

A.5 Frequency Stability Test Result

Test Site	WZ-TR3	Test Engineer	Amy Zhang
Test Date	2021/07/16	Test Mode	5180MHz (Carrier Mode)

Voltage	Power	Temp	Frequency Tolerance (ppm)					
(%)	(VAC)	(°C)	0 minutes	2 minutes	5 minutes	10 minutes		
		- 30	-11.85	-11.27	-11.56	-12.13		
		- 20	-11.89	-11.59	-12.55	-11.82		
		- 10	-11.15	-11.72	-11.59	-12.05		
		0	-11.35	-11.60	-12.55	-12.22		
100%	120	+ 10	-11.96	-11.66	-12.17	-11.82		
		+ 20 (Ref)	-11.57	-11.92	-12.34	-11.92		
		+ 30	-11.48	-12.05	-11.85	-11.95		
		+ 40	-11.56	-11.77	-12.48	-12.42		
		+ 50	-11.99	-12.42	-12.50	-12.04		
115%	138	+ 20	-11.27	-12.34	-12.28	-12.44		
85%	102	+ 20	-11.59	-11.89	-12.48	-12.54		

Note: Frequency Tolerance (ppm) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)} $^{10^6}$.

A.6 Radiated Spurious Emission Measurement Test Result

Test Site	WZ-AC2	Test Engineer	Antony Yang
Test Date	2021/05/21	Test Mode	802.11a – Channel 36
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.
	2. Other frequency was 20dB below l	imit line within 1-18GHz, th	ere is not show in the
	report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7553.5	34.0	12.1	46.1	74.0	-27.9	Peak	Horizontal
	8369.5	34.3	12.1	46.4	74.0	-27.6	Peak	Horizontal
*	8811.5	32.4	14.1	46.5	68.2	-21.7	Peak	Horizontal
*	10358.5	43.6	16.6	60.2	68.2	-8.0	Peak	Horizontal
	7587.5	32.7	12.2	44.9	74.0	-29.1	Peak	Vertical
	8242.0	32.5	12.2	44.7	74.0	-29.3	Peak	Vertical
*	8879.5	31.2	14.0	45.2	68.2	-23.0	Peak	Vertical
*	10358.5	47.9	16.6	64.5	68.2	-3.7	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB/m)$

Test Site	WZ-AC2	Test Engineer	Antony Yang			
Test Date	2021/05/21	Test Mode	802.11a – Channel 44			
Remark	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below I	imit line within 1-18GHz, th	ere is not show in the			
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	37.2	9.2	46.4	74.0	-27.6	Peak	Horizontal
	8301.5	38.2	10.1	48.3	74.0	-25.7	Peak	Horizontal
*	8913.5	37.6	11.0	48.6	68.2	-19.6	Peak	Horizontal
*	10443.5	40.9	14.2	55.1	68.2	-13.1	Peak	Horizontal
	7400.5	38.6	9.7	48.3	74.0	-25.7	Peak	Vertical
	8208.0	38.2	10.3	48.5	74.0	-25.5	Peak	Vertical
*	8692.5	36.8	10.8	47.6	68.2	-20.6	Peak	Vertical
*	10443.5	51.3	14.2	65.5	68.2	-2.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Date	2021/05/22	Test Mode	802.11a – Channel 48					
Remark	1. Average measurement was not pe	1. Average measurement was not performed if peak level lower than average limit.						
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8216.5	37.9	10.3	48.2	74.0	-25.8	Peak	Horizontal
*	8735.0	37.4	10.9	48.3	68.2	-19.9	Peak	Horizontal
*	10477.5	45.0	14.6	59.6	68.2	-8.6	Peak	Horizontal
	15713.5	42.7	13.3	56.0	74.0	-18.0	Peak	Horizontal
	15713.5	32.1	13.3	45.4	54.0	-8.6	Average	Horizontal
	7409.0	38.0	9.7	47.7	74.0	-26.3	Peak	Vertical
*	8752.0	37.4	11.1	48.5	68.2	-19.7	Peak	Vertical
*	10477.5	52.3	14.6	66.9	68.2	-1.3	Peak	Vertical
	15960.0	38.7	13.1	51.8	74.0	-22.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang			
Test Date	2021/05/22	Test Mode	802.11a – Channel 52			
Remark	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below I	imit line within 1-18GHz, th	ere is not show in the			
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	32.9	12.1	45.0	74.0	-29.0	Peak	Horizontal
	8165.5	34.2	12.6	46.8	74.0	-27.2	Peak	Horizontal
*	8811.5	33.1	14.1	47.2	68.2	-21.0	Peak	Horizontal
*	10520.0	43.7	16.5	60.2	68.2	-8.0	Peak	Horizontal
	7400.5	32.1	12.3	44.4	74.0	-29.6	Peak	Vertical
	8310.0	33.7	12.0	45.7	74.0	-28.3	Peak	Vertical
*	8794.5	30.9	14.1	45.0	68.2	-23.2	Peak	Vertical
*	10520.0	46.7	16.5	63.2	68.2	-5.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Test Date	2021/05/22	Test Mode	802.11a – Channel 60				
Remark	1. Average measurement was not pe	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7604.5	32.6	12.0	44.6	74.0	-29.4	Peak	Horizontal
	10605.0	42.2	16.9	59.1	74.0	-14.9	Peak	Horizontal
	10605.0	33.0	16.9	49.9	54.0	-4.1	Average	Horizontal
*	12781.0	30.8	19.2	50.0	68.2	-18.2	Peak	Horizontal
*	13911.5	31.7	21.9	53.6	68.2	-14.6	Peak	Horizontal
	7570.5	32.0	12.3	44.3	74.0	-29.7	Peak	Vertical
	10605.0	44.2	16.9	61.1	74.0	-12.9	Peak	Vertical
	10605.0	34.6	16.9	51.5	54.0	-2.5	Average	Vertical
*	12840.5	30.9	19.1	50.0	68.2	-18.2	Peak	Vertical
*	13673.5	30.7	20.8	51.5	68.2	-16.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Test Date	2021/05/22	Test Mode	802.11a – Channel 64				
Remark	1. Average measurement was not performed if peak level lower than average limit.						
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8250.5	33.4	12.2	45.6	74.0	-28.4	Peak	Horizontal
	10638.4	39.7	17.1	56.8	74.0	-17.2	Peak	Horizontal
	10638.4	31.4	17.1	48.5	54.0	-5.5	Average	Horizontal
*	12891.5	31.1	19.6	50.7	68.2	-17.5	Peak	Horizontal
*	13996.5	30.7	21.2	51.9	68.2	-16.3	Peak	Horizontal
	8352.5	31.6	12.1	43.7	74.0	-30.3	Peak	Vertical
	10645.3	46.1	17.1	63.2	74.0	-10.8	Peak	Vertical
	10645.3	33.6	17.1	50.7	54.0	-3.3	Average	Vertical
*	12781.0	30.2	19.2	49.4	68.2	-18.8	Peak	Vertical
*	13605.5	30.1	21.2	51.3	68.2	-16.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Toot Doto	2021/05/22	Toot Mode	802.11a – Channel					
Test Date	2021/03/22	Test Mode	100					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	9381.0	31.3	15.0	46.3	74.0	-27.7	Peak	Horizontal
	11000.3	38.4	17.8	56.2	74.0	-17.8	Peak	Horizontal
	11000.3	28.3	17.9	46.2	54.0	-7.8	Average	Horizontal
*	12908.5	30.8	19.4	50.2	68.2	-18.0	Peak	Horizontal
*	13605.5	30.5	21.2	51.7	68.2	-16.5	Peak	Vertical
	9100.5	31.9	14.9	46.8	74.0	-27.2	Peak	Vertical
	11000.3	40.7	17.8	58.5	74.0	-15.5	Peak	Vertical
	11000.3	31.0	17.9	48.9	54.0	-5.1	Average	Vertical
*	12798.0	30.4	19.3	49.7	68.2	-18.5	Peak	Vertical
*	13665.0	30.7	20.8	51.5	68.2	-16.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2021/05/22	Toot Mode	802.11a – Channel					
Test Date	2021/03/22	Test Mode	116					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8386.5	32.5	12.3	44.8	74.0	-29.2	Peak	Horizontal
	11160.4	35.4	18.0	53.4	74.0	-20.6	Peak	Horizontal
	11160.4	27.1	18.0	45.1	54.0	-8.9	Average	Horizontal
*	12900.0	31.2	19.5	50.7	68.2	-17.5	Peak	Horizontal
*	13920.0	30.7	21.9	52.6	68.2	-15.6	Peak	Horizontal
*	7808.5	31.6	12.2	43.8	68.2	-24.4	Peak	Vertical
*	8811.5	31.3	14.1	45.4	68.2	-22.8	Peak	Vertical
	9423.5	31.8	15.2	47.0	74.0	-27.0	Peak	Vertical
	11162.3	40.5	17.9	58.4	74.0	-15.6	Peak	Vertical
	11162.3	30.8	18.0	48.8	54.0	-5.2	Average	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Toot Doto	2021/05/22	Toot Mode	802.11a – Channel					
Test Date	2021/03/22	Test Mode	140					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7375.0	33.0	12.1	45.1	74.0	-28.9	Peak	Horizontal
	8242.0	32.7	12.2	44.9	74.0	-29.1	Peak	Horizontal
*	8794.5	31.4	14.1	45.5	68.2	-22.7	Peak	Horizontal
*	9721.0	33.5	14.9	48.4	68.2	-19.8	Peak	Horizontal
	7604.5	32.7	12.0	44.7	74.0	-29.3	Peak	Vertical
	8420.5	32.7	12.5	45.2	74.0	-28.8	Peak	Vertical
*	8922.0	31.0	14.0	45.0	68.2	-23.2	Peak	Vertical
*	9942.0	32.1	15.5	47.6	68.2	-20.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2021/05/22	Toot Mode	802.11a – Channel					
Test Date	2021/05/22	Test Mode	149					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7638.5	33.1	12.1	45.2	74.0	-28.8	Peak	Horizontal
	8284.5	33.6	11.8	45.4	74.0	-28.6	Peak	Horizontal
*	8735.0	32.5	13.8	46.3	68.2	-21.9	Peak	Horizontal
*	10035.5	33.2	15.4	48.6	68.2	-19.6	Peak	Horizontal
	7434.5	33.4	12.4	45.8	74.0	-28.2	Peak	Vertical
	11489.0	33.6	18.7	52.3	74.0	-21.7	Peak	Vertical
*	12806.5	30.5	19.3	49.8	68.2	-18.4	Peak	Vertical
*	13733.0	31.5	21.1	52.6	68.2	-15.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Toot Data	2021/05/22	Toot Mode	802.11a – Channel					
Test Date	2021/05/22	Test Mode	157					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	32.6	12.3	44.9	74.0	-29.1	Peak	Horizontal
	8386.5	32.3	12.3	44.6	74.0	-29.4	Peak	Horizontal
*	9823.0	31.6	15.3	46.9	68.2	-21.3	Peak	Horizontal
*	12891.5	30.6	19.6	50.2	68.2	-18.0	Peak	Horizontal
	8412.0	32.1	12.5	44.6	74.0	-29.4	Peak	Vertical
	11571.8	35.3	19.1	54.4	74.0	-19.6	Peak	Vertical
	11571.8	24.7	19.0	43.7	54.0	-10.3	Average	Vertical
*	12908.5	31.2	19.4	50.6	68.2	-17.6	Peak	Vertical
*	13792.5	32.5	21.7	54.2	68.2	-14.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Toot Doto	2021/05/22	Toot Mode	802.11a – Channel				
Test Date	2021/05/22	Test Mode	165				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8412.0	32.0	12.5	44.5	74.0	-29.5	Peak	Horizontal
	11651.6	34.4	19.6	54.0	74.0	-20.0	Peak	Horizontal
	11651.6	24.2	19.6	43.8	54.0	-10.2	Average	Horizontal
*	12832.0	30.7	19.2	49.9	68.2	-18.3	Peak	Horizontal
*	14039.0	30.9	20.8	51.7	68.2	-16.5	Peak	Horizontal
	8369.5	31.7	12.1	43.8	74.0	-30.2	Peak	Vertical
	11650.1	35.7	19.6	55.3	74.0	-18.7	Peak	Vertical
	11650.1	26.0	19.6	45.6	54.0	-8.4	Average	Vertical
*	12891.5	29.7	19.6	49.3	68.2	-18.9	Peak	Vertical
*	13988.0	30.4	21.0	51.4	68.2	-16.8	Peak	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2021/05/22	Toot Mode	802.11ac-VHT20 –					
Test Date	2021/05/22	Test Mode	Channel 36					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7638.5	33.0	12.1	45.1	74.0	-28.9	Peak	Horizontal
	8488.5	33.5	12.7	46.2	74.0	-27.8	Peak	Horizontal
*	8871.0	31.0	14.1	45.1	68.2	-23.1	Peak	Horizontal
*	10358.5	40.1	16.6	56.7	68.2	-11.5	Peak	Horizontal
	7468.5	33.1	12.1	45.2	74.0	-28.8	Peak	Vertical
	8429.0	32.1	12.5	44.6	74.0	-29.4	Peak	Vertical
*	8811.5	32.3	14.1	46.4	68.2	-21.8	Peak	Vertical
*	10358.5	42.6	16.6	59.2	68.2	-9.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang						
Test Data	2021/05/22	Toot Mode	802.11ac-VHT20 –						
Test Date	2021/03/22	Test Mode	Channel 44						
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.						
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.								

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7553.5	37.6	9.2	46.8	74.0	-27.2	Peak	Horizontal
*	8777.5	37.6	11.0	48.6	68.2	-19.6	Peak	Horizontal
*	10435.0	42.3	14.2	56.5	68.2	-11.7	Peak	Horizontal
	15654.0	39.4	13.9	53.3	74.0	-20.7	Peak	Horizontal
	15654.0	29.7	13.9	43.6	54.0	-10.4	Average	Horizontal
	8225.0	37.9	10.3	48.2	74.0	-25.8	Peak	Vertical
*	8777.5	37.6	11.0	48.6	68.2	-19.6	Peak	Vertical
*	10443.5	49.9	14.2	64.1	68.2	-4.1	Peak	Vertical
	15858.0	39.5	13.1	52.6	74.0	-21.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2021/05/22	Toot Mode	802.11ac-VHT20 –					
Test Date	2021/05/22	Test Mode	Channel 48					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7409.0	37.1	9.7	46.8	74.0	-27.2	Peak	Horizontal
*	8735.0	36.4	10.9	47.3	68.2	-20.9	Peak	Horizontal
*	10477.5	41.6	14.6	56.2	68.2	-12.0	Peak	Horizontal
	15713.5	40.3	13.3	53.6	74.0	-20.4	Peak	Horizontal
	15713.5	31.3	13.3	44.6	54.0	-9.4	Average	Horizontal
	8233.5	38.5	10.2	48.7	74.0	-25.3	Peak	Vertical
*	8769.0	37.7	11.1	48.8	68.2	-19.4	Peak	Vertical
*	10477.5	49.4	14.6	64.0	68.2	-4.2	Peak	Vertical
	15637.0	37.0	13.9	50.9	74.0	-23.1	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2021/05/22	Toot Mode	802.11ac-VHT20 –					
Test Date	2021/03/22	Test Mode	Channel 52					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	32.7	12.1	44.8	74.0	-29.2	Peak	Horizontal
	8276.0	33.0	11.9	44.9	74.0	-29.1	Peak	Horizontal
*	8854.0	31.4	14.2	45.6	68.2	-22.6	Peak	Horizontal
*	10520.0	40.2	16.5	56.7	68.2	-11.5	Peak	Horizontal
	7536.5	33.4	12.1	45.5	74.0	-28.5	Peak	Vertical
	8446.0	32.7	12.6	45.3	74.0	-28.7	Peak	Vertical
*	8854.0	32.0	14.2	46.2	68.2	-22.0	Peak	Vertical
*	10520.0	44.3	16.5	60.8	68.2	-7.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang						
Test Data	2024/05/22	Test Made	802.11ac-VHT20 –						
Test Date	2021/05/22	Test Mode	Channel 60						
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.						
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.								

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8276.0	33.1	11.9	45.0	74.0	-29.0	Peak	Horizontal
	10599.0	39.8	16.9	56.7	74.0	-17.3	Peak	Horizontal
	10599.0	30.5	16.8	47.3	54.0	-6.7	Average	Horizontal
*	12840.5	31.1	19.1	50.2	68.2	-18.0	Peak	Horizontal
*	14047.5	31.4	20.8	52.2	68.2	-16.0	Peak	Horizontal
	7502.5	33.0	12.3	45.3	74.0	-28.7	Peak	Vertical
	8386.5	32.4	12.3	44.7	74.0	-29.3	Peak	Vertical
*	8769.0	31.7	14.2	45.9	68.2	-22.3	Peak	Vertical
*	10596.5	43.3	16.7	60.0	68.2	-8.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Test Data	2021/05/22	Toot Mode	802.11ac-VHT20 –				
Test Date	2021/05/22	Test Mode	Channel 64				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8131.5	33.6	12.6	46.2	74.0	-27.8	Peak	Horizontal
	10636.5	38.0	17.1	55.1	74.0	-18.9	Peak	Horizontal
	10636.5	28.6	17.1	45.7	54.0	-8.3	Average	Horizontal
*	12840.5	30.9	19.1	50.0	68.2	-18.2	Peak	Horizontal
*	13971.0	30.9	21.0	51.9	68.2	-16.3	Peak	Horizontal
	8284.5	32.7	11.8	44.5	74.0	-29.5	Peak	Vertical
	10641.5	41.9	17.1	59.0	74.0	-15.0	Peak	Vertical
	10641.5	31.0	17.1	48.1	54.0	-5.9	Average	Vertical
*	12849.0	30.9	19.1	50.0	68.2	-18.2	Peak	Vertical
*	13962.5	30.3	21.3	51.6	68.2	-16.6	Peak	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Test Data	2024/05/22	Test Made	802.11ac-VHT20 –				
Test Date	2021/05/22	Test Mode	Channel 100				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8412.0	32.9	12.5	45.4	74.0	-28.6	Peak	Horizontal
	11000.0	38.0	17.9	55.9	74.0	-18.1	Peak	Horizontal
	11000.0	26.8	17.9	44.7	54.0	-9.3	Average	Horizontal
*	13010.5	30.8	20.4	51.2	68.2	-17.0	Peak	Horizontal
*	13894.5	30.7	21.7	52.4	68.2	-15.8	Peak	Horizontal
	8293.0	32.9	11.8	44.7	74.0	-29.3	Peak	Vertical
	10998.4	38.5	17.9	56.4	74.0	-17.6	Peak	Vertical
	10998.4	30.1	17.9	48.0	54.0	-6.0	Average	Vertical
*	13010.5	31.1	20.4	51.5	68.2	-16.7	Peak	Vertical
*	13877.5	31.3	21.9	53.2	68.2	-15.0	Peak	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Test Data	2021/05/22	Toot Mode	802.11ac-VHT20 –				
Test Date	2021/05/23	Test Mode	Channel 116				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8437.5	31.9	12.6	44.5	74.0	-29.5	Peak	Horizontal
	11155.2	35.2	18.0	53.2	74.0	-20.8	Peak	Horizontal
	11155.2	25.2	18.0	43.2	54.0	-10.8	Average	Horizontal
*	12840.5	30.9	19.1	50.0	68.2	-18.2	Peak	Horizontal
*	13546.0	31.2	21.6	52.8	68.2	-15.4	Peak	Horizontal
	8276.0	34.5	11.9	46.4	74.0	-27.6	Peak	Vertical
	11161.2	40.9	18.0	58.9	74.0	-15.1	Peak	Vertical
	11161.2	28.3	18.0	46.3	54.0	-7.7	Average	Vertical
*	12908.5	30.5	19.4	49.9	68.2	-18.3	Peak	Vertical
*	14430.0	31.1	21.3	52.4	68.2	-15.8	Peak	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Tat Data	2224/05/22	Test Marks	802.11ac-VHT20 –					
Test Date	2021/05/23	lest Mode	Channel 140					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in t						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	32.3	12.3	44.6	74.0	-29.4	Peak	Horizontal
	8199.5	32.0	12.3	44.3	74.0	-29.7	Peak	Horizontal
*	9619.0	33.7	14.9	48.6	68.2	-19.6	Peak	Horizontal
*	10273.5	31.6	16.3	47.9	68.2	-20.3	Peak	Horizontal
	11404.0	34.4	18.4	52.8	74.0	-21.2	Peak	Vertical
	12271.0	32.2	19.3	51.5	74.0	-22.5	Peak	Vertical
*	13087.0	32.0	21.0	53.0	68.2	-15.2	Peak	Vertical
*	13869.0	31.9	22.1	54.0	68.2	-14.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
			802.11ac-VHT20 –					
Test Date	2021/05/22	Test Mode	Channel 149					
Test Mode	802.11ac-VHT20	Test Channel	149					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7587.5	37.7	9.2	46.9	74.0	-27.1	Peak	Horizontal
	8395.0	37.5	10.2	47.7	74.0	-26.3	Peak	Horizontal
*	8735.0	38.0	10.9	48.9	68.2	-19.3	Peak	Horizontal
*	10435.0	37.2	14.2	51.4	68.2	-16.8	Peak	Horizontal
	7315.5	40.4	9.7	50.1	74.0	-23.9	Peak	Vertical
*	8760.5	37.1	11.1	48.2	68.2	-20.0	Peak	Vertical
*	10078.0	36.0	13.5	49.5	68.2	-18.7	Peak	Vertical
	11497.5	40.1	14.7	54.8	74.0	-19.2	Peak	Vertical
	11497.5	29.8	14.7	44.5	54.0	-9.5	Average	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Test Data	2024/05/22	Teat Made	802.11ac-VHT20 –				
Test Date	2021/05/23	Test Mode	Channel 157				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7672.5	36.8	9.1	45.9	74.0	-28.1	Peak	Horizontal
*	8675.5	37.5	11.0	48.5	68.2	-19.7	Peak	Horizontal
*	9721.0	37.1	13.7	50.8	68.2	-17.4	Peak	Horizontal
	11540.0	37.6	14.8	52.4	74.0	-21.6	Peak	Horizontal
	8140.0	38.1	10.2	48.3	74.0	-25.7	Peak	Vertical
*	8837.0	37.6	11.1	48.7	68.2	-19.5	Peak	Vertical
*	9763.5	37.4	13.8	51.2	68.2	-17.0	Peak	Vertical
	11565.5	40.2	14.4	54.6	74.0	-19.4	Peak	Vertical
	11565.5	29.9	14.4	44.3	54.0	-9.7	Average	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Tast Data	2024/05/22	Test Made	802.11ac-VHT20 –				
Test Date	2021/05/23	Test Mode	Channel 165				
Remark	1. Average measurement was not performed if peak level lower than average limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7519.5	37.7	9.4	47.1	74.0	-26.9	Peak	Horizontal
	8310.0	36.4	10.2	46.6	74.0	-27.4	Peak	Horizontal
*	10205.5	36.8	13.6	50.4	68.2	-17.8	Peak	Horizontal
*	12891.5	37.4	14.3	51.7	68.2	-16.5	Peak	Horizontal
	7485.5	36.6	9.5	46.1	74.0	-27.9	Peak	Vertical
*	8913.5	36.9	11.0	47.9	68.2	-20.3	Peak	Vertical
*	9823.0	35.8	14.0	49.8	68.2	-18.4	Peak	Vertical
	11642.0	37.9	14.8	52.7	74.0	-21.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2021/05/22	Toot Mode	802.11ac-VHT40 –					
Test Date	2021/05/23	Test Mode	Channel 38					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	32.2	12.1	44.3	74.0	-29.7	Peak	Horizontal
	8301.5	32.0	11.9	43.9	74.0	-30.1	Peak	Horizontal
*	8735.0	32.0	13.8	45.8	68.2	-22.4	Peak	Horizontal
*	10384.0	37.2	16.6	53.8	68.2	-14.4	Peak	Horizontal
	7307.0	37.6	12.0	49.6	74.0	-24.4	Peak	Vertical
	8318.5	34.0	12.1	46.1	74.0	-27.9	Peak	Vertical
*	9772.0	31.9	15.1	47.0	68.2	-21.2	Peak	Vertical
*	10384.0	38.8	16.6	55.4	68.2	-12.8	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Toot Doto	2021/05/22	Toot Mode	802.11ac-VHT40 –					
Test Date	2021/05/23	Test Mode	Channel 46					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8097.5	38.9	10.1	49.0	74.0	-25.0	Peak	Horizontal
*	8658.5	37.2	10.9	48.1	68.2	-20.1	Peak	Horizontal
*	10460.5	40.5	14.4	54.9	68.2	-13.3	Peak	Horizontal
	11540.0	37.7	14.8	52.5	74.0	-21.5	Peak	Horizontal
	7502.5	36.9	9.6	46.5	74.0	-27.5	Peak	Vertical
*	8837.0	37.2	11.1	48.3	68.2	-19.9	Peak	Vertical
*	10460.5	46.9	14.4	61.3	68.2	-6.9	Peak	Vertical
	11531.5	36.9	14.7	51.6	74.0	-22.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Toot Doto	2021/05/22	Toot Mode	802.11ac-VHT40 –					
Test Date	2021/05/23	Test Mode	Channel 54					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8208.0	38.4	10.3	48.7	74.0	-25.3	Peak	Horizontal
*	8684.0	38.0	10.9	48.9	68.2	-19.3	Peak	Horizontal
*	10333.0	37.8	13.9	51.7	68.2	-16.5	Peak	Horizontal
	11523.0	37.6	14.6	52.2	74.0	-21.8	Peak	Horizontal
	7307.0	39.8	9.7	49.5	74.0	-24.5	Peak	Vertical
*	8650.0	37.9	10.9	48.8	68.2	-19.4	Peak	Vertical
*	10537.0	46.3	14.3	60.6	68.2	-7.6	Peak	Vertical
	11608.0	37.0	14.4	51.4	74.0	-22.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2024/05/22	Test Made	802.11ac-VHT40 –					
Test Date	2021/05/23	Test Mode	Channel 62					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	10622.0	35.1	17.1	52.2	74.0	-21.8	Peak	Horizontal
	11642.0	32.0	19.7	51.7	74.0	-22.3	Peak	Horizontal
*	13104.0	32.4	21.2	53.6	68.2	-14.6	Peak	Horizontal
*	13894.5	32.4	21.7	54.1	68.2	-14.1	Peak	Horizontal
	10622.0	39.0	17.1	56.1	74.0	-17.9	Peak	Vertical
	10622.0	28.8	17.1	45.9	54.0	-8.1	Average	Vertical
	12126.5	31.9	19.1	51.0	74.0	-23.0	Peak	Vertical
*	12993.5	30.3	20.1	50.4	68.2	-17.8	Peak	Vertical
*	13852.0	32.3	22.4	54.7	68.2	-13.5	Peak	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
T (D)	0001/05/00		802.11ac-VHT40 –					
Test Date	2021/05/23	lest Mode	Channel 102					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	31.2	12.1	43.3	74.0	-30.7	Peak	Horizontal
	8318.5	31.3	12.1	43.4	74.0	-30.6	Peak	Horizontal
*	8769.0	31.7	14.2	45.9	68.2	-22.3	Peak	Horizontal
*	9967.5	33.1	15.6	48.7	68.2	-19.5	Peak	Horizontal
	11021.5	34.5	17.8	52.3	74.0	-21.7	Peak	Vertical
	12143.5	33.0	19.3	52.3	74.0	-21.7	Peak	Vertical
*	13163.5	29.8	20.9	50.7	68.2	-17.5	Peak	Vertical
*	13801.0	32.0	21.6	53.6	68.2	-14.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2024/05/22	Test Made	802.11ac-VHT40 –					
Test Date	2021/05/23	Test Mode	Channel 110					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	8216.5	37.6	10.3	47.9	74.0	-26.1	Peak	Horizontal
*	8769.0	36.5	11.1	47.6	68.2	-20.6	Peak	Horizontal
*	9814.5	36.1	13.9	50.0	68.2	-18.2	Peak	Horizontal
	11064.0	37.5	14.7	52.2	74.0	-21.8	Peak	Horizontal
	7621.5	37.0	9.1	46.1	74.0	-27.9	Peak	Vertical
*	8726.5	37.3	10.8	48.1	68.2	-20.1	Peak	Vertical
*	9874.0	36.5	13.6	50.1	68.2	-18.1	Peak	Vertical
	11098.0	41.9	14.6	56.5	74.0	-17.5	Peak	Vertical
	11098.0	30.6	14.6	45.2	54.0	-8.8	Average	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2021/05/22	Toot Mode	802.11ac-VHT40 –					
Test Date	2021/05/23	Test Mode	Channel 134					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7477.0	35.2	12.2	47.4	74.0	-26.6	Peak	Horizontal
	8242.0	32.7	12.2	44.9	74.0	-29.1	Peak	Horizontal
*	8735.0	31.3	13.8	45.1	68.2	-23.1	Peak	Horizontal
*	9695.5	34.0	14.9	48.9	68.2	-19.3	Peak	Horizontal
	11336.0	34.1	18.6	52.7	74.0	-21.3	Peak	Vertical
	12186.0	32.1	19.4	51.5	74.0	-22.5	Peak	Vertical
*	13044.5	30.8	21.0	51.8	68.2	-16.4	Peak	Vertical
*	13843.5	31.6	22.2	53.8	68.2	-14.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	2024/05/22	Test Made	802.11ac-VHT40 –					
Test Date	2021/05/23	Test Mode	Channel 151					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7494.0	37.0	9.5	46.5	74.0	-27.5	Peak	Horizontal
	8182.5	38.1	9.9	48.0	74.0	-26.0	Peak	Horizontal
*	8786.0	37.4	10.9	48.3	68.2	-19.9	Peak	Horizontal
*	9899.5	37.2	13.7	50.9	68.2	-17.3	Peak	Horizontal
	7307.0	39.0	9.7	48.7	74.0	-25.3	Peak	Vertical
*	8777.5	37.0	11.0	48.0	68.2	-20.2	Peak	Vertical
*	9882.5	37.0	13.7	50.7	68.2	-17.5	Peak	Vertical
	11506.0	38.7	14.5	53.2	74.0	-20.8	Peak	Vertical
	11506.0	29.7	14.5	44.2	54.0	-9.8	Average	Vertical

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Test Data	2024/05/22	Toot Mode	802.11ac-VHT40 –				
Test Date	2021/05/23	Test Mode	Channel 159				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	35.8	9.4	45.2	74.0	-28.8	Peak	Horizontal
	8165.5	36.5	10.1	46.6	74.0	-27.4	Peak	Horizontal
*	8845.5	37.2	11.1	48.3	68.2	-19.9	Peak	Horizontal
*	10120.5	37.6	13.6	51.2	68.2	-17.0	Peak	Horizontal
	7315.5	39.4	9.7	49.1	74.0	-24.9	Peak	Vertical
	8233.5	37.5	10.2	47.7	74.0	-26.3	Peak	Vertical
*	8692.5	36.4	10.8	47.2	68.2	-21.0	Peak	Vertical
*	9916.5	36.9	13.9	50.8	68.2	-17.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Toot Doto	2021/05/22	Toot Mode	802.11ac-VHT80 –					
Test Date	2021/05/23	Test Mode	Channel 42					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	32.5	12.1	44.6	74.0	-29.4	Peak	Horizontal
	8250.5	31.6	12.2	43.8	74.0	-30.2	Peak	Horizontal
*	8735.0	31.2	13.8	45.0	68.2	-23.2	Peak	Horizontal
*	9831.5	30.7	15.3	46.0	68.2	-22.2	Peak	Horizontal
	7434.5	32.0	12.4	44.4	74.0	-29.6	Peak	Vertical
	8301.5	33.9	11.9	45.8	74.0	-28.2	Peak	Vertical
*	9789.0	33.5	15.2	48.7	68.2	-19.5	Peak	Vertical
*	10401.0	34.8	16.8	51.6	68.2	-16.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Tast Data	2024/05/22	Test Made	802.11ac-VHT80 –				
Test Date	2021/05/23	Test Mode	Channel 58				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7664.0	38.0	9.1	47.1	74.0	-26.9	Peak	Horizontal
*	8735.0	37.1	10.9	48.0	68.2	-20.2	Peak	Horizontal
*	9848.5	36.6	13.7	50.3	68.2	-17.9	Peak	Horizontal
	10987.5	37.5	14.8	52.3	74.0	-21.7	Peak	Horizontal
	7494.0	37.4	9.5	46.9	74.0	-27.1	Peak	Vertical
*	8862.5	37.5	11.1	48.6	68.2	-19.6	Peak	Vertical
*	10044.0	36.9	13.5	50.4	68.2	-17.8	Peak	Vertical
	11531.5	37.3	14.7	52.0	74.0	-22.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Test Data	0004/05/00	To at Maria	802.11ac-VHT80 –					
Test Date	2021/05/23	Test Mode	Channel 106					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below I	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7511.0	33.9	12.2	46.1	74.0	-27.9	Peak	Horizontal
	8267.5	32.9	12.1	45.0	74.0	-29.0	Peak	Horizontal
*	8769.0	32.5	14.2	46.7	68.2	-21.5	Peak	Horizontal
*	10409.5	33.6	16.8	50.4	68.2	-17.8	Peak	Horizontal
	7307.0	34.9	12.0	46.9	74.0	-27.1	Peak	Vertical
	8233.5	33.3	12.1	45.4	74.0	-28.6	Peak	Vertical
*	8811.5	32.0	14.1	46.1	68.2	-22.1	Peak	Vertical
*	10392.5	32.9	16.7	49.6	68.2	-18.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang				
Tat Data	2224/05/22	Test Marks	802.11ac-VHT80 –				
Test Date	2021/05/23	lest Mode	Channel 122				
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	32.5	12.3	44.8	74.0	-29.2	Peak	Horizontal
	8165.5	31.2	12.6	43.8	74.0	-30.2	Peak	Horizontal
*	9585.0	34.8	15.0	49.8	68.2	-18.4	Peak	Horizontal
*	10477.5	34.4	16.7	51.1	68.2	-17.1	Peak	Horizontal
	11217.0	33.8	18.7	52.5	74.0	-21.5	Peak	Vertical
	11633.5	32.6	19.5	52.1	74.0	-21.9	Peak	Vertical
*	12959.5	31.4	20.1	51.5	68.2	-16.7	Peak	Vertical
*	14047.5	30.7	20.8	51.5	68.2	-16.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Site	WZ-AC2	Test Engineer	Antony Yang					
Tast Data	2024/05/22	Test Made	802.11ac-VHT80 –					
Test Date	2021/05/23	Test Mode	Channel 155					
Remark	1. Average measurement was not pe	rformed if peak level lower	than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	32.3	12.3	44.6	74.0	-29.4	Peak	Horizontal
	8276.0	32.4	11.9	44.3	74.0	-29.7	Peak	Horizontal
*	8752.0	32.4	14.1	46.5	68.2	-21.7	Peak	Horizontal
*	9746.5	33.5	15.0	48.5	68.2	-19.7	Peak	Horizontal
	7307.0	36.3	12.0	48.3	74.0	-25.7	Peak	Vertical
	8327.0	33.5	12.2	45.7	74.0	-28.3	Peak	Vertical
*	8743.5	31.6	14.0	45.6	68.2	-22.6	Peak	Vertical
*	9678.5	34.0	14.9	48.9	68.2	-19.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

The Result of Radiated Emission below 1GHz:

Site: WZ-AC1	Time: 2021/08/19 - 15:38
Limit: FCC_Part15.209_RSE(3m)	Engineer: Hyde Yu
Probe: WZ-AC1_VULB 9168 _30-1000MHz	Polarity: Horizontal
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz

Test Mode: Transmit by 802.11a at channel 5180MHz

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	78.500	35.322	21.351	-4.678	40.000	13.971	PK
2			236.610	39.689	23.540	-6.311	46.000	16.149	PK
3			315.180	39.230	20.431	-6.770	46.000	18.799	РК
4			394.720	30.624	10.008	-15.376	46.000	20.616	PK
5			579.990	31.774	6.843	-14.226	46.000	24.931	РК
6			886.025	33.790	4.605	-12.210	46.000	29.185	PK

Note 1: Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB)$

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: QP measurement was not performed when peak measure level was lower than the QP limit.

Note 3: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

Site: WZ-AC1			Г	Time: 2021/08/19 - 15:39						
Lir	nit: FCC	_Part15	5.209_RSE(3)	m)	E	Engineer: Hyde Yu				
Probe: WZ-AC1_VULB 9168 _30-1000MHz			F	Polarity: Vertic	al					
EUT: AC1200 Wi-Fi Range Extender P					Power: AC 120	0V/60Hz				
Test Mode: Transmit by 802.11a at channel 5180MHz										
	90	1	ľ.						<u>r r r </u> 14	
	80									
	70									
	60									
	Ê 50								<mark>_</mark>	
	/\ngp 40		a 8	2		3		5	6	
	30 ~~					*	4		-	
	20	~	man di	11. m	Current mark		whow much darland	usbalited and a state of the st		
	10			w hur	- AM	and the second s				
	10									
	0									
	-10 30			100		di di	hads be	al add	1000	
					Freque	ncy(MHz)				
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBu)/(m)						

		(IVIHZ)	Levei	Level	(ab)	(abuv/m)	(ab)	
			(dBuV/m)	(dBuV)				
1		36.305	32.785	15.737	-7.215	40.000	17.048	PK
2	*	79.254	39.115	25.405	-0.885	40.000	13.709	QP
3		236.610	34.276	18.127	-11.724	46.000	16.149	PK
4		315.180	31.133	12.334	-14.867	46.000	18.799	PK
5		579.990	38.234	13.303	-7.766	46.000	24.931	PK
6		919.490	34.604	4.915	-11.396	46.000	29.689	PK

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: QP measurement was not performed when peak measure level was lower than the QP limit.

Note 3: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

2

Radiated Restricted Band Edge Test Result A.7

Site: WZ-AC2	Time: 2021/05/19 - 20:55
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz

Test Mode: Transmit by 802.11a at Channel 5180MHz

3		*	5177.680	109.974	105.409	N/A	N/A
Note	e: Meas	sure Lev	vel (dBµV/m)	= Reading Le	evel (dBµV) +	Factor (dB)	

66.415

5150.000

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

61.576

-7.585

74.000

4.840

4.566

ΡK

ΡK

Site: WZ-AC2	Time: 2021/05/19 - 20:50
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz
Test Mode: Transmit by 802.11a at Channel 5180MHz	

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5150.000	52.679	47.840	-1.321	54.000	4.840	AV
2		*	5178.400	101.938	97.384	N/A	N/A	4.555	AV

Site: WZ-AC2	Time: 2021/05/19 - 20:54				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical				
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Test Mode: Transmit by 802.11a at Channel 5180MHz					

140	riug	man	ricqueriey	Measure	rteading	Margin		1 40101	турс
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5147.980	64.472	59.605	-9.528	74.000	4.867	PK
2			5150.000	61.437	56.598	-12.563	74.000	4.840	PK
3		*	5181.145	105.631	101.117	N/A	N/A	4.515	PK

Site: WZ-AC2	Time: 2021/05/19 - 20:52
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz
Test Mode: Transmit by 802.11a at Channel 5180MHz	

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5150.000	49.502	44.663	-4.498	54.000	4.840	AV
2		*	5178.535	96.966	92.413	N/A	N/A	4.552	AV

Site: WZ-AC2	Time: 2021/05/19 - 21:12
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz
Test Mode: Transmit by 802.11a at Channel 5320MHz	

Level(dBuV/m) AL. WILL Frequency(MHz)

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5321.080	110.361	106.013	N/A	N/A	4.347	PK
2			5350.000	64.400	59.755	-9.600	74.000	4.645	PK
3			5350.080	66.279	61.633	-7.721	74.000	4.646	PK

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Site: WZ-AC2	Time: 2021/05/19 - 21:10				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal				
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Test Mode: Transmit by 802.11a at Channel 5320MHz					

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5318.240	101.895	97.566	N/A	N/A	4.328	AV
2			5350.000	51.364	46.719	-2.636	54.000	4.645	AV

Site: WZ-AC2	Time: 2021/05/19 - 21:14
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz
Test Mode: Transmit by 802.11a at Channel 5320MHz	

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5321.120	105.699	101.351	N/A	N/A	4.348	PK
2			5350.000	59.410	54.765	-14.590	74.000	4.645	PK
3			5350.880	60.806	56.149	-13.194	74.000	4.657	PK

Site: WZ-AC2	Time: 2021/05/19 - 21:15
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz
Test Mode: Transmit by 802.11a at Channel 5320MHz	

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5320.880	97.563	93.217	N/A	N/A	4.347	AV
2			5350.000	47.828	43.183	-6.172	54.000	4.645	AV

Site: WZ-AC2	Time: 2021/05/19 - 21:26				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal				
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Test Mode: Transmit by 802.11a at Channel 5500MHz					

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5459.925	62.266	57.469	-11.734	74.000	4.797	PK
2			5460.000	60.894	56.097	-13.106	74.000	4.797	PK
3			5469.420	67.328	62.598	-0.872	68.200	4.731	PK
4			5470.000	65.410	60.684	-2.790	68.200	4.726	PK
5		*	5498.760	116.217	111.207	N/A	N/A	5.010	PK

Site: WZ-AC2	Time: 2021/05/19 - 21:31			
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang			
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal			
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz			
Test Mode: Transmit by 802.11a at Channel 5500MHz				

			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5459.745	49.778	44.979	-4.222	54.000	4.799	AV
2			5460.000	49.706	44.909	-4.294	54.000	4.797	AV
3	Х	*	5498.760	108.165	103.155	N/A	N/A	5.010	AV

Site: WZ-AC2	Time: 2021/05/19 - 21:35			
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang			
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical			
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz			
Test Mode: Transmit by 802.11a at Channel 5500MHz				

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5456.145	58.785	53.960	-15.215	74.000	4.825	PK
2			5460.000	57.958	53.161	-16.042	74.000	4.797	PK
3			5468.880	63.018	58.284	-5.182	68.200	4.734	PK
4			5470.000	60.906	56.180	-7.294	68.200	4.726	PK
5		*	5496.015	112.325	107.341	N/A	N/A	4.984	PK

Site: WZ-AC2	Time: 2021/05/19 - 21:36			
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang			
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical			
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz			
Test Mode: Transmit by 802.11a at Channel 5500MHz				

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5456.640	47.227	42.406	-6.773	54.000	4.822	AV
2			5460.000	47.138	42.341	-6.862	54.000	4.797	AV
3		*	5496.645	104.079	99.089	N/A	N/A	4.991	AV

Site: WZ-AC2	Time: 2021/05/19 - 22:00				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal				
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Test Meder Trenemit by 202 44s at Channel 5700MUs					

Test Mode: Transmit by 802.11a at Channel 5700MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5698.715	113.895	108.439	N/A	N/A	5.456	PK
2			5725.755	67.355	61.447	-0.845	68.200	5.908	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Site: WZ-AC2	Time: 2021/05/19 - 22:02				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical				
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Test Meder Trenewit by 202 11s at Channel 5700MUs					

Test Mode: Transmit by 802.11a at Channel 5700MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5701.120	109.506	104.037	N/A	N/A	5.468	PK
2			5725.000	60.606	54.716	-7.594	68.200	5.891	PK
3			5726.145	62.912	56.997	-5.288	68.200	5.915	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Site: WZ-AC2	Time: 2021/05/19 - 22:05				

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5637.455	59.447	54.025	-8.753	68.200	5.422	PK
2			5650.000	57.479	51.960	-10.721	68.200	5.519	PK
3			5700.000	59.304	53.841	-45.896	105.200	5.462	PK
4			5720.000	74.899	69.125	-35.901	110.800	5.774	PK
5			5725.000	85.977	80.087	-36.223	122.200	5.891	PK
6		*	5742.560	116.004	109.971	N/A	N/A	6.033	PK

EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Site: WZ-AC2	Time: 2021/05/19 - 22:08

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5615.015	58.317	53.183	-9.883	68.200	5.134	PK
2			5650.000	56.596	51.077	-11.604	68.200	5.519	PK
3			5700.000	57.391	51.928	-47.809	105.200	5.462	PK
4			5720.000	70.872	65.098	-39.928	110.800	5.774	PK
5			5725.000	80.989	75.099	-41.211	122.200	5.891	PK
6			5746.025	111.973	105.944	N/A	N/A	6.029	PK

Site: WZ-AC2	Time: 2021/05/19 - 22:11
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz

Test Mode: Transmit by 802.11a at Channel 5825MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	5822.745	115.138	108.963	N/A	N/A	6.175	PK
2			5850.000	75.318	68.956	-46.882	122.200	6.362	PK
3			5855.000	71.171	64.775	-39.629	110.800	6.397	PK
4			5875.000	58.769	52.387	-46.431	105.200	6.382	PK
5			5925.000	57.533	50.910	-10.667	68.200	6.623	PK
6			5950.470	59.920	53.197	-8.280	68.200	6.723	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Site: WZ-AC2	Time: 2021/05/19 - 22:13
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz

Test Mode: Transmit by 802.11a at Channel 5825MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5826.255	111.762	105.592	N/A	N/A	6.171	PK
2			5850.000	71.079	64.717	-51.121	122.200	6.362	PK
3			5855.000	66.328	59.932	-44.472	110.800	6.397	PK
4			5875.000	57.858	51.476	-47.342	105.200	6.382	PK
5			5925.000	57.553	50.930	-10.647	68.200	6.623	PK
6		*	5952.518	58.429	51.734	-9.771	68.200	6.695	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Site: WZ-AC2	Time: 2021/05/19 - 22:37			
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang			
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal			
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz			
Test Mode: Transmit by 802.11ac-VHT20 at Channel 5180MHz				

130

INO	гау	IVIAIK	Frequency	weasure	Reading	wargin		Factor	туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5147.350	70.645	65.779	-3.355	74.000	4.867	PK
2			5150.000	66.272	61.433	-7.728	74.000	4.840	PK
3		*	5178.445	114.481	109.927	N/A	N/A	4.554	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Site: WZ-AC2	Time: 2021/05/19 - 22:35				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Horizontal				
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Toot Made: Transmit by 802 11as V/HT20 at Channel 5180MHz					

Test Mode: Transmit by 802.11ac-VHT20 at Channel 5180MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5149.465	50.986	46.139	-3.014	54.000	4.847	AV
2			5150.000	50.750	45.911	-3.250	54.000	4.840	AV
3		*	5177.320	104.741	100.171	N/A	N/A	4.571	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Site: WZ-AC2	Time: 2021/05/19 - 22:38			
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang			
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical			
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz			
Test Mode: Transmit by 802.11ac-VHT20 at Channel 5180MHz				

130 3 Level(dBuV/m) 1 2 Minhold Marker Printer Minhold High 80 70 60 50 40 30 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 Frequency(MHz) Т Τ Τ Τ Τ Τ Ι Τ

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5147.755	66.374	61.507	-7.626	74.000	4.867	PK
2			5150.000	65.008	60.169	-8.992	74.000	4.840	PK
3		*	5178.580	108.500	103.948	N/A	N/A	4.552	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Site: WZ-AC2	Time: 2021/05/19 - 22:40				
Limit: FCC_Part15.209_RE(3m)	Engineer: Antony Yang				
Probe: WZ-AC2_BBHA9120D_1-18GHz	Polarity: Vertical				
EUT: AC1200 Wi-Fi Range Extender	Power: AC 120V/60Hz				
Test Model Tropperit by 202 11ce V/UT20 at Channel 5120MUz					

Test Mode: Transmit by 802.11ac-VHT20 at Channel 5180MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5149.825	48.932	44.090	-5.068	54.000	4.842	AV
2			5150.000	48.867	44.028	-5.133	54.000	4.840	AV
3		*	5178.400	99.721	95.167	N/A	N/A	4.555	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)