

Report No.: EED32M00266502 Page 1 of 109



**Product** Portable Monitor

Trade mark **OWLENZ** 

Model/Type reference : SPD20,SPD30,SPD40,SPD50,SPD60,

> SPD70,SPD80,SPD90,SPD100, SPD150,SPD200,SPD300,SPD10.

: N/A Serial Number

**Report Number** EED32M00266502 **FCC ID** 2AXJJ-STAR-2020

Nov. 02, 2020 Date of Issue

**Test Standards** 47 CFR Part 15Subpart C

Test result **PASS** 

Prepared for:

Shenzhen Star Audio-Visual Equipment Co., Ltd RM 102,1st FL, Building 8, 2rd Industry Zone, Shajing Street, Baoan District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Sunlight Sun

Reviewed by:

Jok Yane Jok Yang

proved b

Report Seal

Sunlight Sun

Date:

Nov. 02, 2020

Sam Chuang

Check No: 4538210931

Hotline: 400-6788-333

www.cti-cert.com

E-mail: info@cti-cert.com









Report No. : EED32M00266502 Page 2 of 109

# 2 Version

| Version No. | Date          |  |          |   |
|-------------|---------------|--|----------|---|
| 00          | Nov. 02, 2020 |  | Original |   |
| )           |               |  |          |   |
|             | 0             |  | 0        | 0 |















































































Report No.: EED32M00266502 Page 3 of 109

3 Test Summary

| Test Item                                                         | Test Requirement                                      | Test method      | Result |
|-------------------------------------------------------------------|-------------------------------------------------------|------------------|--------|
| Antenna Requirement                                               | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10-2013 | PASS   |
| AC Power Line Conducted<br>Emission                               | 47 CFR Part 15 Subpart C Section<br>15.207            | ANSI C63.10-2013 | PASS   |
| Conducted Peak Output<br>Power                                    | 47 CFR Part 15 Subpart C Section<br>15.247 (b)(3)     | ANSI C63.10-2013 | PASS   |
| 6dB Occupied Bandwidth                                            | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(2)     | ANSI C63.10-2013 | PASS   |
| Power Spectral Density                                            | 47 CFR Part 15 Subpart C Section 15.247 (e)           | ANSI C63.10-2013 | PASS   |
| Band-edge for RF<br>Conducted Emissions                           | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | ANSI C63.10-2013 | PASS   |
| RF Conducted Spurious<br>Emissions                                | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | ANSI C63.10-2013 | PASS   |
| Radiated Spurious<br>Emissions                                    | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013 | PASS   |
| Restricted bands around fundamental frequency (Radiated Emission) | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013 | PASS   |

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.:SPD20,SPD30,SPD40,SPD50,SPD60,SPD70,SPD80,SPD90,SPD100,SPD150,SPD200,

SPD300,SPD10.

Only the model SPD10 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color and the product model .











Page 4 of 109

# 4 Content

| 1 COVER PAGE                                                                                | ••••• | ••••• | 1   |
|---------------------------------------------------------------------------------------------|-------|-------|-----|
| 2 VERSION                                                                                   |       |       | 2   |
| 3 TEST SUMMARY                                                                              |       |       | 3   |
| 4 CONTENT                                                                                   |       |       | 4   |
| 5 TEST REQUIREMENT                                                                          |       |       | 5   |
| 5.1 TEST SETUP                                                                              |       |       | 5   |
| 5.1.1 For Conducted test setup                                                              |       |       |     |
| 5.1.2 For Radiated Emissions test setup                                                     |       |       |     |
| 5.1.3 For Conducted Emissions test setup                                                    |       |       |     |
| 5.2 Test Environment                                                                        |       |       |     |
| 5.3 TEST CONDITION                                                                          |       |       |     |
| 6 GENERAL INFORMATION                                                                       |       |       | 8   |
| 6.1 CLIENT INFORMATION                                                                      |       |       | 8   |
| 6.2 GENERAL DESCRIPTION OF EUT                                                              |       |       |     |
| 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STA                                            |       |       |     |
| 6.4 DESCRIPTION OF SUPPORT UNITS                                                            |       |       |     |
| 6.5 TEST LOCATION                                                                           |       |       |     |
| 6.6 DEVIATION FROM STANDARDS                                                                |       |       |     |
| 6.7 ABNORMALITIES FROM STANDARD CONDITIONS                                                  |       |       |     |
| 6.8 OTHER INFORMATION REQUESTED BY THE CUSTON 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE L |       |       |     |
| •                                                                                           | •     |       |     |
| 7 EQUIPMENT LIST                                                                            |       |       |     |
| 8 RADIO TECHNICAL REQUIREMENTS SPECIFICA                                                    | TION  |       | 14  |
| Appendix A): Conducted Peak Output Power                                                    |       |       | 20  |
| Appendix B): 6dB Occupied Bandwidth                                                         |       |       |     |
| Appendix C): Band-edge for RF Conducted Emis                                                | sions |       | 36  |
| Appendix D): RF Conducted Spurious Emissions                                                |       |       | 41  |
| Appendix E): Power Spectral Density                                                         |       |       |     |
| Appendix F): Antenna Requirement                                                            |       |       |     |
| Appendix G): AC Power Line Conducted Emissio                                                |       |       |     |
| Appendix H): Restricted bands around fundamen                                               |       |       |     |
| Appendix I): Radiated Spurious Emissions                                                    |       |       |     |
| PHOTOGRAPHS OF TEST SETUP                                                                   |       |       | 106 |
| PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETA                                                      | AILS  |       | 109 |











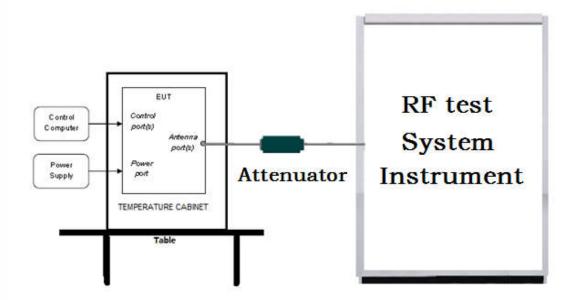













Report No. : EED32M00266502 Page 5 of 109

# 5 Test Requirement

## 5.1 Test setup

## 5.1.1 For Conducted test setup



## 5.1.2 For Radiated Emissions test setup

#### Radiated Emissions setup:

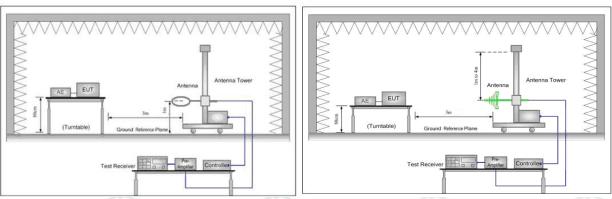



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

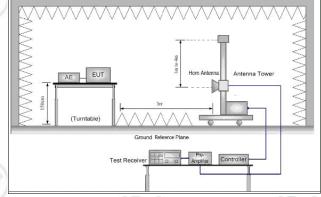
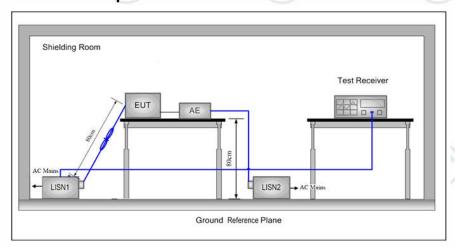



Figure 3. Above 1GHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com










Report No. : EED32M00266502 Page 6 of 109

# 5.1.3 For Conducted Emissions test setup Conducted Emissions setup



## 5.2 Test Environment

| Operating Environment: |          |            |  |  |  |
|------------------------|----------|------------|--|--|--|
| Temperature:           | 24.0 °C  | - differen |  |  |  |
| Humidity:              | 54 % RH  |            |  |  |  |
| Atmospheric Pressure:  | 1010mbar |            |  |  |  |

## **5.3 Test Condition**

Test channel:

| . Oriaririoi.      |                                                                                          |            |           | 1.23      |  |  |  |
|--------------------|------------------------------------------------------------------------------------------|------------|-----------|-----------|--|--|--|
| Test Mode          | Tv/Dv                                                                                    | RF Channel |           |           |  |  |  |
| restiviode         | Tx/Rx                                                                                    | Low(L)     | Middle(M) | High(H)   |  |  |  |
| 802.11b/g/n(HT20)  | 2442MHz - 2462 MHz                                                                       | Channel 1  | Channel 6 | Channel11 |  |  |  |
|                    | 2412MHz ~2462 MHz                                                                        | 2412MHz    | 2437MHz   | 2462MHz   |  |  |  |
| 802.11n(HT40)      | 0400041- 0450 041-                                                                       | Channel 3  | Channel 6 | Channel 9 |  |  |  |
|                    | 2422MHz ~2452 MHz                                                                        | 2422MHz    | 2437MHz   | 2452MHz   |  |  |  |
| Transmitting mode: | Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. |            |           |           |  |  |  |











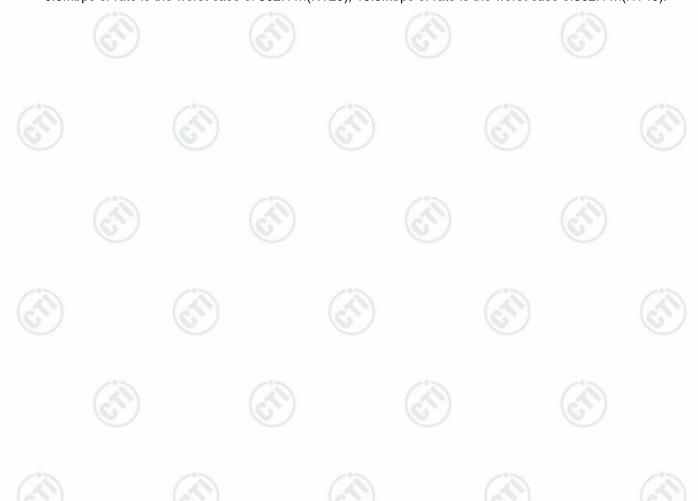











Report No. : EED32M00266502 Page 7 of 109

#### Test mode:

#### Pre-scan under all rate at lowest channel

| Mode       |     | 802.11b        |        |    |         |         |         |          |           |         |  |  |
|------------|-----|----------------|--------|----|---------|---------|---------|----------|-----------|---------|--|--|
| Data Rate  |     | 1Mbp           | s 2Mb  | ps | 5.5Mbp  | s 11Mbp | s       |          | <b>/</b>  |         |  |  |
| Power(dBm) | - 7 | 6.21           | 6.1    | 8  | 6.16    | 6.13    |         |          |           |         |  |  |
| Mode       | 1   | 5)             | l      |    | (6)     | 80      | 2.11g   | (0)      |           | 16      |  |  |
| Data Rate  |     | 6Mbp           | s 9Mb  | ps | 12Mbps  | 18Mbps  | s 24Mbp | os 36Mbp | s 48Mbps  | 54Mbps  |  |  |
| Power(dBm  | )   | 6.11           | 6.0    | 9  | 6.06    | 6.05    | 6.03    | 6.01     | 5.98      | 5.95    |  |  |
| Mode       |     | ı              | 12     | 10 |         | 802.11n | (HT20)  | <u> </u> | 120       |         |  |  |
| Data Rate  | 6.5 | Mbps           | 13Mbps | 19 | 9.5Mbps | 26Mbps  | 39Mbps  | 52Mbps   | 58.5Mbps  | 65Mbps  |  |  |
| Power(dBm) | (   | 5.34           | 6.31   |    | 6.28    | 6.25    | 6.23    | 6.22     | 6.2       | 6.18    |  |  |
| Mode       |     | 802.11n (HT40) |        |    |         |         |         |          |           |         |  |  |
| Data Rate  | 13. | 5Mbps          | 27Mbps | 40 | 0.5Mbps | 54Mbps  | 81Mbps  | 108Mbps  | 121.5Mbps | 135Mbps |  |  |
| Power(dBm) | (   | 3.32           | 6.30   |    | 6.28    | 6.25    | 6.23    | 6.21     | 6.18      | 6.16    |  |  |

Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of802.11n(HT40).











Page 8 of 109 Report No.: EED32M00266502

# **General Information**

## **6.1 Client Information**

| Applicant:               | Shenzhen Star Audio-Visual Equipment Co., Ltd                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | RM 102,1st FL, Building 8, 2rd Industry Zone, Shajing Street, Baoan District, Shenzhen                                                         |
| Manufacturer:            | Shenzhen Star Audio-Visual Equipment Co., Ltd                                                                                                  |
| Address of Manufacturer: | RM 102,1st FL, Building 8, 2rd Industry Zone, Shajing Street, Baoan District, Shenzhen                                                         |
| Factory:                 | Shenzhen Zhengtongrenhe Technology Co., Ltd.                                                                                                   |
| Address of Factory:      | Room 201, Building E, Weihuada Industrial Park, No. 65, Huaning West Road, Xinwei, Xinshi Community, Dalang Street, Longhua District, Shenzhen |

# 6.2 General Description of EUT

| •                             |            |                                                                                                                                                  |  |  |  |  |  |
|-------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Product Name:                 | Portable N | Monitor                                                                                                                                          |  |  |  |  |  |
| Model No.(EUT):               | 1          | SPD20,SPD30,SPD40,SPD50,SPD60, SPD70,SPD80,SPD90,SPD100, SPD150,SPD200,SPD300,SPD10.                                                             |  |  |  |  |  |
| Test Model No:                | SPD10      | SPD10                                                                                                                                            |  |  |  |  |  |
| Trade mark:                   | OWLENZ     |                                                                                                                                                  |  |  |  |  |  |
| Frequency Range of Operation: |            |                                                                                                                                                  |  |  |  |  |  |
| Power Supply:                 | Adapter    | MODEL:FJ-SW618H-1E INPUT:100-240V~50/60Hz 0.6A Max OUTPUT:5.0V3.0A,15.0W Max or 9.0V2.0A,18.0W Max or 12.0V1.5A,18.0W Max OUTPUT POWER:18.0W Max |  |  |  |  |  |
| (cil)                         | Battery    | DQ30100115/2S 7.6V<br>5000mAh 38Wh                                                                                                               |  |  |  |  |  |
| Sample Received Date:         | Aug. 28, 2 | 020                                                                                                                                              |  |  |  |  |  |
| Sample tested Date:           | Aug. 28, 2 | 020 to Oct.16, 2020                                                                                                                              |  |  |  |  |  |































Report No.: EED32M00266502 Page 9 of 109

# 6.3 Product Specification subjective to this standard

|                        | _                                                                                        |                    |       |
|------------------------|------------------------------------------------------------------------------------------|--------------------|-------|
| Operation Frequency:   | IEEE 802.11b/g/n(HT20): 2412<br>IEEE 802.11n(HT40): 2422MH                               |                    |       |
| Channel Numbers:       | IEEE 802.11b/g, IEEE 802.11n<br>IEEE 802.11n HT40: 7 Channe                              |                    |       |
| Channel Separation:    | 5MHz                                                                                     | (82)               | (6,7) |
| Type of Modulation:    | IEEE for 802.11b: DSSS(CCK, IEEE for 802.11g :OFDM(64QAIEEE for 802.11n(HT20 and HTBPSK) | AM, 16QAM, QPSK, B |       |
| Test Power Grade:      | Default                                                                                  |                    |       |
| Test Software of EUT:  | REALTEK                                                                                  |                    |       |
| Antenna Type and Gain: | Type: Built-in dual-band antenr<br>Gain:3.0 dBi                                          | na                 |       |
| Test Voltage:          | Battery 7.6V                                                                             |                    | (30)  |

| Operation | Operation Frequency each of channel(802.11b/g/n HT20) |         |           |         |           |         |           |  |  |  |
|-----------|-------------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|--|--|--|
| Channel   | Frequency                                             | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |  |  |
| 1/3       | 2412MHz                                               | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |  |  |  |
| 2         | 2417MHz                                               | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |  |  |  |
| 3         | 2422MHz                                               | 6       | 2437MHz   | 9       | 2452MHz   |         |           |  |  |  |

Operation Frequency each of channel(802.11n HT40)

|         | . 1       |         | ,         |         |           |
|---------|-----------|---------|-----------|---------|-----------|
| Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 3       | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |
| 4       | 2427MHz   | 7       | 2442MHz   |         |           |
| 5       | 2432MHz   | 8       | 2447MHz   |         | -0.00     |













Hotline: 400-6788-333

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Report No. : EED32M00266502 Page 10 of 109

## 6.4 Description of Support Units

The EUT has been tested with associated equipment below

| _   | sociated<br>ment name | Manufacture model |              | S/N<br>serial number | Supplied by | Certification |  |
|-----|-----------------------|-------------------|--------------|----------------------|-------------|---------------|--|
| AE1 | Notebook              | DELL              | DELL<br>3490 | D245DX2              | DELL        | CE&FCC        |  |
| _   | - 6                   | /                 |              | P                    |             |               |  |

#### 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

#### 6.6 Deviation from Standards

None.

## 6.7 Abnormalities from Standard Conditions

None.

# 6.8 Other Information Requested by the Customer

None.

# 6.9 Measurement Uncertainty (95% confidence levels, k=2)

| Item                            | Measurement Uncertainty                                                                                                     |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Radio Frequency                 | 7.9 x 10 <sup>-8</sup>                                                                                                      |
| DE nower conducted              | 0.46dB (30MHz-1GHz)                                                                                                         |
| RF power, conducted             | 0.55dB (1GHz-18GHz)                                                                                                         |
| Dadiated Spurious amission test | 4.3dB (30MHz-1GHz)                                                                                                          |
| Radiated Spurious emission test | 4.5dB (1GHz-12.75GHz)                                                                                                       |
| Conduction emission             | 3.5dB (9kHz to 150kHz)                                                                                                      |
| Conduction emission             | 3.1dB (150kHz to 30MHz)                                                                                                     |
| Temperature test                | 0.64°C                                                                                                                      |
| Humidity test                   | 3.8%                                                                                                                        |
| DC power voltages               | 0.026%                                                                                                                      |
|                                 | Radio Frequency  RF power, conducted  Radiated Spurious emission test  Conduction emission  Temperature test  Humidity test |











Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com





# **Equipment List**

|                                        | RF test system    |                              |                  |                           |                               |  |  |
|----------------------------------------|-------------------|------------------------------|------------------|---------------------------|-------------------------------|--|--|
| Equipment                              | Manufacturer      | Mode No.                     | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |  |
| Spectrum<br>Analyzer                   | Keysight          | N9010A                       | MY54510339       | 02-17-2020                | 02-16-2021                    |  |  |
| Signal<br>Generator                    | Keysight          | N5182B                       | MY53051549       | 02-17-2020                | 02-16-2021                    |  |  |
| Temperature/<br>Humidity<br>Indicator  | biaozhi           | HM10                         | 1804186          | 06-29-2020                | 06-28-2021                    |  |  |
| High-pass filter                       | Sinoscite         | FL3CX03WG18N<br>M12-0398-002 |                  |                           |                               |  |  |
| High-pass filter                       | MICRO-<br>TRONICS | SPA-F-63029-4                | -                | (%)                       | (                             |  |  |
| DC Power                               | Keysight          | E3642A                       | MY56376072       | 02-17-2020                | 02-16-2021                    |  |  |
| PC-1                                   | Lenovo            | R4960d                       |                  |                           |                               |  |  |
| BT&WI-FI<br>Automatic<br>control       | R&S               | OSP120                       | 101374           | 02-17-2020                | 02-16-2021                    |  |  |
| RF control unit                        | JS Tonscend       | JS0806-2                     | 158060006        | 02-17-2020                | 02-16-2021                    |  |  |
| BT&WI-FI<br>Automatic test<br>software | JS Tonscend       | JS1120-3                     |                  |                           |                               |  |  |

| Conducted disturbance Test         |                           |                               |        |            |            |  |
|------------------------------------|---------------------------|-------------------------------|--------|------------|------------|--|
| Equipment                          | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |        |            |            |  |
| Receiver                           | R&S                       | ESCI                          | 100435 | 04-28-2020 | 04-27-2021 |  |
| Temperature/<br>Humidity Indicator | Defu                      | TH128                         | /      |            |            |  |
| LISN                               | R&S                       | ENV216                        | 100098 | 03-05-2020 | 03-04-2021 |  |
| Barometer                          | changchun                 | DYM3                          | 1188   | -(65)      |            |  |













Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com









Report No.: EED32M00266502 Page 12 of 109

|                                        | 3M                  | Semi/full-anecho     | ic Chamber       |                           |                               |
|----------------------------------------|---------------------|----------------------|------------------|---------------------------|-------------------------------|
| Equipment                              | Manufacturer        | Model No.            | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| 3M Chamber &<br>Accessory<br>Equipment | TDK                 | SAC-3                |                  | 05-24-2019                | 05-23-2022                    |
| TRILOG Broadband<br>Antenna            | Schwarzbeck         | VULB9163             | 9163-618         | 05-16-2020                | 05-15-2021                    |
| Loop Antenna                           | Schwarzbeck         | FMZB 1519B           | 1519B-<br>076    | 04-25-2018                | 04-24-2021                    |
| Receiver                               | R&S                 | ESCI7                | 100938-<br>003   | 10-21-2019                | 10-20-2020                    |
| Multi device<br>Controller             | maturo              | NCD/070/107<br>11112 |                  |                           |                               |
| Temperature/<br>Humidity Indicator     | Shanghai<br>qixiang | HM10                 | 1804298          | 06-29-2020                | 06-28-2021                    |
| Cable line                             | Fulai(7M)           | SF106                | 5219/6A          | <del>/**</del> %          |                               |
| Cable line                             | Fulai(6M)           | SF106                | 5220/6A          | ( <del>-4</del> )         |                               |
| Cable line                             | Fulai(3M)           | SF106                | 5216/6A          | (G)                       |                               |
| Cable line                             | Fulai(3M)           | SF106                | 5217/6A          |                           |                               |















Report No. : EED32M00266502 Page 13 of 109

|                                         | I                  | 3M full-anechoi       |                  |                           |                               |
|-----------------------------------------|--------------------|-----------------------|------------------|---------------------------|-------------------------------|
| Equipment Manufacturer                  |                    | Model No.             | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| RSE Automatic test software             | JS Tonscend        | JS36-RSE              | 10166            |                           |                               |
| Receiver                                | Keysight           | N9038A                | MY57290136       | 03-05-2020                | 03-04-2021                    |
| Spectrum<br>Analyzer                    | Keysight           | N9020B                | MY57111112       | 03-05-2020                | 03-04-2021                    |
| Spectrum<br>Analyzer                    | Keysight           | N9030B                | MY57140871       | 03-05-2020                | 03-04-2021                    |
| TRILOG<br>Broadband<br>Antenna          | Schwarzbeck        | VULB 9163             | 9163-1148        | 04-25-2018                | 04-24-2021                    |
| Horn Antenna                            | Schwarzbeck        | BBHA 9170             | 9170-832         | 04-25-2018                | 04-24-2021                    |
| Horn Antenna                            | ETS-<br>LINDGREN   | 3117                  | 00057407         | 07-10-2018                | 07-09-2021                    |
| Preamplifier                            | EMCI               | EMC184055SE           | 980596           | 05-20-2020                | 05-19-2021                    |
| Preamplifier                            | EMCI               | EMC001330             | 980563           | 04-22-2020                | 04-21-2021                    |
| Preamplifier                            | JS Tonscend        | 980380                | EMC051845<br>SE  | 01-09-2020                | 01-08-2021                    |
| Temperature/ Humidity biaozhi Indicator | biaozhi            | GM1360                | EE1186631        | 04-27-2020                | 04-26-2021                    |
| Chamber                                 | Fully Anechoic TDK |                       |                  | 01-17-2018                | 01-16-2021                    |
| Filter bank                             | JS Tonscend        | JS0806-F              | 188060094        | 04-10-2018                | 04-09-2021                    |
| Cable line                              | Times              | SFT205-NMSM-<br>2.50M | 394812-0001      |                           | 6.7                           |
| Cable line                              | Times              | SFT205-NMSM-<br>2.50M | 394812-0002      |                           |                               |
| Cable line                              | Times              | SFT205-NMSM-<br>2.50M | 394812-0003      |                           |                               |
| Cable line                              | Times              | SFT205-NMSM-<br>2.50M | 393495-0001      |                           |                               |
| Cable line                              | Times              | EMC104-NMNM-<br>1000  | SN160710         |                           |                               |
| Cable line                              | Times              | SFT205-NMSM-<br>3.00M | 394813-0001      |                           |                               |
| Cable line                              | Times              | SFT205-NMNM-<br>1.50M | 381964-0001      |                           | (c <u>1)</u>                  |
| Cable line                              | Times              | SFT205-NMSM-<br>7.00M | 394815-0001      |                           |                               |
| Cable line                              | Times              | HF160-KMKM-<br>3.00M  | 393493-0001      |                           |                               |

















Report No. : EED32M00266502 Page 14 of 109

# 8 Radio Technical Requirements Specification

Reference documents for testing:

|   | No. | Identity         | Document Title                                                    |
|---|-----|------------------|-------------------------------------------------------------------|
| - | 1   | FCC Part15C      | Subpart C-Intentional Radiators                                   |
| 1 | 2   | ANSI C63.10-2013 | American National Standard for Testing Unlicesed Wireless Devices |

#### **Test Results List:**

| Test Requirement                     | Test method | Test item                                                         | Verdict | Note        |
|--------------------------------------|-------------|-------------------------------------------------------------------|---------|-------------|
| Part15C Section<br>15.247 (b)(3)     | ANSI C63.10 | Conducted Peak Output Power                                       | PASS    | Appendix A) |
| Part15C Section<br>15.247 (a)(2)     | ANSI C63.10 | 6dB Occupied Bandwidth                                            | PASS    | Appendix B) |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | Band-edge for RF Conducted Emissions                              | PASS    | Appendix C) |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | RF Conducted Spurious<br>Emissions                                | PASS    | Appendix D) |
| Part15C Section<br>15.247 (e)        | ANSI C63.10 | Power Spectral Density                                            | PASS    | Appendix E) |
| Part15C Section<br>15.203/15.247 (c) | ANSI C63.10 | Antenna Requirement                                               | PASS    | Appendix F) |
| Part15C Section<br>15.207            | ANSI C63.10 | AC Power Line Conducted<br>Emission                               | PASS    | Appendix G) |
| Part15C Section<br>15.205/15.209     | ANSI C63.10 | Restricted bands around fundamental frequency (Radiated Emission) | PASS    | Appendix H) |
| Part15C Section<br>15.205/15.209     | ANSI C63.10 | Radiated Spurious Emissions                                       | PASS    | Appendix I) |











Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com









Page 15 of 109

# **EUT DUTY CYCLE**Result Table

| Test Mode | Antenna | Channel | Duty Cycle [%] | Limit | Verdict |
|-----------|---------|---------|----------------|-------|---------|
| )         | Ant1    | 2412    | 100            |       | PASS    |
| 11B       | Ant1    | 2437    | 100            |       | PASS    |
|           | Ant1    | 2462    | 100            |       | PASS    |
| (2)       | Ant1    | 2412    | 100            |       | PASS    |
| 11G       | Ant1    | 2437    | 100            |       | PASS    |
|           | Ant1    | 2462    | 100            |       | PASS    |
|           | Ant1    | 2412    | 100            |       | PASS    |
| 11N20SISO | Ant1    | 2437    | 100            |       | PASS    |
| /:        | Ant1    | 2462    | 100            | (G)   | PASS    |
|           | Ant1    | 2422    | 100            |       | PASS    |
| 11N40SISO | Ant1    | 2437    | 100            |       | PASS    |
| (2)       | Ant1    | 2452    | 100            |       | PASS    |

















































Report No.: EED32M00266502 Page 16 of 109

**Test Graph** 






Report No. : EED32M00266502 Page 17 of 109



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Report No. : EED32M00266502 Page 18 of 109





Report No. : EED32M00266502 Page 19 of 109





Report No.: EED32M00266502 Page 20 of 109

## **Appendix A): Conducted Peak Output Power**

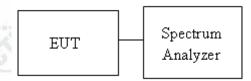
#### **Test Limit**

According to §15.247(b)(3),

### Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi. If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

| Limit | <ul><li>☐ Antenna with DG greater than 6 dBi :</li><li>[Limit = 30 – (DG – 6)]</li><li>☐ Point-to-point operation :</li></ul> |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------|--|


Average output power: For reporting purposes only.

#### **Test Procedure**

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
  - a) Set the RBW = 1 MHz.
  - b) Set the VBW  $\geq$  [3  $\times$  RBW].
  - c) Set the span  $\geq$  [1.5  $\times$  DTS bandwidth].
  - d) Detector = peak.
  - e) Sweep time = auto couple.
  - f) Trace mode = max hold.
  - g) Allow trace to fully stabilize.
  - h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges
- 4. Measure and record the result in the test report.

#### **Test Setup**











Page 21 of 109







# §) (c'

#### **Test Result**

| Mode      | Channel | Conducted Peak Output Power [dBm] | Verdict |
|-----------|---------|-----------------------------------|---------|
| 11B       | LCH     | 6.21                              | PASS    |
| 11B       | MCH     | 6.91                              | PASS    |
| 11B       | HCH     | 6.56                              | PASS    |
| 11G       | LCH     | 6.11                              | PASS    |
| 11G       | MCH     | 6.53                              | PASS    |
| 11G       | HCH     | 6.24                              | PASS    |
| 11N20SISO | LCH     | 6.34                              | PASS    |
| 11N20SISO | МСН     | 6.82                              | PASS    |
| 11N20SISO | HCH     | 6.1                               | PASS    |
| 11N40SISO | LCH     | 6.32                              | PASS    |
| 11N40SISO | MCH     | 6.39                              | PASS    |
| 11N40SISO | НСН     | 6.36                              | PASS    |













































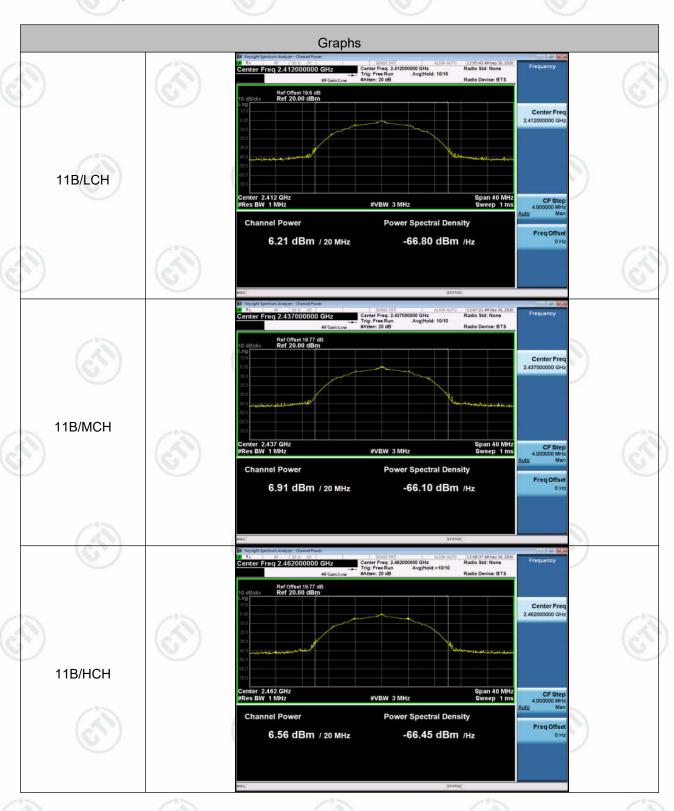

















Report No.: EED32M00266502 Page 22 of 109

## **Test Graph**











Report No. : EED32M00266502 Page 23 of 109






















Report No. : EED32M00266502 Page 24 of 109





















Report No.: EED32M00266502 Page 25 of 109





















Report No.: EED32M00266502 Page 26 of 109

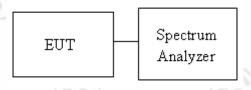
# Appendix B): 6dB Occupied Bandwidth

#### **Test Limit**

According to §15.247(a)(2),

#### 6 dB Bandwidth:

|--|


Occupied Bandwidth(99%) : For reporting purposes only.

#### **Test Procedure**

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz , VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

#### **Test Setup**



















Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com









Report No. : EED32M00266502 Page 27 of 109

## **Test Result**

| Mode      | Channel | 6dB Bandwidth [MHz] | 99% OBW [MHz] | Verdict |
|-----------|---------|---------------------|---------------|---------|
| 11B       | LCH     | 10.07               | 15.470        | PASS    |
| 11B       | МСН     | 10.05               | 15.394        | PASS    |
| 11B       | нсн     | 10.06               | 15.485        | PASS    |
| 11G       | LCH     | 16.29               | 17.022        | PASS    |
| 11G       | MCH     | 16.27               | 16.994        | PASS    |
| 11G       | нсн     | 16.31               | 17.045        | PASS    |
| 11N20SISO | LCH     | 16.64               | 18.038        | PASS    |
| 11N20SISO | MCH     | 16.74               | 18.045        | PASS    |
| 11N20SISO | нсн     | 16.86               | 17.934        | PASS    |
| 11N40SISO | LCH     | 33.87               | 37.041        | PASS    |
| 11N40SISO | MCH     | 35.06               | 36.981        | PASS    |
| 11N40SISO | нсн     | 35.07               | 36.973        | PASS    |























































Report No.: EED32M00266502 Page 28 of 109

# Test Graph































Report No.: EED32M00266502 Page 30 of 109






















Page 31 of 109





















Page 32 of 109 Report No.: EED32M00266502

Occupied Bandwidth(99%)





















Page 33 of 109





















Page 34 of 109





















Page 35 of 109





















Report No.: EED32M00266502 Page 36 of 109

# Appendix C): Band-edge for RF Conducted Emissions

#### **Test Limit**

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).


#### **Test Procedure**

Test method Refer as KDB 558074 D01.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

#### **Test Setup**



















Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com









Page 37 of 109

## **Result Table**

| Mode      | Channel | Carrier<br>Power[dBm] | Max.Spurious<br>Level [dBm] | Limit [dBm] | Verdict |
|-----------|---------|-----------------------|-----------------------------|-------------|---------|
| 11B       | LCH     | -7.050                | -50.267                     | -37.05      | PASS    |
| 11B       | НСН     | -6.293                | -49.809                     | -36.29      | PASS    |
| 11G       | LCH     | -12.508               | -49.966                     | -42.51      | PASS    |
| 11G       | НСН     | -12.281               | -49.090                     | -42.28      | PASS    |
| 11N20SISO | LCH     | -12.830               | -50.165                     | -42.83      | PASS    |
| 11N20SISO | НСН     | -12.330               | -49.721                     | -42.33      | PASS    |
| 11N40SISO | LCH     | -15.443               | -50.280                     | -45.44      | PASS    |
| 11N40SISO | НСН     | -12.910               | -50.064                     | -42.91      | PASS    |
































































Report No.: EED32M00266502 Page 38 of 109

## **Test Graph**











Page 39 of 109



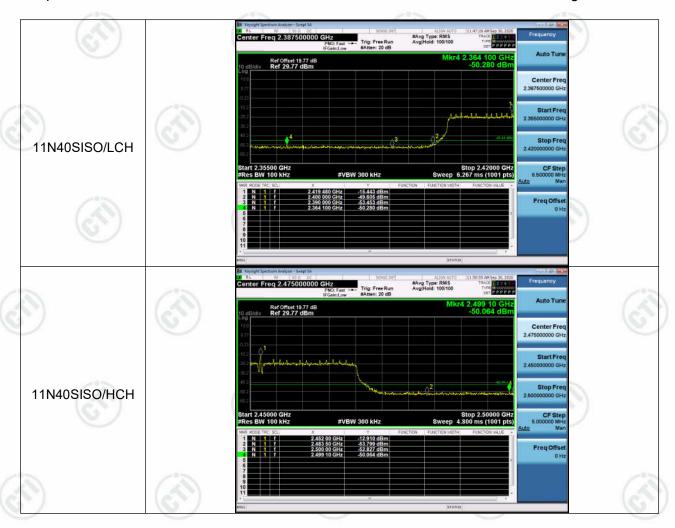



















Page 40 of 109



















































Report No.: EED32M00266502 Page 41 of 109

## **Appendix D): RF Conducted Spurious Emissions**

#### **Test Limit**

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

#### **Test Procedure**

Test method Refer as KDB 558074 D01.

- EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

## **Test Setup** Spectrum EUT Analyzer











**Result Table** 





Page 42 of 109

| Mode      | Channel | Pref [dBm] | Puw[dBm]                             | Verdict |
|-----------|---------|------------|--------------------------------------|---------|
| 11B       | LCH     | -6.957     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B       | MCH     | -5.933     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B       | НСН     | -6.543     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G       | LCH     | -12.468    | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G       | MCH     | -12.094    | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G       | HCH     | -12.499    | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO | LCH     | -12.871    | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO | MCH     | -12.331    | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N20SISO | НСН     | -12.586    | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N40SISO | LCH     | -13.317    | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N40SISO | MCH     | -12.97     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N40SISO | HCH     | -13.071    | <limit< td=""><td>PASS</td></limit<> | PASS    |
























































Report No. : EED32M00266502 Page 43 of 109

Test Graph













Page 44 of 109









































Report No. : EED32M00266502 Page 45 of 109







































Page 46 of 109







































Page 47 of 109









































Page 48 of 109



















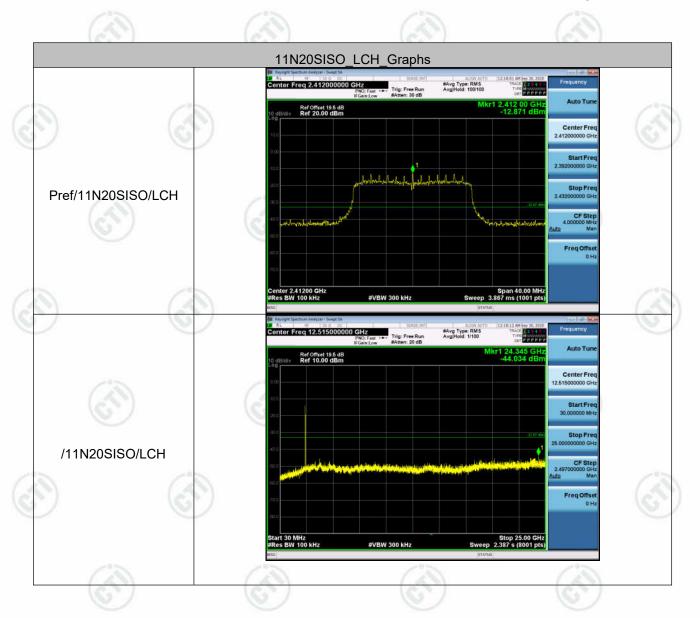



















Report No. : EED32M00266502 Page 49 of 109











Report No. : EED32M00266502 Page 50 of 109






































Report No.: EED32M00266502 Page 51 of 109











Report No. : EED32M00266502 Page 52 of 109












Report No. : EED32M00266502 Page 53 of 109






























Report No. : EED32M00266502 Page 54 of 109







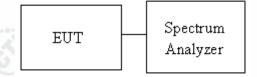


## **Appendix E): Power Spectral Density**

### **Test Limit**

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


| 2776.7 |                                        |     |
|--------|----------------------------------------|-----|
| (6.)   |                                        |     |
| Limit  | ☐ Antenna with DG greater than 6 dBi : |     |
| Littie | [ Limit = $8 - (DG - 6)$ ]             |     |
| (c)    | ☐ Point-to-point operation :           | (5) |
|        |                                        |     |

#### **Test Procedure**

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

## **Test Setup**





Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com









Report No. : EED32M00266502 Page 56 of 109

## **Result Table**

| Mode      | Channel | Power Spectral Density [dBm] | Verdict |
|-----------|---------|------------------------------|---------|
| 11B       | LCH     | -13.265                      | PASS    |
| 11B       | MCH     | -12.860                      | PASS    |
| 11B       | нсн     | -13.193                      | PASS    |
| 11G       | LCH     | -14.068                      | PASS    |
| 11G       | MCH     | -13.786                      | PASS    |
| 11G       | нсн     | -13.961                      | PASS    |
| 11N20SISO | LCH     | -14.048                      | PASS    |
| 11N20SISO | MCH     | -13.626                      | PASS    |
| 11N20SISO | нсн     | -13.917                      | PASS    |
| 11N40SISO | LCH     | -14.834                      | PASS    |
| 11N40SISO | MCH     | -13.590                      | PASS    |
| 11N40SISO | НСН     | -13.561                      | PASS    |





















































Report No. : EED32M00266502 Page 57 of 109

Test Graph





















Page 58 of 109





















Page 59 of 109





















Page 60 of 109





















Report No.: EED32M00266502 Page 61 of 109

## Appendix F): Antenna Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**



The antenna is Built-in dual-band antenna. The best case gain of the antenna is 3.0 dBi.







































Report No.: EED32M00266502 Page 62 of 109

| Test Procedure: | Test frequency range :150KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -30MHz                                                            |                                                                     |                                                       |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|
|                 | 1) The mains terminal disturba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nce voltage test was                                              | conducted in a shield                                               | ded room.                                             |
|                 | The EUT was connected to Stabilization Network) whi power cables of all other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ch provides a 50Ω/ $\epsilon$ units of the EUT we                 | $50\mu H$ + $5\Omega$ linear in ere connected to a s                | npedance. The econd LISN 2,                           |
|                 | which was bonded to the g<br>the unit being measured. A<br>power cables to a single LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | multiple socket outle                                             | et strip was used to c                                              | onnect multiple                                       |
|                 | The tabletop EUT was plated reference plane. And for for the horizontal ground reference in the second reference in the s | loor-standing arrange                                             |                                                                     |                                                       |
|                 | 4) The test was performed wit shall be 0.4 m from the reference plane was bonder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vertical ground ref                                               | erence plane. The v                                                 | vertical ground                                       |
| 9               | was placed 0.8 m from the reference plane for LISNs distance was between the of the EUT and associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | boundary of the unit<br>mounted on top o<br>closest points of the | t under test and bond<br>f the ground referen<br>LISN 1 and the EUT | ed to a ground<br>ce plane. This<br>. All other units |
|                 | 5) In order to find the maximum the interface cables must measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                                                     |                                                       |
| Limit:          | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                 | 6                                                                   |                                                       |
|                 | Francisco (MIIII)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limit (                                                           | (dBµV)                                                              |                                                       |
|                 | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                        | Average                                                             |                                                       |
|                 | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66 to 56*                                                         | 56 to 46*                                                           | (3)                                                   |

0.5-5 56 46 5-30 60 50 \* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz

#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.







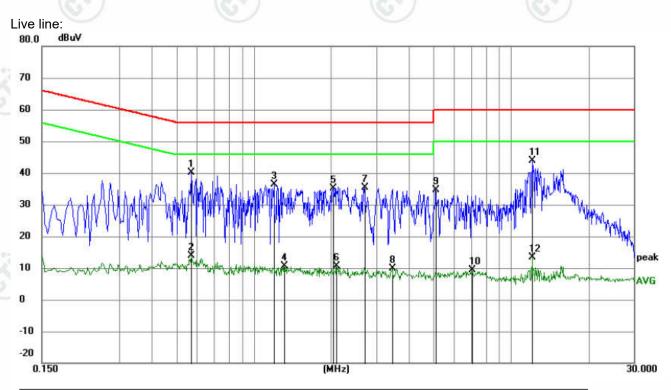






to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency









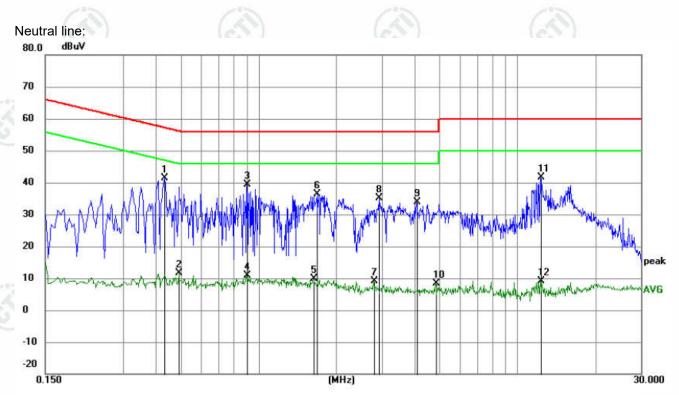

Page 63 of 109



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Margin |          |         |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|     |     | MHz     | dBu∀             | dB                | dBu√             | dBu∀  | dB     | Detector | Comment |
| 1   | *   | 0.5725  | 30.04            | 10.04             | 40.08            | 56.00 | -15.92 | QP       |         |
| 2   |     | 0.5725  | 3.85             | 10.04             | 13.89            | 46.00 | -32.11 | AVG      |         |
| 3   |     | 1.1979  | 26.64            | 9.82              | 36.46            | 56.00 | -19.54 | QP       |         |
| 4   |     | 1.3149  | 0.93             | 9.82              | 10.75            | 46.00 | -35.25 | AVG      |         |
| 5   |     | 2.0354  | 25.33            | 9.79              | 35.12            | 56.00 | -20.88 | QP       |         |
| 6   |     | 2.0939  | 0.85             | 9.79              | 10.64            | 46.00 | -35.36 | AVG      |         |
| 7   |     | 2.6970  | 25.60            | 9.79              | 35.39            | 56.00 | -20.61 | QP       |         |
| 8   |     | 3.4620  | 0.16             | 9.78              | 9.94             | 46.00 | -36.06 | AVG      |         |
| 9   |     | 5.1089  | 24.78            | 9.78              | 34.56            | 60.00 | -25.44 | QP       |         |
| 10  |     | 7.0438  | -0.36            | 9.79              | 9.43             | 50.00 | -40.57 | AVG      |         |
| 11  |     | 12.0615 | 34.07            | 9.84              | 43.91            | 60.00 | -16.09 | QP       |         |
| 12  |     | 12.0615 | 3.54             | 9.84              | 13.38            | 50.00 | -36.62 | AVG      |         |
















| 11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Margin |          |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
| 2       0.4919       1.76       9.95       11.71       46.14       -34.43       AVG         3       0.9012       29.43       9.85       39.28       56.00       -16.72       QP         4       0.9012       1.11       9.85       10.96       46.00       -35.04       AVG         5       1.6304       0.11       9.80       9.91       46.00       -36.09       AVG         6       1.6839       26.46       9.80       36.26       56.00       -19.74       QP         7       2.7915       -0.58       9.79       9.21       46.00       -36.79       AVG         8       2.9264       25.44       9.79       35.23       56.00       -20.77       QP         9       4.0739       24.20       9.78       33.98       56.00       -22.02       QP         10       4.8300       -1.31       9.78       8.47       46.00       -37.53       AVG         11       12.2728       31.66       9.85       41.51       60.00       -18.49       QP |         | MHz     | dBu∨             | dB                | dBu√             | dBu∨  | dB     | Detector | Comment |
| 3 0.9012 29.43 9.85 39.28 56.00 -16.72 QP 4 0.9012 1.11 9.85 10.96 46.00 -35.04 AVG 5 1.6304 0.11 9.80 9.91 46.00 -36.09 AVG 6 1.6839 26.46 9.80 36.26 56.00 -19.74 QP 7 2.7915 -0.58 9.79 9.21 46.00 -36.79 AVG 8 2.9264 25.44 9.79 35.23 56.00 -20.77 QP 9 4.0739 24.20 9.78 33.98 56.00 -22.02 QP 10 4.8300 -1.31 9.78 8.47 46.00 -37.53 AVG 11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 *     | 0.4334  | 31.44            | 9.96              | 41.40            | 57.19 | -15.79 | QP       |         |
| 4       0.9012       1.11       9.85       10.96       46.00       -35.04       AVG         5       1.6304       0.11       9.80       9.91       46.00       -36.09       AVG         6       1.6839       26.46       9.80       36.26       56.00       -19.74       QP         7       2.7915       -0.58       9.79       9.21       46.00       -36.79       AVG         8       2.9264       25.44       9.79       35.23       56.00       -20.77       QP         9       4.0739       24.20       9.78       33.98       56.00       -22.02       QP         10       4.8300       -1.31       9.78       8.47       46.00       -37.53       AVG         11       12.2728       31.66       9.85       41.51       60.00       -18.49       QP                                                                                                                                                                                         | 2       | 0.4919  | 1.76             | 9.95              | 11.71            | 46.14 | -34.43 | AVG      |         |
| 5       1.6304       0.11       9.80       9.91       46.00       -36.09       AVG         6       1.6839       26.46       9.80       36.26       56.00       -19.74       QP         7       2.7915       -0.58       9.79       9.21       46.00       -36.79       AVG         8       2.9264       25.44       9.79       35.23       56.00       -20.77       QP         9       4.0739       24.20       9.78       33.98       56.00       -22.02       QP         10       4.8300       -1.31       9.78       8.47       46.00       -37.53       AVG         11       12.2728       31.66       9.85       41.51       60.00       -18.49       QP                                                                                                                                                                                                                                                                                     | 3       | 0.9012  | 29.43            | 9.85              | 39.28            | 56.00 | -16.72 | QP       |         |
| 6 1.6839 26.46 9.80 36.26 56.00 -19.74 QP 7 2.7915 -0.58 9.79 9.21 46.00 -36.79 AVG 8 2.9264 25.44 9.79 35.23 56.00 -20.77 QP 9 4.0739 24.20 9.78 33.98 56.00 -22.02 QP 10 4.8300 -1.31 9.78 8.47 46.00 -37.53 AVG 11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4       | 0.9012  | 1.11             | 9.85              | 10.96            | 46.00 | -35.04 | AVG      |         |
| 7 2.7915 -0.58 9.79 9.21 46.00 -36.79 AVG 8 2.9264 25.44 9.79 35.23 56.00 -20.77 QP 9 4.0739 24.20 9.78 33.98 56.00 -22.02 QP 10 4.8300 -1.31 9.78 8.47 46.00 -37.53 AVG 11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5       | 1.6304  | 0.11             | 9.80              | 9.91             | 46.00 | -36.09 | AVG      |         |
| 8 2.9264 25.44 9.79 35.23 56.00 -20.77 QP<br>9 4.0739 24.20 9.78 33.98 56.00 -22.02 QP<br>10 4.8300 -1.31 9.78 8.47 46.00 -37.53 AVG<br>11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6       | 1.6839  | 26.46            | 9.80              | 36.26            | 56.00 | -19.74 | QP       |         |
| 9 4.0739 24.20 9.78 33.98 56.00 -22.02 QP<br>10 4.8300 -1.31 9.78 8.47 46.00 -37.53 AVG<br>11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7       | 2.7915  | -0.58            | 9.79              | 9.21             | 46.00 | -36.79 | AVG      |         |
| 10 4.8300 -1.31 9.78 8.47 46.00 -37.53 AVG<br>11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8       | 2.9264  | 25.44            | 9.79              | 35.23            | 56.00 | -20.77 | QP       |         |
| 11 12.2728 31.66 9.85 41.51 60.00 -18.49 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9       | 4.0739  | 24.20            | 9.78              | 33.98            | 56.00 | -22.02 | QP       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10      | 4.8300  | -1.31            | 9.78              | 8.47             | 46.00 | -37.53 | AVG      |         |
| 12 12.2728 -0.77 9.85 9.08 50.00 -40.92 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11      | 12.2728 | 31.66            | 9.85              | 41.51            | 60.00 | -18.49 | QP       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      | 12.2728 | -0.77            | 9.85              | 9.08             | 50.00 | -40.92 | AVG      |         |

## Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.











Report No. : EED32M00266502 Page 65 of 109

# Appendix H): Restricted bands around fundamental frequency (Radiated)

| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                  | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                 |                                         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                | 120kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peak                                                                                                             |                                         |
|                 | Above 4011-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                                                      | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                                   | 1                                       |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                      | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                                                                                                                | 2                                       |
| Test Procedure: | Below 1GHz test procedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ire as below:                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                         |
|                 | Test method Refer as KDB  a. The EUT was placed of at a 3 meter semi-aned determine the position  b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximum polarizations of the ant d. For each suspected en the antenna was tuned was turned from 0 deg  e. The test-receiver system Bandwidth with Maxim  f. Place a marker at the efrequency to show communications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s 558074 D01 on the top of a rot choic camber. Th of the highest rac eters away from the p of a variable-he varied from one r m value of the fie enna are set to r nission, the EUT to heights from rees to 360 degre em was set to Pea um Hold Mode. end of the restrict | e table wadiation. The interfereight antereight antereid strength nake the nake the nake trans arrans to find ak Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ence-receinna tower. Four meters Four meters Four measurement Four measurement Four measurement Four meters Four m | ving antenna, above the gro izontal and veent. worst case and and the rotatal num reading. nd Specified                | which<br>und<br>ertical<br>d the<br>ble |
|                 | bands. Save the spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           | t. Repeat f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or each po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                         |
|                 | for lowest and highest  Above 1GHz test procedu  g. Different between abov  to fully Anechoic Cham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | channel  ure as below: ve is the test site, uber change form                                                                                                                                                                                                              | change fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rom Semi-<br>meter to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ower and mode<br>Anechoic Cha                                                                                          | ulati<br>ambe                           |
|                 | for lowest and highest  Above 1GHz test procedu  g. Different between above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | channel  ure as below: ve is the test site, ber change form 1 meter and table west channel, th ments are perfor d found the X axi                                                                                                                                         | change for table 0.8 are is 1.5 me e Highest med in X, s positioni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rom Semi-<br>meter to 1<br>eter).<br>channel<br>Y, Z axis p<br>ing which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anechoic Cha<br>.5 meter( Abor<br>cositioning for<br>t is worse case                                                   | ulatio<br>ambe<br>ve                    |
| Limit:          | for lowest and highest  Above 1GHz test procedu g. Different between above to fully Anechoic Chammatage 18GHz the distance is h. Test the EUT in the lower in the radiation measure that the test of the radiation measure that the second secon | channel  ure as below: ve is the test site, ber change form 1 meter and table west channel, th ments are perfor d found the X axi                                                                                                                                         | change for table 0.8 to 1.5 more than the character of th | rom Semi-<br>meter to 1<br>eter).<br>channel<br>Y, Z axis p<br>ing which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anechoic Cha<br>.5 meter( Abor<br>cositioning for<br>t is worse case                                                   | ulatio<br>ambe<br>ve                    |
| imit:           | for lowest and highest  Above 1GHz test procedu g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low ii. The radiation measure Transmitting mode, and j. Repeat above procedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | channel  ure as below:  ve is the test site, aber change form 1 meter and table west channel, th ments are perfor d found the X axi ares until all freque                                                                                                                 | change for table 0.8 to 1.5 more than the character of th | rom Semi-<br>meter to 1<br>eter).<br>channel<br>Y, Z axis p<br>ing which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anechoic Cha<br>.5 meter( Abor<br>cositioning for<br>t is worse case<br>as complete.                                   | ulati<br>ambe<br>ve                     |
| imit:           | for lowest and highest  Above 1GHz test procedu g. Different between above to fully Anechoic Chammat 18GHz the distance is how the fully and the low in the radiation measure that the full is the full in the low in the radiation measure that the full is the full | channel  ure as below: ye is the test site, aber change form 1 meter and table west channel , th ments are perfor d found the X axi ires until all frequ  Limit (dBµV/r                                                                                                   | change for table 0.8 to is 1.5 med in X, s positioning encies median (23m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rom Semi-<br>meter to 1<br>eter).<br>channel<br>Y, Z axis p<br>ing which i<br>easured wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anechoic Cha<br>.5 meter( Abor<br>ositioning for<br>t is worse case<br>as complete.                                    | ulati<br>ambe<br>ve                     |
| imit:           | for lowest and highest  Above 1GHz test procedu g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu  Frequency 30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | channel  ure as below:  ve is the test site, aber change form 1 meter and table west channel , th ments are perfor d found the X axi ures until all frequ  Limit (dBµV/r                                                                                                  | change for table 0.8 to is 1.5 med in X, s positioning encies median (23m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa  Rer Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Anechoic Cha<br>.5 meter( Abor<br>positioning for<br>it is worse case<br>as complete.                                  | ulati<br>ambe<br>ve                     |
| imit:           | for lowest and highest  Above 1GHz test procedu g. Different between above to fully Anechoic Chammatage 18GHz the distance is horizontal than 18GHz the EUT in the low in the radiation measure than 18GHz the EUT in the low in the radiation measure than 18GHz the distance is horizontal than 18GHz the distance is horizontal than 18GHz the distance is horizontal than 18GHz than 18GHz the distance is horizontal than 18GHz than 18G | channel  ure as below:  ve is the test site, ber change form 1 meter and table west channel , th ments are perfor d found the X axi ures until all frequ  Limit (dBµV/r  40.0  43.5                                                                                       | change fi<br>table 0.8<br>e is 1.5 me<br>e Highest<br>med in X,<br>s positioni<br>encies me<br>m @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa  Rer Quasi-pe Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anechoic Cha<br>.5 meter( Abor<br>ositioning for<br>t is worse case<br>as complete.                                    | ulati<br>ambe<br>ve                     |
| Limit:          | for lowest and highest  Above 1GHz test procedu g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu  Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | channel  ure as below:  ve is the test site, aber change form 1 meter and table west channel, th ments are perfor d found the X axi ures until all frequ  Limit (dBµV/r  40.0  43.5  46.0                                                                                 | change fi<br>table 0.8<br>e is 1.5 me<br>e Highest<br>med in X,<br>s positioni<br>encies me<br>m @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa  Rer Quasi-pe Quasi-pe Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anechoic Cha<br>.5 meter( Abor<br>positioning for<br>t is worse case<br>as complete.<br>mark<br>eak Value<br>eak Value | ulatio<br>ambe<br>ve                    |









