

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com Report No.: 2311TW0122-U2Report Version:V1.0Issue Date:2024-01-12

MEASUREMENT REPORT (Class II Change)

- Applicant : TP-Link Corporation Limited
- Application Type : Certification
- Product : AX3000 Outdoor/Indoor Mesh Wi-Fi 6 AP
- Model No. : HX510-Outdoor
- Brand Name : tp-link
- FCC Classification : Unlicensed National Information Infrastructure (NII)
- FCC Rule Part(s) : Part15 Subpart E (Section 15.407)
- **Received Date** : November 27, 2023
- Test Date : November 28, 2023

Test By:Owen Testing Laboratory 3261Reviewed By:Paddy Chen (Paddy Chen)Approved By:Dam hen (Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02v02r01. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2311TW0122-U2	1.0	Original Report	2024-01-12	Valid

Note:

This time, the Beamforming feature is enabled for Wi-Fi 2.4GHz / 5GHz, so the verification test for conducted power, so the FCC C2PC is executed.

FCC Original Report Grant Date: 10/13/2023, FCC ID: 2AXJ4X50OD.

CONTENTS

Des	scriptio	n Page
Ger	neral In	formation5
1.	INTRO	ODUCTION
	1.1.	Scope
	1.2.	MRT Test Location
2.	PROD	DUCT INFORMATION
	2.1.	Equipment Description
	2.2.	Product Specification Subjective to this Report
	2.3.	Working Frequencies for this report
	2.4.	Description of Available Antennas
	2.5.	Test Details for Class II Perssive Change
	2.6.	Test Mode 10
	2.7.	Configuration of Test System11
	2.8.	Test System Details11
	2.9.	Description of Test Software 12
	2.10.	Applied Standards 12
	2.11.	Test Configuration
	2.12.	EMI Suppression Device(s)/Modifications12
	2.13.	Labeling Requirements
3.	DESC	RIPTION OF TEST
	3.1.	Evaluation Procedure
	3.2.	AC Line Conducted Emissions
	3.3.	Radiated Emissions
4.	ANTE	NNA REQUIREMENTS
5.	TEST	EQUIPMENT CALIBRATION DATE
6.	MEAS	SUREMENT UNCERTAINTY
7.		RESULT
••		
	7.1.	Summary
	7.2.	Output Power Measurement
	7.2.1.	Test Limit
	7.2.2.	
	7.2.3.	Test Setting
	7.2.4.	•
	7.2.5.	Test Result

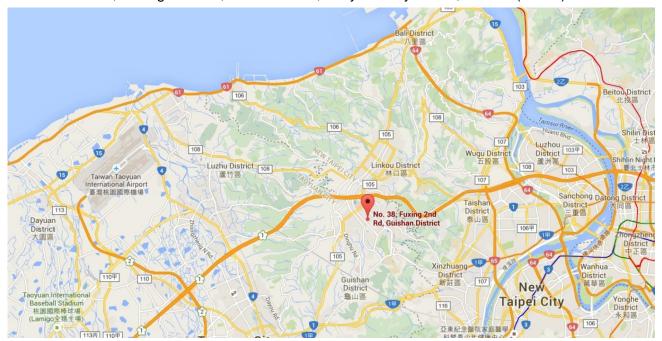
8.	CONCLUSION	28
Арр	endix A : Test Setup Photograph	29
Арр	endix B : EUT Photograph	29
Арр	endix C : Internal Photograph	29

General Information

Applicant	TP-Link Corporation Limited		
Applicant Address	Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hongkong		
Manufacturer TP-Link Corporation Limited			
Manufacturer Address	Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hongkong		
Test Site MRT Technology (Taiwan) Co., Ltd			
Test Site AddressNo. 38, Fuxing Second Rd., Guishan Dist., Taoyuar Taiwan (R.O.C)			
MRT FCC Registration No.	291082		
FCC Rule Part(s)	Part 15.407		

Test Facility / Accreditations

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Canada, EU and TELEC Rules.


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	AX3000 Outdoor/Indoor Mesh Wi-Fi 6 AP		
Model No.:	HX510-Outdoor		
Brand Name:	tp-link		
Wi-Fi Specification:	802.11a/b/g/n/ac/ax		
EUT Identification No.:	#1-1 (Conducted)		
Power Supply:	AC100-240V~50/60Hz 0.5A 802.3at PoE: 42.5-57V 0.6A		

2.2. Product Specification Subjective to this Report

	For 802.11a/n-HT20/ac-VHT20/ax-HE20:
	5180~5240MHz, 5260~5320MHz, 5500~5720MHz, 5745~5825MHz
	For 802.11n-HT40/ac-VHT40/ax-HE40:
Frequency Range:	5190~5230MHz, 5270~5310MHz, 5510~5710MHz, 5755~5795MHz
	For 802.11ac-VHT80/ax-HE80:
	5210MHz, 5290MHz, 5530MHz, 5610 MHz, 5690MHz, 5775MHz
	For 802.11ac-VHT160/ax-HE160: 5250MHz, 5570MHz
Type of Medulation:	802.11a/n/ac: OFDM
Type of Modulation:	802.11ax: OFDMA
	802.11a: 6/9/12/18/24/36/48/54Mbps
Data Data	802.11n: up to 300Mbps
Data Rate:	802.11ac: up to 1733.3Mbps
	802.11ax: up to 2402Mbps

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz
48	5240 MHz	52	5260 MHz	56	5280 MHz
60	5300 MHz	64	5320 MHz	100	5500 MHz
104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz
128	5640 MHz	132	5660 MHz	136	5680 MHz
140	5700 MHz	144	5720 MHz	149	5745 MHz
153	5765 MHz	157	5785 MHz	161	5805 MHz
165	5825 MHz				

802.11n-HT40/ac-VHT40/ax-HE40

Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz
62	5310 MHz	102	5510 MHz	110	5550MHz
118	5590 MHz	126	5630 MHz	134	5670 MHz
142	5710 MHz	151	5755 MHz	159	5795 MHz

802.11ac-VHT80/ax-HE80

Channel	Frequency	Channel	Frequency	Channel	Frequency
42	5210 MHz	58	5290 MHz	106	5530 MHz
122	5610 MHz	138	5690 MHz	155	5775 MHz

802.11ac-VHT160/ax-HE160

Channel	Frequency	Channel	Frequency	Channel	Frequency
50	5250MHz	114	5570 MHz		

2.4. Description of Available Antennas

Antenna	Frequency	Τx	Number	Max	Max. Antenna	Beamforming	CDD Dir	ectional
Туре	Band	Paths	of	Antenna	Gain (at any	Directional	Gain	(dBi)
	(MHz)		spatial	Gain	elevation angle	Gain(dBi)	For	For
			streams	(dBi)	above 30		Power	PSD
					degrees)			
					(dBi)			
Wi-Fi Ante	enna							
	2412 ~ 2462	2	1	2.00		5.01	2.00	5.01
Dipole	5150 ~ 5250	2	1	1.00	-4.00	4.01	1.00	4.01
	5250 ~ 5850	2	1	1.00		4.01	1.00	4.01

Remark:

1. The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

• For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log (N_{ANT}/ N_{SS}) dB;

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB for $N_{ANT} \le 4$;

- The EUT also supports Beam Forming mode, and the Beam Forming support 802.11ac/ax, not include 802.11a/b/g/n. BF Directional gain = G_{ANT} + 10 log (N_{ANT}).
- 3. All messages of antenna were declared by manufacturer.

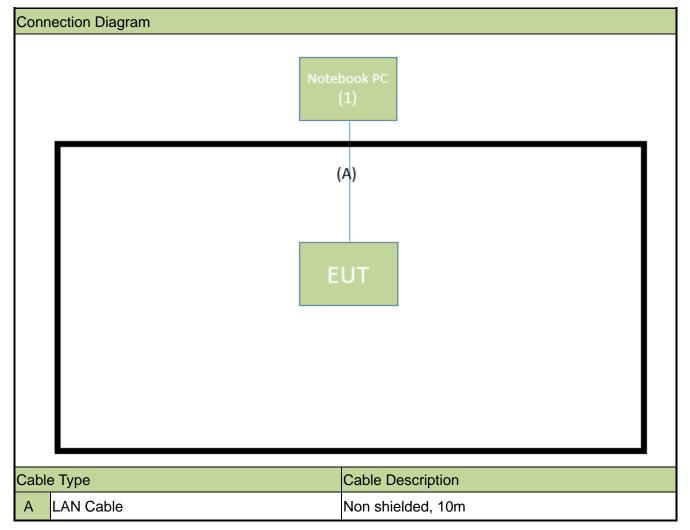
Test Mode	T _X Paths	CDD Mode	Beamforming Mode
802.11b/g/n (DTS)	2	\checkmark	Х
802.11ax (DTS)	2	\checkmark	\checkmark
802.11a/n (NII)	2	\checkmark	Х
802.11ac/ax (NII)	2	\checkmark	

2.5. Test Details for Class II Perssive Change

C2PC Change List	Verified Test Item	Remark
1. Open the Beamforming function at 802.11ac/ax of	Output Power	Verified power only.
2.4G/5Gbands via software.		

Note: This product is an extension based on the FCC ID: 2AXJ4X50OD, original grant date: 10/13/2023, the changes and verified item refer to the table as above.

2.6. Test Mode


CDD Mode								
Mode 1: Transmit by 802.11a_Nss=1 (6Mbps) (CDD mode)								
Mode 2: Transmit by 802.11ac-VHT20_Nss=1 (MCS0) (CDD mode)								
Mode 3: Transmit by 802.11ac-VHT40_Nss=1 (MCS0) (CDD mode)								
Mode 4: Transmit by 802.11ac-VHT80_Nss=1 (MCS0) (CDD mode)								
Mode 5: Transmit by 802.11ac-VHT160_Nss=1 (MCS0) (CDD mode)								
Mode 6: Transmit by 802.11ax-HE20_Nss=1 (MCS0) (CDD mode)								
Mode 7: Transmit by 802.11ax-HE40_Nss=1 (MCS0) (CDD mode)								
Mode 8: Transmit by 802.11ax-HE80_Nss=1 (MCS0) (CDD mode)								
Mode 9: Transmit by 802.11ax-HE160_Nss=1 (MCS0) (CDD mode)								
Beamforming Mode								
Mode 10: Transmit by 802.11ac-VHT20_Nss=1 (MCS0) (Beam-Forming mode)								
Mode 11: Transmit by 802.11ac-VHT40_Nss=1 (MCS0) (Beam-Forming mode)								
Mode 12: Transmit by 802.11ac-VHT80_Nss=1 (MCS0) (Beam-Forming mode)								
Mode 13: Transmit by 802.11ac-VHT160_Nss=1 (MCS0) (Beam-Forming mode)								
Mode 14: Transmit by 802.11ax-HE20_Nss=1 (MCS0) (Beam-Forming mode)								
Mode 15: Transmit by 802.11ax-HE40_Nss=1 (MCS0) (Beam-Forming mode)								
Mode 16: Transmit by 802.11ax-HE80_Nss=1 (MCS0) (Beam-Forming mode)								
Mode 17: Transmit by 802.11ax-HE160_Nss=1 (MCS0) (Beam-Forming mode)								
Remark:								
1. For Radiated emission, the modulation and the data rate picked for testing are determined by the	ne							
Max. RF conducted power.								
2. This device supports 2 N_{SS} and power level of 2 NSS is less than or equal to the power of 1 N_{S}	ss.							
The worst case is N _{SS} =1.								
3. Due to the same modulation between 802.11n and 802.11ac, so 802.11n-HT20 and HT40 are								
covered by 802.11ac-VHT20 and VHT40 in this report, meanwhile, power level for 802.11n-HT2	20							
and HT40 will not be greater than 802.11ac-VHT20 and VHT40.								

- 4. All test items were evaluated under CDD mode in this report. The RF output power setting under beamforming mode is same as CDD mode, so there is no additional test under beamforming mode.
- 5. EUT supports one configuration only in 802.11ax full RU mode.

2.7. Configuration of Test System

The devicewas tested per the guidance ANSI C63.10: 2013was used to reference the appropriate EUT setup for radiated emissions testing and AC line conducted testing.

2.8. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	Lenovo	T450	N/A	Non-Shielded, 0.8m

2.9. Description of Test Software

The test utility software used during testing was "QDART", the version is ver1.0.67. Note: Final power setting please refer to operational description.

2.10. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.247
- KDB 789033 D02v02r01,
- KDB 662911 D01v02r01
- ANSI C63.10-2013

2.11. Test Configuration

The devicewas tested per the guidance of KDB 789033 D02v02r01.ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testingand AC line conducted testing.

2.12. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.13. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphletsupplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v02r01 were used in themeasurement.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated tomaximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by theresponsible party can be used with the device. The use of a permanently attached antenna or of an antennathat uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of thedeviceispermanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date	
X-Series USB Peak and	KEVOLOUT			1	2024/4/40	
Average Power Sensor	KEYSIGHT	U2021XA	MRTTWA00014	1 year	2024/4/19	
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2024/10/17	
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2024/7/19	
Temperature & Humidity				4	0004/0/44	
Chamber	TEN BILLION	TTH-B3UP	MRTTWA00036	1 year	2024/6/11	
DIVA PLUS Funk-Wetterstation	TFA	35.1083	MRTTWA00050	1 year	2024/6/15	

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Power (Carrier Power / Power Density)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB

Temp. / Humidity

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/ ±3%

7. TEST RESULT

7.1. Summary

FCC	Test Description	Test Limit	Test	Test	Reference
Section(s)			Condition	Result	
15.407(a)(1)(ii),	Maximum Conducted	Refer to section 7.2	Conducted	Pass	Section7.2
(2), (3)	Output Power	Refer to section 7.2	Conducted	F 855	Section7.2

Notes:

1) Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.

2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

7.2. Output Power Measurement

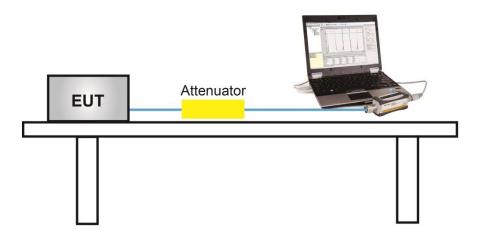
7.2.1.Test Limit

For the band 5.15-5.25 GHz, the maximum conductedoutput power over the frequency band of operation shall not exceed 1 W provided the maximumantenna gain does not exceed 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm).

If transmitting antennas of directional gain greater than 6dBi are used, the maximumconducted output power shall be reduced by the amount in dB that the directional gain of theantenna exceeds 6dBi.


7.2.2.Test Procedure Used

KDB 789033D02v02r01- Section E)3)b) Method PM-G

7.2.3.Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

7.2.4.Test Setup

7.2.5.Test Result

Product	AX3000 Outdoor/Indoor Mesh Wi-Fi 6 AP	Test Engineer	Xuan Yu
Test Site	SR6	Test Date	2023/11/28
Test Mode	CDD Mode		

Test Mode	Data Rate/	Channel	Freq.	Ant 0	Ant 1	Total	Power Limit	Result
	MCS	No.	(MHz)	Average	Average	Average	(dBm)	
				Power	Power	Power		
				(dBm)	(dBm)	(dBm)		
11a	6Mbps	36	5180	21.12	22.00	24.59	≤ 30.00	Pass
11a	6Mbps	44	5220	21.22	21.98	24.63	≤ 30.00	Pass
11a	6Mbps	48	5240	21.60	21.88	24.75	≤ 30.00	Pass
11a	6Mbps	52	5260	19.14	20.03	22.62	≤ 23.98	Pass
11a	6Mbps	60	5300	19.33	20.01	22.69	≤ 23.98	Pass
11a	6Mbps	64	5320	19.29	19.89	22.61	≤ 23.98	Pass
11a	6Mbps	100	5500	20.02	19.76	22.90	≤ 23.98	Pass
11a	6Mbps	116	5580	20.13	19.66	22.91	≤ 23.98	Pass
11a	6Mbps	140	5700	19.63	19.60	22.63	≤ 23.98	Pass
11a	6Mbps	144	5720	19.21	19.27	22.25	≤ 23.18	Pass
11a	6Mbps	149	5745	25.66	25.88	28.78	≤ 30.00	Pass
11a	6Mbps	157	5785	25.78	25.47	28.64	≤ 30.00	Pass
11a	6Mbps	165	5825	25.44	25.91	28.69	≤ 30.00	Pass
11ac-VHT20	MCS0	36	5180	20.88	22.11	24.55	≤ 30.00	Pass
11ac-VHT20	MCS0	44	5220	21.10	21.54	24.34	≤ 30.00	Pass
11ac-VHT20	MCS0	48	5240	21.22	21.47	24.36	≤ 30.00	Pass
11ac-VHT20	MCS0	52	5260	19.33	20.48	22.95	≤ 23.98	Pass
11ac-VHT20	MCS0	60	5300	19.43	20.11	22.79	≤ 23.98	Pass
11ac-VHT20	MCS0	64	5320	19.22	19.87	22.57	≤ 23.98	Pass
11ac-VHT20	MCS0	100	5500	20.33	19.88	23.12	≤ 23.98	Pass
11ac-VHT20	MCS0	116	5580	20.57	20.11	23.36	≤ 23.98	Pass
11ac-VHT20	MCS0	140	5700	20.22	20.17	23.21	≤ 23.98	Pass
11ac-VHT20	MCS0	144	5720	19.38	19.58	22.49	≤ 22.99	Pass
11ac-VHT20	MCS0	149	5745	25.66	26.22	28.96	≤ 30.00	Pass
11ac-VHT20	MCS0	157	5785	25.50	25.43	28.48	≤ 30.00	Pass
11ac-VHT20	MCS0	165	5825	25.55	25.89	28.73	≤ 30.00	Pass

Test Mode	Data Rate/	Channel	Freq.	Ant 0	Ant 1	Total	Power Limit	Result
	MCS	No.	(MHz)	Average	Average	Average	(dBm)	
				Power	Power	Power		
				(dBm)	(dBm)	(dBm)		
11ac-VHT40	MCS0	38	5190	20.29	20.78	23.55	≤ 25.00	Pass
11ac-VHT40	MCS0	46	5230	21.22	21.33	24.29	≤ 25.00	Pass
11ac-VHT40	MCS0	54	5270	20.95	20.30	23.65	≤ 23.98	Pass
11ac-VHT40	MCS0	62	5310	20.55	20.11	23.35	≤ 23.98	Pass
11ac-VHT40	MCS0	102	5510	20.47	20.68	23.59	≤ 23.98	Pass
11ac-VHT40	MCS0	110	5550	20.58	20.33	23.47	≤ 23.98	Pass
11ac-VHT40	MCS0	134	5670	20.48	20.61	23.56	≤ 23.98	Pass
11ac-VHT40	MCS0	142	5710	20.54	20.68	23.62	≤ 23.98	Pass
11ac-VHT40	MCS0	151	5755	25.88	25.89	28.90	≤ 30.00	Pass
11ac-VHT40	MCS0	159	5795	25.46	25.32	28.40	≤ 30.00	Pass
11ac-VHT80	MCS0	42	5210	19.59	20.11	22.87	≤ 25.00	Pass
11ac-VHT80	MCS0	58	5290	19.37	20.09	22.76	≤ 23.98	Pass
11ac-VHT80	MCS0	106	5530	20.47	20.44	23.47	≤ 23.98	Pass
11ac-VHT80	MCS0	122	5610	20.58	20.12	23.37	≤ 23.98	Pass
11ac-VHT80	MCS0	138	5690	20.68	20.82	23.76	≤ 23.98	Pass
11ac-VHT80	MCS0	155	5775	23.57	23.83	26.71	≤ 30.00	Pass
11ac-VHT160	MCS0	50	5250	19.92	20.19	23.07	≤ 23.98	Pass
11ac-VHT160	MCS0	114	5570	20.54	20.45	23.51	≤ 23.98	Pass
11ax-HE20	MCS0	36	5180	21.02	22.08	24.59	≤ 25.00	Pass
11ax-HE20	MCS0	44	5220	21.09	21.58	24.35	≤ 25.00	Pass
11ax-HE20	MCS0	48	5240	21.27	21.54	24.42	≤ 25.00	Pass
11ax-HE20	MCS0	52	5260	19.57	20.45	23.04	≤ 23.98	Pass
11ax-HE20	MCS0	60	5300	19.42	20.11	22.79	≤ 23.98	Pass
11ax-HE20	MCS0	64	5320	19.65	20.76	23.25	≤ 23.98	Pass
11ax-HE20	MCS0	100	5500	20.02	19.96	23.00	≤ 23.98	Pass
11ax-HE20	MCS0	116	5580	20.65	20.47	23.57	≤ 23.98	Pass
11ax-HE20	MCS0	140	5700	20.34	20.22	23.29	≤ 23.98	Pass
11ax-HE20	MCS0	144	5720	19.39	19.22	22.32	≤ 23.01	Pass
11ax-HE20	MCS0	149	5745	25.33	26.12	28.75	≤ 30.00	Pass
11ax-HE20	MCS0	157	5785	25.77	25.72	28.76	≤ 30.00	Pass
11ax-HE20	MCS0	165	5825	25.49	26.02	28.77	≤ 30.00	Pass

Test Mode	Data Rate/ MCS	Channel No.	Freq. (MHz)	Ant 0 Average Power (dBm)	Ant 1 Average Power (dBm)	Total Average Power (dBm)	Average Power Limit (dBm)	Result
11ax-HE40	MCS0	38	5190	20.11	20.89	23.53	≤ 25.00	Pass
11ax-HE40	MCS0	46	5230	21.02	21.43	24.24	≤ 25.00	Pass
11ax-HE40	MCS0	54	5270	21.03	20.33	23.70	≤ 23.98	Pass
11ax-HE40	MCS0	62	5310	20.67	20.12	23.41	≤ 23.98	Pass
11ax-HE40	MCS0	102	5510	20.57	20.76	23.68	≤ 23.98	Pass
11ax-HE40	MCS0	110	5550	20.56	20.41	23.50	≤ 23.98	Pass
11ax-HE40	MCS0	134	5670	20.60	20.52	23.57	≤ 23.98	Pass
11ax-HE40	MCS0	142	5710	20.54	20.66	23.61	≤ 23.98	Pass
11ax-HE40	MCS0	151	5755	25.70	25.91	28.82	≤ 30.00	Pass
11ax-HE40	MCS0	159	5795	25.23	25.62	28.44	≤ 30.00	Pass
11ax-HE80	MCS0	42	5210	19.78	20.11	22.96	≤ 25.00	Pass
11ax-HE80	MCS0	58	5290	20.06	20.68	23.39	≤ 23.98	Pass
11ax-HE80	MCS0	106	5530	20.27	20.56	23.43	≤ 23.98	Pass
11ax-HE80	MCS0	122	5610	20.47	20.33	23.41	≤ 23.98	Pass
11ax-HE80	MCS0	138	5690	20.54	20.86	23.71	≤ 23.98	Pass
11ax-HE80	MCS0	155	5775	23.21	23.67	26.46	≤ 30.00	Pass
11ax-HE160	MCS0	50	5250	20.23	20.50	23.38	≤ 23.98	Pass
11ax-HE160	MCS0	114	5570	20.86	20.54	23.71	≤ 23.98	Pass

Note 1:

The Total Average Power (dBm) = 10*log {10^(Ant 0 Average Power /10) + 10^(Ant 1 Average Power /10)}.

Note 2:

For 802.11a_ch 144 (5720MHz), Average Power Limit (dBm) = $11+10*\log(5MHz + BW_{26dBc}/2) = 23.18dBm$. For 802.11ac_ch 144 (5720MHz), Average Power Limit (dBm) = $11+10*\log(5MHz + BW_{26dBc}/2) = 22.99dBm$. For 802.11ax_ch 144 (5720MHz), Average Power Limit (dBm) = $11+10*\log(5MHz + BW_{26dBc}/2) = 23.01dBm$.

Product	AX3000 Outdoor/Indoor Mesh Wi-Fi 6 AP	Test Engineer	Xuan Yu
Test Site	SR6	Test Date	2023/11/28

Test Mode	Data Rate/ MCS	Channel No.	Freq. (MHz)	U U	e Power 3m)	Total Average	EIRP (dBm)	EIRP Limit (dBm)	Result
				Ant 0	Ant 1	Power (dBm)			
EIRP at any e	levation and	gle above 3	0 degrees	– CDD mod	de				
11a	6Mbps	36	5180	21.12	22.00	24.59	20.59	≤ 21.00	Pass
11a	6Mbps	44	5220	21.22	21.98	24.63	20.63	≤ 21.00	Pass
11a	6Mbps	48	5240	21.60	21.88	24.75	20.75	≤ 21.00	Pass
11ac-VHT20	MCS0	36	5180	20.88	22.11	24.55	20.55	≤ 21.00	Pass
11ac-VHT20	MCS0	40	5220	21.10	21.54	24.34	20.34	≤ 21.00	Pass
11ac-VHT20	MCS0	48	5240	21.22	21.47	24.36	20.36	≤ 21.00	Pass
11ac-VHT40	MCS0	38	5190	20.29	20.78	23.55	19.55	≤ 21.00	Pass
11ac-VHT40	MCS0	46	5230	21.22	21.33	24.29	20.29	≤ 21.00	Pass
11ac-VHT80	MCS0	42	5210	19.59	20.11	22.87	18.87	≤ 21.00	Pass
11ac-VHT160	MCS0	50	5250	19.92	20.19	23.07	19.07	≤ 21.00	Pass
11ax-HE20	MCS0	36	5180	21.02	22.08	24.59	20.59	≤ 21.00	Pass
11ax-HE20	MCS0	40	5220	21.09	21.58	24.35	20.35	≤ 21.00	Pass
11ax-HE20	MCS0	48	5240	21.27	21.54	24.42	20.42	≤ 21.00	Pass
11ax-HE40	MCS0	38	5190	20.11	20.89	23.53	19.53	≤ 21.00	Pass
11ax-HE40	MCS0	46	5230	21.02	21.43	24.24	20.24	≤ 21.00	Pass
11ax-HE80	MCS0	42	5210	19.78	20.11	22.96	18.96	≤ 21.00	Pass
11ax-HE160	MCS0	50	5250	20.23	20.50	23.38	19.38	≤ 21.00	Pass

Note 1: The Total Average Power (dBm) = $10^{10} \log \{10^{(Ant \ 0 \ Average \ Power \ /10)} + 10^{(Ant \ 1 \ Average \ Power \ /10)}\}$.

Note 2: EIRP (dBm) = Total Average Power (dBm) + Antenna Gain (dBi)

Product	AX3000 Outdoor/Indoor Mesh Wi-Fi 6 AP	Test Engineer	Xuan Yu
Test Site	SR6	Test Date	2023/11/28
Test Mode	Beamforming Mode		

Test Mode	Data	Channel	Freq.	Ant 0	Ant 1	Total	Power Limit	Result
	Rate/	No.	(MHz)	Average	Average	Average	(dBm)	
	MCS			Power (dBm)	Power (dBm)	Power (dBm)		
11ac-VHT20	MCS0	36	5180	20.88	22.11	24.55	≤ 25.00	Pass
11ac-VHT20	MCS0	44	5220	21.10	21.54	24.34	≤ 25.00	Pass
11ac-VHT20	MCS0	48	5240	21.22	21.47	24.36	≤ 25.00	Pass
11ac-VHT20	MCS0	52	5260	19.33	20.48	22.95	≤ 23.98	Pass
11ac-VHT20	MCS0	60	5300	19.43	20.11	22.79	≤ 23.98	Pass
11ac-VHT20	MCS0	64	5320	19.22	19.87	22.57	≤ 23.98	Pass
11ac-VHT20	MCS0	100	5500	20.33	19.88	23.12	≤ 23.98	Pass
11ac-VHT20	MCS0	116	5600	20.57	20.11	23.36	≤ 23.98	Pass
11ac-VHT20	MCS0	140	5700	20.22	20.17	23.21	≤ 23.98	Pass
11ac-VHT20	MCS0	144	5720	19.38	19.58	22.49	≤ 22.99	Pass
11ac-VHT20	MCS0	149	5745	25.66	26.22	28.96	≤ 30.00	Pass
11ac-VHT20	MCS0	157	5785	25.50	25.43	28.48	≤ 30.00	Pass
11ac-VHT20	MCS0	165	5825	25.55	25.89	28.73	≤ 30.00	Pass
11ac-VHT40	MCS0	38	5190	20.29	20.78	23.55	≤ 25.00	Pass
11ac-VHT40	MCS0	46	5230	21.22	21.33	24.29	≤ 25.00	Pass
11ac-VHT40	MCS0	54	5270	20.95	20.30	23.65	≤ 23.98	Pass
11ac-VHT40	MCS0	62	5310	20.55	20.11	23.35	≤ 23.98	Pass
11ac-VHT40	MCS0	102	5510	20.47	20.68	23.59	≤ 23.98	Pass
11ac-VHT40	MCS0	110	5550	20.58	20.33	23.47	≤ 23.98	Pass
11ac-VHT40	MCS0	134	5670	20.48	20.61	23.56	≤ 23.98	Pass
11ac-VHT40	MCS0	142	5710	20.54	20.68	23.62	≤ 23.98	Pass
11ac-VHT40	MCS0	151	5755	25.88	25.89	28.90	≤ 30.00	Pass
11ac-VHT40	MCS0	159	5795	25.46	25.32	28.40	≤ 30.00	Pass

Test Mode	Data	Channel	Freq.	Ant 0	Ant 1	Total	Average	Result
	Rate/	No.	(MHz)	Average	Average	Average	Power Limit	
	MCS			Power (dBm)	Power (dBm)	Power (dBm)	(dBm)	
11ac-VHT80	MCS0	42	5210	19.59	20.11	22.87	≤ 25.00	Pass
11ac-VHT80	MCS0	58	5290	19.37	20.09	22.76	≤ 23.98	Pass
11ac-VHT80	MCS0	106	5530	20.47	20.44	23.47	≤ 23.98	Pass
11ac-VHT80	MCS0	122	5610	20.58	20.12	23.37	≤ 23.98	Pass
11ac-VHT80	MCS0	138	5690	20.68	20.82	23.76	≤ 23.98	Pass
11ac-VHT80	MCS0	155	5775	23.57	23.83	26.71	≤ 30.00	Pass
11ac-VHT160	MCS0	50	5250	19.92	20.19	23.07	≤ 23.98	Pass
11ac-VHT160	MCS0	114	5570	20.54	20.45	23.51	≤ 23.98	Pass
11ax-HE20	MCS0	36	5180	21.02	22.08	24.59	≤ 25.00	Pass
11ax-HE20	MCS0	44	5220	21.09	21.58	24.35	≤ 25.00	Pass
11ax-HE20	MCS0	48	5240	21.27	21.54	24.42	≤ 25.00	Pass
11ax-HE20	MCS0	52	5260	19.57	20.45	23.04	≤ 23.98	Pass
11ax-HE20	MCS0	60	5300	19.42	20.11	22.79	≤ 23.98	Pass
11ax-HE20	MCS0	64	5320	19.65	20.76	23.25	≤ 23.98	Pass
11ax-HE20	MCS0	100	5500	20.02	19.96	23.00	≤ 23.98	Pass
11ax-HE20	MCS0	116	5580	20.65	20.47	23.57	≤ 23.98	Pass
11ax-HE20	MCS0	140	5700	20.34	20.22	23.29	≤ 23.98	Pass
11ax-HE20	MCS0	144	5720	19.39	19.22	22.32	≤ 23.01	Pass
11ax-HE20	MCS0	149	5745	25.33	26.12	28.75	≤ 30.00	Pass
11ax-HE20	MCS0	157	5785	25.77	25.72	28.76	≤ 30.00	Pass
11ax-HE20	MCS0	165	5825	25.49	26.02	28.77	≤ 30.00	Pass
11ax-HE40	MCS0	38	5190	20.11	20.89	23.53	≤ 25.00	Pass
11ax-HE40	MCS0	46	5230	21.02	21.43	24.24	≤ 25.00	Pass
11ax-HE40	MCS0	54	5270	21.03	20.33	23.70	≤ 23.98	Pass
11ax-HE40	MCS0	62	5310	20.67	20.12	23.41	≤ 23.98	Pass
11ax-HE40	MCS0	102	5510	20.57	20.76	23.68	≤ 23.98	Pass
11ax-HE40	MCS0	110	5550	20.56	20.41	23.50	≤ 23.98	Pass
11ax-HE40	MCS0	134	5670	20.60	20.52	23.57	≤ 23.98	Pass
11ax-HE40	MCS0	142	5710	20.54	20.66	23.61	≤ 23.98	Pass
11ax-HE40	MCS0	151	5755	25.70	25.91	28.82	≤ 30.00	Pass
11ax-HE40	MCS0	159	5795	25.23	25.62	28.44	≤ 30.00	Pass

Test Mode	Data	Channel	Freq.	Ant 0	Ant 1	Total	Average	Result
	Rate/	No.	(MHz)	Average	Average	Average	Power Limit	
	MCS			Power (dBm)	Power (dBm)	Power (dBm)	(dBm)	
11ax-HE80	MCS0	42	5210	19.78	20.11	22.96	≤ 25.00	Pass
11ax-HE80	MCS0	58	5290	20.06	20.68	23.39	≤ 23.98	Pass
11ax-HE80	MCS0	106	5530	20.27	20.56	23.43	≤ 23.98	Pass
11ax-HE80	MCS0	122	5610	20.47	20.33	23.41	≤ 23.98	Pass
11ax-HE80	MCS0	138	5690	20.54	20.86	23.71	≤ 23.98	Pass
11ax-HE80	MCS0	155	5775	23.21	23.67	26.46	≤ 30.00	Pass
11ax-HE160	MCS0	50	5250	20.23	20.50	23.38	≤ 23.98	Pass
11ax-HE160	MCS0	114	5570	20.86	20.54	23.71	≤ 23.98	Pass

Note 1:

The Total Average Power (dBm) = 10*log {10^(Ant 0 Average Power /10) + 10^(Ant 1 Average Power /10)}.

Note 2:

For 802.11ac_ch 144 (5720MHz), Average Power Limit (dBm) = $11+10*\log(5MHz + BW_{26dBc}/2) = 22.99dBm$. For 802.11ax_ch 144 (5720MHz), Average Power Limit (dBm) = $11+10*\log(5MHz + BW_{26dBc}/2) = 23.01dBm$.

Product	AX3000 Outdoor/Indoor Mesh Wi-Fi 6 AP	Test Engineer	Xuan Yu
Test Site	SR6	Test Date	2023/11/28

Test Mode	Data Rate/ MCS	Channel No.	Freq. (MHz)	U U	e Power 3m)	Total Average	EIRP (dBm)	EIRP Limit (dBm)	Result
				Ant 0	Ant 1	Power (dBm)			
EIRP at any e	levation and	gle above 3	0 degrees	– Beamforr	ning mode	- -			
11a	6Mbps	36	5180	20.88	22.11	24.55	20.55	≤ 21.00	Pass
11a	6Mbps	44	5220	21.10	21.54	24.34	20.34	≤ 21.00	Pass
11a	6Mbps	48	5240	21.22	21.47	24.36	20.36	≤ 21.00	Pass
11ac-VHT20	MCS0	36	5180	20.29	20.78	23.55	19.55	≤ 21.00	Pass
11ac-VHT20	MCS0	40	5220	21.22	21.33	24.29	20.29	≤ 21.00	Pass
11ac-VHT20	MCS0	48	5240	19.59	20.11	22.87	18.87	≤ 21.00	Pass
11ac-VHT40	MCS0	38	5190	19.92	20.19	23.07	19.07	≤ 21.00	Pass
11ac-VHT40	MCS0	46	5230	21.02	22.08	24.59	20.59	≤ 21.00	Pass
11ac-VHT80	MCS0	42	5210	21.09	21.58	24.35	20.35	≤ 21.00	Pass
11ac-VHT160	MCS0	50	5250	21.27	21.54	24.42	20.42	≤ 21.00	Pass
11ax-HE20	MCS0	36	5180	20.11	20.89	23.53	19.53	≤ 21.00	Pass
11ax-HE20	MCS0	40	5220	21.02	21.43	24.24	20.24	≤ 21.00	Pass
11ax-HE20	MCS0	48	5240	19.78	20.11	22.96	18.96	≤ 21.00	Pass
11ax-HE40	MCS0	38	5190	20.23	20.50	23.38	19.38	≤ 21.00	Pass
11ax-HE40	MCS0	46	5230	20.88	22.11	24.55	20.55	≤ 21.00	Pass
11ax-HE80	MCS0	42	5210	21.10	21.54	24.34	20.34	≤ 21.00	Pass
11ax-HE160	MCS0	50	5250	21.22	21.47	24.36	20.36	≤ 21.00	Pass

Note 1: The Total Average Power (dBm) = $10^{10} \log \{10^{(Ant \ 0 \ Average \ Power \ /10)} + 10^{(Ant \ 1 \ Average \ Power \ /10)}\}$.

Note 2: EIRP (dBm) = Total Average Power (dBm) + Antenna Gain (dBi)

8. CONCLUSION

The data collected relate only the item(s) tested and show that the device is in compliance with Part

15E of the FCC Rules.

Appendix A : Test Setup Photograph

Refer to "2311TW0122-UT" file.

Appendix B : EUT Photograph

Refer to "2311TW0122-UE" file.

Appendix C : Internal Photograph

Refer to "2311TW0122-UI" file.

The End