Report No.: POCE230918001RF004 V1 0 **RF TEST REPORT** Shenzhen Weihejia Electronic Technology Co., LTD **Product Name: BHWW Laptop** Model(s).: BaseBook **Report Reference No.** POCE230918001RF004 FCC ID 2AXKI-WH160BP Shenzhen Weihejia Electronic Technology Co., LTD **Applicant's Name** Block 102, Building 9, Xihu Industrial park, Xikeng community, Yuanshan Address street, Longgang district, Shenzhen, China **Testing Laboratory** Shenzhen DACE Testing Technology Co., Ltd. H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Address Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China 47 CFR Part 15E **Test Specification Standard** ANSI C63.10-2013 & KDB 789033 D02 General UNII Test Procedures New Rules v02r01 **Date of Receipt** September 18, 2023 Date of Test September 18, 2023 to October 8, 2023 Data of Issue October 8, 2023 Result Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 1 of 271

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE230918001RF004	October 8, 2023

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by: Stone from from Stone Yin / File administrators Supervised by: Tom chen

Tom Chen / Technique principal

Approved by: Machael Mo Machael Mo/ Manager

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 2 of 271

CONTENTS

V1.0

POCE

	T =	SUMMARY	
1	TEST		
	1.1	TEST STANDARDS	
	1.2	SUMMARY OF TEST RESULT	
2	GEN	ERAL INFORMATION	
	2.1	CLIENT INFORMATION	e
	2.2	DESCRIPTION OF DEVICE (EUT)	6
	2.3	DESCRIPTION OF TEST MODES	
	2.4	DESCRIPTION OF SUPPORT UNITS EQUIPMENTS USED DURING THE TEST	
	2.5 2.6	EQUIPMENTS USED DURING THE TEST	
	2.7	AUTHORIZATIONS	
	2.8	ANNOUNCEMENT	
3	EVAL	UATION RESULTS (EVALUATION)	11
•	3.1		
	3.1	3.1.1 Conclusion:	
4	RAD	O SPECTRUM MATTER TEST RESULTS (RF)	
	4.1	CONDUCTED EMISSION AT AC POWER LINE	12
		4.1.1 E.U.T. Operation:	12
		4.1.2 Test Setup Diagram:	12
		4.1.3 Test Data:	
	4.2	DUTY CYCLE	
		4.2.1 E.U.T. Operation:	15
		4.2.2 Test Setup Diagram: 4.2.3 Test Data:	
	4.0		
	4.3		
		4.3.1 E.U.T. Operation:4.3.2 Test Setup Diagram:	
		4.3.3 Test Data:	
	4.4	Power spectral density	
		4.4.1 E.U.T. Operation:	
		4.4.2 Test Setup Diagram:	
		4.4.3 Test Data	19
	4.5	EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	20
		4.5.1 E.U.T. Operation:	21
		4.5.2 Test Setup Diagram:	
		4.5.3 Test Data:	
	4.6	BAND EDGE EMISSIONS (RADIATED)	
		4.6.1 E.U.T. Operation:	
		4.6.2 Test Data:	
	4.7	UNDESIRABLE EMISSION LIMITS (BELOW 1GHz)	
		4.7.1 E.U.T. Operation:	
	4.0	4.7.2 Test Data:	
	4.8	UNDESIRABLE EMISSION LIMITS (ABOVE 1GHz)	
		4.8.1 E.U.T. Operation:	
		4.8.2 Test Setup Diagram:	
-	TEOT		
5 6		I SETUP PHOTOS	
•		-5.2G	
		2, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China	
		ww. poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 3 of 27	1

E-mail: service@poce-cert.com

	Report No.: POCE230918001RF004
PUC	PU
•	POCE

1.	-26DB AND 99% EMISSION BANDWIDTH	
2.	DUTY CYCLE	
3.	MAXIMUM CONDUCTED OUTPUT POWER	
4.	Power Spectral Density	
5.	BANDEDGE	
6.	SPURIOUS EMISSION	
7.	FREQUENCY STABILITY	133
APPENDI	X-5.8G	-
1.	-6DB EMISSION BANDWIDTH	
2.	-26DB AND 99% EMISSION BANDWIDTH	
3.	DUTY CYCLE	
4.	MAXIMUM CONDUCTED OUTPUT POWER	
5.	Power Spectral Density	
6.	BANDEDGE	
7.	SPURIOUS EMISSION	
8.	FREQUENCY STABILITY	

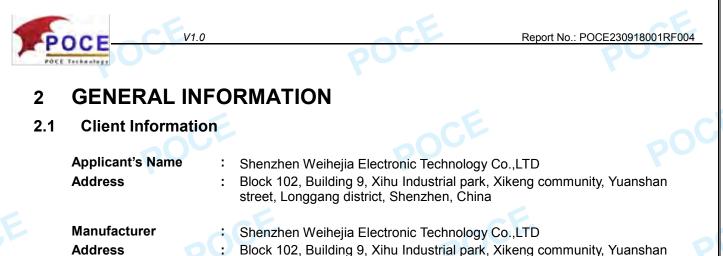
POCE

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

V1.0


47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

Item	Method	Requirement	Result
Antenna requirement	/	Part 15.203	Pass
Conducted Emission at AC power line	ANSI C63.10-2013 section 6.2	47 CFR Part 15.207(a)	Pass
Duty Cycle	ANSI C63.10-2013 section 12.2 (b)		Pass
Maximum conducted output power	ANSI C63.10-2013, section 12.3	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	ANSI C63.10-2013, section 12.5	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Band edge emissions (Radiated)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

1.2 Summary of Test Result

Note: 1.N/A -this device(EUT) is not applicable to this testing item 2. RF-conducted test results including cable loss.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 5 of 271

street, Longgang district, Shenzhen, China

2.2 Description of Device (EUT)

•	
Product Name:	BHWW Laptops
Model/Type reference:	BaseBook
Model Difference:	N/A
Trade Mark:	N/A
Operation Frequency:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz;
POCE	802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz
Number of Channels:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4;U-NII Band 3: 5; 802.11n(HT40)/ac(HT40):U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80):U-NII Band 1: 1; U-NII Band 3: 1
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Hardware Version:	94-0
Software Version:	V1.0
Antenna Type:	FPC ANTENNA
Antenna Gain:	ANT1: 2.20dBi ; ANT2:2.87dBi MIMO: 2.55 dBi

Note: According to KDB662911 D01 Multiple Transmitter Output v02r01, the MIMO antenna is increased to Direct gain=10 log [(10^{G1/10}+10^{G2/10}+...+10^{GN/10})/N_{ANT}] dBi=2.55dBi< 6dBi.

Operation Frequency each of channel

802.11a/n(HT20)/ac(HT20)		
The second se	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency
1	5180 MHz	5745 MHz
2	5200 MHz	5765 MHz
3	5220 MHz	5785 MHz
4	5240 MHz	5805 MHz
5	1	5825 MHz

802.11n(HT40)/ac(HT40)		
E	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 6 of 271

POCE V1.0	CE	Report No.: POCE230918001RF	004
POCE Techaniugy			
1	5190 MHz	5755 MHz	
2	5230 MHz	🥏 5795 MHz	
DOCE	802.11ac(HT80)	CE P	
	U-NII Band 1	U-NII Band 3	
Channel	Frequency	Frequency	
1	5210 MHz	5775 MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11a/n(HT20)/ac(HT20)		
	U-NII Band 1	U-NII Band 3
Test channel	Frequency (MHz)	Frequency (MHz)
Lowest channel	5180 MHz	5745 MHz
Middle channel	5200 MHz	5785 MHz
Highest channel	5240 MHz	5825 MHz

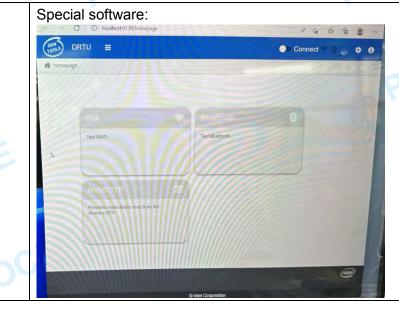
802.11n(HT40)/ac(HT40)		
	U-NII Band 1	U-NII Band 3
Test channel	Frequency (MHz)	Frequency (MHz)
Lowest channel	5190 MHz	5755 MHz
Highest channel	5230 MHz	5795 MHz

802.11ac(HT80)		
U-NII Band 1 U-NII Band 3		
Test channel	Frequency (MHz)	Frequency (MHz)
Middle channel	5210 MHz	5775 MHz

2.3 Description of Test Modes

[No	Title	Description					
_	TM1	802.11a mode	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.					
E	TM2	802.11n mode	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.					
00	ТМЗ	802.11ac mode	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.					
	TM4	802.11ax mode	Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.					
	TM5	802.11n MIMO mode	Keep the EUT in continuously transmitting mode with 802.11n MIMO modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of					
H1 Bui Web:	H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 7 of 271							

		worst case is recorded in the report.
TM6	802.11ac MIMO mode	Keep the EUT in continuously transmitting mode with 802.11ac MIMO modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM7	802.11ax MIMO mode	Keep the EUT in continuously transmitting mode with 802.11ax MIMO modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


Description

Keep the EUT works in continuously transmitting mode (100%duty cycle or max duty cycle)with GFSK modulation.

 \boxtimes Special software is used.

V1 0

- Through engineering command into the engineering mode.
 - engineering command: *#*#3646633#*#*
- Other method:

2.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Description	Manufacturer	Model No.	Remark	Certification
1	ADAPTER	SHENZHEN BAOCHANGTON G TECHNOLOGY CO.,LTD	BCT190342-105DZ	Provide by client	SDOC
2					

2.5 Equipments Used During The Test

V1.0

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal. Due Date			
Shielding room	CY	8*4*3	20160102	2023/1/26	2025/1/25			
Pulse Limiter	Schwarzbeck	VTSD 9561	561-G071	2023/2/27	2024/2/26			
Cable	Schwarzbeck	/	1	2023/2/27	2024/2/26			
Test Receiver	Rohde & Schwarz	ESPI	1164.6607K03- 102109-MH	2023/6/13	2024/6/12 🦿			
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2022/12/29	2023/12/28			
L.I.S.N	Schwarzbeck	NSLK 8126	NSLK 8126	2023/8/8	2024/8/7			
50ΩCoaxial Switch	Anritsu	MP59B	M20531	Ē	/			
EMI Testsoftware	Farad	EZ -EMC	V1.1.42		/			

Emissions in restricted frequency bands and RF							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due		
Test Receiver	R&S	ESCI	102109	2023/6/13	2024/6/12		
Spectrum Analyzer	R&S	FSP30	1321.3008K40- 101729-jR	2023/6/14	2024/6/13		
966 Chamber	CY	9*6*6	20160101	2023/1/26	2025/1/25		
Bore-sighting Antenna rack	PBB	1308503	16033	1	F		
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021/7/5	2024/7/4		
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023/5-21	2025/5-20		
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023/5/13	2025/5/12		
Horn antenna	COM-POWER	AH-1840(40G)	10100008	2023/4/5	2025/4/4		
Power APM(LF)	Schwarzbeck	BBV9743	9743-151	2023/6/13	2024/6/12		
Power APM(HF)	Schwarzbeck	BBV9718	9718-282	2023/6/13	2024/6/12		
Cable(LF)#2	Schwarzbeck	/	/	2023/2/27	2024/2/26		
Cable(LF)#1	Schwarzbeck	/	1	2023/2/27	2024/2/26		
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023/2/28	2024/2/27		
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2023/2/27	2024/2/26		
Power divider	MIDEWEST	PWD-2533	SMA-79	2023/5/11	2026/5/10		
signal generator	Keysight	N5181A	MY48180415	2022/12/10	2023/12/9		
signal generator	Keysight	N5182A	MY50143455	2022/12/29	2023/12/28		
Spectrum Analyzer	Keysight	> N9020A	MY53420323	2022/12/29	2023/12/28		
Power meter	Agilent	E4417A	MY45102835	2022/12/29	2023/12/28		
RF Sensor Unit	TACHOY	TR1029-2	000001	/	/		
RF Control Unit	TACHOY	TR1029-1	000001	/	/		
Position Controller	MF	MF-7802	/	1	/		
EMI Testsoftware	Farad	EZ -EMC	V1.1.42		/		
RF TestSoftware	TACHOY	RTS-01	V2.0.0.0	1	/		

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 9 of 271

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Duty cycle	±3.1%
RF conducted power	±0.733dB
RF power density	±0.234%
Occupied Bandwidth	±3.63%
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded uncertainty	expressed at approximately the 95%

confidence level using a coverage factor of k=2.

2.7 Authorizations

Shenzhen POCE Technology Co., Ltd.
101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
+86-13267178997
86-755-29113252
le Testing Location
Shenzhen POCE Technology Co., Ltd.
101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
+86-13267178997
86-755-29113252
0032847402
CN1342
778666
6270.01

2.8 Announcement

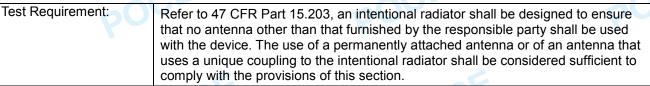
(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.


(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

3 Evaluation Results (Evaluation)

V1 0

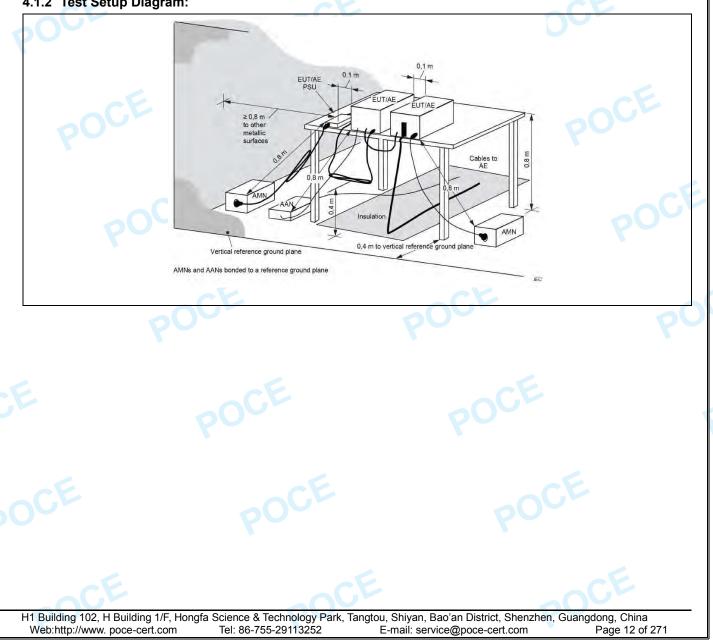
3.1 Antenna requirement

3.1.1 Conclusion:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 11 of 271

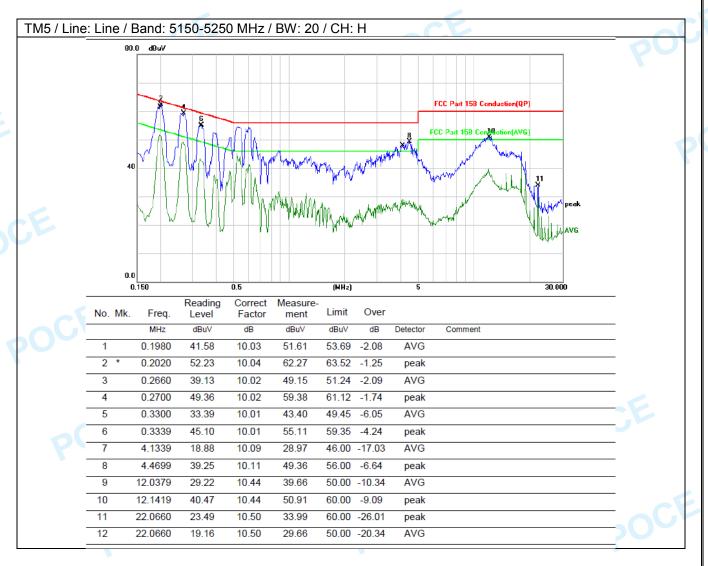
Radio Spectrum Matter Test Results (RF) 4

Conducted Emission at AC power line 4.1

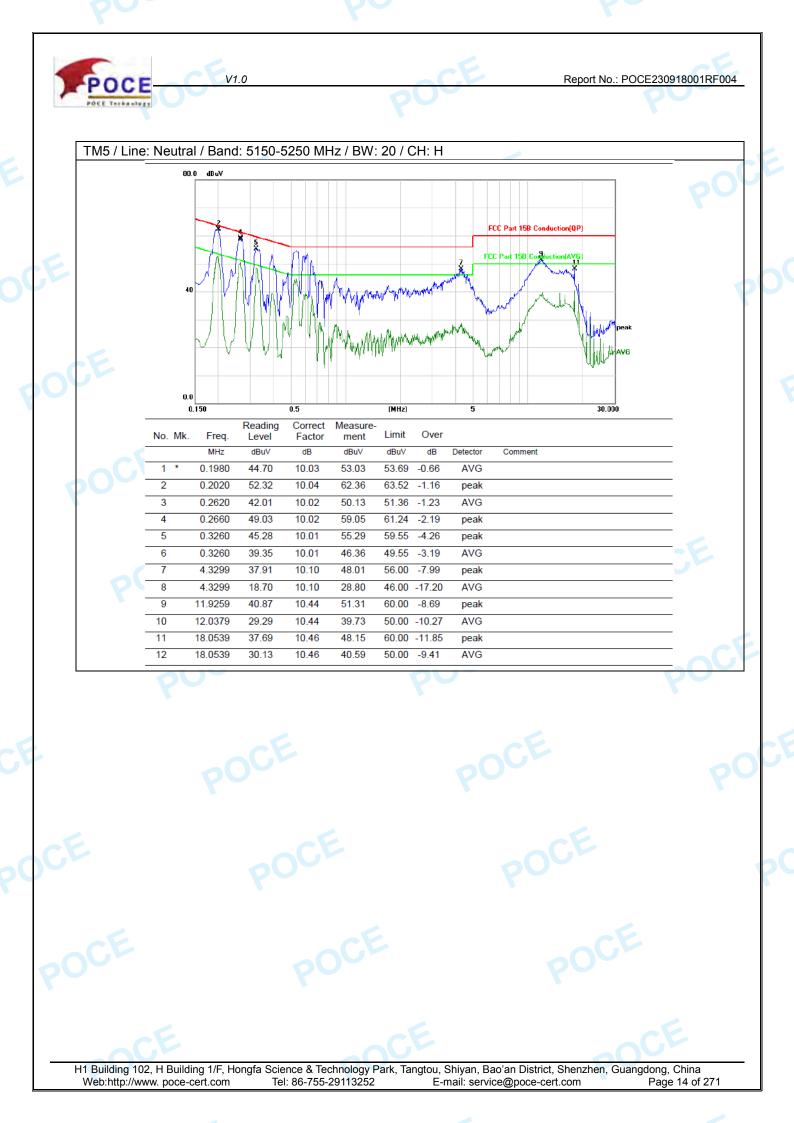

V1.0

Test Requirement:	47 CFR Part 15.207(a)	000	PL
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)	
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5_	56	46
	5-30	60	50
	*Decreases with the logarithm of the	e frequency.	
Test Method:	Refer to ANSI C63.10-2013 section conducted emissions from unlicense		for ac power-line

4.1.1 E.U.T. Operation:


Operating Envir	onment:					
Temperature:	23.1 °C		Humidity:	50.3 %	Atmospheric Pressure:	101 kPa
Pre test mode:	TM1					
Final test mode: TM1						

4.1.2 Test Setup Diagram:



4.1.3 Test Data:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 13 of 271

4.2 **Duty Cycle**

V1.0

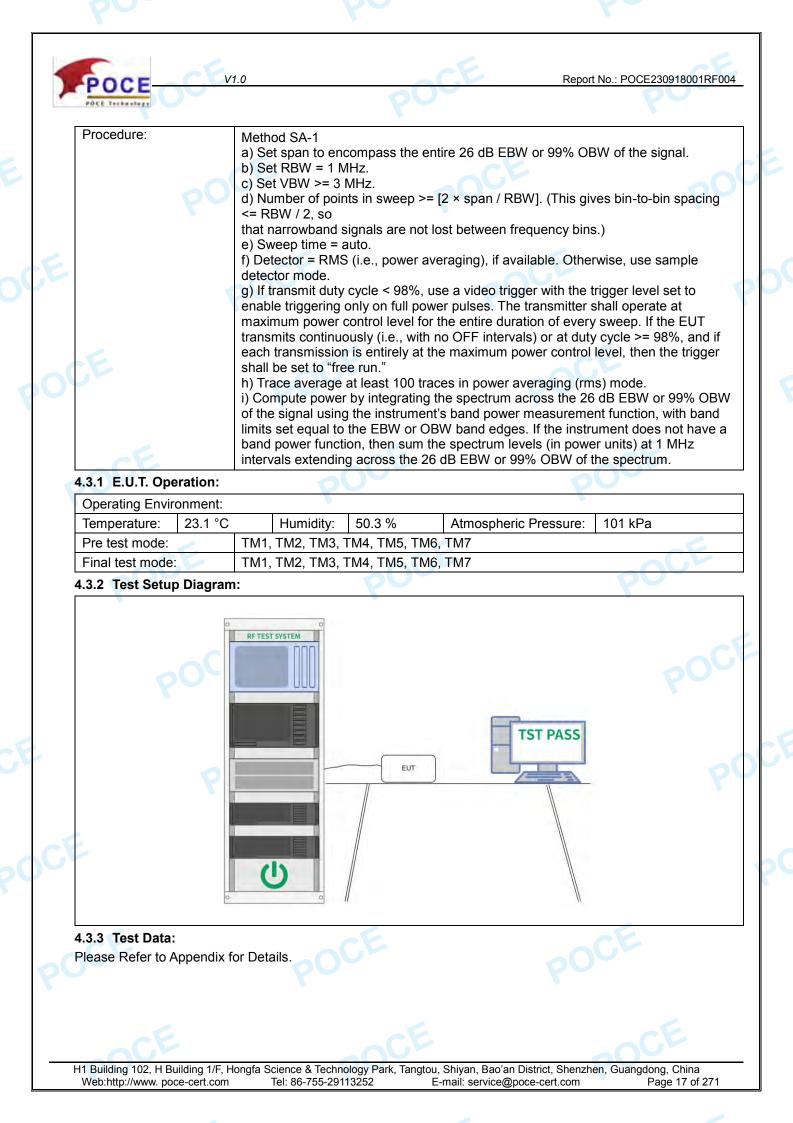
Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.1 °C		Humidity:	50.3 %	Atmospheric Pressure:	101 kPa		
Pre test mode:	Pre test mode: TM1, TM2, TM3, TM4							
Final test mode:	Final test mode: TM1, TM2, TM3, TM4							
4.2.2 Test Setup Diagram								

I.2.2 Test Setup Diagram:

POCE	O RF TEST SYSTEM		OCE
PO		TST PASS	POCE
			PO
4.2.3 Test Data: Please Refer to Append	dix for Details.	POCE	


V1.0

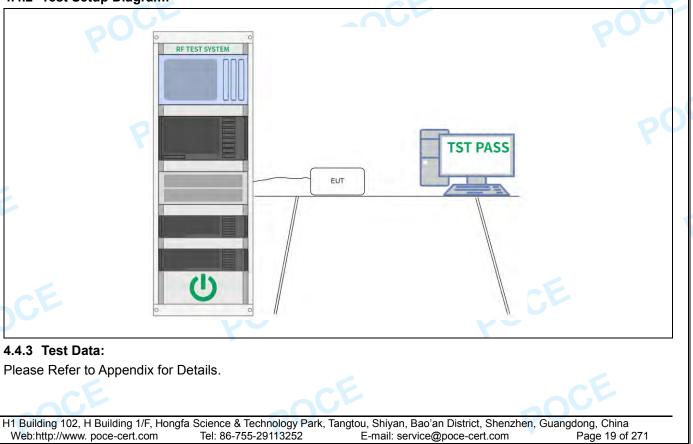
FUCL

Report No.: POCE230918001RF004

Test Requirement:	ducted output power
reat Nequilement.	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
	47 CFR Part 15.407(a)(1)(iii)
	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(3)(i)
Fest Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1 V
	provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any
	elevation angle above 30 degrees as measured from the horizon must not exceed
	125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1 \
	provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	Ear fixed point to point access points operating in the hand 5 15 5 25 CUT, the
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the
	maximum conducted output power over the frequency band of operation shall not
	exceed 1 W.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to
	23 dBi without any corresponding reduction in the maximum conducted output
	power.
	For fixed point-to-point transmitters that employ a directional antenna gain greater
	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for
	each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed, point-to-
	point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output
	power over the frequency band of operation shall not exceed 250 mW provided the
	maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same information
	The operator of the U-NII device, or if the equipment is professionally installed, the
	installer, is responsible for ensuring that systems employing high gain directional
	antennas are used exclusively for fixed, point-to-point operations.
	ANSI C63.10-2013, section 12.3
Test Method:	

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www. poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 16 of 271

POCE Techanilugy	V1.0 Report No.: POCE23091800	IRF
I.4 Power spec	tral density	
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	2
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, th maximum power spectral density shall not exceed 17 dBm in any 1 megahert:	
	 band. Fixed point-to-point U-NII devices may employ antennas with directional gain 23 dBi without any corresponding reduction in the maximum power spectral de For fixed point-to-point transmitters that employ a directional antenna gain gree than 23 dBi, a 1 dB reduction in maximum power spectral density is required f each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems omnidirectional applications, and multiple collocated transmitters transmitting same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-point operations. 	ens eate for s, the
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral de shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.	:
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U devices operating in this band may employ transmitting antennas with direction gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.	-NI
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems omnidirectional applications, and multiple collocated transmitters transmitting same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-	the
Toot Mothed:	point operations.	_
Test Method: Procedure:	ANSI C63.10-2013, section 12.5	
	 a) Create an average power spectrum for the EUT operating mode being tester following the instructions in 12.3.2 for measuring maximum conducted output power using a 	

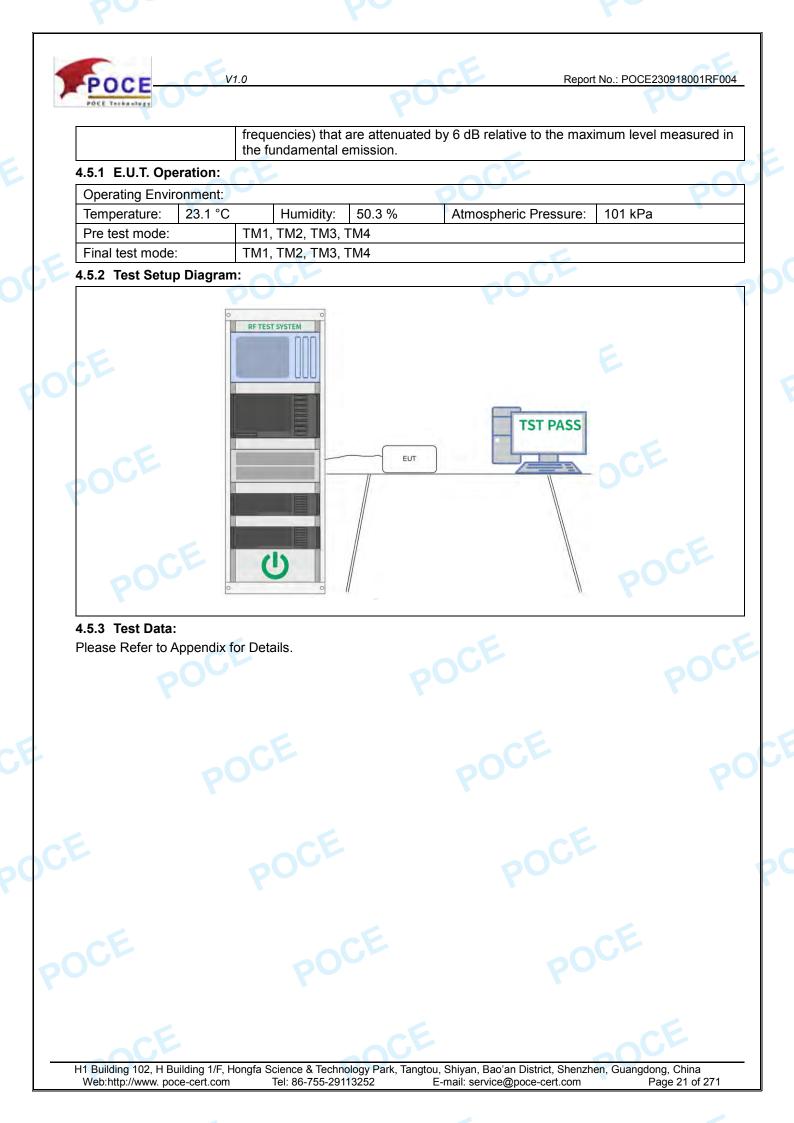

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 18 of 271

	E E
POCE	V1.0 Report No.: POCE230918001RF004
POCE Techantury	
P CE POCE	 SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= [3 × RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

4.4.1 E.U.T. Operation:

Operating Environment:				
Temperature: 23.1 °C	Humidity:	50.3 %	Atmospheric Pressure:	101 kPa
Pre test mode:	TM1, TM2, TM3, ⁻	FM4, TM5, TM6,	TM7	
Final test mode:	TM1, TM2, TM3, ⁻	ГМ4, ТМ5, ТМ6,	TM7	

4.4.2 Test Setup Diagram:


V1.0

POCE

Report No.: POCE230918001RF004

4.5 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
0	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak. d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak
	the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The frequency span for the spectrum analyzer shall be between 1.5
	times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW, and VBW shall be approximately three times the RBW, unless otherwise
	specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
	exceeding the maximum input mixer level for linear operation. In general, the peak
	of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified
	range.
	e) Video averaging is not permitted. Where practical, a sample detection and sing
	sweep mode shall be used. Otherwise, peak detection and max hold mode (until
	the trace stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report
	the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The
	recovered amplitude data points, beginning at the lowest frequency, are placed in
	running sum until 0.5% of the total is reached; that frequency is recorded as the
	lower frequency. The process is repeated until 99.5% of the total is reached; that
	frequency is recorded as the upper frequency. The 99% power bandwidth is
	the difference between these two frequencies.
	h) The occupied bandwidth shall be reported by providing plot(s) of the measuring
	instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
	6 dB emission bandwidth:
	a) Set RBW = 100 kHz .
	b) Set the video bandwidth (VBW) \geq 3 >= RBW.
	c) Detector = Peak.
	d) Trace mode = max hold.
	e) Sweep = auto couple.
	f) Allow the trace to stabilize.
	g) Measure the maximum width of the emission that is constrained by the
Duilding 100 LLD states 4/F	frequencies associated with the two outermost amplitude points (upper and lower
EULIDING 102 H BUILDING 1/E	Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

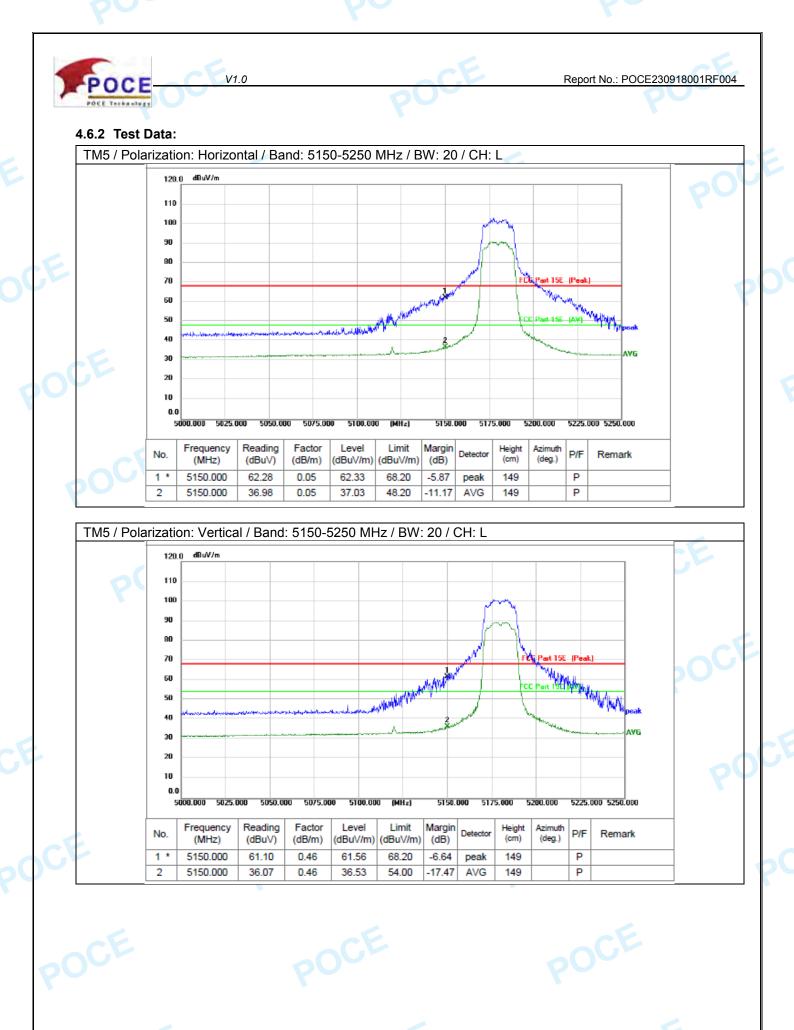
V1.0

PO

Report No.: POCE230918001RF004

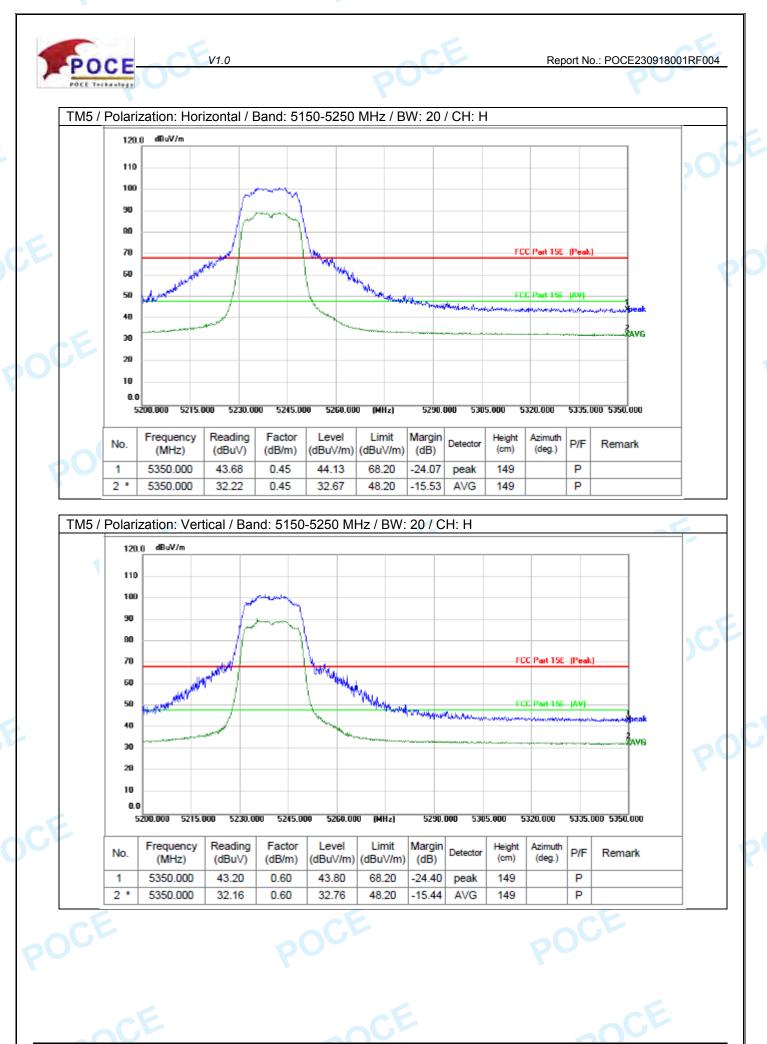
Band edge emissions (Radiated) 4.6

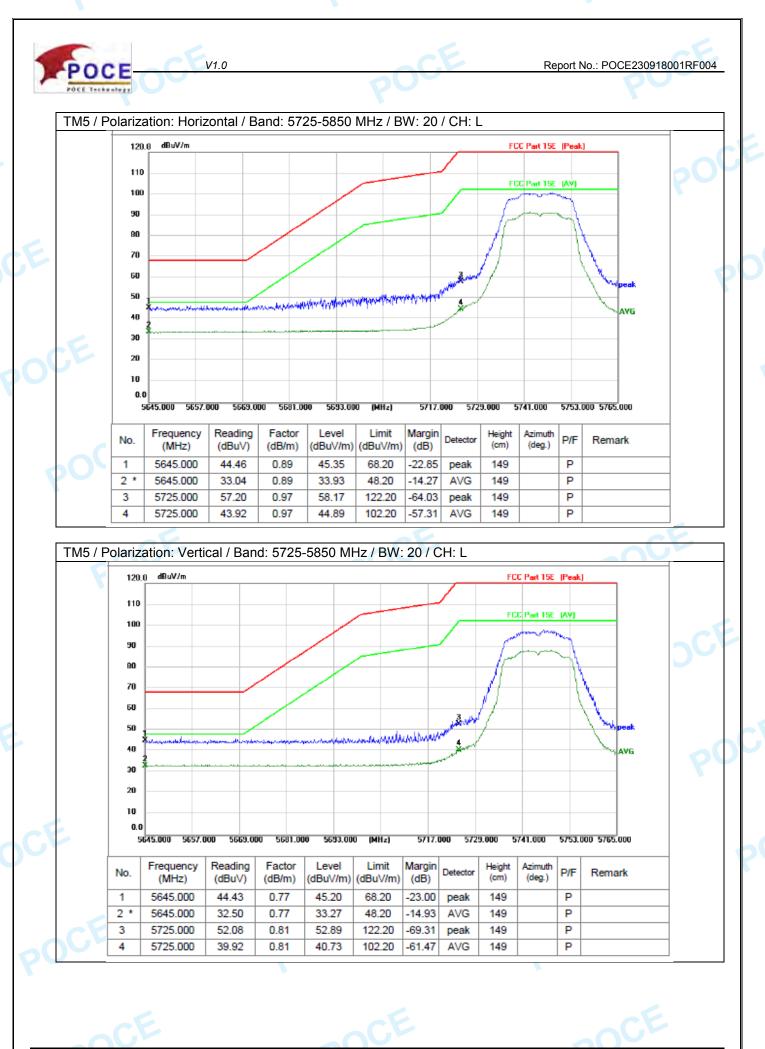
Test Requirement:	47 CFR Part 15.407(b)(47 CFR Part 15.407(b)(47 CFR Part 15.407(b)(4)				
00	47 CFR Part 15.407(b)(10)				
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.					
	For transmitters operati					
	All emissions shall be lin					
	or below the band edge					
	below the band edge, a					
	linearly to a level of 15.6 from 5 MHz above or be					
	dBm/MHz at the band e		cleasing inleans			
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-	9.3-9.5		
	4.20123-4.20113	10-14.0	1646.5	0.0-0.0		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8-	13.25-13.4		
			1722.2			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475-	2483.5-2500	17.7-21.4		
		156.52525				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2 🥢	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(2)		
	13.36-13.41					
	¹ Until February 1, 1999, ² Above 38.6		lali be 0.490-0.	510 WHZ.		
	The field strength of em exceed the limits shown MHz, compliance with the measurement instrument MHz, compliance with the on the average value of these measurements.	n in § 15.209. At freque he limits in § 15.209sh ntation employing a Cl he emission limits in §	encies equal to all be demonstr SPR quasi-pea 15.209shall be	or less than 1000 rated using k detector. Above 1 demonstrated base		
	The field strength of emexceed the limits shown MHz, compliance with the measurement instrument MHz, compliance with the on the average value of these measurements. Except as provided else radiator shall not exceed	n in § 15.209. At freque he limits in § 15.209sh ntation employing a CI he emission limits in § the measured emission where in this subpart, d the field strength lev	encies equal to all be demonst SPR quasi-pea 15.209shall be ons. The provis the emissions	or less than 1000 rated using k detector. Above 1 demonstrated base ions in § 15.35apply from an intentional the following table:		
	The field strength of em exceed the limits showr MHz, compliance with the measurement instrumen MHz, compliance with the on the average value of these measurements. Except as provided else	n in § 15.209. At freque he limits in § 15.209sh ntation employing a CI he emission limits in § the measured emission where in this subpart,	encies equal to all be demonstr SPR quasi-pea 15.209shall be ons. The provisions the emissions els specified in	or less than 1000 rated using k detector. Above 1 demonstrated base ions in § 15.35apply from an intentional the following table: Measurement distance		
	The field strength of emexceed the limits shown MHz, compliance with the measurement instrument MHz, compliance with the on the average value of these measurements. Except as provided else radiator shall not exceed Frequency (MHz)	h in § 15.209. At freque he limits in § 15.209sh ntation employing a CI he emission limits in § the measured emission where in this subpart, d the field strength lev Field strength (microvolts/mete	encies equal to all be demonstr SPR quasi-pea 15.209shall be ons. The provisions the emissions els specified in	or less than 1000 rated using k detector. Above 1 demonstrated base ions in § 15.35apply from an intentional the following table: Measurement distance (meters)		
	The field strength of emexceed the limits shown MHz, compliance with the measurement instrument MHz, compliance with the on the average value of these measurements. Except as provided else radiator shall not exceed Frequency (MHz)	h in § 15.209. At freque he limits in § 15.209sh Intation employing a CI he emission limits in § the measured emission where in this subpart, d the field strength lev Field strength (microvolts/mete 2400/F(kHz)	encies equal to all be demonstr SPR quasi-pea 15.209shall be ons. The provisions the emissions els specified in	or less than 1000 rated using k detector. Above 1 demonstrated base ions in § 15.35apply from an intentional the following table: Measurement distance (meters) 300		
	The field strength of emexceed the limits shown MHz, compliance with the measurement instrument MHz, compliance with the on the average value of these measurements. Except as provided else radiator shall not exceed Frequency (MHz) 0.009-0.490 0.490-1.705	h in § 15.209. At freque he limits in § 15.209sh intation employing a CI he emission limits in § the measured emission where in this subpart, d the field strength lev Field strength (microvolts/mete 2400/F(kHz) 24000/F(kHz)	encies equal to all be demonstr SPR quasi-pea 15.209shall be ons. The provisions the emissions els specified in	or less than 1000 rated using k detector. Above 1 demonstrated base ions in § 15.35apply from an intentional the following table: Measurement distance (meters) 300 30		
	The field strength of emexceed the limits shown MHz, compliance with the measurement instrument MHz, compliance with the on the average value of these measurements. Except as provided else radiator shall not exceed Frequency (MHz)	n in § 15.209. At freque he limits in § 15.209sh intation employing a CI he emission limits in § the measured emission where in this subpart, d the field strength leve Field strength (microvolts/mete 2400/F(kHz) 30	encies equal to all be demonstr SPR quasi-pea 15.209shall be ons. The provisions the emissions els specified in	or less than 1000 rated using k detector. Above 1 demonstrated base ions in § 15.35apply from an intentional the following table: Measurement distance (meters) 300 30 30		
	The field strength of emexceed the limits shown MHz, compliance with the measurement instrument MHz, compliance with the on the average value of these measurements. Except as provided else radiator shall not exceed Frequency (MHz) 0.009-0.490 0.490-1.705	h in § 15.209. At freque he limits in § 15.209sh intation employing a CI he emission limits in § the measured emission where in this subpart, d the field strength lev Field strength (microvolts/mete 2400/F(kHz) 24000/F(kHz)	encies equal to all be demonstr SPR quasi-pea 15.209shall be ons. The provisions the emissions els specified in	or less than 1000 rated using k detector. Above 1 demonstrated base ions in § 15.35apply from an intentional the following table: Measurement distance (meters) 300 30		

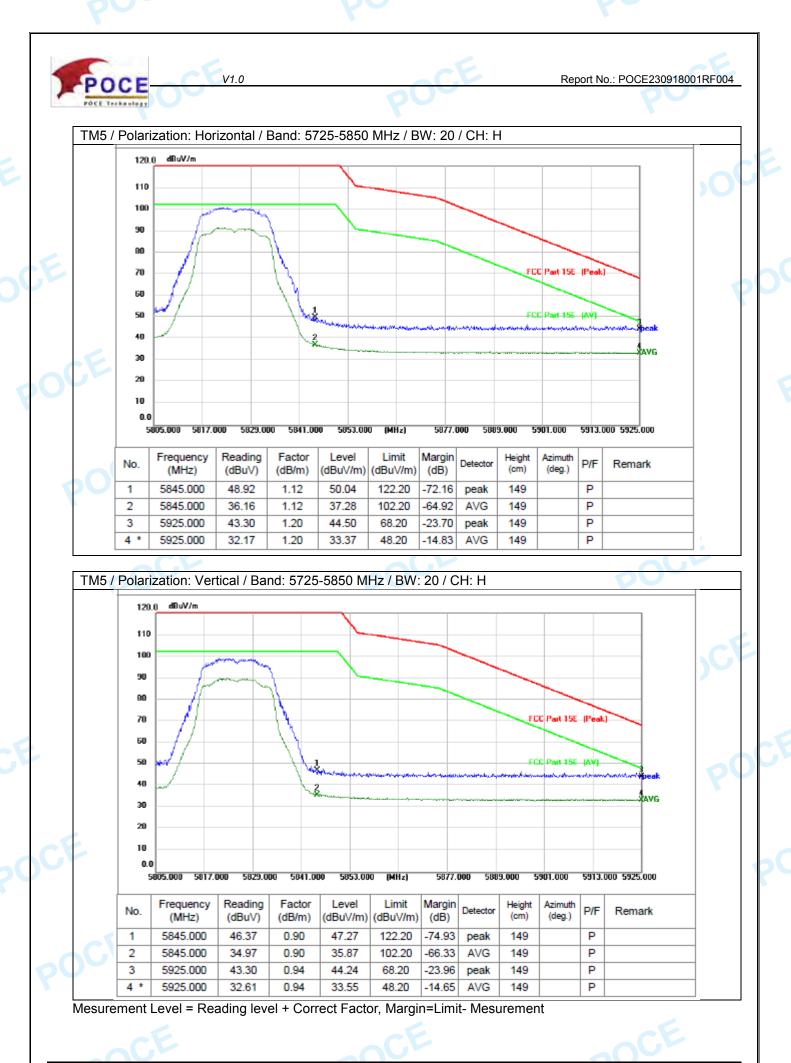

	216-960	200 **	3
			-
Test Method:	ANSI C63.10-2013	, section 12.7.4, 12.7.5, 12.	7.6
Test Method: Procedure:	Above 1GHz: a. For above 1GHz above the ground a degrees to determin b. The EUT was see was mounted on the c. The antenna heid determine the max polarizations of the d. For each suspect the antenna was tu below 30MHz, the was turned from 0 e. The test-receive Bandwidth with Mat f. If the emission le specified, then test reported. Otherwise tested one by one a data sheet. g. Test the EUT in th h. The radiation met Transmitting mode i. Repeat above pro Remark: 1. Level= Read Lev 2. Scan from 18GH points marked on a testing, so only above emissions from the need not be reported	500 , section 12.7.4, 12.7.5, 12. c, the EUT was placed on that a 3 meter fully-anechoic of ne the position of the higher t 3 meters away from the in e top of a variable-height and ght is varied from one meter imum value of the field strent antenna are set to make the ted emission, the EUT was ned to heights from 1 meter antenna was tuned to height degrees to 360 degrees to for r system was set to Peak D ximum Hold Mode. vel of the EUT in peak mod ing could be stopped and the e the emissions that did not using peak or average mether the lowest channel, the mide easurements are performed and found the X axis position codures until all frequencies wel+ Cable Loss+ Antenna F Iz to 40GHz, the disturbanc above plots are the highest of ove points had been display radiator which are attenuated.	3 7.6 e top of a rotating table 1.5 meters chamber. The table was rotated 36 st radiation. terference-receiving antenna, which ntenna tower. r to four meters above the ground ngth. Both horizontal and vertical ne measurement. arranged to its worst case and the r to 4 meters (for the test frequence ind the maximum reading. etect Function and Specified e was 10dB lower than the limit ne peak values of the EUT would b have 10dB margin would be remod as specified and then reported dle channel, the Highest channel. in X, Y, Z axis positioning for toning which it is the worst case. es measured was complete. Factor- Preamp Factor e above 18GHz was very low. The emissions could be found when ed. The amplitude of spurious ted more than 20dB below the limit
	based on average exceed the maximu under any condition than the average lin	limits. However, the peak fig um permitted average limits n of modulation. For the em mit, only the peak measurer	ove 1GHz, the field strength limits eld strength of any emission shall r specified above by more than 20 issions whose peak level is lower ment is shown in the report.
			w and the harmonics were the only the above harmonics had bee

4.6.1 E.U.T. Operation:

V1.0


Operating Environment:							
Temperature:	23.1 °C		Humidity:	50.3 %	Atmospheric Pressure:	101 kPa	
Pre test mode: TM1, TM2, TM3, TM4, TM5, TM6, TM7							
Final test mode:		TM5					


 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 23 of 271


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

Page 24 of 271

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 26 of 271

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

Page 27 of 271

Note:

V1 0

Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,..., Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain

Directional gain = 10*log[(10G1/20 + 10G2/20 + ... + 10GN/20)2 / NANT] dBi

For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + ... + 10GN/10)/ NANT] dBi

Sample Multiple antennas Calculation: Core 0 + Core 1 +...Core i. = MIMO/CDD (i is the number of antennas)

(#VALUE! mW + mW) = #VALUE! mW = dBm

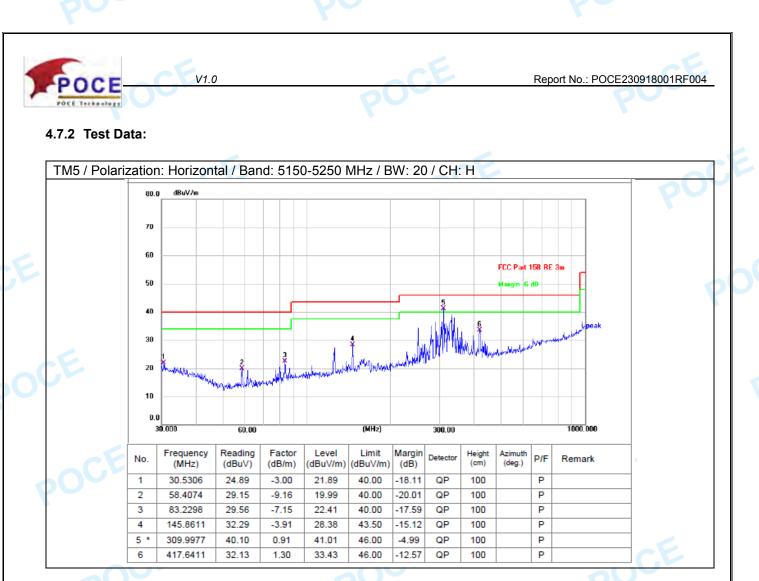
Sample e.i.r.p. Calculation:

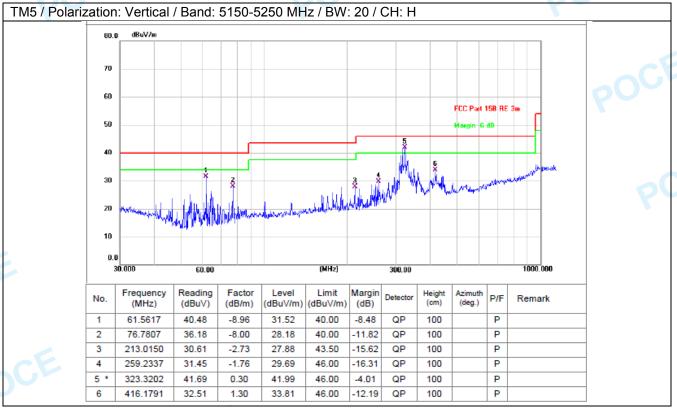
e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

V1.0

POCE

Report No.: POCE230918001RF004


4.7 Undesirable emission limits (below 1GHz)


Test Requirement:							
Test Limit:	set forth in § 15.209.	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.					
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500 🔨	3				
Test Method:	ANSI C63.10-2013, sec	tion 12.7.4, 12.7.5, 12.7.6	1				
Procedure:	Below 1GHz:						
		FUT was placed on the tor	o of a rotating table 0.8 meters				
			mber. The table was rotated 360				
		e position of the highest ra					
			interference-receiving antenna,				
		the top of a variable-height					
			four meters above the ground to				
	5		. Both horizontal and vertical				
		enna are set to make the m					
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of					
	below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.						
		tem was set to Peak Detec					
	Bandwidth with Maximu						
	f. If the emission level of	f the EUT in peak mode wa	as 10dB lower than the limit				
			eak values of the EUT would be				
			e 10dB margin would be re-				
			ecified and then reported in a				
	data sheet.						
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.						
	h. The radiation measurements are performed in X, Y, Z axis positioning for						
	Transmitting mode, and found the X axis positioning which it is the worst case.						
	i. Repeat above procedures until all frequencies measured was complete.						
	Remark:						
	1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor						
	2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The						
			sions could be found when				
		oints had been displayed.					
	emissions from the radi	emissions from the radiator which are attenuated more than 20dB below the limit					
	need not be reported.						
		w 1GHz was very low and	the harmonics were the highest				
		en testing, so only the abo					
	displayed.						
	Above 1GHz:						
	a. For above 1GHz, the	EUT was placed on the top	p of a rotating table 1.5 meters				
			ber. The table was rotated 360				
		e position of the highest ra					
			erence-receiving antenna, which				
		o of a variable-height anten					

Report No.: POCE230918001RF004 c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

4.7.1 E.U.T. Operation:

Operating Environment:				0		000
Temperature: 23.1 °C		Humidity:	50.3 %		Atmospheric Pressure:	101 kPa 🦷
Pre test mode:	TM5					
Final test mode:	TM5					

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

Page 31 of 271

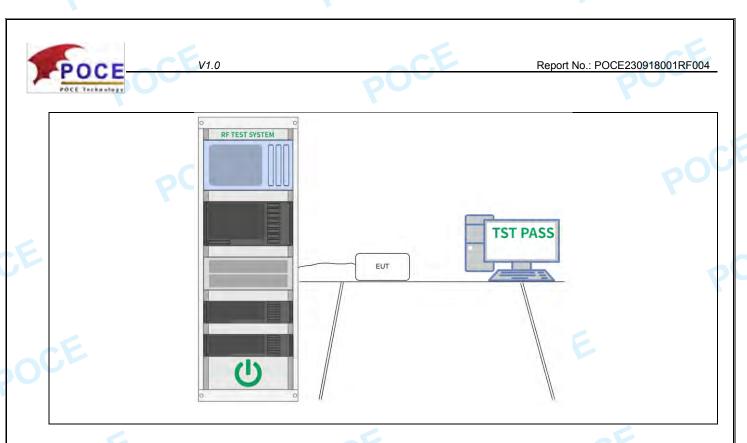
V1.0

Report No.: POCE230918001RF004

Test Requirement:	47 CFR Part 15.407(b)	(1)		
	47 CFR Part 15.407(b)			
	47 CFR Part 15.407(b)	()		
Test Limit:	For transmitters operat			
	5.15-5.35 GHz band sh	hall not exceed an e.i.r.	p. of −27 dBm/M	Hz.
	For transmitters operat	ing solely in the 5 725-	5 850 GHz band	
	All emissions shall be I			
	or below the band edge			
	below the band edge, a			
	linearly to a level of 15			
	from 5 MHz above or b		creasing linearly	to a level of 27
	dBm/MHz at the band			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	¹ 0.495-0.505 2.1735-2.1905	16.69475-16.69525 16.80425-16.80475	608-614 960-1240	5.35-5.46 7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
	4.20120 4.20110	1014.0	1646.5	0.0 0.0
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
			1722.2	
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
		156.52525		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41			
	¹ Until February 1, 1999) this restricted hand a		10 MU-
	Onul rebluary 1, 1998		Tall be 0.490-0.0	010 IVII 12.
	² Above 38.6			
	The field strength of er			
	exceed the limits show	•	•	
	MHz, compliance with			
	measurement instrume			
	MHz, compliance with on the average value of			
	these measurements.		ons. The provisio	nis in giro.soappiy
	Except as provided els	ewhere in this subpart.	the emissions fr	om an intentional
	radiator shall not excee			
	Frequency (MHz)	Field strength		Measurement

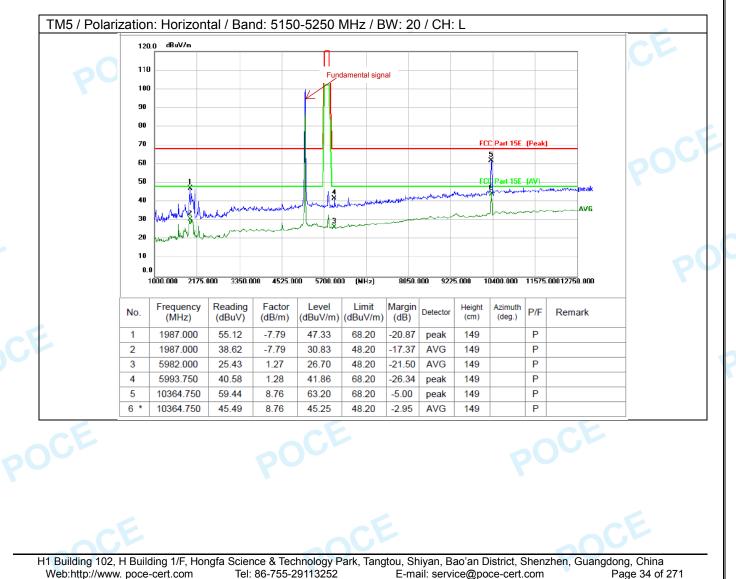
Frequency (MHz)	Field strength	Measurement
	(microvolts/meter)	distance
		(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3

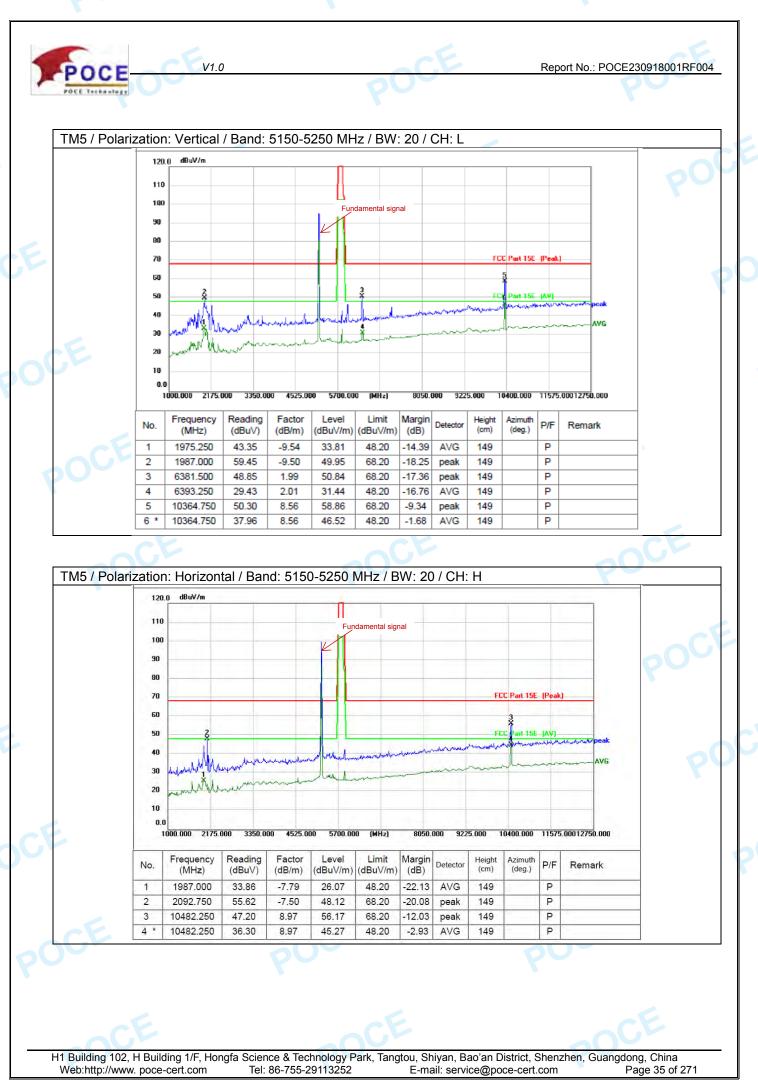
 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 32 of 271

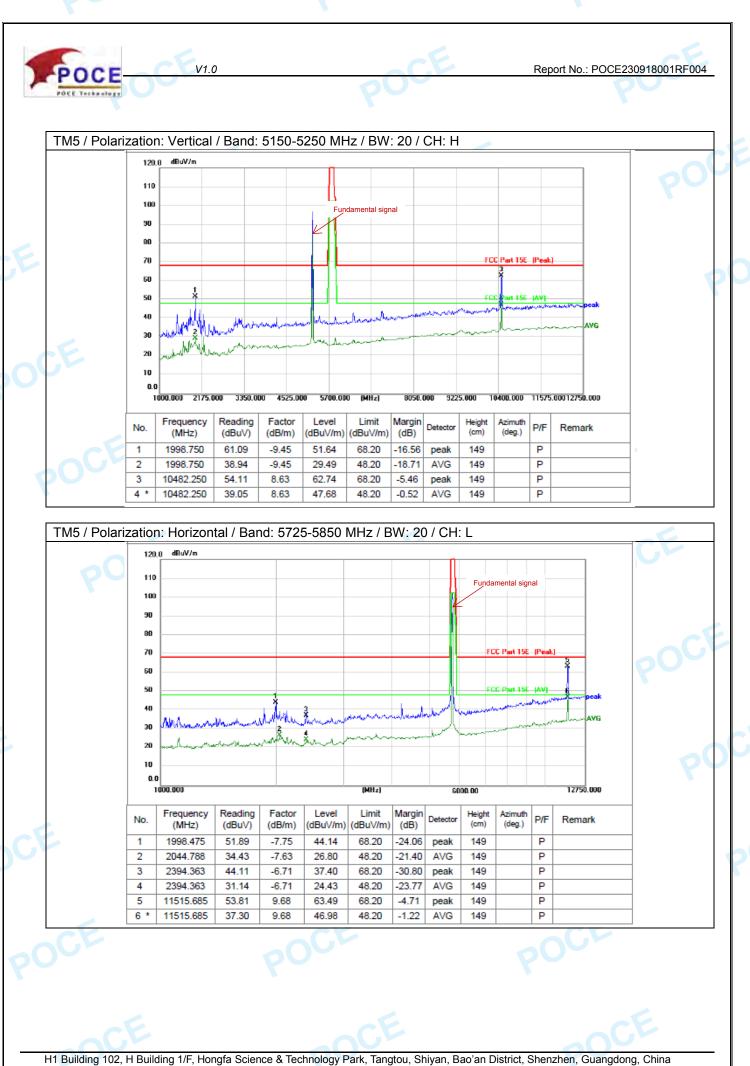

4.8.1 E.U.T. Operation:

V1.0

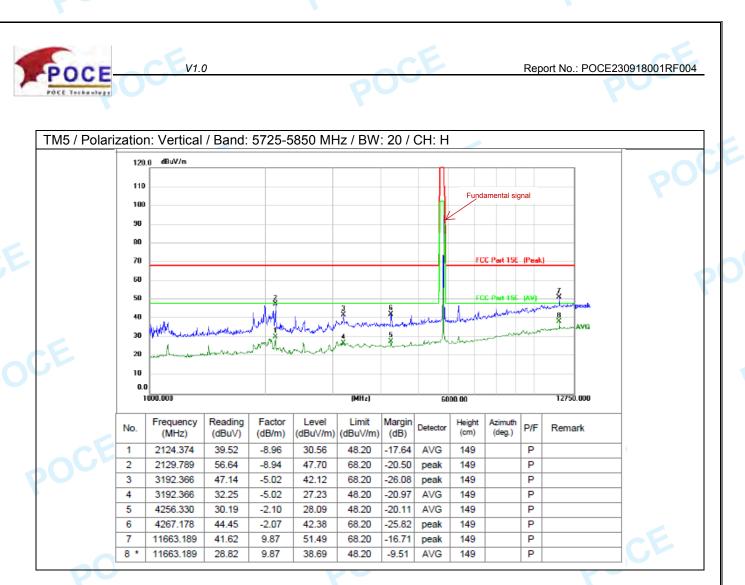
Operating Environment:								
Temperature:	23.1 °C		Humidity:	50.3 %		Atmospheric Pressure:	101 kPa	
Pre test mode: T			TM1, TM2, TM3, TM4, TM5, TM6 , TM7					
Final test mode: TM5				•				
4.8.2. Tost Sotup Diagram:								


4.8.2 Test Setup Diagram:


 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 33 of 271



4.8.3 Test Data:


Only the worst mode and channel are recorded, The testing frequency reach up to 25GHz, but 12GHz-25GHz has no waveform except for background noise, so it was not recorded in the report.

Remark: Margin = Limit – Level Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

Level=Test receiver reading + correction factor

Note:

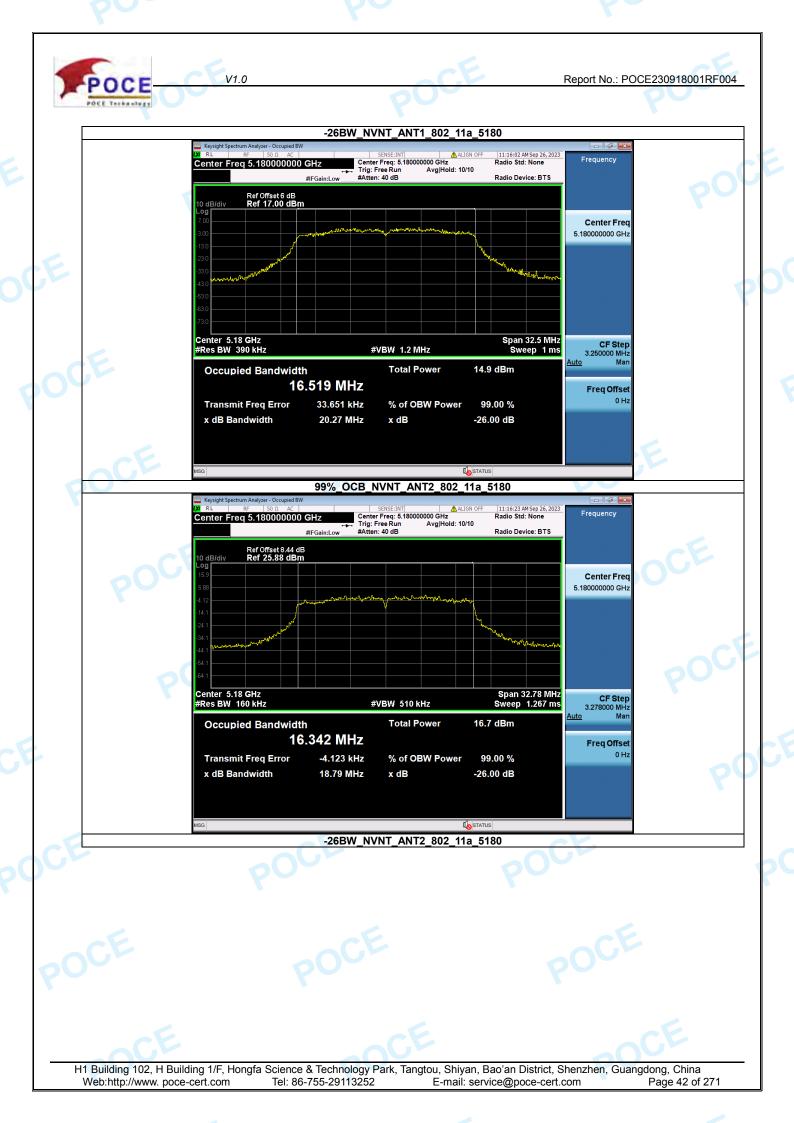
Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,..., Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm.

Sample Multiple antennas Calculation: Core 0 + Core 1 +...Core i. = MIMO/CDD (i is the number of antennas)

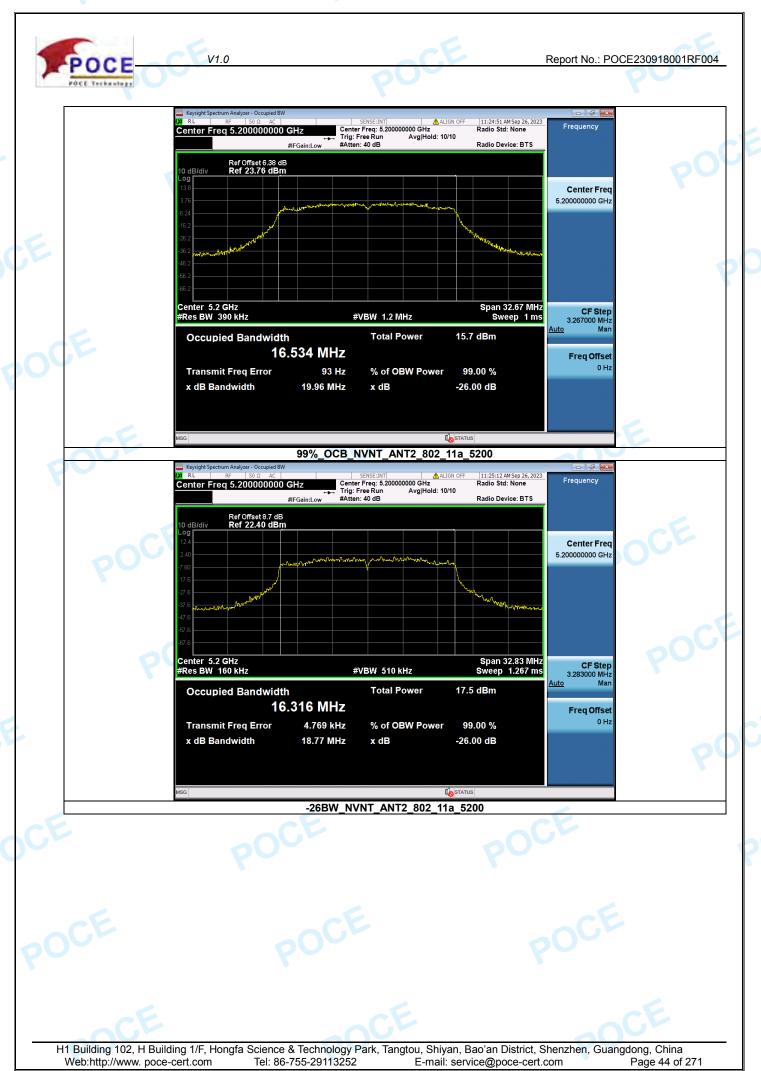
(#VALUE! mW + XX mW) = #VALUE! mW = XX dBm Sample e.i.r.p. Calculation: XX dBm= Conducted Power (dBm) + Ant gain (dBi)

Appendix-5.2G

FCC_5.2G_WIFI (Part15.407) Test Data

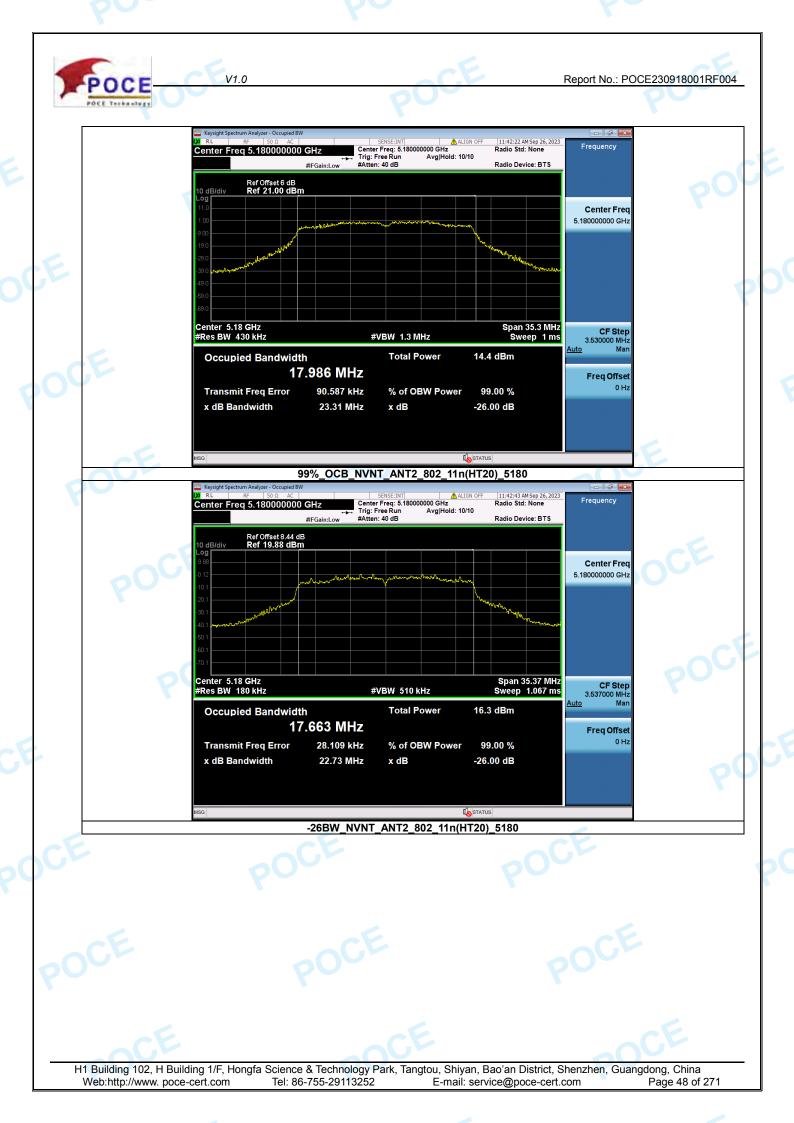

. -26dB and 99% Emission Bandwidth

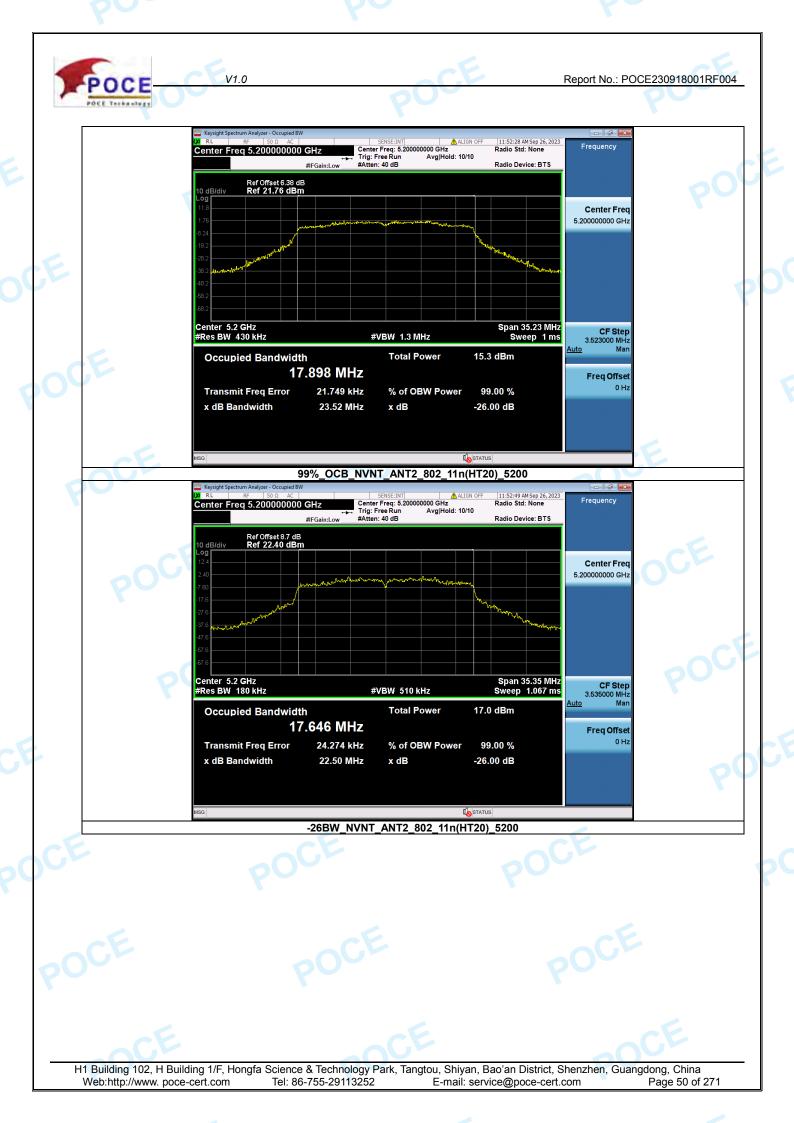
V1.0


Condition	Antenna	Modulation	Frequency(MHz)	26dB_Emission_Bandwidth(MHz)	Occupied Bandwidth(MHz)
NVNT	ANT1	802.11a	5180.00	20.27	16.32
NVNT	ANT2	802.11a	5180.00	19.96	16.34
NVNT	ANT1	802.11a	5200.00	19.96	16.35
NVNT	ANT2	802.11a 🦰	5200.00	19.96	16.32
NVNT	ANT1	802.11a	5240.00	20.62	16.35
NVNT	ANT2	802.11a	5240.00	19.94	16.35
NVNT	ANT1	802.11n(HT20)	5180.00	23.31	17.66
NVNT	ANT2	802.11n(HT20)	5180.00	23.81	17.66
NVNT	ANT1	802.11n(HT20)	5200.00	23.52	17.65
NVNT	ANT2	802.11n(HT20)	5200.00	23.73	17.65
NVNT	ANT1	802.11n(HT20)	5240.00	24.23	17.66
NVNT	ANT2	802.11n(HT20)	5240.00	24.27	17.69
NVNT	ANT1	802.11ac(VHT20)	5180.00	20.99	17.58
NVNT	ANT2	802.11ac(VHT20)	5180.00	21.06	17.58
NVNT	ANT1	802.11ac(VHT20)	5200.00	21.14	17.60
NVNT	ANT2	802.11ac(VHT20)	5200.00	21.38	17.58
NVNT	ANT1	802.11ac(VHT20)	5240.00	20.94	17.59
NVNT	ANT2	802.11ac(VHT20)	5240.00	21.21	17.61
NVNT	ANT1	802.11n(HT40)	5190.00	43.80	36.01
NVNT	ANT2	802.11n(HT40)	5190.00	43.98	36.03
NVNT	ANT1	802.11n(HT40)	5230.00	42.92	36.08
NVNT	ANT2	802.11n(HT40)	5230.00	43.98	36.07
NVNT	ANT1	802.11ac(VHT40)	5190.00	40.13	35.89
NVNT	ANT2	802.11ac(VHT40)	5190.00	41.21	35.88
NVNT	ANT1	802.11ac(VHT40)	5230.00	40.89	35.99
NVNT	ANT2	802.11ac(VHT40)	5230.00	40.76	35.99
NVNT	ANT1	802.11ac(VHT80)	5210.00	83.59	75.11
NVNT	ANT2	802.11ac(VHT80)	5210.00	85.76	75.14

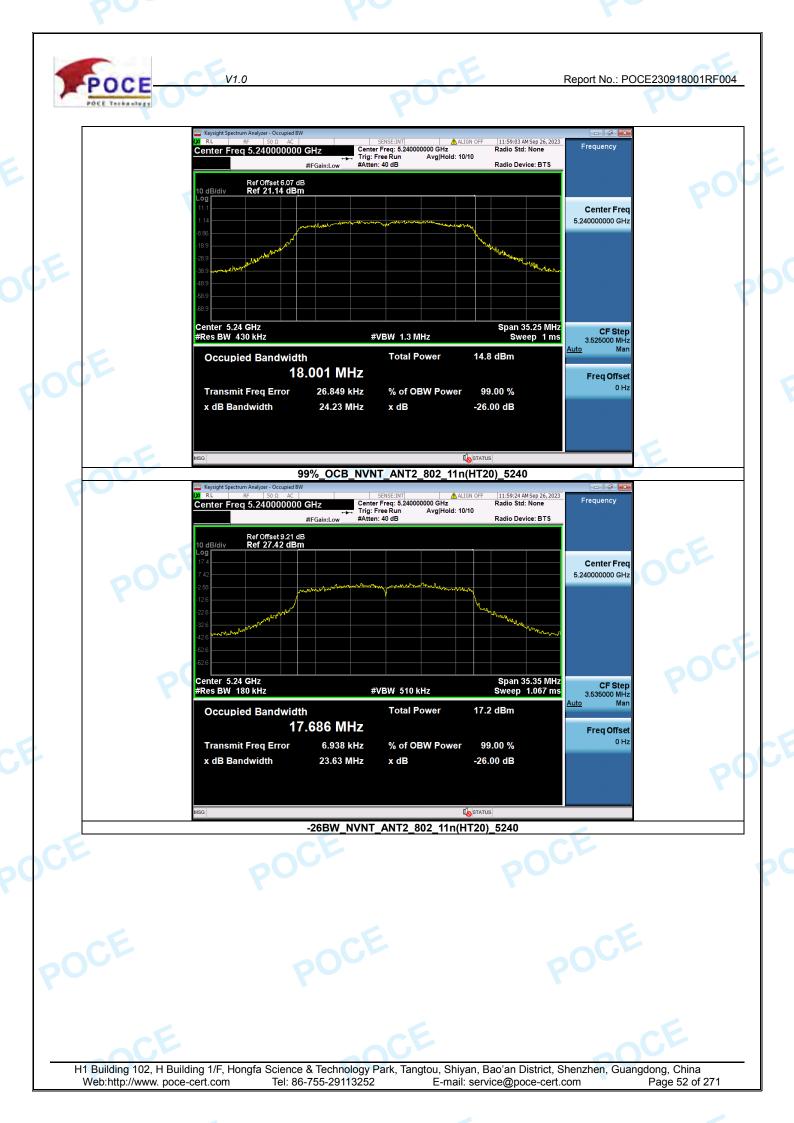


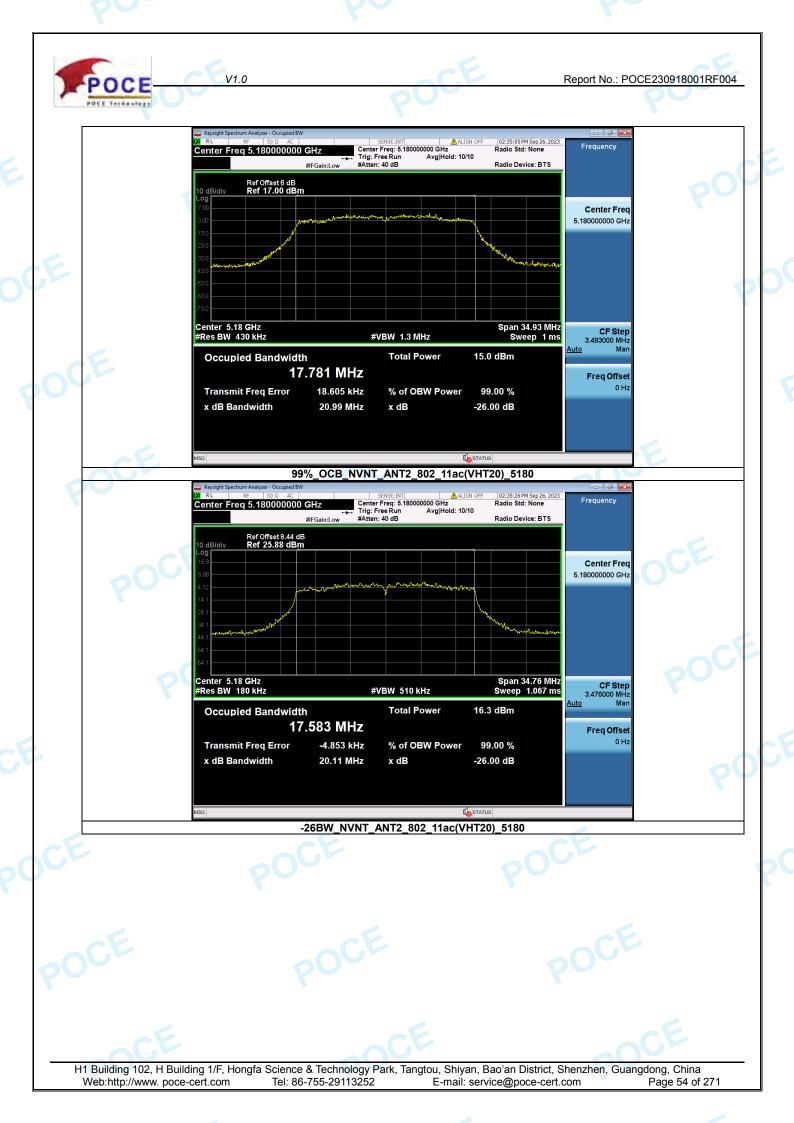
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 41 of 271

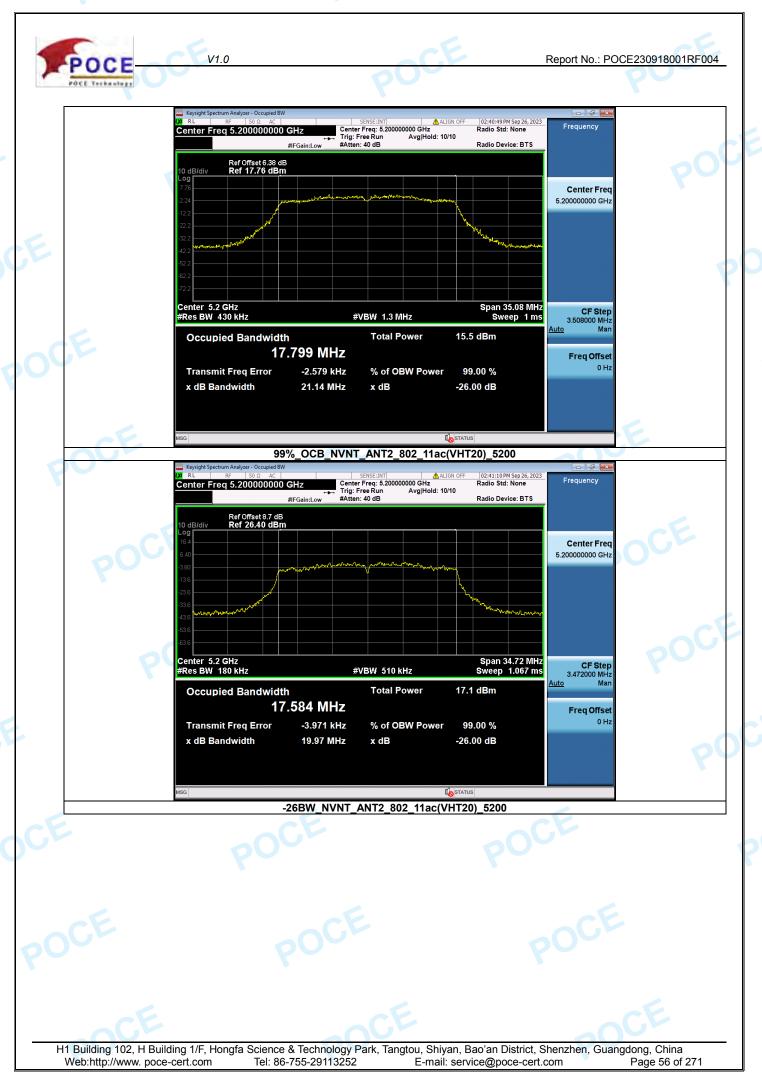


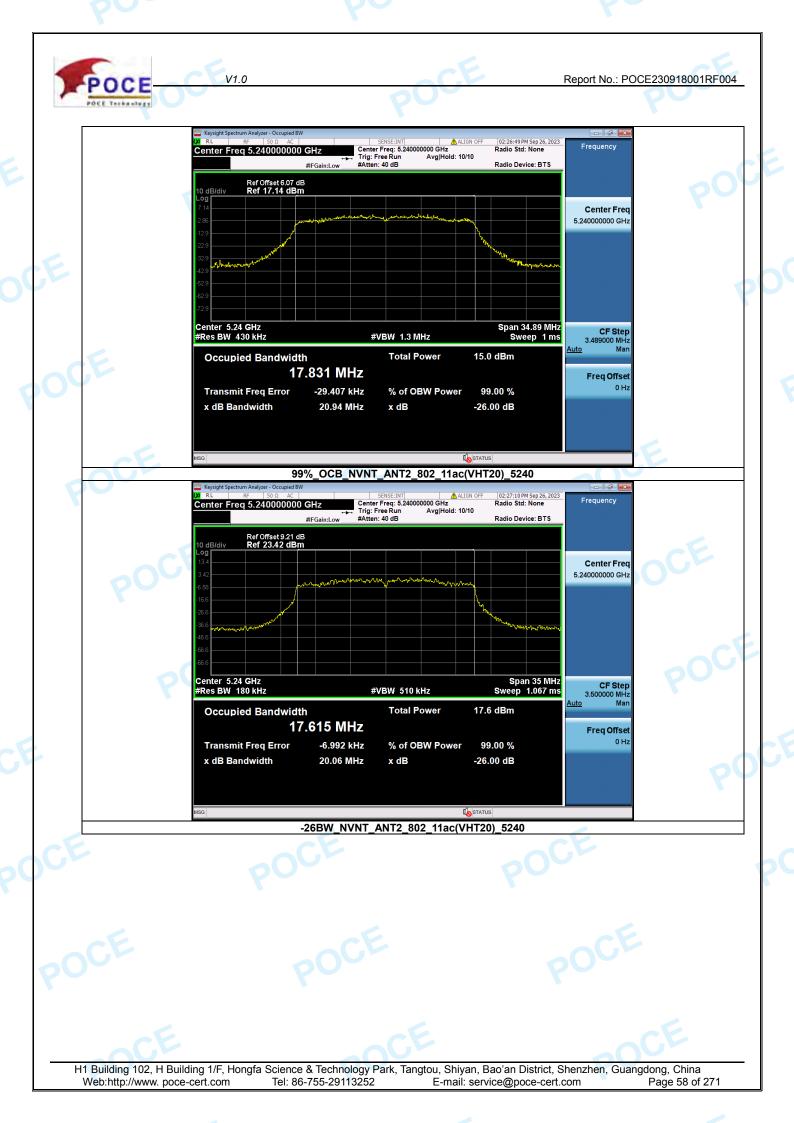


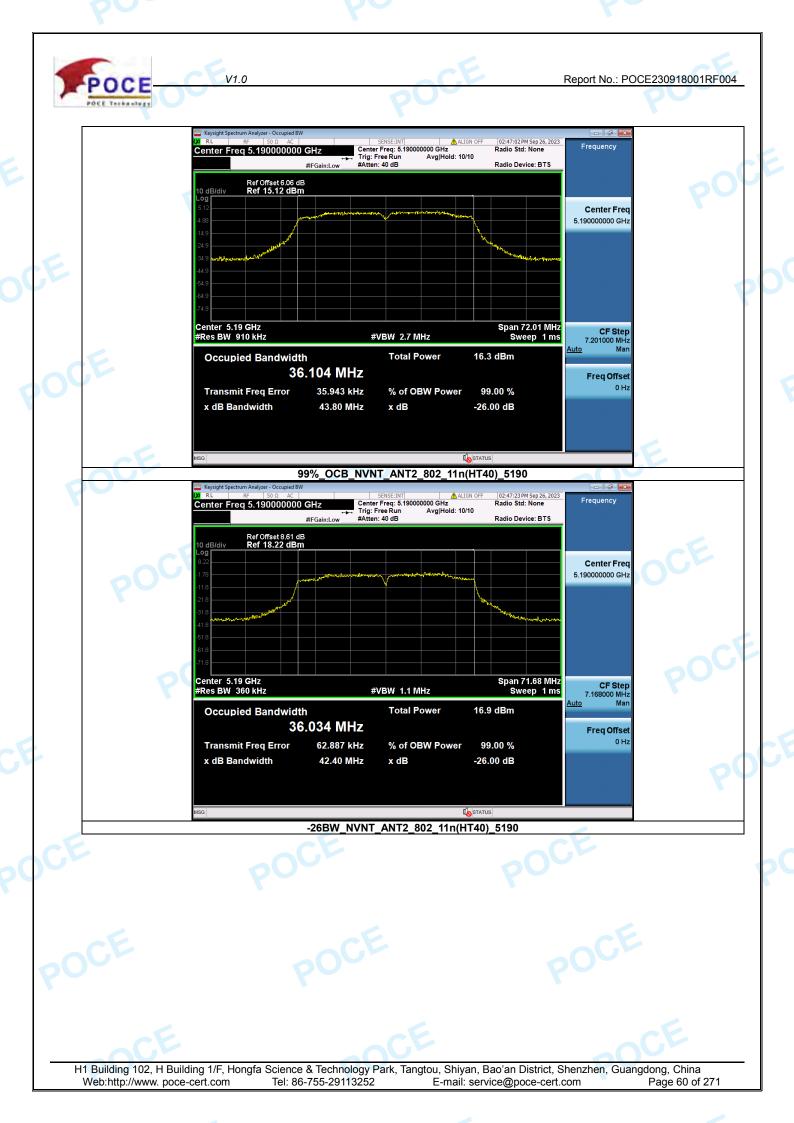


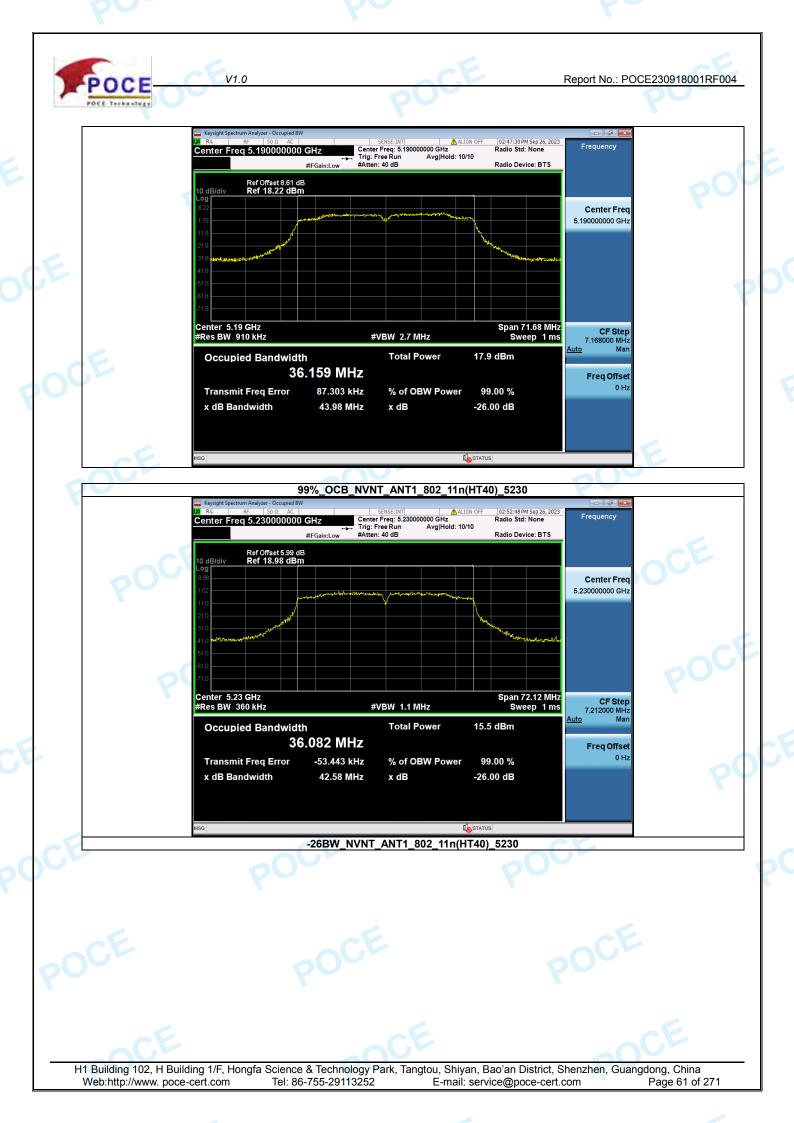


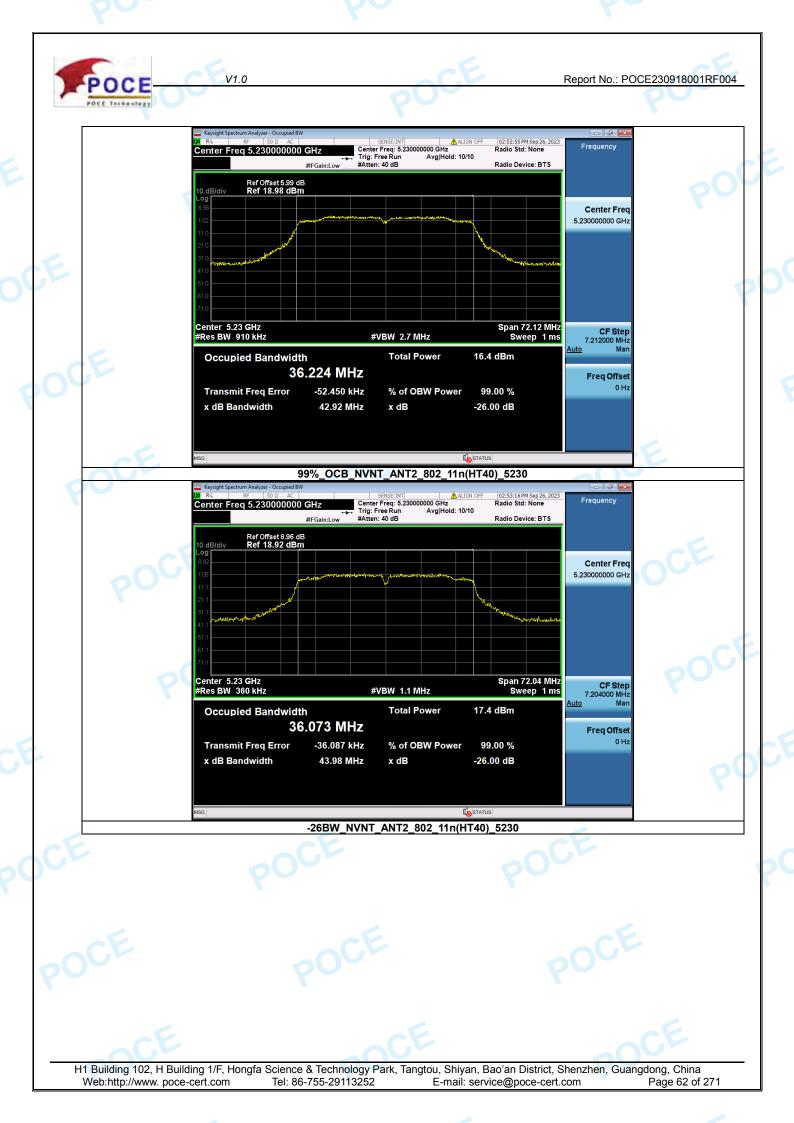




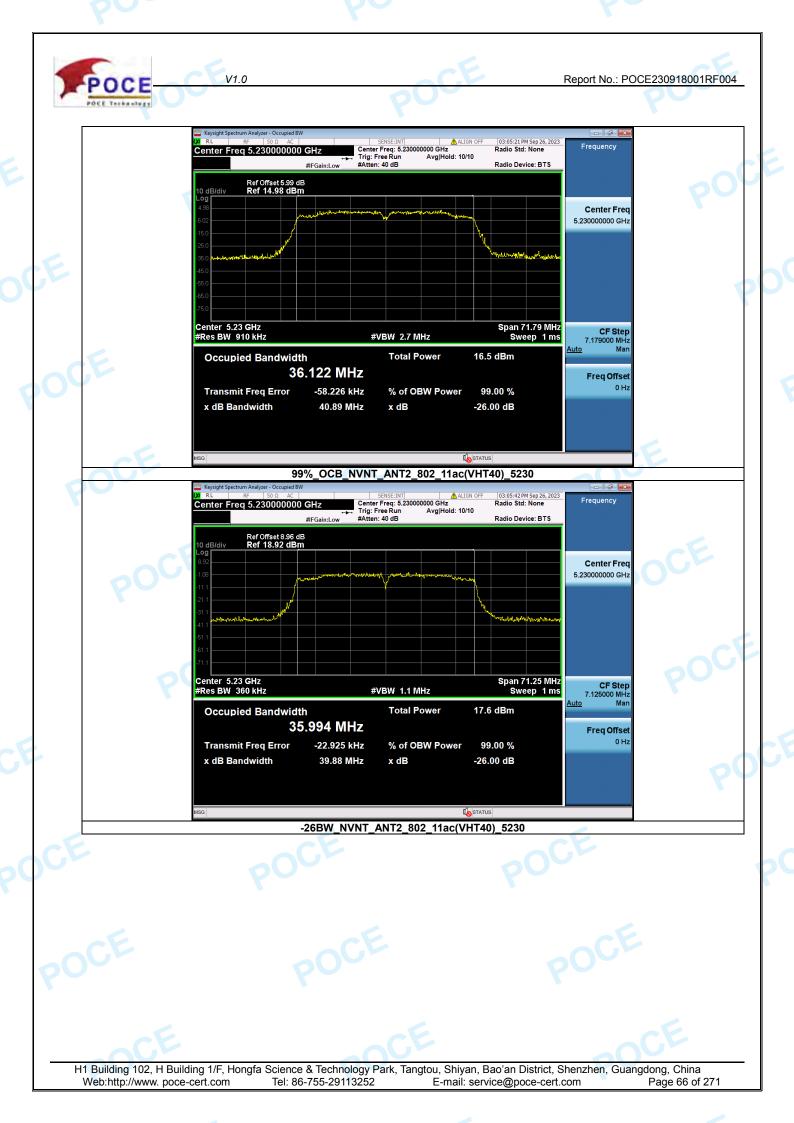


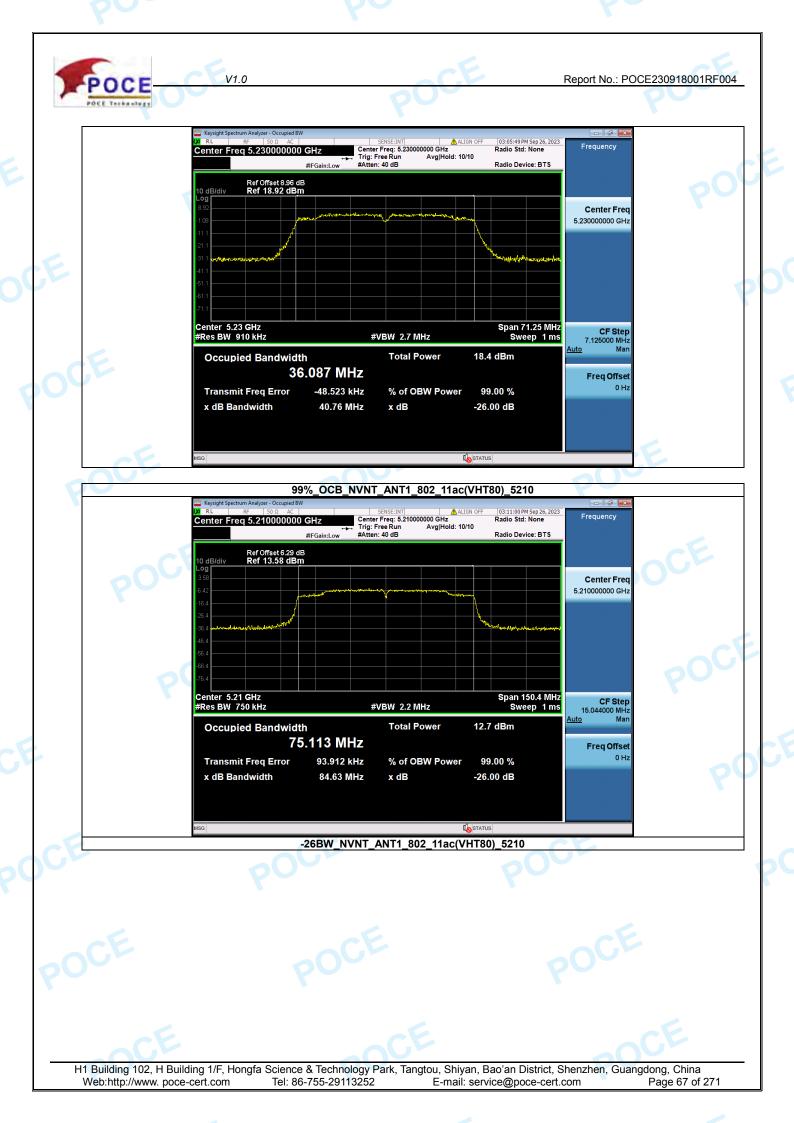


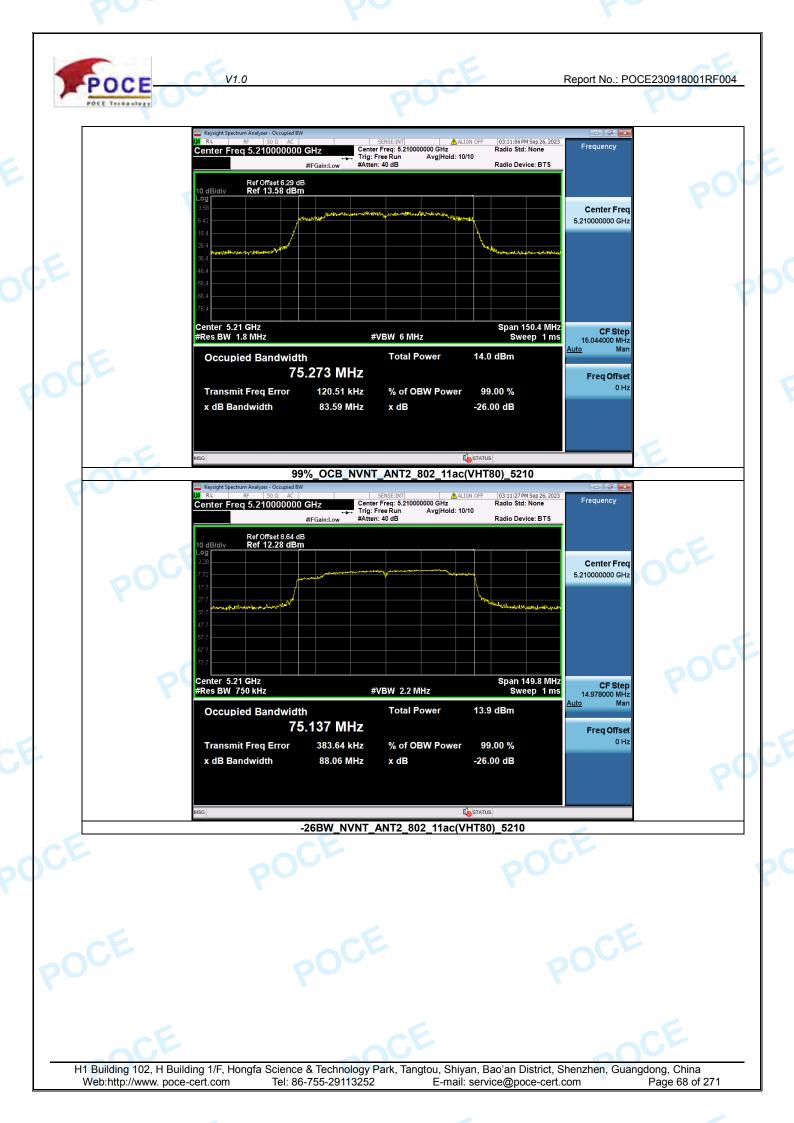




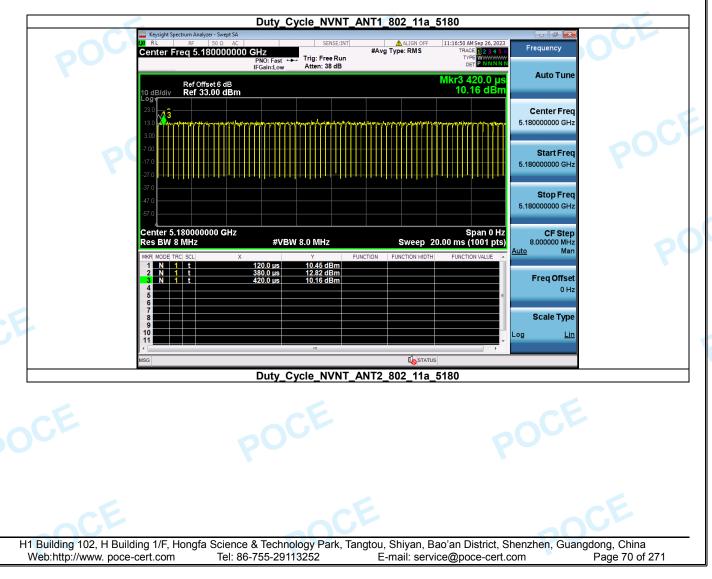


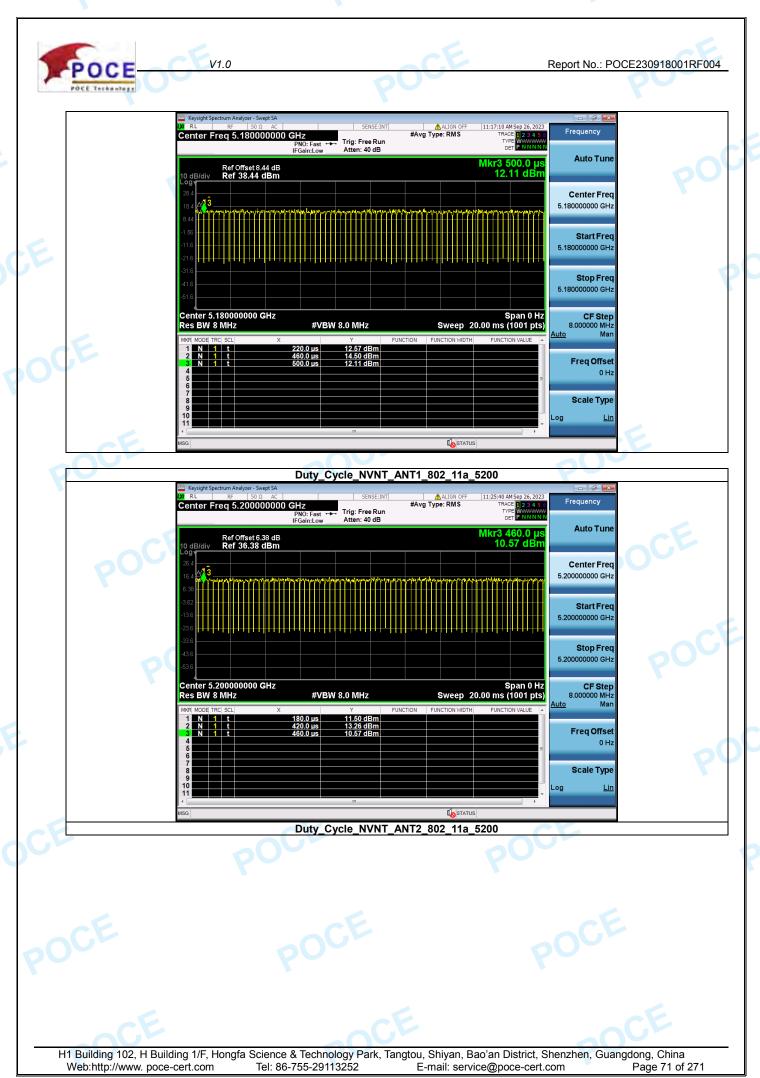


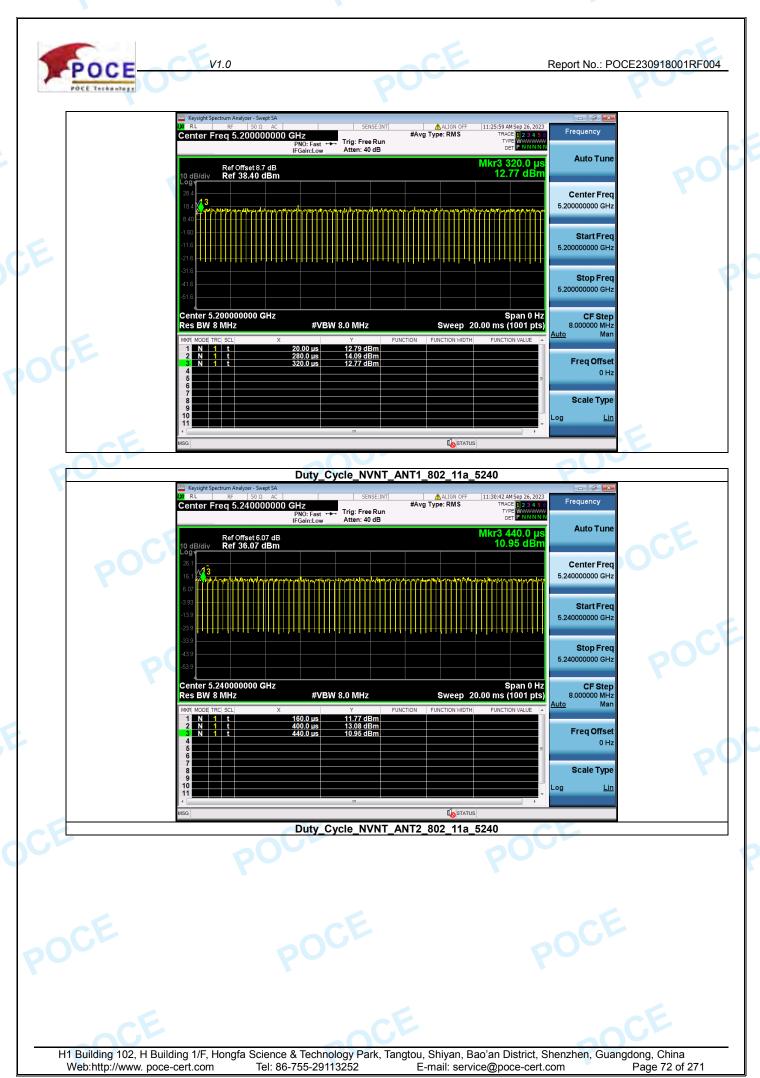


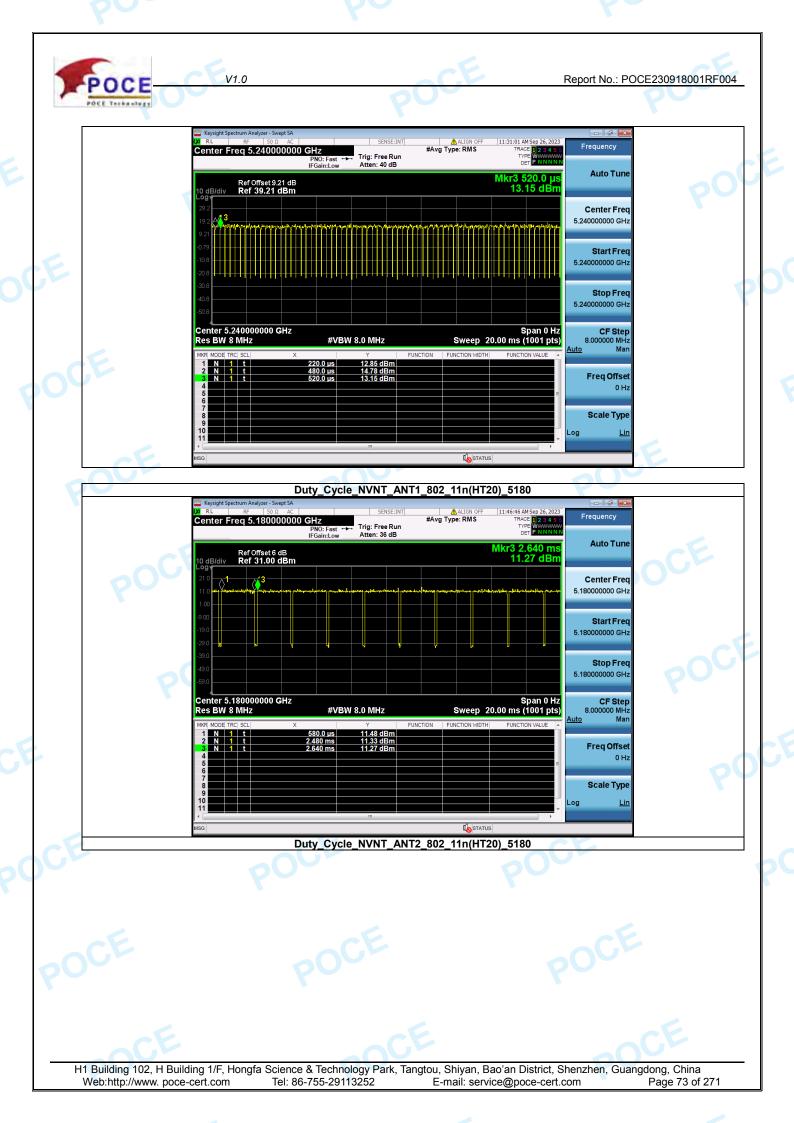


POCE Technology	Keysight Spectrum Analyzer - Occupied BW M RL RF 50 Ω AC Center Freq 5.210000000 GF #IF	Z Center Freq: 5.21000000 GHz Gain:Low #Atten: 40 dB	Radio Stu. None	Frequency
	Ref Offset 8.64 dB 10 dB/div Ref 12.28 dBm 2.28	ng production of the second		Center Freq 210000000 GHz
•	-27 7 3777			
	Center 5.21 GHz #Res BW 1.8 MHz	#VBW 6 MHz	Auto	CF Step 14.978000 MHz 2 Man
CE	Occupied Bandwidth 75.3 Transmit Freq Error x dB Bandwidth	Total Power 40 MHz 456.91 kHz % of OBW Powe 85.76 MHz x dB	15.2 dBm r 99.00 % -26.00 dB	Freq Offset 0 Hz
E	MSG			E
POCL		POU		200




Report No.: POCE230918001RF004


2. Duty Cycle


OCE

Condition	Antenna	Modulation	Frequency (MHz)	Duty cycle(%)	Duty_factor
NVNT	ANT1	802.11a	5180.00	86.67	0.62
NVNT	ANT2	802.11a	5180.00	85.71	0.67
NVNT	ANT1	802.11a	5200.00	85.71	0.67
NVNT	ANT2	802.11a	5200.00	86.67	0.62
NVNT	ANT1	802.11a	5240.00	85.71	0.67
NVNT	ANT2	802.11a	5240.00	86.67	0.62
NVNT	ANT1	802.11n(HT20)	5180.00	92.23	0.35
NVNT	ANT2	802.11n(HT20)	5180.00	93.20	0.31
NVNT	ANT1	802.11n(HT20)	5200.00	92.23	0.35
NVNT	ANT2	802.11n(HT20)	5200.00	92.23	0.35
NVNT	ANT1	802.11n(HT20)	5240.00	93.14	0.31
NVNT	ANT2	802.11n(HT20)	5240.00	92.23	0.35
NVNT	ANT1	802.11ac(VHT20)	5180.00	84.62	0.73
NVNT	ANT2	802.11ac(VHT20)	5180.00	84.62	0.73
NVNT	ANT1	802.11ac(VHT20)	5200.00	84.62	0.73
NVNT	ANT2	802.11ac(VHT20)	5200.00	84.62	0.73
NVNT	ANT1	802.11ac(VHT20)	5240.00	84.62	0.73
NVNT	ANT2	802.11ac(VHT20)	5240.00	78.57	1.05
NVNT	ANT1	802.11n(HT40)	5190.00	81.03	0.91
NVNT	ANT2	802.11n(HT40)	5190.00	81.03	0.91
NVNT	ANT1	802.11n(HT40)	5230.00	81.03	0.91
NVNT	ANT2	802.11n(HT40)	5230.00	79.31	1.01
NVNT	ANT1	802.11ac(VHT40)	5190.00	75.00	1.25
NVNT	ANT2	802.11ac(VHT40)	5190.00	71.43	1.46
NVNT	ANT1	802.11ac(VHT40)	5230.00	71.43	1.46
NVNT	ANT2	802.11ac(VHT40)	5230.00	75.00	1.25
NVNT	ANT1	802.11ac(VHT80)	5210.00	85.19	0.70
NVNT	ANT2	802.11ac(VHT80)	5210.00	82.14	0.85

