON	<g\"< td=""></g\"<>

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

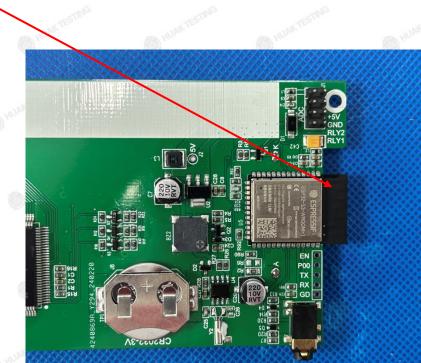
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

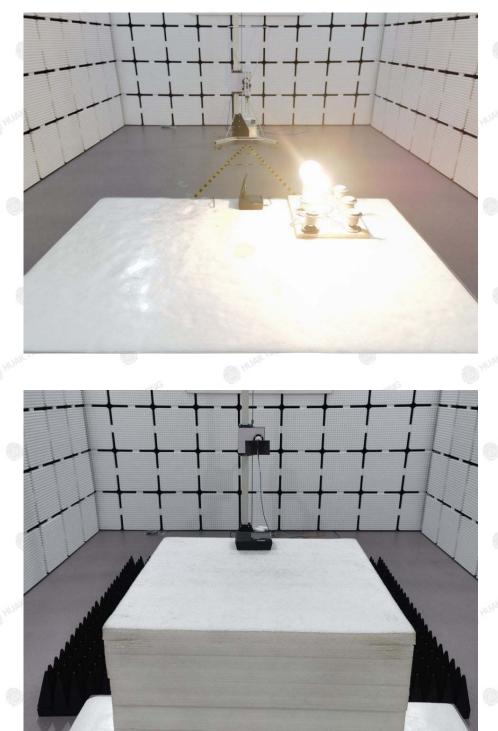
Antenna Connected Construction

The antenna used in this product is a PCB Antenna, is a permanently attached antenna on the PCB. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.16dBi.

<u>Antenna</u>

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL:+86-755 2302 9901 FAX:+86-755 2302 9901 E-mail: service@cer-mark.com

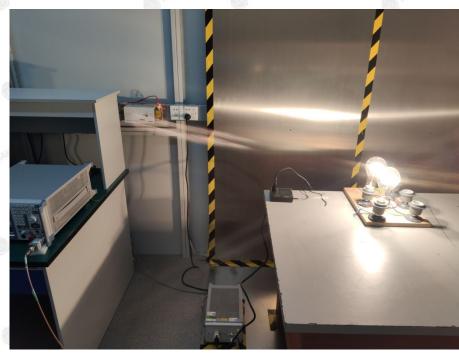


Page 74 of 76

VA

5. Photograph of Test

Radiated Emission



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

EICATIO

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

----End of test report--

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com