MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

Veb: www.mrt-cert.com

Report No.: 2211TW0108-U2 Report Version: 1.0 Issue Date: 2023-02-10

# RF MEASUREMENT REPORT

FCC ID : 2AXJ4T4UV5

**APPLICANT**: TP-Link Corporation Limited

**Application Type**: Certification

**Product**: AC1300 High Gain Wireless Dual Band USB Adapter

Model No. : Archer T4U

Brand Name : tp-link

**FCC Classification**: Unlicensed National Information Infrastructure (UNII)

FCC Rule Part(s) : Part 15 Subpart E (Section 15.407)

Test Procedure(s): ANSI C63.10-2013

Received Date : November 18,2022

**Test Date** : November 22, 2022 ~ January 9, 2023

Tested By Peter Syn

(Peter Syu)

Reviewed By : Paddy Chen

Paddy Chen )

Approved By : Ang ker

(Chenz Ker)





testing Laborator

3261

The test results only relate to the tested samples.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10. Test results reported herein relate only to the item(s) tested.

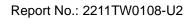
The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.



# **Revision History**

| Report No.    | Version | Description     | Issue Date | Note  |
|---------------|---------|-----------------|------------|-------|
| 2211TW0108-U2 | 1.0     | Original Report | 2023-02-10 | Valid |
|               |         |                 |            |       |

Page Number: 2 of 234




# **CONTENTS**

| De | scriptio | n                                               | Page |
|----|----------|-------------------------------------------------|------|
| Ge | neral In | formation                                       | 6    |
| 1. | INTR     | ODUCTION                                        | 7    |
|    | 1.1.     | Scope                                           | 7    |
|    | 1.2.     | MRT Test Location                               | 7    |
| 2. | PROI     | DUCT INFORMATION                                | 8    |
|    | 2.1.     | Equipment Description                           | 8    |
|    | 2.2.     | Product Specification Subjective to this Report | 8    |
|    | 2.3.     | Operation Frequencies and Channel List          | 9    |
|    | 2.4.     | Description of Available Antennas               | 10   |
|    | 2.5.     | Test Mode                                       | 11   |
|    | 2.6.     | Configuration of Test System                    | 12   |
|    | 2.7.     | Test System Details                             | 12   |
|    | 2.8.     | Description of Test Software                    | 12   |
|    | 2.9.     | Applied Standards                               | 13   |
|    | 2.10.    | Duty Cycle                                      | 13   |
|    | 2.11.    | Test Configuration                              | 14   |
|    | 2.12.    | EMI Suppression Device(s)/Modifications         | 14   |
|    | 2.13.    | Labeling Requirements                           | 14   |
| 3. | DESC     | CRIPTION OF TEST                                | 15   |
|    | 3.1.     | Evaluation Procedure                            | 15   |
|    | 3.2.     | AC Line Conducted Emissions                     | 15   |
|    | 3.3.     | Radiated Emissions                              | 16   |
| 4. | ANTE     | ENNA REQUIREMENTS                               | 17   |
| 5. | TEST     | EQUIPMENT CALIBRATION DATE                      | 18   |
| 6. | MEAS     | SUREMENT UNCERTAINTY                            | 19   |
| 7. | TEST     | RESULT                                          | 20   |
|    | 7.1.     | Summary                                         | 20   |
|    | 7.2.     | 26dB Bandwidth Measurement                      | 21   |
|    | 7.2.1.   | Test Limit                                      | 21   |
|    | 7.2.2.   | Test Procedure used                             | 21   |
|    | 7.2.3.   | Test Setting                                    | 21   |
|    | 7.2.4.   | Test Setup                                      | 22   |



| 7.2.5. | Test Result                               | 23  |
|--------|-------------------------------------------|-----|
| 7.3.   | 6dB Bandwidth Measurement                 | 32  |
| 7.3.1. | Test Limit                                | 32  |
| 7.3.2. | Test Procedure used                       | 32  |
| 7.3.3. | Test Setting                              | 32  |
| 7.3.4. | Test Setup                                | 32  |
| 7.3.5. | Test Result                               | 33  |
| 7.4.   | Output Power Measurement                  | 36  |
| 7.4.1. | Test Limit                                | 36  |
| 7.4.2. | Test Procedure Used                       | 36  |
| 7.4.3. | Test Setting                              | 36  |
| 7.4.4. | Test Setup                                | 37  |
| 7.4.5. | Test Result                               | 38  |
| 7.5.   | Transmit Power Control                    | 41  |
| 7.5.1. | Test Limit                                | 41  |
| 7.5.2. | Test Procedure Used                       | 41  |
| 7.5.3. | Test Setting                              | 41  |
| 7.5.4. | Test Setup                                | 41  |
| 7.5.5. | Test Result                               | 41  |
| 7.6.   | Power Spectral Density Measurement        | 42  |
| 7.6.1. | Test Limit                                | 42  |
| 7.6.2. | Test Procedure Used                       | 42  |
| 7.6.3. | Test Setting                              | 42  |
| 7.6.4. | Test Setup                                | 43  |
| 7.6.5. | Test Result                               | 44  |
| 7.7.   | Frequency Stability Measurement           | 59  |
| 7.7.1. | Test Limit                                | 59  |
| 7.7.2. | Test Limit                                | 59  |
| 7.7.3. | Test Setup                                | 60  |
| 7.7.4. | Test Result                               | 60  |
| 7.8.   | Radiated Spurious Emission Measurement    | 61  |
| 7.8.1. | Test Limit                                | 61  |
| 7.8.2. | Test Procedure Used                       | 61  |
| 7.8.3. | Test Setting                              | 61  |
| 7.8.4. | Test Setup                                | 63  |
| 7.8.5. | Test Result                               | 65  |
| 7.9.   | Radiated Restricted Band Edge Measurement |     |
| 7.9.1. | Test Limit                                | 153 |
|        |                                           |     |





|    | 7.9.2.   | Test Procedure Used                | .155 |
|----|----------|------------------------------------|------|
|    | 7.9.3.   | Test Setting                       | .155 |
|    | 7.9.4.   | Test Setup                         | .156 |
|    | 7.9.5.   | Test Result                        | .157 |
|    | 7.10.    | AC Conducted Emissions Measurement | .226 |
|    | 7.10.1.  | Test Limit                         | .226 |
|    | 7.10.2.  | Test Setup                         | .226 |
|    | 7.10.3.  | Test Result                        | .227 |
| 8. | CONC     | LUSION                             | .231 |
| Ар | pendix A | : Test Setup Photograph            | .232 |
| Ар | pendix E | 3 : External Photograph            | .233 |
| Ар | pendix ( | C : Internal Photograph            | .234 |



## **General Information**

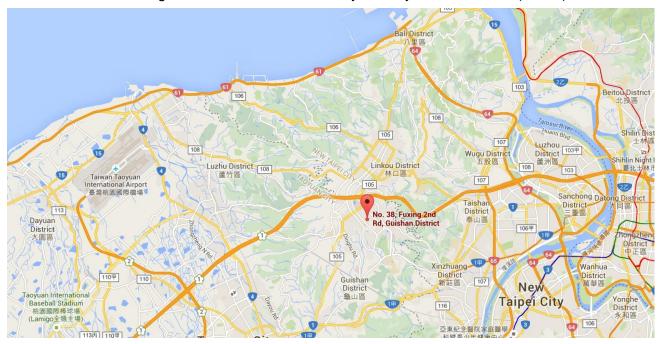
| Applicant                | TP-Link Corporation Limited                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------|
| Applicant Address        | Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road,<br>Tsim Sha Tsui, Kowloon, Hongkong |
| Manufacturer             | TP-Link Corporation Limited                                                                       |
| Manufacturer Address     | Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hongkong    |
| Test Site                | MRT Technology (Taiwan) Co., Ltd                                                                  |
| Test Site Address        | No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)                        |
| MRT FCC Registration No. | 291082                                                                                            |
| FCC Rule Part(s)         | Part 15.407                                                                                       |

### **Test Facility / Accreditations**

- **1.** MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- 3. MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Taiwan, EU and TELEC Rules.

Page Number: 6 of 234




# 1. INTRODUCTION

# 1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

### 1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).





# 2. PRODUCT INFORMATION

# 2.1. Equipment Description

| Product Name:           | AC1300 High Gain Wireless Dual Band USB Adapter |
|-------------------------|-------------------------------------------------|
| Model No.:              | Archer T4U                                      |
| Brand Name:             | tp-link                                         |
| Wi-Fi Specification:    | 802.11a/b/g/n/ac                                |
| FLIT Identification No. | #1-1 (Conducted)                                |
| EUT Identification No.: | #1-2 (Radiated)                                 |

# 2.2. Product Specification Subjective to this Report

|                     | For 802.11a/n-HT20/ac-VHT20:                           |
|---------------------|--------------------------------------------------------|
|                     | 5180~5240MHz, 5260~5320MHz, 5500~5720MHz, 5745~5825MHz |
| Fraguency Bongo:    | For 802.11n-HT40/ac-VHT40:                             |
| Frequency Range:    | 5190~5230MHz, 5270~5310MHz, 5510~5710MHz, 5755~5795MHz |
|                     | For 802.11ac-VHT80:                                    |
|                     | 5210MHz, 5290MHz, 5530MHz, 5610 MHz, 5690MHz, 5775MHz  |
| Type of Modulation: | 802.11a/n/ac: OFDM                                     |
|                     | 802.11a: 6/9/12/18/24/36/48/54Mbps                     |
| Data Rate:          | 802.11n: up to 300Mbps                                 |
|                     | 802.11ac: up to 866.7Mbps                              |

Page Number: 8 of 234



# 2.3. Operation Frequencies and Channel List

# 802.11 n-HT20/ ac-VHT20

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 36      | 5180 MHz  | 40      | 5200 MHz  | 44      | 5220 MHz  |
| 48      | 5240 MHz  | 52      | 5260 MHz  | 56      | 5280 MHz  |
| 60      | 5300 MHz  | 64      | 5320 MHz  | 100     | 5500 MHz  |
| 104     | 5520 MHz  | 108     | 5540 MHz  | 112     | 5560 MHz  |
| 116     | 5580 MHz  | 120     | 5600 MHz  | 124     | 5620 MHz  |
| 128     | 5640 MHz  | 132     | 5660 MHz  | 136     | 5680 MHz  |
| 140     | 5700 MHz  | 144     | 5720 MHz  | 149     | 5745 MHz  |
| 153     | 5765 MHz  | 157     | 5785 MHz  | 161     | 5805 MHz  |
| 165     | 5825 MHz  |         |           |         |           |

### 802.11 n-HT40/ ac-VHT40

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 38      | 5190 MHz  | 46      | 5230 MHz  | 54      | 5270 MHz  |
| 62      | 5310 MHz  | 102     | 5510 MHz  | 110     | 5550 MHz  |
| 118     | 5590 MHz  | 126     | 5630 MHz  | 134     | 5670 MHz  |
| 142     | 5710 MHz  | 151     | 5755 MHz  | 159     | 5795 MHz  |

### 802.11ac-VHT80

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 42      | 5210 MHz  | 58      | 5290 MHz  | 106     | 5530 MHz  |
| 122     | 5610 MHz  | 138     | 5690 MHz  | 155     | 5775 MHz  |

Page Number: 9 of 234



# 2.4. Description of Available Antennas

| Antenna | Frequency Band | Mode       | Tx Path | Antenna Gain | CDD Direction | nal Gain (dBi) |
|---------|----------------|------------|---------|--------------|---------------|----------------|
| Type    | (MHz)          |            |         | (dBi)        | For Power     | For PSD        |
|         | 2.400 ~ 2483.5 | 802.11b/g  | 1       | 2.00         |               |                |
|         | 2.400 ~ 2483.5 | 802.11n    | 2       | 2.00         | 2.00          | 5.01           |
|         | 5150 ~ 5250    | 802.11a    | 1       | 2.47         |               |                |
|         | 5250 ~ 5350    | 802.11a    | 1       | 2.62         | 1             | -              |
|         | 5470 ~ 5725    | 802.11a    | 1       | 2.75         |               |                |
| Dipole  | 5725 ~ 5850    | 802.11a    | 1       | 3.00         | -             |                |
|         | 5150 ~ 5250    | 802.11n/ac | 2       | 2.47         | 2.47          | 5.48           |
|         | 5250 ~ 5350    | 802.11n/ac | 2       | 2.62         | 2.62          | 5.63           |
|         | 5470 ~ 5725    | 802.11n/ac | 2       | 2.75         | 2.75          | 5.76           |
|         | 5725 ~ 5850    | 802.11n/ac | 2       | 3.00         | 3.00          | 6.01           |

Note: The EUT supports SISO Mode for 802.11a/b/g and Cyclic Delay Diversity (CDD) mode for 802.11n/ac. For CDD transmissions, directional gain is calculated as follows,  $N_{ANT} = 2$ ,  $N_{SS} = 1$ .

If all antennas have the same gain, G<sub>ANT</sub>, Directional gain = G<sub>ANT</sub> + Array Gain, where Array Gain is as follows.

• For power spectral density (PSD) measurements on all devices,

Array Gain =  $10 \log (N_{ANT}/N_{SS}) dB = 3.01$ ;

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB for  $N_{ANT} \le 4$ ;

| Test Mode  | T <sub>x</sub> Paths | SISO Mode | CDD Mode |
|------------|----------------------|-----------|----------|
| 802.11b/g  | 1                    | $\sqrt{}$ | X        |
| 802.11n    | 2                    | X         | V        |
| 802.11a    | 1                    | $\sqrt{}$ | X        |
| 802.11n/ac | 2                    | Х         | √        |

Page Number: 10 of 234



### 2.5. Test Mode

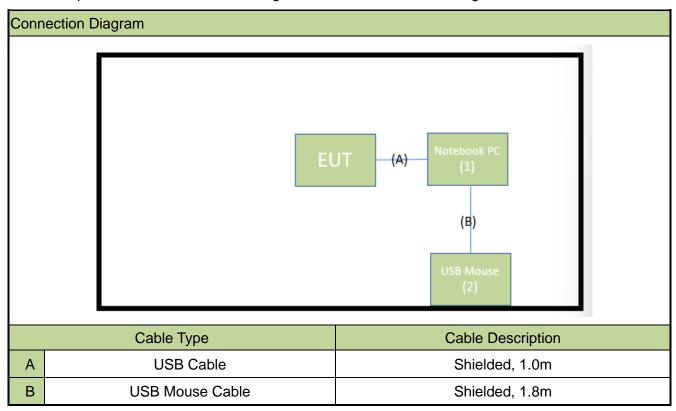
Mode 1: Transmit by 802.11a (6Mbps) - Ant 0 – SISO Mode

Mode 2: Transmit by 802.11ac-VHT20 \_ Nss = 1 (MCS0) - CDD Mode

Mode 3: Transmit by 802.11ac-VHT20 \_ Nss = 1 (MCS0) - CDD Mode

Mode 4: Transmit by 802.11ac-VHT40 \_ Nss = 1 (MCS0) - CDD Mode

#### Note:


- 1. For Radiated emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.
- 2. For CDD mode, this device supports 2  $N_{SS}$  and power level is the same of spatial multiplexing. The worst case is  $N_{SS}$ =1.
- 3. As Designated by manufacturer, the lowest data rate was the worst condition, so all the tests were done with lowest data rate.
- 4. Due to the same modulation between 802.11n, so 802.11n-HT20 and HT40 are covered by 802.11ac-VHT20 and VHT40 in this report, meanwhile, power setting for 802.11n-HT20 and HT40 will not be greater than 802.11ac-VHT20 and VHT40.

Page Number: 11 of 234



# 2.6. Configuration of Test System

The device was tested per the guidance ANSI C63.10: 2013was used to reference the appropriate EUT setup for radiated emissions testing and AC line conducted testing.



# 2.7. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Product |           | Manufacturer | anufacturer Model No. |     | Power Cord     |
|---------|-----------|--------------|-----------------------|-----|----------------|
| 1       | Notebook  | Lenovo       | T450                  | N/A | Shielded, 0.8m |
| 2       | USB Mouse | Logitech     | M90                   | N/A | N/A            |

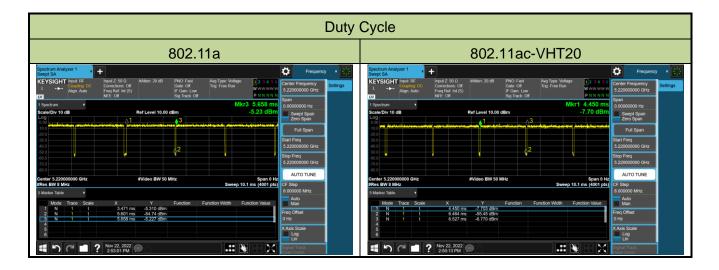
# 2.8. Description of Test Software

The test utility software used during testing was "Realtek 11ac 8812A USB WLAN MP Tool v0.0000.03".

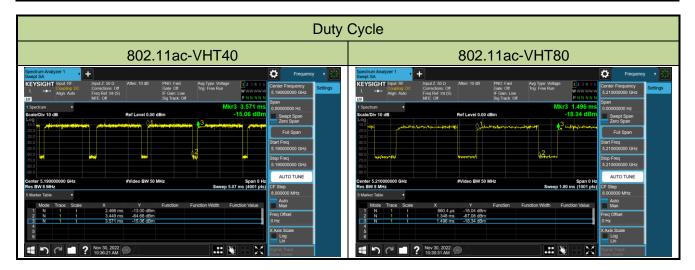
Note: Final power setting please refer to operational description.



# 2.9. Applied Standards


According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.247
- KDB 789033 D02v02r01,
- KDB 662911 D01v02r01
- ANSI C63.10-2013


# 2.10. Duty Cycle

5GHz (NII) operation is possible in 20MHz, 40MHz and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

| Test Mode      | Duty Cycle |
|----------------|------------|
| 802.11a        | 97.39%     |
| 802.11ac-VHT20 | 96.97%     |
| 802.11ac-VHT40 | 88.96%     |
| 802.11ac-VHT80 | 76.71%     |







## 2.11. Test Configuration

This device was tested per the guidance of KDB 789033 D02v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

# 2.12. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

# 2.13. Labeling Requirements

#### Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not

practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.



## 3. DESCRIPTION OF TEST

#### 3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v02r01 were used in the measurement.

#### 3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 9'x4'x3' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz,  $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.



### 3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.



# 4. ANTENNA REQUIREMENTS

### Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is permanently attached.
- There are no provisions for connection to an external antenna.

#### **Conclusion:**

The EUT unit complies with the requirement of §15.203.

Page Number: 17 of 234



# 5. TEST EQUIPMENT CALIBRATION DATE

#### **Conducted Emissions**

| Instrument         | Manufacturer | Type No.                    | Asset No.   | Cali. Interval | Cali. Due Date |
|--------------------|--------------|-----------------------------|-------------|----------------|----------------|
| Two-Line V-Network | R&S          | ENV216                      | MRTTWA00019 | 1 year         | 2023/3/7       |
| Cable              | Rosnol       | N1C50-RG400-B<br>1C50-500CM | MRTTWE00013 | 1 year         | 2023/6/19      |
| EMI Test Receiver  | R&S          | ESR3                        | MRTTWA00009 | 1 year         | 2023/3/9       |

### Radiated Emissions

| Instrument               | Manufacturer                | Type No.    | Asset No.   | Cali. Interval | Cali. Due Date |
|--------------------------|-----------------------------|-------------|-------------|----------------|----------------|
| Broadband TRILOG Antenna | SCHWARZBECK                 | VULB 9162   | MRTTWA00001 | 1 year         | 2023/12/21     |
| EMI Test Receiver        | R&S                         | ESR3        | MRTTWA00009 | 1 year         | 2023/3/9       |
| Signal Analyzer          | R&S                         | FSVA3044    | MRTTWA00092 | 1 year         | 2023/6/23      |
| Acitve Loop Antenna      | Schwarzbeck                 | FMZB 1519B  | MRTTWA00002 | 1 year         | 2023/5/24      |
| Broadband Hornantenna    | RFSPIN                      | DRH18-E     | MRTTWA00087 | 1 year         | 2023/5/10      |
| Breitband Hornantenna    | Schwarzbeck                 | BBHA 9170   | MRTTWA00004 | 1 year         | 2023/3/29      |
| Broadband Preamplifier   | EMC Instruments corporation | EMC118A45SE | MRTTWA00088 | 1 year         | 2023/5/9       |
| Broadband Preamplifier   | SCHWARZBECK                 | BBV 9718    | MRTTWA00005 | 1 year         | 2023/3/30      |
| Cable                    | HUBERSUHNER                 | SF106       | MRTTWE00034 | 1 year         | 2023/6/27      |

# Conducted Test Equipment – SR6

| Instrument                | Manufacturer | Type No. | Asset No.   | Cali. Interval | Cali. Due Date |
|---------------------------|--------------|----------|-------------|----------------|----------------|
| EXA Signal Analyzer       | KEYSIGHT     | N9010A   | MRTTWA00012 | 1 year         | 2023/10/5      |
| EXA Signal Analyzer       | KEYSIGHT     | N9010B   | MRTTWA00074 | 1 year         | 2023/7/19      |
| USB Wideband Power Sensor | KEYSIGHT     | U2021XA  | MRTTWA00015 | 1 year         | 2023/3/16      |

### Test Software

| Software | Version   | Function          |  |
|----------|-----------|-------------------|--|
| e3       | 9.160520a | EMI Test Software |  |

Page Number: 18 of 234



## 6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### **AC Conducted Emission Measurement**

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

150kHz~30MHz: ± 2.53dB

#### Radiated Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: ± 4.25dB 1GHz ~ 40GHz: ± 4.45dB

### Conducted Power (Carrier Power / Power Density)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB

### Conducted Spurious Emission

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):± 2.65 dB

#### Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 3.3%

#### Temp. / Humidity

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/ ±3%

#### Frequency Error

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±78.4Hz

Page Number: 19 of 234



# 7. TEST RESULT

# 7.1. Summary

| FCC                 | Test Description          | Test Limit               | Test      | Test   | Reference   |
|---------------------|---------------------------|--------------------------|-----------|--------|-------------|
| Section(s)          |                           |                          | Condition | Result |             |
| 15.407(a)           | 26dB Bandwidth            | N/A                      |           | Pass   | Section 7.2 |
| 15.407(e)           | 6dB Bandwidth             | ≥ 500kHz                 |           | Pass   | Section 7.3 |
| 15.407(a)(1)(iv)    | Maximum Conducted         | Defeate eastion 7.4      |           | Door   | Continu 7.4 |
| , (2), (3)(i)       | Output Power              | Refer to section 7.4     | Conducted | Pass   | Section 7.4 |
| 15.407(h)(1)        | Transmit Power Control    | ≤ 24 dBm                 | Conducted | N/A    | Section 7.5 |
| 15.407(a)(1)(iv)    | Peak Power Spectral       | Refer to section 7.6     |           | Door   | Continu 7.0 |
| , (2), (3)(i), (12) | Density                   |                          |           | Pass   | Section 7.6 |
| 15.407(g)           | Frequency Stability       | N/A                      |           | Pass   | Section 7.7 |
| 15.407(b)(1),       | Undesirable Emissions     | Refer to Section 7.8     |           | Door   |             |
| (2), (3), (4)(i)    | Officestrable Effilssions | Refer to Section 7.6     |           | Pass   |             |
| 15 205 15 200       | General Field Strength    | Emissions in restricted  | Radiated  |        | Section     |
| 15.205, 15.209      | Limits (Restricted Bands  | bands must meet the      | Naulaleu  | Door   | 7.8 & 7.9   |
| 15.407(b)(8),       | and Radiated Emission     | radiated limits detailed |           | Pass   |             |
| (9), (10)           | Limits)                   | in15.209                 |           |        |             |
|                     | AC Conducted              |                          | Lino      |        | Section     |
| 15.207              | Emissions                 | < FCC 15.207 limits      | Line      | Pass   |             |
|                     | 150kHz - 30MHz            |                          | Conducted |        | 7.10        |

#### Notes:

- 1) Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst-case emissions.

Page Number: 20 of 234



### 7.2. 26dB Bandwidth Measurement

#### 7.2.1. Test Limit

N/A

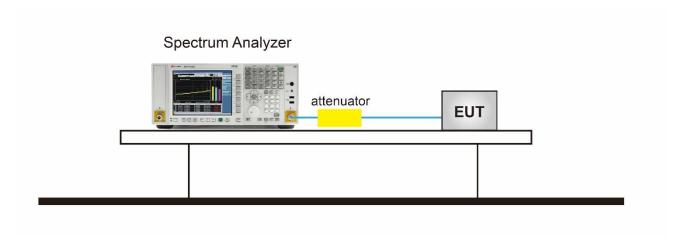
#### 7.2.2.Test Procedure used

KDB 789033 D02v02r01- Section II)C)1) (26dB Bandwidth)

KDB 789033 D02v02r01- Section II)D) (99% Bandwidth)

### 7.2.3. Test Setting

### 26dB Bandwidth


- The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. VBW > RBW
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- Measure the maximum width of the emission that is 26 dB down from the maximum of the
  emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat
  measurement as needed until the RBW/EBW ratio is approximately 1%.

#### 99% Bandwidth

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. RBW = 1% to 5% of the OBW
- 3.  $VBW \ge 3 \times RBW$
- 4. Span = 1.5 times to 5 times the OBW
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow the trace to stabilize.
- 8. Use the 99% power bandwidth function of the instrument.



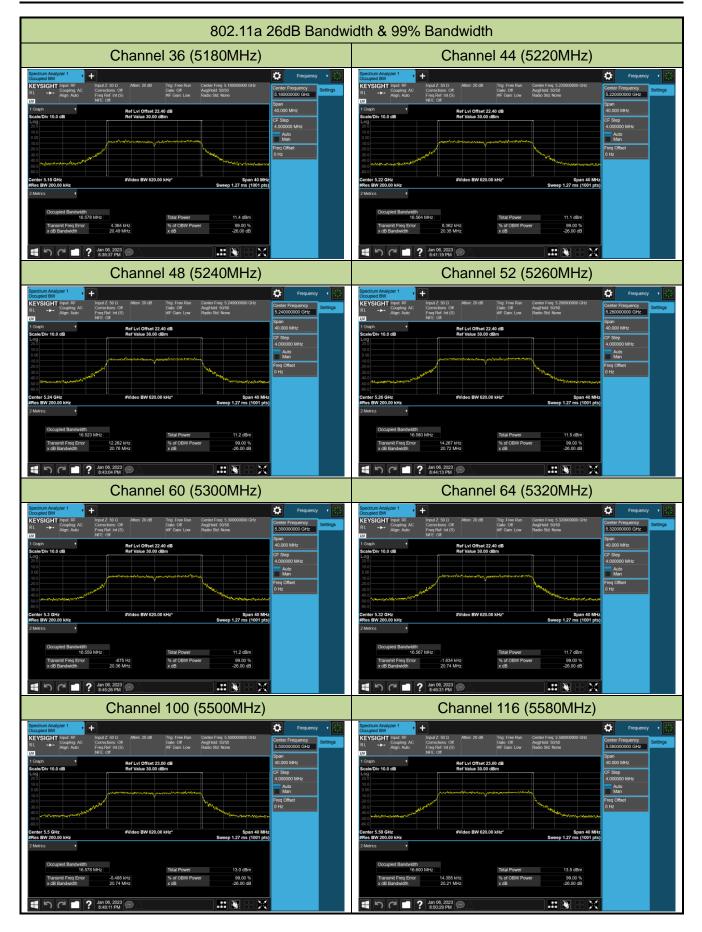
# 7.2.4. Test Setup



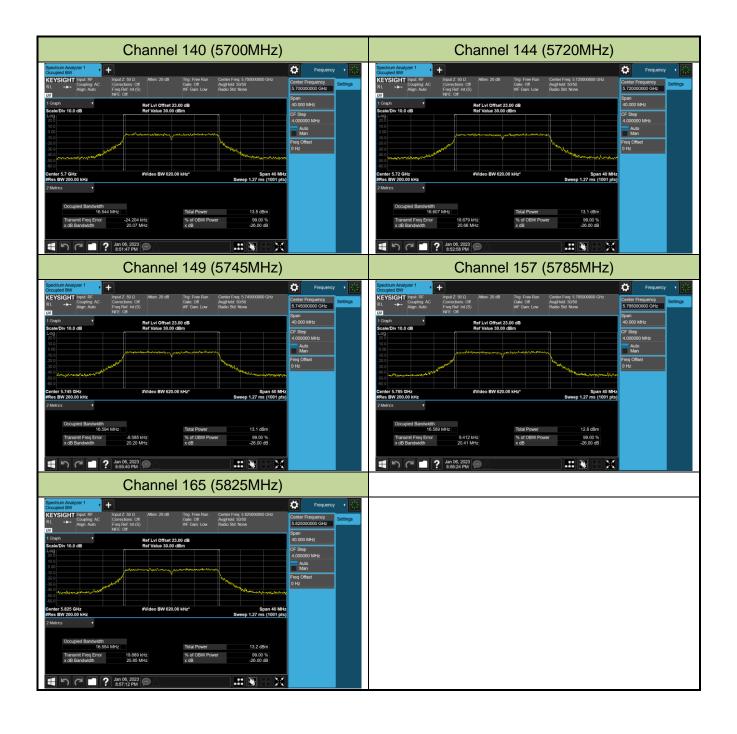


### 7.2.5. Test Result

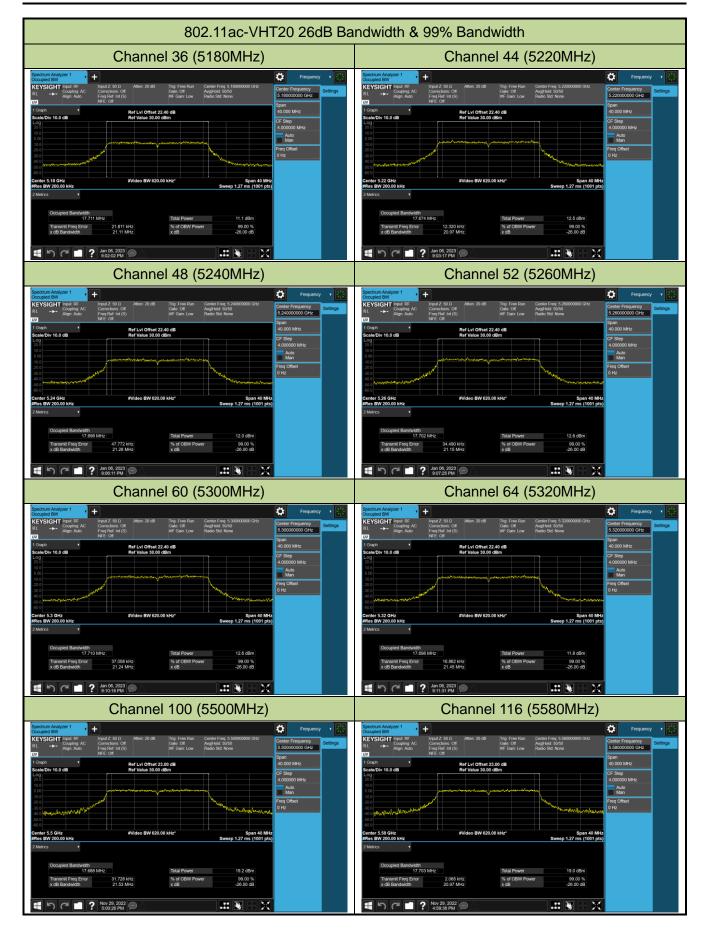
| Product   | AC1300 High Gain Wireless Dual Band USB Adapter | Test Engineer | Marvin              |  |
|-----------|-------------------------------------------------|---------------|---------------------|--|
| Test Site | SR6                                             | Test Date     | 2022/11/29~2023/1/6 |  |
| Test Item | 26dB Bandwidth & 99% Bandwidth                  |               |                     |  |


| Test Mode      | Channel No. | Frequency<br>(MHz) | 26dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) |
|----------------|-------------|--------------------|-------------------------|------------------------|
| Ant 0          |             |                    |                         |                        |
| 802.11a        | 36          | 5180               | 20.490                  | 16.578                 |
| 802.11a        | 44          | 5220               | 20.350                  | 16.564                 |
| 802.11a        | 48          | 5240               | 20.760                  | 16.523                 |
| 802.11a        | 52          | 5260               | 20.720                  | 16.580                 |
| 802.11a        | 60          | 5300               | 20.360                  | 16.559                 |
| 802.11a        | 64          | 5320               | 20.740                  | 16.567                 |
| 802.11a        | 100         | 5500               | 20.740                  | 16.578                 |
| 802.11a        | 118         | 5580               | 20.210                  | 16.600                 |
| 802.11a        | 140         | 5700               | 20.070                  | 16.544                 |
| 802.11a        | 144         | 5720               | 20.660                  | 16.607                 |
| 802.11a        | 149         | 5745               | 20.200                  | 16.594                 |
| 802.11a        | 157         | 5785               | 20.410                  | 16.589                 |
| 802.11a        | 165         | 5825               | 20.850                  | 16.554                 |
| 802.11ac-VHT20 | 36          | 5180               | 21.110                  | 17.711                 |
| 802.11ac-VHT20 | 44          | 5220               | 20.970                  | 17.674                 |
| 802.11ac-VHT20 | 48          | 5240               | 21.280                  | 17.698                 |
| 802.11ac-VHT20 | 52          | 5260               | 21.150                  | 17.702                 |
| 802.11ac-VHT20 | 60          | 5300               | 21.240                  | 17.710                 |
| 802.11ac-VHT20 | 64          | 5320               | 21.450                  | 17.698                 |
| 802.11ac-VHT20 | 100         | 5500               | 21.530                  | 17.688                 |
| 802.11ac-VHT20 | 118         | 5580               | 20.970                  | 17.703                 |
| 802.11ac-VHT20 | 140         | 5700               | 20.940                  | 17.703                 |
| 802.11ac-VHT20 | 144         | 5720               | 21.770                  | 17.731                 |
| 802.11ac-VHT20 | 149         | 5745               | 22.600                  | 17.750                 |
| 802.11ac-VHT20 | 157         | 5785               | 21.480                  | 17.808                 |
| 802.11ac-VHT20 | 165         | 5825               | 20.930                  | 17.717                 |

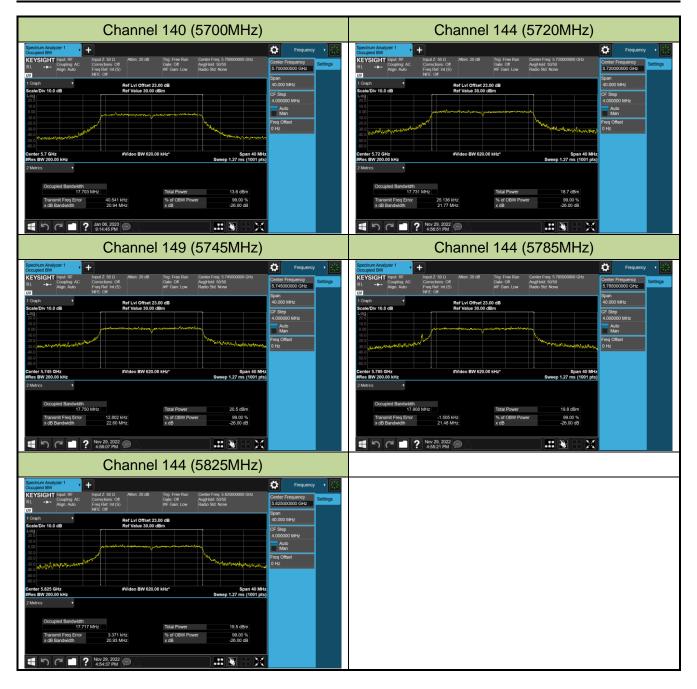
Page Number: 23 of 234



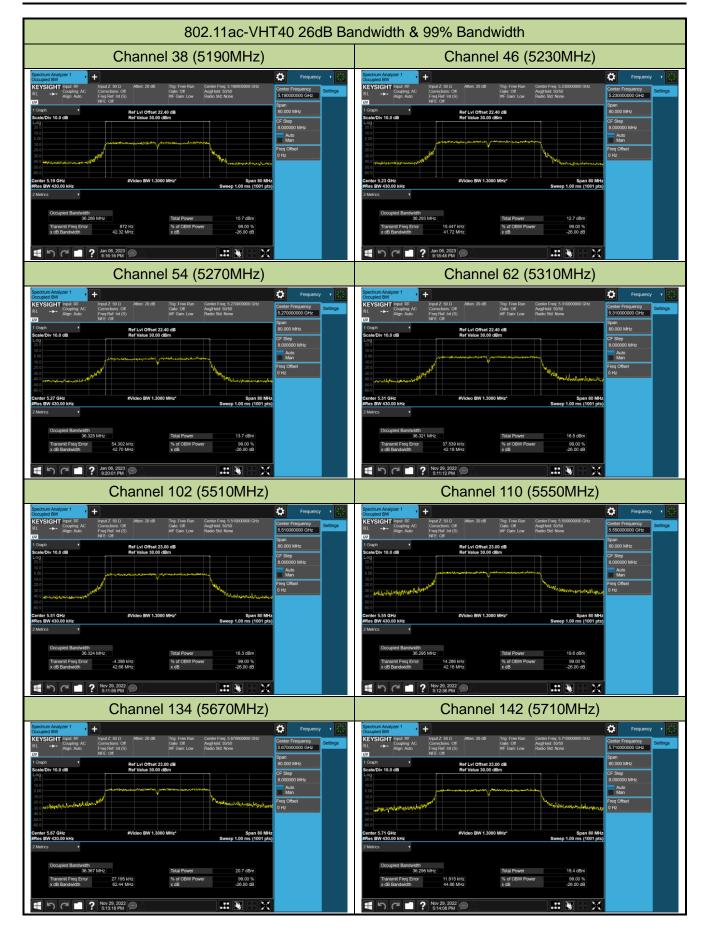

| Test Mode      | Channel No. | Frequency<br>(MHz) | 26dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) |
|----------------|-------------|--------------------|-------------------------|------------------------|
| 802.11ac-VHT40 | 38          | 5190               | 42.320                  | 36.286                 |
| 802.11ac-VHT40 | 46          | 5230               | 41.720                  | 36.293                 |
| 802.11ac-VHT40 | 54          | 5270               | 42.700                  | 36.325                 |
| 802.11ac-VHT40 | 62          | 5310               | 42.180                  | 36.321                 |
| 802.11ac-VHT40 | 102         | 5510               | 42.680                  | 36.324                 |
| 802.11ac-VHT40 | 110         | 5550               | 42.160                  | 36.295                 |
| 802.11ac-VHT40 | 134         | 5670               | 62.440                  | 36.367                 |
| 802.11ac-VHT40 | 142         | 5710               | 44.860                  | 36.298                 |
| 802.11ac-VHT40 | 151         | 5755               | 56.890                  | 36.412                 |
| 802.11ac-VHT40 | 159         | 5795               | 42.140                  | 36.350                 |
| 802.11ac-VHT80 | 42          | 5210               | 79.970                  | 75.315                 |
| 802.11ac-VHT80 | 58          | 5290               | 80.370                  | 75.169                 |
| 802.11ac-VHT80 | 106         | 5530               | 79.870                  | 75.094                 |
| 802.11ac-VHT80 | 122         | 5610               | 79.710                  | 75.318                 |
| 802.11ac-VHT80 | 138         | 5690               | 82.320                  | 75.402                 |
| 802.11ac-VHT80 | 155         | 5775               | 81.250                  | 75.239                 |



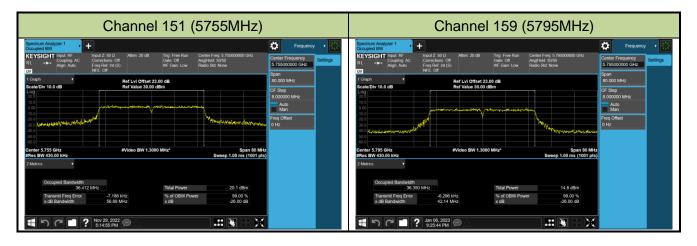


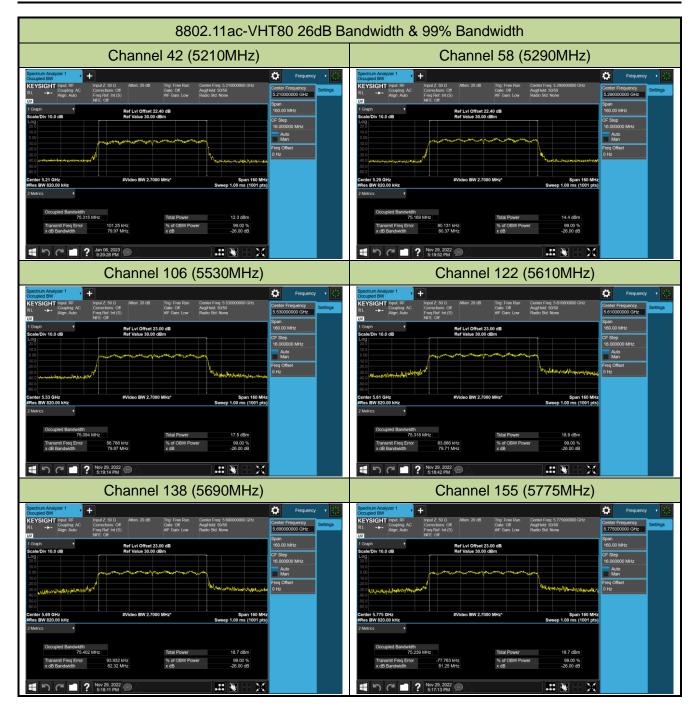














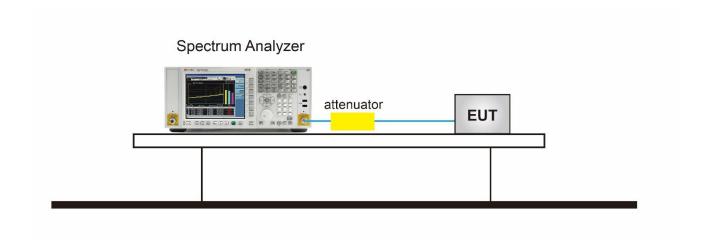





### 7.3. 6dB Bandwidth Measurement

#### 7.3.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.


#### 7.3.2. Test Procedure used

KDB 789033 D02v02r01 - Section II)C.2

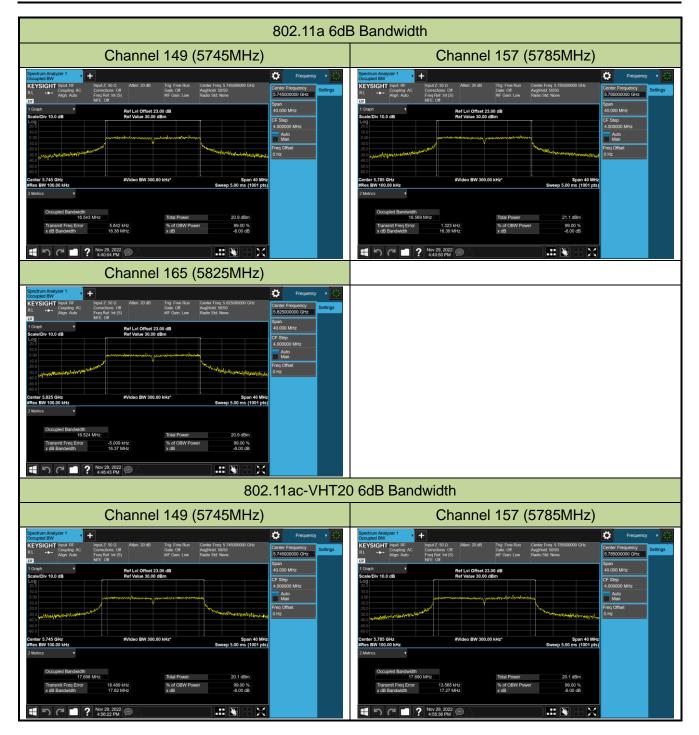
### 7.3.3. Test Setting

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. RBW = 100 kHz.
- 3. VBW  $\geq$  3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

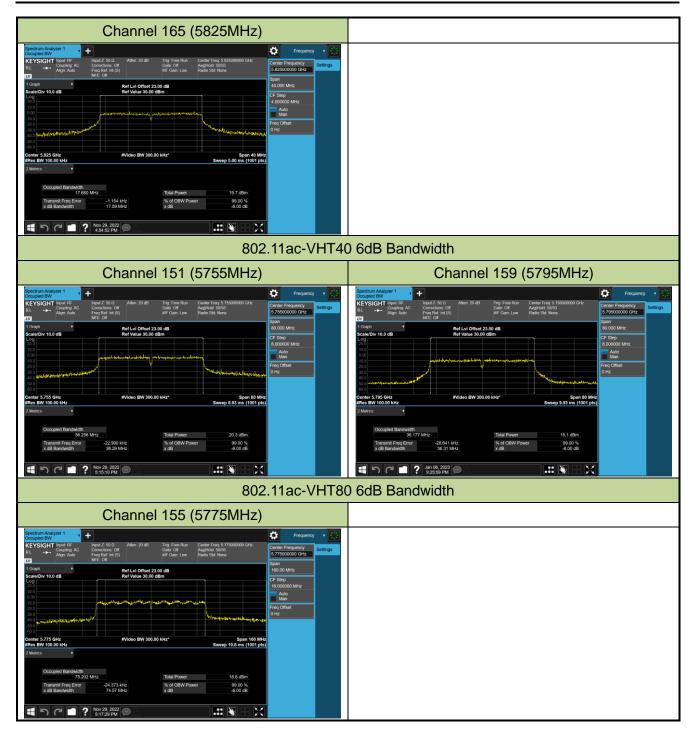
### 7.3.4. Test Setup






# 7.3.5.Test Result

| Product   | AC1300 High Gain Wireless Dual Band USB Adapter | Test Engineer | Marvin              |
|-----------|-------------------------------------------------|---------------|---------------------|
| Test Site | SR6                                             | Test Date     | 2022/11/29~2023/1/6 |
| Test Item | 6dB Bandwidth                                   |               |                     |


| Test Mode      | Channel No. | Frequency<br>(MHz) | 6dB Bandwidth (MHz) | Limit<br>(MHz) | Result |  |  |  |
|----------------|-------------|--------------------|---------------------|----------------|--------|--|--|--|
| Ant 0          | int 0       |                    |                     |                |        |  |  |  |
| 802.11a        | 149         | 5745               | 16.380              | ≥ 0.5          | Pass   |  |  |  |
| 802.11a        | 157         | 5785               | 16.390              | ≥ 0.5          | Pass   |  |  |  |
| 802.11a        | 165         | 5825               | 16.370              | ≥ 0.5          | Pass   |  |  |  |
| 802.11ac-VHT20 | 149         | 5745               | 17.620              | ≥ 0.5          | Pass   |  |  |  |
| 802.11ac-VHT20 | 157         | 5785               | 17.270              | ≥ 0.5          | Pass   |  |  |  |
| 802.11ac-VHT20 | 165         | 5825               | 17.590              | ≥ 0.5          | Pass   |  |  |  |
| 802.11ac-VHT40 | 151         | 5755               | 36.290              | ≥ 0.5          | Pass   |  |  |  |
| 802.11ac-VHT40 | 159         | 5795               | 36.310              | ≥ 0.5          | Pass   |  |  |  |
| 802.11ac-VHT80 | 155         | 5775               | 74.570              | ≥ 0.5          | Pass   |  |  |  |

Page Number: 33 of 234











## 7.4. Output Power Measurement

#### 7.4.1.Test Limit

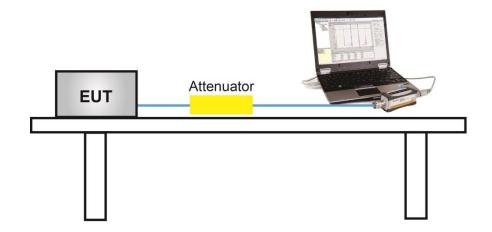
For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm).

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### 7.4.2. Test Procedure Used


KDB 789033 D02v02r01 - Section II) E) 3) b) Method PM-G

### 7.4.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.



## 7.4.4. Test Setup





### 7.4.5. Test Result

| Product   | AC1300 High Gain Wireless Dual Band USB Adapter | Test Engineer | Marvin   |
|-----------|-------------------------------------------------|---------------|----------|
| Test Site | SR6                                             | Test Date     | 2023/1/6 |

| Test Mode | Data Rate/ MCS | Ch. No. | Freq.<br>(MHz) | Average Power (dBm) | Power Limit<br>(dBm) |
|-----------|----------------|---------|----------------|---------------------|----------------------|
| 11a       | 6Mbps          | 36      | 5180           | 10.87               | ≤ 23.98              |
| 11a       | 6Mbps          | 44      | 5220           | 11.01               | ≤ 23.98              |
| 11a       | 6Mbps          | 48      | 5240           | 11.17               | ≤ 23.98              |
| 11a       | 6Mbps          | 52      | 5260           | 11.42               | ≤ 23.98              |
| 11a       | 6Mbps          | 60      | 5300           | 11.23               | ≤ 23.98              |
| 11a       | 6Mbps          | 64      | 5320           | 11.31               | ≤ 23.98              |
| 11a       | 6Mbps          | 100     | 5500           | 13.30               | ≤ 23.98              |
| 11a       | 6Mbps          | 116     | 5580           | 13.55               | ≤ 23.98              |
| 11a       | 6Mbps          | 140     | 5700           | 13.80               | ≤ 23.98              |
| 11a       | 6Mbps          | 144     | 5720           | 13.50               | ≤ 22.86              |
| 11a       | 6Mbps          | 149     | 5745           | 13.33               | ≤ 30.00              |
| 11a       | 6Mbps          | 157     | 5785           | 12.88               | ≤ 30.00              |
| 11a       | 6Mbps          | 165     | 5825           | 12.91               | ≤ 30.00              |

Note 1: For 5250 - 5350 & 5470 - 5725 MHz, the conducted power limit is as below, where B is the 26 dB emission bandwidth in megahertz.

 $11 + 10 \log_{10} (B) > 23.98 dBm$ 

Note 2: For 802.11a\_ch144 (5720MHz), Power Limit (dBm) =  $11+10*log(5MHz + BW_{26dBc}/2)=22.86 dBm$ 

Page Number: 38 of 234



| Product   | AC1300 High Gain Wireless Dual Band USB Adapter | Test Engineer | Marvin   |
|-----------|-------------------------------------------------|---------------|----------|
| Test Site | SR6                                             | Test Date     | 2023/1/6 |

| Test Mode  | Data  | Channel | Freq. | Ant 0 Average | Ant 1 Average | Total Average | Power Limit | Result |
|------------|-------|---------|-------|---------------|---------------|---------------|-------------|--------|
|            | Rate/ | No.     | (MHz) | Power         | Power         | Power         | (dBm)       |        |
|            | MCS   |         |       | (dBm)         | (dBm)         | (dBm)         |             |        |
| 11ac-VHT20 | MCS0  | 36      | 5180  | 12.55         | 13.14         | 15.87         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 40      | 5220  | 13.48         | 12.41         | 15.99         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 48      | 5240  | 12.87         | 12.95         | 15.92         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 52      | 5260  | 13.55         | 12.57         | 16.10         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 60      | 5300  | 13.46         | 12.17         | 15.87         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 64      | 5320  | 12.51         | 12.04         | 15.29         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 100     | 5500  | 15.24         | 15.19         | 18.23         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 116     | 5580  | 15.35         | 15.24         | 18.31         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 140     | 5700  | 15.22         | 14.51         | 17.89         | ≤ 23.98     | Pass   |
| 11ac-VHT20 | MCS0  | 144     | 5720  | 15.35         | 15.03         | 18.20         | ≤ 23.01     | Pass   |
| 11ac-VHT20 | MCS0  | 149     | 5745  | 15.17         | 15.15         | 18.17         | ≤ 30.00     | Pass   |
| 11ac-VHT20 | MCS0  | 157     | 5785  | 15.27         | 15.27         | 18.28         | ≤ 30.00     | Pass   |
| 11ac-VHT20 | MCS0  | 165     | 5825  | 15.15         | 15.16         | 18.17         | ≤ 30.00     | Pass   |
| 11ac-VHT40 | MCS0  | 38      | 5190  | 12.58         | 13.47         | 16.06         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 46      | 5230  | 13.35         | 12.59         | 16.00         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 54      | 5270  | 13.29         | 12.63         | 15.98         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 62      | 5310  | 13.22         | 12.76         | 16.01         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 102     | 5510  | 14.74         | 13.26         | 17.07         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 110     | 5550  | 15.25         | 15.51         | 18.39         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 134     | 5670  | 15.16         | 15.41         | 18.30         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 142     | 5710  | 15.29         | 15.17         | 18.24         | ≤ 23.98     | Pass   |
| 11ac-VHT40 | MCS0  | 151     | 5755  | 15.33         | 15.28         | 18.32         | ≤ 30.00     | Pass   |
| 11ac-VHT40 | MCS0  | 159     | 5795  | 14.55         | 14.21         | 17.39         | ≤ 30.00     | Pass   |
| 11ac-VHT80 | MCS0  | 42      | 5210  | 13.00         | 12.98         | 16.00         | ≤ 23.98     | Pass   |
| 11ac-VHT80 | MCS0  | 58      | 5290  | 12.08         | 11.72         | 14.91         | ≤ 23.98     | Pass   |
| 11ac-VHT80 | MCS0  | 106     | 5530  | 14.66         | 14.54         | 17.61         | ≤ 23.98     | Pass   |
| 11ac-VHT80 | MCS0  | 122     | 5610  | 15.29         | 15.39         | 18.35         | ≤ 23.98     | Pass   |
| 11ac-VHT80 | MCS0  | 138     | 5690  | 15.26         | 15.16         | 18.22         | ≤ 23.98     | Pass   |
| 11ac-VHT80 | MCS0  | 155     | 5775  | 15.32         | 15.24         | 18.29         | ≤ 30.00     | Pass   |

Note 1:



The Total Average Power (dBm) =  $10*log \{10^{(Ant \ 0 \ Average \ Power \ /10)} + 10^{(Ant \ 1 \ Average \ Power \ /10)}\}$ .

#### Note 2:

For 5250- 5350MHz and 5470 - 5725MHz Band: Average Power Limit (dBm) = 23.98 dBm.

For 5150 - 5250 MHz and 5725 - 5850 MHz Bands: Average Power Limit (dBm) = 30 dBm.

For 802.11ac\_ch144 (5720MHz), Average Power Limit (dBm) = 11+10\*log(5MHz + BW<sub>26dBc</sub>/2)=23.01 dBm

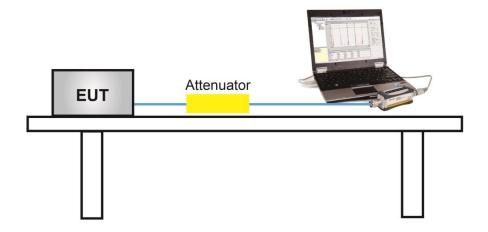
Page Number: 40 of 234



## 7.5. Transmit Power Control

#### 7.5.1.Test Limit

The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm.


#### 7.5.2. Test Procedure Used

KDB 789033 D02v02r01 - Section E) 3) b) Method PM-G

## 7.5.3. Test Setting

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

### 7.5.4. Test Setup



#### 7.5.5. Test Result

A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.



## 7.6. Power Spectral Density Measurement

#### 7.6.1.Test Limit

For the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

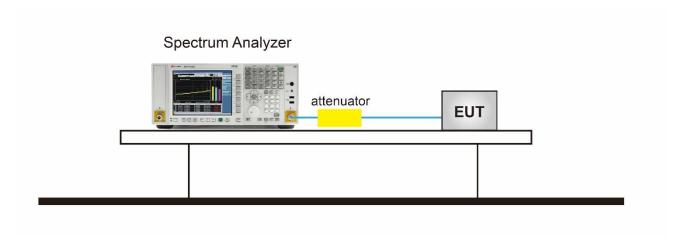
For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### 7.6.2. Test Procedure Used

KDB 789033 D02v02r01 - Section II) F

#### 7.6.3. Test Setting


- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire 26dB EBW of the signal.
- 3. RBW = 1MHz, if measurement bandwidth of Maximum PSD is specified in 500 kHz,

RBW = 510 kHz

- 4. VBW = 3MHz
- 5. Number of sweep points ≥ 2 × (span / RBW)
- 6. Detector = power averaging (Average)
- 7. Sweep time = auto
- 8. Trigger = free run
- 9. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 10. Add 10\*log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10\*log(1/0.25) = 6 dB if the duty cycle is 25 percent.



# 7.6.4. Test Setup





### 7.6.5. Test Result

| Product   | AC1300 High Gain Wireless Dual<br>Band USB Adapter | Test Engineer | Marvin              |  |  |  |
|-----------|----------------------------------------------------|---------------|---------------------|--|--|--|
| Test Site | SR6                                                | Test Date     | 2022/12/21~2023/1/9 |  |  |  |
| Test Item | Power Spectral Density - SISO Mode                 |               |                     |  |  |  |

| Test Mode           | Data   | Channel | Freq. | PSD    | Duty  | Final PSD | PSD Limit | Result |
|---------------------|--------|---------|-------|--------|-------|-----------|-----------|--------|
|                     | Rate   | No.     | (MHz) | (dBm/  | Cycle | (dBm/     | (dBm/MHz) |        |
|                     | (Mbps) |         |       | MHz)   | (%)   | MHz)      |           |        |
| For NII-1/-2a/-2c B | ands:  |         |       |        |       |           |           |        |
| 11a                 | 6      | 36      | 5180  | -0.937 | 97.39 | -0.822    | ≤ 11      | Pass   |
| 11a                 | 6      | 44      | 5220  | -1.020 | 97.39 | -0.905    | ≤ 11      | Pass   |
| 11a                 | 6      | 48      | 5240  | -0.297 | 97.39 | -0.182    | ≤ 11      | Pass   |
| 11a                 | 6      | 52      | 5260  | -0.034 | 97.39 | 0.081     | ≤ 11      | Pass   |
| 11a                 | 6      | 60      | 5300  | -0.260 | 97.39 | -0.145    | ≤ 11      | Pass   |
| 11a                 | 6      | 64      | 5320  | -0.100 | 97.39 | 0.015     | ≤ 11      | Pass   |
| 11a                 | 6      | 100     | 5500  | 1.450  | 97.39 | 1.565     | ≤ 11      | Pass   |
| 11a                 | 6      | 120     | 5600  | 1.678  | 97.39 | 1.793     | ≤ 11      | Pass   |
| 11a                 | 6      | 140     | 5700  | 1.669  | 97.39 | 1.784     | ≤ 11      | Pass   |
| 11a                 | 6      | 144     | 5720  | 1.344  | 97.39 | 1.459     | ≤ 11      | Pass   |

Note: When EUT duty cycle < 98%, the Final PSD (dBm / MHz) = PSD (dBm / MHz) +10\*log (1/Duty cycle).

| Test Mode       | Data<br>Rate<br>(Mbps) | Channel<br>No. | Freq.<br>(MHz) | PSD<br>(dBm/<br>510kHz) | Duty<br>Cycle<br>(%) | Final PSD<br>(dBm/<br>510kHz) | PSD Limit<br>(dBm/500kHz) | Result |
|-----------------|------------------------|----------------|----------------|-------------------------|----------------------|-------------------------------|---------------------------|--------|
| For NII-3 Band: |                        |                |                |                         |                      |                               |                           |        |
| 11a             | 6                      | 149            | 5745           | -2.334                  | 97.39                | -2.219                        | ≤ 30                      | Pass   |
| 11a             | 6                      | 157            | 5785           | -2.104                  | 97.39                | -1.989                        | ≤ 30                      | Pass   |
| 11a             | 6                      | 165            | 5825           | -1.847                  | 97.39                | -1.732                        | ≤ 30                      | Pass   |

Note: When EUT duty cycle < 98%, the Final PSD (dBm / 510kHz) = PSD (dBm / 510kHz) +10\*log (1/Duty cycle).

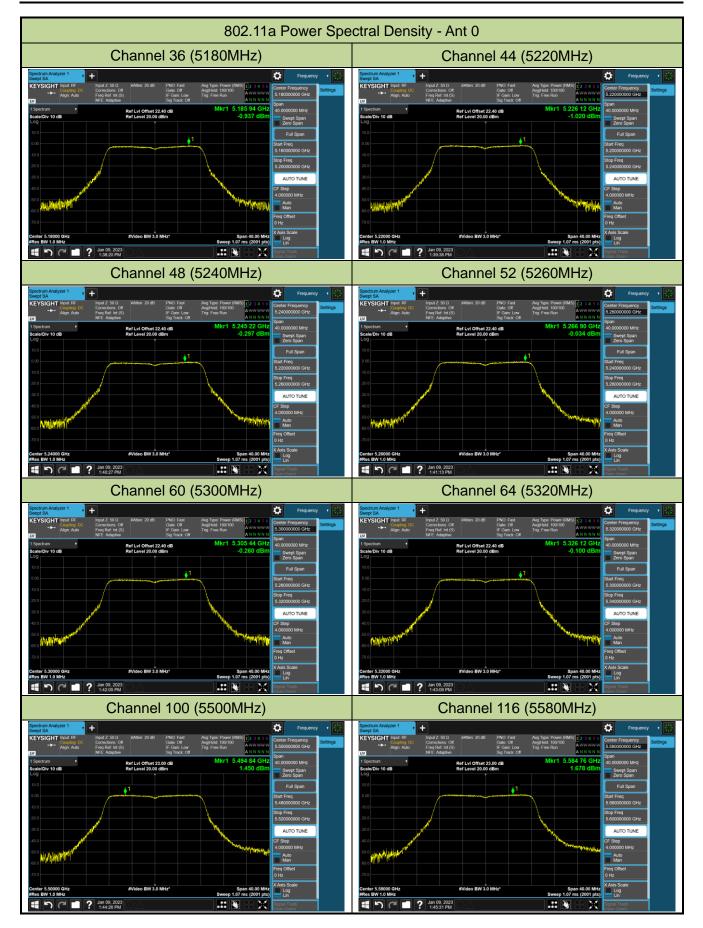
Page Number: 44 of 234



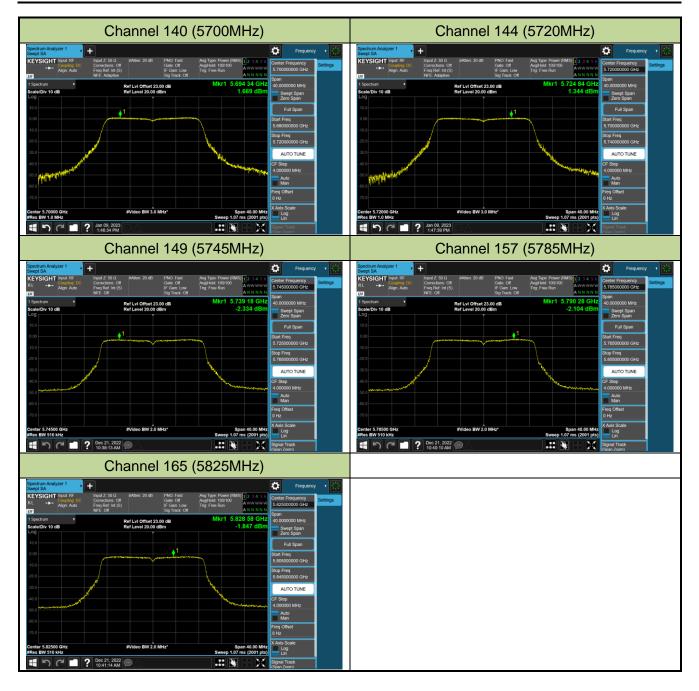
| Product   | AC1300 High Gain Wireless Dual<br>Band USB Adapter | Test Engineer | Marvin              |  |  |  |
|-----------|----------------------------------------------------|---------------|---------------------|--|--|--|
| Test Site | SR6                                                | Test Date     | 2022/11/25~2023/1/9 |  |  |  |
| Test Item | Power Spectral Density - CDD Mode                  |               |                     |  |  |  |

| Test Mode  | Data   | Channel | Freq. | Ant 0  | Ant 1   | Duty  | Final PSD | PSD Limit | Result |
|------------|--------|---------|-------|--------|---------|-------|-----------|-----------|--------|
|            | Rate   | No.     | (MHz) | PSD    | PSD     | Cycle | (dBm/     | (dBm/MHz) |        |
|            | (Mbps) |         |       | (dBm/  | (dBm/   | (%)   | MHz)      |           |        |
|            |        |         |       | MHz)   | MHz)    |       |           |           |        |
| 11ac-VHT20 | 6.5    | 36      | 5180  | 1.254  | 1.291   | 96.97 | 4.416     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 44      | 5220  | 2.191  | 0.881   | 96.97 | 4.729     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 48      | 5240  | 1.619  | 1.668   | 96.97 | 4.787     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 52      | 5260  | 2.364  | 0.584   | 96.97 | 4.708     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 60      | 5300  | 2.444  | 0.589   | 96.97 | 4.759     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 64      | 5320  | 1.945  | -0.151  | 96.97 | 4.166     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 100     | 5500  | 4.778  | 3.959   | 96.97 | 7.532     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 120     | 5600  | 4.668  | 3.631   | 96.97 | 7.324     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 140     | 5700  | 2.926  | 2.895   | 96.97 | 6.054     | ≤ 11      | Pass   |
| 11ac-VHT20 | 6.5    | 144     | 5720  | 3.622  | 3.498   | 96.97 | 6.704     | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 38      | 5190  | -4.213 | -4.766  | 88.96 | -0.962    | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 46      | 5230  | -2.453 | -3.944  | 88.96 | 0.384     | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 54      | 5270  | -2.277 | -3.218  | 88.96 | 0.796     | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 62      | 5310  | -3.148 | -3.879  | 88.96 | 0.020     | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 102     | 5510  | -4.661 | -5.539  | 88.96 | -1.559    | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 110     | 5550  | -0.594 | -0.299  | 88.96 | 3.074     | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 134     | 5670  | -0.806 | -1.097  | 88.96 | 2.569     | ≤ 11      | Pass   |
| 11ac-VHT40 | 13.5   | 142     | 5710  | 0.921  | 0.409   | 88.96 | 4.191     | ≤ 11      | Pass   |
| 11ac-VHT80 | 29.3   | 42      | 5210  | -7.375 | -8.284  | 76.71 | -3.644    | ≤ 11      | Pass   |
| 11ac-VHT80 | 29.3   | 58      | 5290  | -8.923 | -11.813 | 76.71 | -5.970    | ≤ 11      | Pass   |
| 11ac-VHT80 | 29.3   | 106     | 5530  | -7.339 | -8.790  | 76.71 | -3.842    | ≤ 11      | Pass   |
| 11ac-VHT80 | 29.3   | 122     | 5610  | -5.439 | -5.789  | 76.71 | -1.449    | ≤ 11      | Pass   |
| 11ac-VHT80 | 29.3   | 138     | 5690  | -6.170 | -5.632  | 76.71 | -1.731    | ≤ 11      | Pass   |

Note: When EUT duty cycle < 98%,


the Final PSD (dBm/MHz) =  $10*log \{10^{(Ant \ 0 \ PSD/10)} + 10^{(Ant \ 1 \ PSD/10)}\} + 10*log (1/Duty \ Cycle)(dBm/MHz).$ 




| Test Mode  | Data   | Channel | Freq. | Ant 0 PSD | Ant 1 PSD | Duty Cycle | Final PSD | PSD Limit | Result |
|------------|--------|---------|-------|-----------|-----------|------------|-----------|-----------|--------|
|            | Rate   | No.     | (MHz) | (dBm/     | (dBm/     | (%)        | (dBm/     | (dBm/500  |        |
|            | (Mbps) |         |       | 510kHz)   | 510kHz)   |            | 510kHz)   | kHz)      |        |
| 11ac-VHT20 | 6.5    | 149     | 5745  | 1.556     | 0.129     | 96.97      | 4.045     | ≤ 30      | Pass   |
| 11ac-VHT20 | 6.5    | 157     | 5785  | -0.649    | -1.321    | 96.97      | 2.172     | ≤ 30      | Pass   |
| 11ac-VHT20 | 6.5    | 165     | 5825  | -1.626    | -0.852    | 96.97      | 1.922     | ≤ 30      | Pass   |
| 11ac-VHT40 | 13.5   | 151     | 5755  | -5.522    | -4.983    | 88.96      | -1.726    | ≤ 30      | Pass   |
| 11ac-VHT40 | 13.5   | 159     | 5795  | -3.223    | -5.209    | 88.96      | -0.585    | ≤ 30      | Pass   |
| 11ac-VHT80 | 29.3   | 155     | 5775  | -9.016    | -10.197   | 76.71      | -5.405    | ≤ 30      | Pass   |

Note: When EUT duty cycle < 98%, the Final PSD (dBm / 510kHz) =  $10*\log \{10^{(Ant\ 0\ PSD\ /\ 10)} + 10^{(Ant\ 1\ PSD\ /\ 10)}\}$  +  $10*\log (1/Duty\ cycle)$ .

