

FCC Radio Test Report

FCC ID: 2AXJ4EAP660HDV2

Report No. Equipment Model Name Brand Name Applicant Address Manufacturer Address		eLab-FCCP-1-2308G050 AX3600 Ceiling Mount Wi-Fi 6 Access Point EAP660 HD tp-link TP-Link Corporation Limited Room 901, 9/F. , New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hongkong TP-Link Corporation Limited Room 901, 9/F. , New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hongkong
Radio Function	:	Bluetooth Low Energy (5.0)
FCC Rule Part(s) Measurement Procedure(s)		FCC CFR Title 47, Part 15, Subpart C (15.247) ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	:	2023/8/9 2023/9/10 ~ 2023/10/16 2023/11/23

The above equipment has been tested and found in compliance with the requirement of the above standards by eLab Inc.

Prepared by

Hunter Chiang, Engineer

5

Approved by

Sam Chuang, Supervisor

eLab Inc.

10F., No. 167, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan Tel: +886-2-8692-6160 Fax: +886-2-8692-6170

Declaration

eLab represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

eLab's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **eLab** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **eLab** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

eLab's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

eLab is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVISI	ON HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	12
3	AC POWER LINE CONDUCTED EMISSIONS TEST	13
3.1	LIMIT	13
3.2	TEST PROCEDURE	13
3.3	TEST SETUP	14
3.4	TEST RESULT	14
4	RADIATED EMISSIONS TEST	15
4.1	LIMIT	15
4.2	TEST PROCEDURE	16
4.3	TEST SETUP	16
4.4	EUT OPERATING CONDITIONS	18
4.5	TEST RESULT – BELOW 30 MHZ	18
4.6	TEST RESULT – 30 MHZ TO 1 GHZ	18
4.7	TEST RESULT – ABOVE 1 GHZ	18
5	BANDWIDTH TEST	19
5.1	APPLIED PROCEDURES / LIMIT	19
5.2	TEST PROCEDURE	19
5.3	TEST SETUP	19
5.4	EUT OPERATION CONDITIONS	19
5.5	TEST RESULTS	19
6	OUTPUT POWER TEST	20
6.1	APPLIED PROCEDURES / LIMIT	20
6.2	TEST PROCEDURE	20
6.3	TEST SETUP	20
6.4	EUT OPERATION CONDITIONS	20
6.5	TEST RESULTS	20
7	POWER SPECTRAL DENSITY TEST	21
7.1	APPLIED PROCEDURES / LIMIT	21
7.2	TEST PROCEDURE	21
7.3	TEST SETUP	21
7.4	EUT OPERATION CONDITIONS	21
7.5	TEST RESULTS	21
8	ANTENNA CONDUCTED SPURIOUS EMISSION	22
8.1	APPLIED PROCEDURES / LIMIT	22
8.2	TEST PROCEDURE	22
8.3	TEST SETUP	22
8.4	EUT OPERATION CONDITIONS	22

8.5	TEST	RESULTS	22
9 LIST OF MEASURING EQUIPMENTS		MEASURING EQUIPMENTS	23
10	EUT TES	Т РНОТО	25
11	EUT PHO	DTOS	25
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	26
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	31
APPEND	IX C	ADIATED EMISSIONS - ABOVE 1 GHZ	34
APPEND	IX D	BANDWIDTH	43
APPEND	IX E	OUTPUT POWER	45
APPEND	IX F	POWER SPECTRAL DENSITY TEST	47
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSION	49

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
eLab-FCCP-1-2308G050	R00	Original Report.	2023/11/7	Invalid
eLab-FCCP-1-2308G050	R01	Updated the laboratory address in first	2023/11/23	Valid
		page.		

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	Description	Result	Remark
15.207	AC Power Line Conducted Emissions	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	Pass	
15.247(a)(2)	Bandwidth	Pass	
15.247(b)(3)	Output Power	Pass	
15.247(e)	Power Spectral Density	Pass	
15.247(d)	Antenna conducted Spurious Emission	Pass	
15.203	Antenna Requirement	Pass	

NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is FR15CBT4.0_V1.0

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No.64, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, TaiwanThe test sites and facilities are covered under FCC RN: 681248 and DN: TW4045.⊠C01⊠CB01⊠TR01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The eLab measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C01	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.4417
	0.2 GHz ~ 1 GHz	4.5567
CB01	1 GHz ~ 6 GHz	3.9930
CB01	6 GHz ~ 18 GHz	4.4555
	18 GHz ~ 26 GHz	3.8333
	26 GHz ~ 40 GHz	3.8241

C. Conducted test :

Test Item	U,(dB)
Occupied Bandwidth	1.0502
Output power	1.0406
Power Spectral Density	1.0502
Conducted Spurious emissions	1.1484
Conducted Band edges	1.0518

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25 °C, 45 %	AC 120V	Hunter Chiang
Radiated emissions (30MHz TO 1000MHz)	Refer to data	AC 120V	Hunter Chiang
Radiated emissions (Above 1GHz)	Refer to data	AC 120V	Hunter Chiang
Bandwidth	24 °C, 46 %	AC 120V	Hunter Chiang
Output Power	24 °C, 46 %	AC 120V	Hunter Chiang
Power Spectral Density	24 °C, 46 %	AC 120V	Hunter Chiang
Antenna conducted Spurious Emission	24 °C, 46 %	AC 120V	Hunter Chiang

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software		IPOI	P V4.0	
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate
BLE 5.0	20	20	20	1 Mbps
			<u> </u>	

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	AX3600 Ceiling Mount Wi-Fi 6 Access Point	
Model Name	EAP660 HD	
Brand Name	tp-link	
Serial Number	N/A	
Power Source	 1# DC Voltage supplied from AC adapter. Model: T120200-2B4 2# DC Voltage supplied from PoE adapter.(Support unit) 	
Power Rating	1# I/P: 100-240V~ 50/60Hz 0.8A O/P: 12.0V === 2.0A 2# 802.3at PoE: 42.5-57V=== 0.6A	
Operation Band	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz	
Modulation Technology	GFSK	
Transfer Rate 1 Mbps		
Output Power Max.	1 Mbps: 17.77 dBm (0.0598 W)	

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

.,						
	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	00	2402	20	2442		
	01	2404	21	2444		
	02	2406	22	2446		
	03	2408	23	2448		
	04	2410	24	2450		
	05	2412	25	2452		
	06	2414	26	2454		
	07	2416	27	2456		
	08	2418	28	2458		
	09	2420	29	2460		
	10	2422	30	2462		
	11	2424	31	2464		
	12	2426	32	2466		
	13	2428	33	2468		
	14	2430	34	2470		
	15	2432	35	2472		
	16	2434	36	2474		
	17	2436	37	2476		
	18	2438	38	2478		
	19	2440	39	2480		

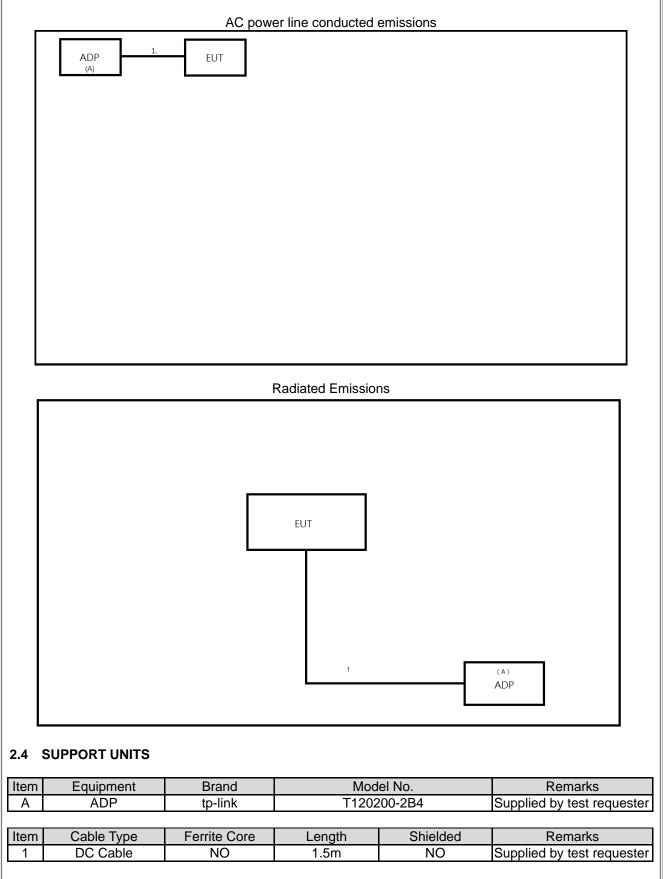
(3) Table for Filed Antenna:

Brand Name	P/N	Туре	Frequency (MHz)	Gain (dBi)		
tp-link	EAP660-Ant1	PIFA	2400-2500	2		

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	19	-
Transmitter Radiated Emissions	1 Mbps	00/39	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmonic
Bandwidth	1 Mbps	00/19/39	-
Output Power	1 Mbps	00/19/39	-
Power Spectral Density	1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1 Mbps	00/19/39	-


NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

Project No.: 2308G050

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

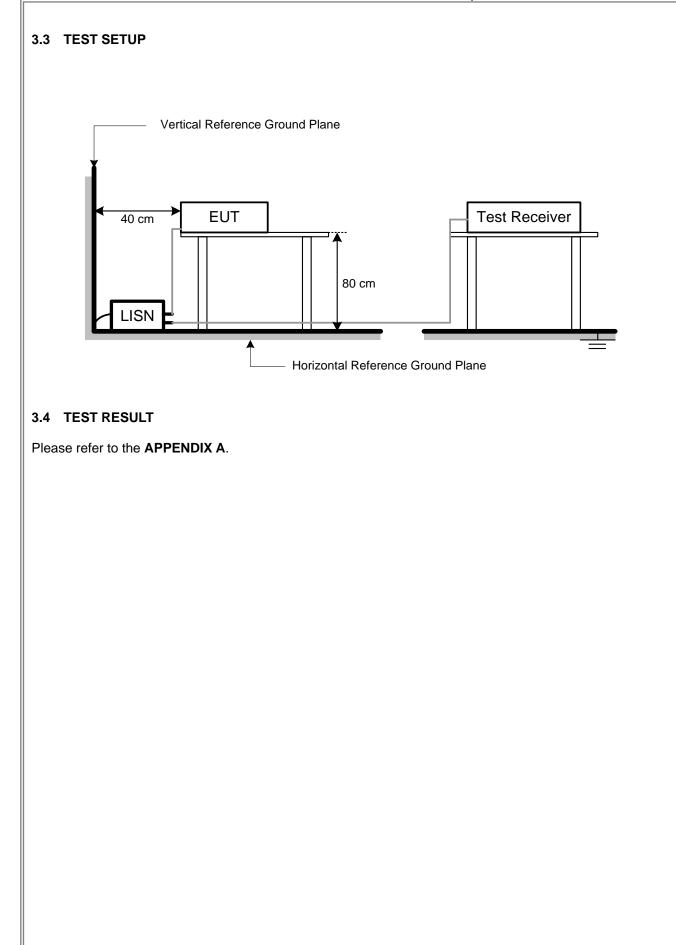
Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Π	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ι	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE


a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- The LISN is spaced at least 80 cm from the nearest part of the EUT chassis. d
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Yeak Average Yeak Average	Frequency (MHz)	Radiated I (dBu	Measurement Distance (meters)	
Above 1000 74 54 3	(1011 12)	Peak	Average	(ITIECEIS)
	Above 1000	74	54	3

NOTE:

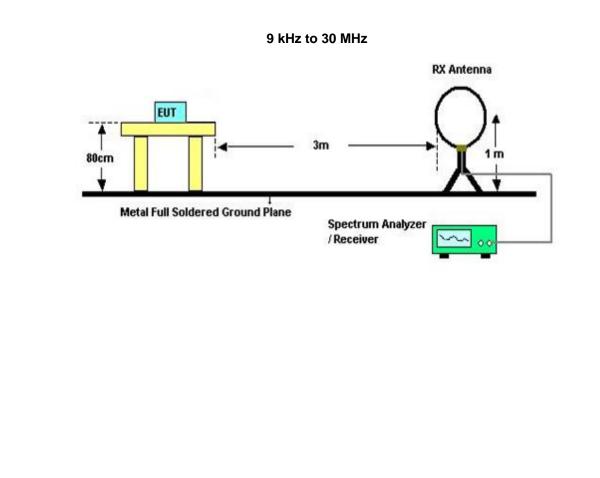
- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

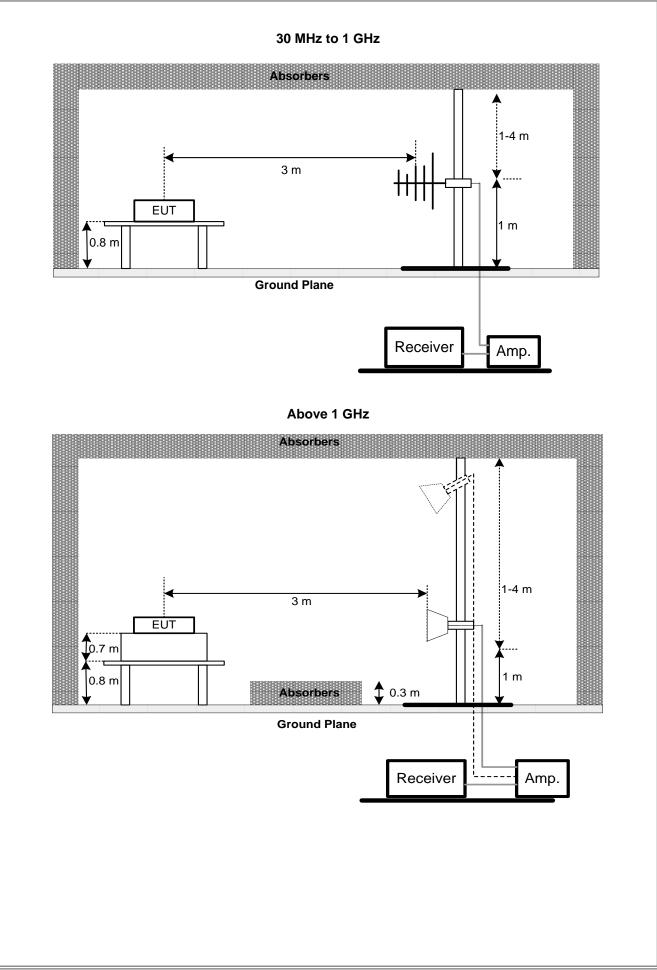
Calculation example:

Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	Ш	33.55

Measurement Value		Limit Value		Margin Level
33.55	-	43.50	Π	-9.95


Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 TEST SETUP

4.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.5 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.6 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247), Subpart C											
Section	Test Item	Limit	Frequency Range (MHz)	Result								
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS								

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.5 TEST RESULTS

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247), Subpart C										
Section	Test Item	Limit	Frequency Range (MHz)	Result							
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS							

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 TEST SETUP

EUT	Power Meter
	r ower meter

6.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.5 TEST RESULTS

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C										
Section	Test Item	Limit	Frequency Range (MHz)	Result						
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS						

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.5 TEST RESULTS

Please refer to the APPENDIX G.

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions												
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	2024/7/21	2024/7/20							
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2022/12/15	2023/12/14							
3	MXE EMI Receiver	Agilent	N9038A	MY54130009	2023/06/26	2024/06/25							
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A							
			Radiated Emission	ons	<u> </u>								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Preamplifier	EMCI	EMC051845SE	980779	2022/12/19	2023/12/18							
2	Preamplifier	EMCI	EMC184045SE	980512	2022/12/02	2023/12/01							
3	Preamplifier	EMCI	EMC001340	980555	2022/12/05	2023/12/04							
4	Test Cable	EMCI	EMCCFD400-NM -NM-8000	200343	2022/11/15	2023/11/14							
5	Test Cable	EMCI	EMC105-SM-SM- 3000	210118	2022/12/08	2023/12/07							
6	Test Cable	EMCI	EMC105-SM-SM- 7000	210117	2022/11/15	2023/11/14							
7	Test Cable	EMCI	EMCCFD400-NM -NM-3300	200348	2022/11/15	2023/11/14							
8	EXA Signal Analyzer	keysight	N9010A	MY56480554	2023/9/12	2024/9/11							
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2023/06/28	2024/06/27							
10	Horn Antenna	RFSPIN	DRH18-E	BBHA9170340	2023/02/10	2024/02/09							
11	Horn Ant	Schwarzbeck	BBHA 9170D	210109A18E	2023/06/29	2024/06/28							
12	Log-bicon Antenna	Schwarzbeck	VULB9168	9168-1207	2023/01/13	2024/01/12							
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0690	2023/01/13	2024/01/12							
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A							

				Bandwidth			
It	tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
	1	EXA Signal Analyzer	keysight	N9010A	MY56480554	2023/9/12	2024/9/11

			Output Power	•		
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	EXA Signal Analyzer	keysight	N9010A	MY56480554	2023/9/12	2024/9/11

of Manufad ent Manufad Inal keysig er keysig		Гуре No. N9010A	Serial No.	Calibrated Date	Calibrated Until						
	ght l	V9010A									
			MY56480554	2023/9/12	2024/9/11						
Antenna conducted Spurious Emission											
Manuta	cturer 7	ype No.	Serial No.	Calibrated Date	Calibrated Until						
	ght l	N9010A	MY56480554	2023/9/12	2024/9/11						
	of Manufac ient Manufac gnal keysig denotes no mode	of Manufacturer T gnal keysight I denotes no model name, no set	of Manufacturer Type No. gnal keysight N9010A	of Manufacturer Type No. Serial No. gnal keysight N9010A MY56480554 denotes no model name, no serial no. or no calibration specifie	of hentManufacturerType No.Serial No.Calibrated Dategnal cerkeysightN9010AMY564805542023/9/12denotes no model name, no serial no. or no calibration specified.						

10 EUT TEST PHOTO

Please refer to APPENDIX-TEST PHOTOS.

11 EUT PHOTOS

Please refer to APPENDIX-EUT PHOTOS.

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

t Mode	Ν	lorn	nal								Tested Date	2023/9/10
t Frequer	ncy -	cy -							Phase	Line		
80.0	dBuV/m											
70												
60												
50			9									
1	35	2	¥o X	-	-	++-						
40 ¥ X 30	35 48 ××	Ð X	Ŷ									1 <u>1</u>
20												
10												
0 –												
-10												
-20												
-30												
-40.0										5		
0.15	0		0.5					(MHz)			30.000	
No. Mk.	Freq		Read			rect ctor	Measure- ment	Limit	Margin			
	MHz		dBuV	/m	d	в	dBuV/m	dBuV/m	dB	Detector	Comment	
1	0.156	6	29.1	17	9	.67	38.84	65.64	-26.80	QP		
2	0.156	6	24.7	/2	9	.67	34.39	55.64	-21.25	AVG		
3	0.200	7	28.5	51	9	.67	38.18	63.58	-25.40	QP		
4	0.200		24.0		9	.67	33.67	53.58	-19.91	AVG		
5	0.240		28.3			.67	37.99	62.08	-24.09	QP		
6	0.240		23.6			.67	33.32	52.08	-18.76	AVG		
7	0.281		29.7			.66	39.36	60.78	-21.42	QP		
8	0.281	2	24.3	38	9	.66	34.04	50.78	-16.74	AVG		

9 10 *

11

12

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

9.66

9.66

10.20

10.20

44.99

39.54

35.47

32.94

59.03

49.03

60.00

50.00

-14.04

-9.49

-24.53

-17.06

QP

AVG

QP

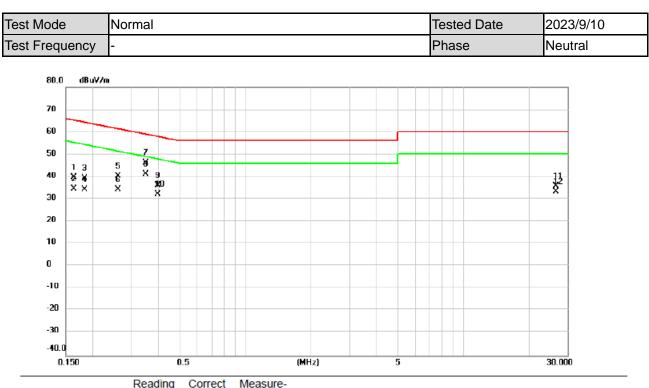
AVG

35.33

29.88

25.27

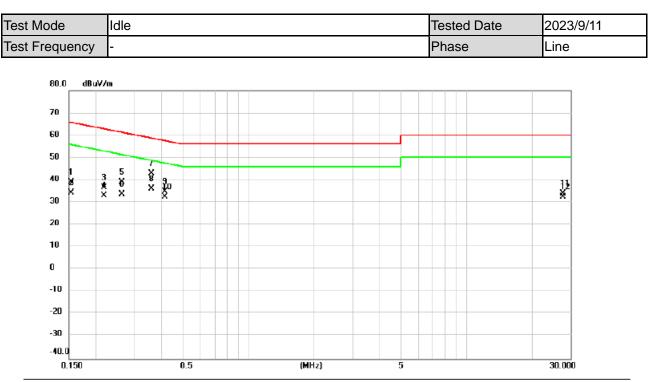
22.74


0.3471

0.3471

26.0750

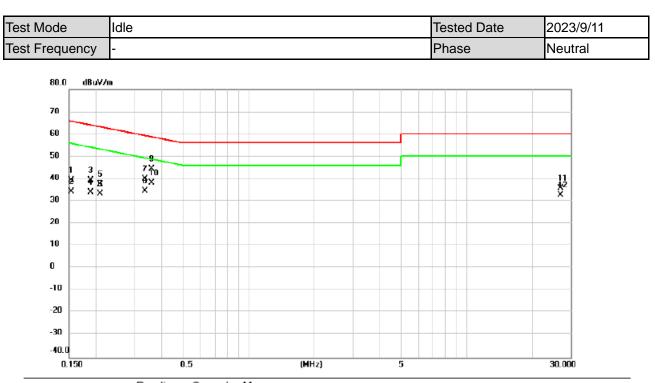
26.0750



			Level	Factor	ment	Limit	Margin		
		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.1636	30.01	9.67	39.68	65.28	-25.60	QP	
2		0.1636	24.81	9.67	34.48	55.28	-20.80	AVG	
3		0.1836	29.80	9.66	39.46	64.32	-24.86	QP	
4		0.1836	24.58	9.66	34.24	54.32	-20.08	AVG	
5		0.2615	30.52	9.65	40.17	61.38	-21.21	QP	
6		0.2615	24.75	9.65	34.40	51.38	-16.98	AVG	
7		0.3481	36.56	9.66	46.22	59.01	-12.79	QP	
8	*	0.3481	31.46	9.66	41.12	49.01	-7.89	AVG	
9		0.3975	26.43	9.67	36.10	57.91	-21.81	QP	
10		0.3975	22.52	9.67	32.19	47.91	-15.72	AVG	
11	:	26.6000	25.41	10.43	35.84	60.00	-24.16	QP	
12	:	26.6000	22.82	10.43	33.25	50.00	-16.75	AVG	

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.1535	29.44	9.67	39.11	65.81	-26.70	QP	
2		0.1535	24.63	9.67	34.30	55.81	-21.51	AVG	
3		0.2180	27.10	9.67	36.77	62.89	-26.12	QP	
4		0.2180	23.40	9.67	33.07	52.89	-19.82	AVG	
5		0.2627	29.40	9.66	39.06	61.35	-22.29	QP	
6		0.2627	23.98	9.66	33.64	51.35	-17.71	AVG	
7		0.3593	33.24	9.66	42.90	58.74	-15.84	QP	
8	*	0.3593	26.25	9.66	35.91	48.74	-12.83	AVG	
9		0.4140	25.11	9.67	34.78	57.57	-22.79	QP	
10		0.4140	22.72	9.67	32.39	47.57	-15.18	AVG	
11		27.7000	23.84	10.20	34.04	60.00	-25.96	QP	
12		27.7000	22.33	10.20	32.53	50.00	-17.47	AVG	

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.1535	29.83	9.67	39.50	65.81	-26.31	QP	
2	0.1535	24.70	9.67	34.37	55.81	-21.44	AVG	
3	0.1881	29.55	9.66	39.21	64.12	-24.91	QP	
4	0.1881	24.21	9.66	33.87	54.12	-20.25	AVG	
5	0.2081	28.03	9.66	37.69	63.28	-25.59	QP	
6	0.2081	23.72	9.66	33.38	53.28	-19.90	AVG	
7	0.3334	30.38	9.66	40.04	59.37	-19.33	QP	
8	0.3334	24.96	9.66	34.62	49.37	-14.75	AVG	
9	0.3580	34.66	9.66	44.32	58.77	-14.45	QP	
10 *	0.3580	28.39	9.66	38.05	48.77	-10.72	AVG	
11	26.9250	25.40	10.43	35.83	60.00	-24.17	QP	
12	26.9250	22.45	10.43	32.88	50.00	-17.12	AVG	

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Test Mode					0 (1 Mbp	s)		est Da					
Т	est	Frequency	y		40MHz 24°C		Po	olarizat	ion		Vertical		
		Temp		4			Hum.			46%			
	80.	0 dBuV/m										1	
	70											-	
	60												
	50												
	40	ı <u>Ş</u>		3 X		5				6 X		_	
	30				×	5 X						-	
	20											-	
	10 0.0											-	
		30.000 127.	00 224.	00 321.0	0 418.0	0 515.0	00 612	.00 7	'09.00	806.00	1000.00	_ MHz	
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure ment	e- Limit	Margin		Antenna Height	Table Degree			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment		
1		35.8200	46.91	-13.12	33.79	40.00	-6.21	QP	113	360			
2	*	58.1300	47.24	-11.80	35.44	40.00	-4.56	peak	100	284			
3		274.4400	45.33	-11.08	34.25	46.00	-11.75	peak	100	266			
4		377.2600	38.39	-8.41	29.98	46.00	-16.02	peak	100	52			
5		482.9900	36.26	-5.63	30.63	46.00	-15.37	peak	100	195			
6		836.0700	33.38	0.96	34.34	46.00	-11.66	peak	130	360			

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

	Та	at Mada				\			40		0000/0/0	<u></u>
т		est Mode Frequency	V		0 (1 Mbps 10MHz)		est Da blarizat			2023/9/2 Horizonta	
10		Temp	у		4°C		г	Hum.			46%	
	80.0	•						1	ĺ			7
	70											
	60											
	50											
	40	1 2 X X	3	*	\$ X	6 X						
	30	×				X						
	20											
	10											
	0.0	30.000 127.	00 224.0	00 321.00	0 418.00	515.0	0 612	.00	709.00	806.00	1000.00	MHz
No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		degree	Comment	
	*	58.1300	45.57	-11.80	33.77	40.00	-6.23	peak	200	242		
2		98.8700	48.84	-16.29	32.55	43.50	-10.95	peak	200	317		
3		152.2200	48.28	-11.35	36.93	43.50	-6.57	peak	200	163		
4		303.5400	47.98	-10.26	37.72	46.00	-8.28	peak	100	142		
5		377.2600	46.02 37.93	-8.41	37.61 32.43	46.00	-8.39	peak	100	111		
6		490.7500		-5.50		46.00	-13.57	peak	200	200		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

		est Mode Frequen			5.0 (1 M 2402MHz				t Date			23/10/16 /ertical		
	1031	Temp	lCy	25°C				Hum.				47%		
	120	•												
	110					8								
	100													
	90													
	80													
	70											-		
	60					, wh								
				an the second	A	No and a start of the start of	March		J. Santilla		5			
	50	mand and a state of the	and the second and the second second	andad all planets and a	State and state of the	2 X		Verne president to	where the state of	understanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderst	and the second	w.		
	40										6 X	1		
	30											1		
	20											-		
	10													
	0.0 ;	2302.000 2322	2.00 2342	2.00 2362.	00 2382.0	0 2402	.00 242	2.00 2	442.00	2462.00	2502.00	MHz		
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment			
1		2388.600	62.77	-6.45	56.32	74.00	-17.68	peak						
2		2388.600	49.26	-6.45	42.81	54.00	-11.19	AVG						
3		2402.200	116.95	-6.43	110.52	74.00	36.52	peak			NO Limit			
	*	2402.200	115.71	-6.43	109.28	54.00	55.28	AVG			NO Limit			
4 5 6		2497.600 2497.600	57.21 43.18	-6.28 -6.28	50.93 36.90		-23.07 -17.10	peak AVG						

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Tes	t Mode		BLE 5.0 (1 Mbps)				Test	t Date	2023/10/16				
Te	est F	requent	су	2480MHz				Polarization				Vertical		
		Temp			25°C		Hum.				47%			
	120.0	dBuV/m						1				_		
	110					3						_		
	100											_		
	90					(_		
	80													
	70											-		
	60					all	5 Mine							
		1 	- Mary and -	to any show have	Warmed Production		S THE REAL	k . 10.4	ad manager		Harden and a strate and the second second			
	50	2					6 X	and the second s		united and the code of	Made and a strate address of any	ue -		
	40	x										1		
	30											-		
	20											-		
	10											-		
	0.0	80.000 240	0.00 2420.	.00 2440.	00 2460.0	0 2490	00 250	0.00 2	520.00	2540.00	2590.00			
	23	00.000 240	Reading	Correct	Measure-		.00 230	0.00 2	Antenna		2360.00	MN2		
NO.	Mk.	Freq.	Level	Factor	ment	Limit	Margin			Degree				
			Lovoi				margin		Height	Degree				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment			
1	2	MHz 385.000				dBuV/m		Detector peak	-	-				
2	2	385.000 385.000	dBu∨ 59.13 46.83	dB	dBuV/m 52.68 40.38	dBuV/m	dB -21.32 -13.62		-	-	Comment			
2	2 X 2	385.000 385.000 480.400	dBuV 59.13 46.83 113.79	dB -6.45	dBuV/m 52.68 40.38 107.48	dBuV/m 74.00	dB -21.32	peak AVG peak	-	-				
2 3 4	2 X 2 * 2	385.000 385.000 480.400 480.400	dBuV 59.13 46.83 113.79 112.49	dB -6.45 -6.45 -6.31 -6.31	dBuV/m 52.68 40.38 107.48 106.18	dBuV/m 74.00 54.00 74.00 54.00	dB -21.32 -13.62 33.48 52.18	peak AVG peak AVG	-	-	Comment			
2	2 X 2 * 2 2	385.000 385.000 480.400	dBuV 59.13 46.83 113.79	dB -6.45 -6.45 -6.31	dBuV/m 52.68 40.38 107.48	dBuV/m 74.00 54.00 74.00	dB -21.32 -13.62 33.48	peak AVG peak	-	-	Comment NO Limit			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

Test Mode				0 (1 Mbps	;)		Fest Da			2023/9/22	
Test	Frequenc	у	2402MHz			Polarization			Vertical		
	Temp			24°C			Hum.			46%	
12	0.0 dBu¥/m						-				
11	0										
10	0										
90											
80											
70											
60											
50		1									
40		1 2 X									
30											
20											
10											
0.0		0.00 01/	0.00 8650	.00 11200.	00 1075	0.00 100	00.00 1	8850.00 2	21400.00	20500.00 Mil	
	1000.000 355					0.00 163	00.00 1			26500.00 MHz	
lo. Mk	. Freq.	Reading Level	g Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	4804.000	53.22	-8.90	44.32	74.00	-29.68	peak				
2 *	4804.000	47.82	-8.90	38.92	54.00	-15.08	AVG				

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

Τρ	st Mode		BIE 5	0 (1 Mbps	s)	-	Test Da	te		2023/9/22	
	Frequenc	:V	2402MHz			Polarization				Horizontal	
	Temp	, y		24°C		<u> </u>	Hum.			46%	
120				-							
110											
100											
90											
80											
70											
60											
50											
40		1 X									
30		2 X									
20											
10 0.0											
	000.000 355	0.00 610	0.00 8650.	00 11200.	.00 1375	0.00 163	00.00 1	8850.00 2	21400.00	26500.00 MHz	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Margin		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	4804.000	47.18	-8.90	38.28	74.00	-35.72	peak				
2 *	4804.000	35.71	-8.90	26.81	54.00	-27.19	AVG				

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

-				<u> </u>	`					0000/0/00
	est Mode			.0 (1 Mbp	is)		Test Dat			2023/9/22
les	Test Frequency		2440MHz			Polarization				Vertical
	Temp			24°C			Hum.			46%
120).0 dBuV/m									
110	·									
100										
90										
80										
70										
60										
50		1 X X								
40		x								
30										
20										
10										
0.0										
	1000.000 3550	0.00 6100	.00 8650.	00 11200	.00 1375	0.00 163	00.00 1	8850.00 2	21400.00	26500.00 MHz
	_	Reading	Correct	Measure	-			Antenna		
No. Mk	. Freq.	Level	Factor	ment	Limit	Margin		Height	Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4880.000	56.16	-8.66	47.50	74.00	-26.50	peak			
2 *	4880.000	52.24	-8.66	43.58	54.00	-10.42	AVG			

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

	Test Mode			5.0 (1 Mb	ps)		Test Date			2023/9/22
Te	Test Frequency			440MHz		Polarization				Horizontal
	Temp			24°C			Hum.			46%
	120.0 dBu¥/m									
	110									
	100									
	90									
	80									
	70									
	60									
	50									
	40	×								
	30	2 ×								
	20									
	10									
	0.0	0.00 610	0.00 8650).00 1121	0.00 1375	0.00 163	00.00 18	850.00	21 400.00	26500.00 MHz
		Reading			e-			Antenna		
No. I	-	Level	Factor	ment	Limit	Margin		Height	_	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4960.000	48.20	-8.40	39.80	74.00	-34.20	peak			

54.00 -27.13

AVG

REMARKS:

2 * 4960.000

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

-8.40

26.87

35.27

Тоо	+ Modo				N	Т	est Dat	•		2023/9/22	
Test Mode Test Frequency			BLE 5.0 (1 Mbps) 2480MHz			Polarization			Vertical		
	emp	y		24°C	-	10			46%		
	omp						T TATT.			1070	
120.0	dBuV/m										
110											
100											
90											
80											
70											
60											
50											
40		ł									
30		2 X									
20											
10											
0.0											
100	0.000 3550					0.00 163	00.00 1		21400.00	26500.00 MHz	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1 49	960.000	48.35	-8.40	39.95	74.00	-34.05	peak				
2 * 49	960.000	35.29	-8.40	26.89	54.00	-27.11	AVG				

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

			<u> </u>	<u> </u>	`				_	0.000/0/00
Test Mode Test Frequency				.0 (1 Mbp	os)		Test Da			2023/9/22
		су	2480MHz			Polarization				Horizontal
	Temp			24°C			Hum.			46%
120	.0 dBuV/m									
110										
100										
90										
80										
70										
60										
50										
40		1 ×								
30		2 X								
20										
10										
0.0										
1	000.000 355					0.00 163	300.0 0 1		21400.00	26500.00 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	4960.000	48.20	-8.40	39.80	74.00	-34.20	peak			
2 *	4960.000	35.27	-8.40	26.87	54.00	-27.13	AVG			

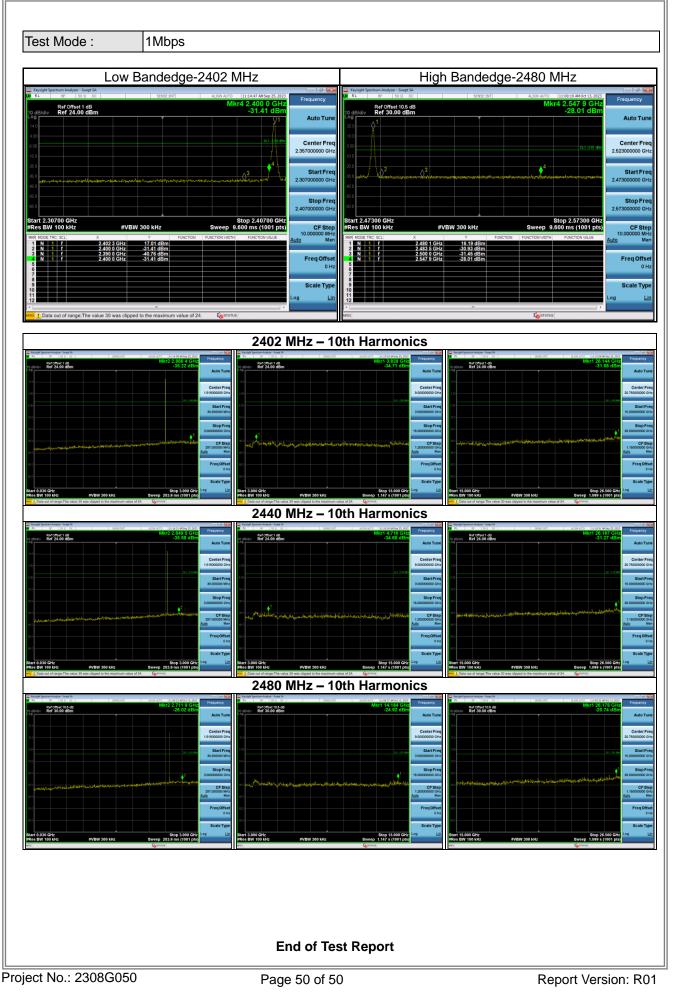
Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX D BANDWIDTH

APPENDIX E OUTPUT POWER

Test Mode :	1Mbps		Te		23/9/25, 23/10/13
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	17.60	0.0575	30.00	1.0000	Pass
2440	17.77	0.0598	30.00	1.0000	Pass
2480	16.95	0.0495	30.00	1.0000	Pass

APPENDIX F POWER SPECTRAL DENSITY TEST


Test Mode : 1Mbps								
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result					
2402	4.87	8	Pass					
2440	6.42	8	Pass					
2480	5.22	8	Pass					

Second second Second s	2402 MHz	2440 MHz	2480 MHz
	Convert 2.40000 CHrs.	la de la de la del la del la del la del la del la del	Provide registry Prov

APPENDIX G ANTENNA CONDUCTED SPURIOUS EMISSION

