

# FCC Radio Test Report

# FCC ID: 2AXJ4EAP245V4

#### This report concerns: Original Grant

| Project No.           | : | 2206C110A                                                                                                                                                           |
|-----------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment             | : | AC1750 Wireless MU-MIMO Gigabit Ceiling Mount Access Point                                                                                                          |
| Brand Name            | : | tp-link                                                                                                                                                             |
| Test Model            | : | EAP245                                                                                                                                                              |
| Series Model          | : | N/A                                                                                                                                                                 |
| Applicant             | : | TP-Link Corporation Limited                                                                                                                                         |
| Address               | : | Room 901, 9/F. , New East Ocean Centre, 9 Science Museum Road,                                                                                                      |
|                       |   | Tsim Sha Tsui, Kowloon, Hong Kong                                                                                                                                   |
| Manufacturer          | : | TP-Link Corporation Limited                                                                                                                                         |
| Address               | : | Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road,                                                                                                       |
|                       |   | Tsim Sha Tsui, Kowloon, Hong Kong                                                                                                                                   |
| Date of Receipt       | : | Jul. 07, 2022                                                                                                                                                       |
| Date of Test          | : | Jul. 08, 2022 ~ Aug. 08, 2022                                                                                                                                       |
| Issued Date           | : | Sep. 05, 2022                                                                                                                                                       |
| <b>Report Version</b> | : | R00                                                                                                                                                                 |
| Test Sample           | : | Engineering Sample No.: DG2022070778 for conducted,                                                                                                                 |
|                       |   | DG2022070779 for others.                                                                                                                                            |
| Standard(s)           | : | FCC CFR Title 47, Part 15, Subpart C<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>FCC KDB 662911 D01 Multiple Transmitter Output v02r01<br>ANSI C63.10-2013 |

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Theng

Prepared by : Chella Zheng

Approved by : Chay Cai



#### BTL Inc.

No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792 People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com

Service mail: btl\_qa@newbtl.com





#### Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

#### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.



| Table of Contents                                            | Page |
|--------------------------------------------------------------|------|
| REPORT ISSUED HISTORY                                        | 6    |
| 1. SUMMARY OF TEST RESULTS                                   | 7    |
| 1.1 TEST FACILITY                                            | 8    |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 8    |
| 1.3 TEST ENVIRONMENT CONDITIONS                              | 9    |
| 2 . GENERAL INFORMATION                                      | 10   |
| 2.1 GENERAL DESCRIPTION OF EUT                               | 10   |
| 2.2 DESCRIPTION OF TEST MODES                                | 12   |
| 2.3 PARAMETERS OF TEST SOFTWARE                              | 13   |
| 2.4 DUTY CYCLE                                               | 14   |
| 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 16   |
| 2.6 SUPPORT UNITS                                            | 16   |
| 3 . AC POWER LINE CONDUCTED EMISSIONS                        | 17   |
| 3.1 LIMIT                                                    | 17   |
| 3.2 TEST PROCEDURE                                           | 17   |
| 3.3 DEVIATION FROM TEST STANDARD                             | 17   |
| 3.4 TEST SETUP                                               | 18   |
| 3.5 EUT OPERATION CONDITIONS                                 | 18   |
| 3.6 TEST RESULTS                                             | 18   |
| 4. RADIATED EMISSIONS                                        | 19   |
| 4.1 LIMIT                                                    | 19   |
| 4.2 TEST PROCEDURE                                           | 20   |
| 4.3 DEVIATION FROM TEST STANDARD                             | 21   |
| 4.4 TEST SETUP                                               | 21   |
| 4.5 EUT OPERATION CONDITIONS                                 | 22   |
| 4.6 TEST RESULTS - 9 KHZ TO 30 MHZ                           | 22   |
| 4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ                        | 22   |
| 4.8 TEST RESULTS - ABOVE 1000 MHZ                            | 22   |
| 5.BANDWIDTH                                                  | 23   |
| 5.1 LIMIT                                                    | 23   |
| 5.2 TEST PROCEDURE                                           | 23   |
| 5.3 DEVIATION FROM STANDARD                                  | 23   |
| 5.4 TEST SETUP                                               | 23   |
|                                                              |      |





| Table of Contents                                   | Page |
|-----------------------------------------------------|------|
| 5.5 EUT OPERATION CONDITIONS                        | 23   |
| 5.6 TEST RESULTS                                    | 23   |
| 6 . MAXIMUM AVERAGE OUTPUT POWER                    | 24   |
| 6.1 LIMIT                                           | 24   |
| 6.2 TEST PROCEDURE                                  | 24   |
| 6.3 DEVIATION FROM STANDARD                         | 24   |
| 6.4 TEST SETUP                                      | 24   |
| 6.5 EUT OPERATION CONDITIONS                        | 24   |
| 6.6 TEST RESULTS                                    | 24   |
| 7 . CONDUCTED SPURIOUS EMISSIONS                    | 25   |
| 7.1 LIMIT                                           | 25   |
| 7.2 TEST PROCEDURE                                  | 25   |
| 7.3 DEVIATION FROM STANDARD                         | 25   |
| 7.4 TEST SETUP                                      | 25   |
| 7.5 EUT OPERATION CONDITIONS                        | 25   |
| 7.6 TEST RESULTS                                    | 25   |
| 8 . POWER SPECTRAL DENSITY                          | 26   |
| 8.1 LIMIT                                           | 26   |
| 8.2 TEST PROCEDURE                                  | 26   |
| 8.3 DEVIATION FROM STANDARD                         | 26   |
| 8.4 TEST SETUP                                      | 26   |
| 8.5 EUT OPERATION CONDITIONS                        | 26   |
| 8.6 TEST RESULTS                                    | 26   |
| 9 . MEASUREMENT INSTRUMENTS LIST                    | 27   |
| 10 . EUT TEST PHOTO                                 | 29   |
| APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS      | 34   |
| APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ    | 37   |
| APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ | 42   |
| APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ      | 45   |
| APPENDIX E - BANDWIDTH                              | 86   |
| APPENDIX F - MAXIMUM AVERAGE OUTPUT POWER           | 91   |
| APPENDIX G - CONDUCTED SPURIOUS EMISSIONS           | 96   |



# **Table of Contents** Page 121 **APPENDIX H - POWER SPECTRAL DENSITY**



# **REPORT ISSUED HISTORY**

| Report No.           | Version | Description      | Issued Date   | Note  |
|----------------------|---------|------------------|---------------|-------|
| BTL-FCCP-1-2206C110A | R00     | Original Report. | Sep. 05, 2022 | Valid |
|                      |         |                  |               |       |



# **1. SUMMARY OF TEST RESULTS**

Test procedures according to the technical standard(s):

| FCC CFR Title 47, Part 15, Subpart C |                                   |                                        |          |         |  |  |
|--------------------------------------|-----------------------------------|----------------------------------------|----------|---------|--|--|
| Standard(s) Section                  | Test Item                         | Test Result                            | Judgment | Remark  |  |  |
| 15.207                               | AC Power Line Conducted Emissions | APPENDIX A                             | PASS     |         |  |  |
| 15.247(d)<br>15.205(a)<br>15.209(a)  | Radiated Emissions                | APPENDIX B<br>APPENDIX C<br>APPENDIX D | PASS     |         |  |  |
| 15.247(a)(2)                         | Bandwidth                         | APPENDIX E                             | PASS     |         |  |  |
| 15.247(b)(3)                         | Maximum Average Output Power      | APPENDIX F                             | PASS     |         |  |  |
| 15.247(d)                            | Conducted Spurious Emissions      | APPENDIX G                             | PASS     |         |  |  |
| 15.247(e)                            | Power Spectral Density            | APPENDIX H                             | PASS     |         |  |  |
| 15.203                               | Antenna Requirement               |                                        | PASS     | Note(2) |  |  |

Note:

(1) "N/A" denotes test is not applicable in this test report.(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.



#### 1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792 People's Republic of China. BTL's Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

#### **1.2 MEASUREMENT UNCERTAINTY**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

| Test Site | Method | Measurement Frequency Range | U,(dB) |
|-----------|--------|-----------------------------|--------|
| DG-C02    | CISPR  | 150kHz ~ 30MHz              | 2.60   |

#### B. Radiated emissions test:

| Test Site | Method | Method Measurement Frequency Range |      |  |  |
|-----------|--------|------------------------------------|------|--|--|
| DG-CB01   | CISPR  | 9kHz ~ 30MHz                       | 2.36 |  |  |

| Test Site       | Method | Measurement Frequency Range | Ant.<br>H / V | U,(dB) |
|-----------------|--------|-----------------------------|---------------|--------|
| DG-CB03<br>(3m) | CISPR  | 30MHz ~ 200MHz              | V             | 4.36   |
|                 |        | 30MHz ~ 200MHz              | Н             | 3.32   |
|                 |        | 200MHz ~ 1,000MHz           | V             | 4.08   |
|                 |        | 200MHz ~ 1,000MHz           | Н             | 3.96   |

| Test Site       | Method Measurement Frequency Range |              | U,(dB) |
|-----------------|------------------------------------|--------------|--------|
| DG-CB03<br>(3m) |                                    | 1GHz ~ 6GHz  | 3.80   |
|                 | CISPR                              | 6GHz ~ 18GHz | 4.82   |

| Test Site       | Method | Measurement Frequency Range |      |
|-----------------|--------|-----------------------------|------|
| DG-CB03<br>(1m) |        | 18 ~ 26.5 GHz               | 3.62 |
|                 | CISPR  | 26.5 ~ 40 GHz               | 4.00 |



#### C. Other Measurement:

| Test Item                   | Uncertainty |
|-----------------------------|-------------|
| Bandwidth                   | ±3.8 %      |
| Maximum Output Power        | ±0.95 dB    |
| Conducted Spurious Emission | ±2.71 dB    |
| Power Spectral Density      | ±0.86 dB    |
| Temperature                 | ±0.08 °C    |
| Humidity                    | ±1.5%       |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

#### **1.3 TEST ENVIRONMENT CONDITIONS**

| Test Item                           | Temperature | Humidity   | Test Voltage | Tested By                                |
|-------------------------------------|-------------|------------|--------------|------------------------------------------|
| AC Power Line Conducted Emissions   | 23°C        | 52%        | AC 120V/60Hz | Jeter Wang                               |
| Radiated Emissions-9kHz to 30 MHz   | 26°C        | 56%        | AC 120V/60Hz | Farun Liang                              |
| Radiated Emissions-30MHz to 1000MHz | 26°C        | 55%        | AC 120V/60Hz | Meers Zhang                              |
| Radiated Emissions-Above 1000MHz    | 25°C        | 55%        | AC 120V/60Hz | Meers Zhang                              |
| Bandwidth                           | 24-25°C     | 52-62%     | AC 120V/60Hz | Silly Zheng<br>Hayden Chen<br>Ansel Yang |
| Maximum Average Output Power        | 24.1-25°C   | 65.8-66.8% | AC 120V/60Hz | Complex Qin                              |
| Conducted Spurious Emissions        | 24-25°C     | 52-62%     | AC 120V/60Hz | Silly Zheng<br>Hayden Chen<br>Ansel Yang |
| Power Spectral Density              | 24-25°C     | 52-62%     | AC 120V/60Hz | Silly Zheng<br>Hayden Chen<br>Ansel Yang |

# 2. GENERAL INFORMATION

## 2.1 GENERAL DESCRIPTION OF EUT

| Equipment                    | AC1750 Wireless MU-MIMO Gigabit Ceiling Mount Access Point                                                |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Brand Name                   | tp-link                                                                                                   |  |  |  |
| Test Model                   | EAP245                                                                                                    |  |  |  |
| Series Model                 | N/A                                                                                                       |  |  |  |
| Model Difference(s)          | N/A                                                                                                       |  |  |  |
| Power Source                 | 1# Supplied from PoE Adapter.<br>Model: TL-POE4818G<br>2# Supplied from 802.3at PoE Switch.               |  |  |  |
| Power Rating                 | 1# I/P: 100-240V~ 50/60Hz 0.6A O/P: 48.0V === 0.375A<br>2# PoE 42.5-57V === 0.6A 802.3at                  |  |  |  |
| Operation Frequency          | 2412 MHz ~ 2462 MHz                                                                                       |  |  |  |
| Modulation Type              | IEEE 802.11b: DSSS<br>IEEE 802.11g: OFDM<br>IEEE 802.11n: OFDM                                            |  |  |  |
| Bit Rate of Transmitter      | IEEE 802.11b: 11/5.5/2/1 Mbps<br>IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps<br>IEEE 802.11n: up to 450 Mbps |  |  |  |
| Maximum Average Output Power | IEEE 802.11b: 26.75 dBm (0.4732 W)                                                                        |  |  |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

#### 2. Channel List:

| CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20)<br>CH03 - CH09 for IEEE 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |      |               |           |         |                    |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------------|-----------|---------|--------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | CH03 | - CHU9 for IE | EE 802.11 | n(H140) |                    |      |
| Channel         Frequency<br>(MHz)         Channel         Frequency<br>(MHz)         Channel         Frequency<br>(MHz)         F |      |      |               |           |         | Frequency<br>(MHz) |      |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2412 | 04   | 2427          | 07        | 2442    | 10                 | 2457 |
| 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2417 | 05   | 2432          | 08        | 2447    | 11                 | 2462 |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2422 | 06   | 2437          | 09        | 2452    |                    |      |

#### 3. Antenna Specification:

| Ant. | Brand   | P/N        | Antenna Type | Connector | Gain (dBi) |
|------|---------|------------|--------------|-----------|------------|
| 1    | tp-link | EAP245 4.0 | PIFA         | N/A       | 1.98       |
| 2    | tp-link | EAP245 4.0 | PIFA         | N/A       | 2.00       |
| 3    | tp-link | EAP245 4.0 | PIFA         | N/A       | 1.39       |

Note:

1) This EUT supports CDD, and all antenna gains are not equal, so Directional gain=10log[ $(10^{G1/20}+10^{G2/20}+...10^{GN/20})^2/N$ ]dBi, that is Directional gain=10log[ $(10^{1.98/20}+10^{2.00/20}+10^{1.39/20})^2/3$ ]dBi =6.57. So, the output power limit is 30-(6.57-6)=29.43, the power spectral density limit is 8-(6.57-6)=7.43.

2) The antenna gain is provided by the manufacturer.



#### 4. Table for Antenna Configuration:

| Operating Mode TX Mode | 3TX                         |
|------------------------|-----------------------------|
| IEEE 802.11b           | V(Ant. 1 + Ant. 2 + Ant. 3) |
| IEEE 802.11g           | V(Ant. 1 + Ant. 2 + Ant. 3) |
| IEEE 802.11n(HT20)     | V(Ant. 1 + Ant. 2 + Ant. 3) |
| IEEE 802.11n(HT40)     | V(Ant. 1 + Ant. 2 + Ant. 3) |

## 2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

| Pretest Mode | Description                            |
|--------------|----------------------------------------|
| Mode 1       | TX B Mode Channel 01/06/11             |
| Mode 2       | TX G Mode Channel 01/06/11             |
| Mode 3       | TX N(HT20) Mode Channel 01/06/11       |
| Mode 4       | TX N(HT40) Mode Channel 03/06/09       |
| Mode 5       | TX B Mode Channel 01                   |
| Mode 6       | TX B Mode Channel 01/02/06/10/11       |
| Mode 7       | TX G Mode Channel 01/02/06/10/11       |
| Mode 8       | TX N(HT20) Mode Channel 01/02/06/10/11 |
| Mode 9       | TX N(HT40) Mode Channel 03/04/06/08/09 |

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

| AC power line conducted emissions test |                      |  |  |  |
|----------------------------------------|----------------------|--|--|--|
| Final Test Mode                        | Description          |  |  |  |
| Mode 5                                 | TX B Mode Channel 01 |  |  |  |

| Radiated emissions test - Below 1GHz |                      |  |  |
|--------------------------------------|----------------------|--|--|
| Final Test Mode                      | Description          |  |  |
| Mode 5                               | TX B Mode Channel 01 |  |  |

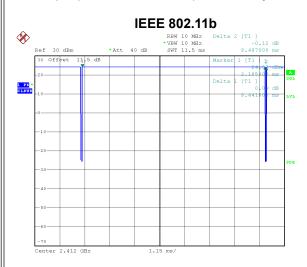
| Radiated emissions test- Above 1GHz |                                        |  |  |  |
|-------------------------------------|----------------------------------------|--|--|--|
| Final Test Mode                     | Description                            |  |  |  |
| Mode 6                              | TX B Mode Channel 01/02/06/10/11       |  |  |  |
| Mode 7                              | TX G Mode Channel 01/02/06/10/11       |  |  |  |
| Mode 8                              | TX N(HT20) Mode Channel 01/02/06/10/11 |  |  |  |
| Mode 9                              | TX N(HT40) Mode Channel 03/04/06/08/09 |  |  |  |



| Conducted test  |                                  |  |
|-----------------|----------------------------------|--|
| Final Test Mode | Description                      |  |
| Mode 1          | TX B Mode Channel 01/06/11       |  |
| Mode 2          | TX G Mode Channel 01/06/11       |  |
| Mode 3          | TX N(HT20) Mode Channel 01/06/11 |  |
| Mode 4          | TX N(HT40) Mode Channel 03/06/09 |  |

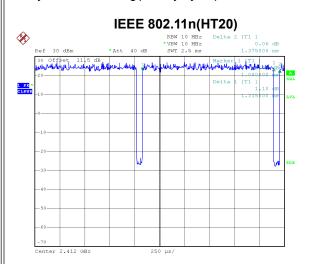
NOTE:

- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX B Mode Channel 01 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (4) For AC power line conducted emissions and radiated emission below 1 GHz test, PoE Adapter and PoE Switch are pretested, the worst case is PoE Adapter and recorded.
- (5) For radiated emission above 1 GHz test, the polarization of Vertical and Hoizontal are evaluated, the worst case is Vertical and recorded.


#### 2.3 PARAMETERS OF TEST SOFTWARE

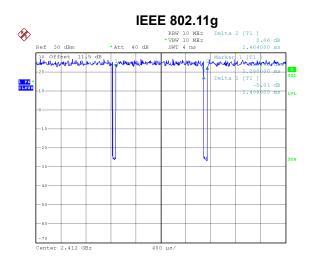
| Test Software Version | QATool_Dbg V0.0.2.5 |      |      |
|-----------------------|---------------------|------|------|
| Frequency (MHz)       | 2412                | 2437 | 2462 |
| IEEE 802.11b          | 27                  | 27   | 28   |
| IEEE 802.11g          | 24                  | 29   | 23   |
| IEEE 802.11n(HT20)    | 22                  | 29   | 21   |
| Frequency (MHz)       | 2422                | 2437 | 2452 |
| IEEE 802.11n(HT40)    | 1F                  | 27   | 20   |




# 2.4 DUTY CYCLE

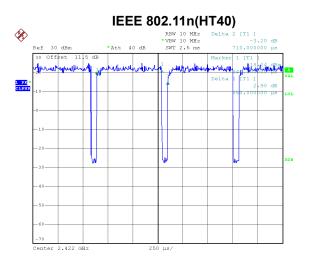
If duty cycle is  $\geq$  98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.




Date: 8.AUG.2022 09:32:37

Duty cycle = 8.441 ms / 8.487 ms = 99.46% Duty Factor = 10 log(1/Duty cycle) = 0.00




Date: 8.AUG.2022 09:33:33

Duty cycle = 1.315 ms / 1.375 ms = 95.64% Duty Factor = 10 log(1/Duty cycle) = 0.19



Date: 8.AUG.2022 09:32:56

Duty cycle = 1.408 ms / 1.464 ms = 96.17% Duty Factor = 10 log(1/Duty cycle) = 0.17



Date: 8.AUG.2022 09:34:05

Duty cycle = 0.650 ms / 0.710 ms = 91.55%Duty Factor =  $10 \log(1/\text{Duty cycle}) = 0.38$ 





#### NOTE:

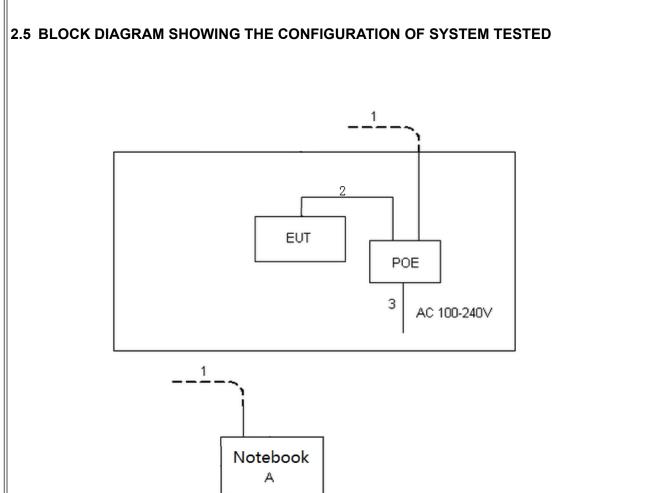
For IEEE 802.11b:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11g:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 710 Hz.

For IEEE 802.11n(HT20):


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 760 Hz.

For IEEE 802.11n(HT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1538 Hz.

(Remark: The video bandwidth of the spectrum analyzer was set to 1kHz during the test.)





#### 2.6 SUPPORT UNITS

| Item | Equipment  | Brand         | Model No.        | Series No. |
|------|------------|---------------|------------------|------------|
| А    | Notebook   | Dell          | Inspiron 15-7559 | N/A        |
|      |            |               |                  |            |
| Item | Cable Type | Shielded Type | Ferrite Core     | Length     |
| 1    | RJ45 Cable | NO            | NO               | 10m        |
| 2    | RJ45 Cable | NO            | NO               | 1m         |
| 3    | AC Cable   | NO            | NO               | 1.5m       |



# 3. AC POWER LINE CONDUCTED EMISSIONS

#### 3.1 LIMIT

| Frequency of Emission (MHz) | Limit (dBµV) |           |  |
|-----------------------------|--------------|-----------|--|
| Frequency of Emission (MHz) | Quasi-peak   | Average   |  |
| 0.15 - 0.5                  | 66 to 56*    | 56 to 46* |  |
| 0.5 - 5.0                   | 56           | 46        |  |
| 5.0 - 30.0                  | 60           | 50        |  |

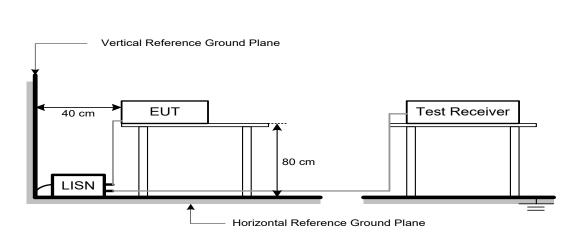
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

#### 3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


| Receiver Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### 3.3 DEVIATION FROM TEST STANDARD

No deviation.



# 3.4 TEST SETUP



## 3.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

#### 3.6 TEST RESULTS

Please refer to the APPENDIX A.



# 4. RADIATED EMISSIONS

#### 4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

| Frequency   | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009-0.490 | 2400/F(kHz)        | 300                  |
| 0.490-1.705 | 24000/F(kHz)       | 30                   |
| 1.705-30.0  | 30                 | 30                   |
| 30-88       | 100                | 3                    |
| 88-216      | 150                | 3                    |
| 216-960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

| Frequency (MHz) | (dBuV/m at 3 m) |         |
|-----------------|-----------------|---------|
|                 | Peak            | Average |
| Above 1000      | 74              | 54      |

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

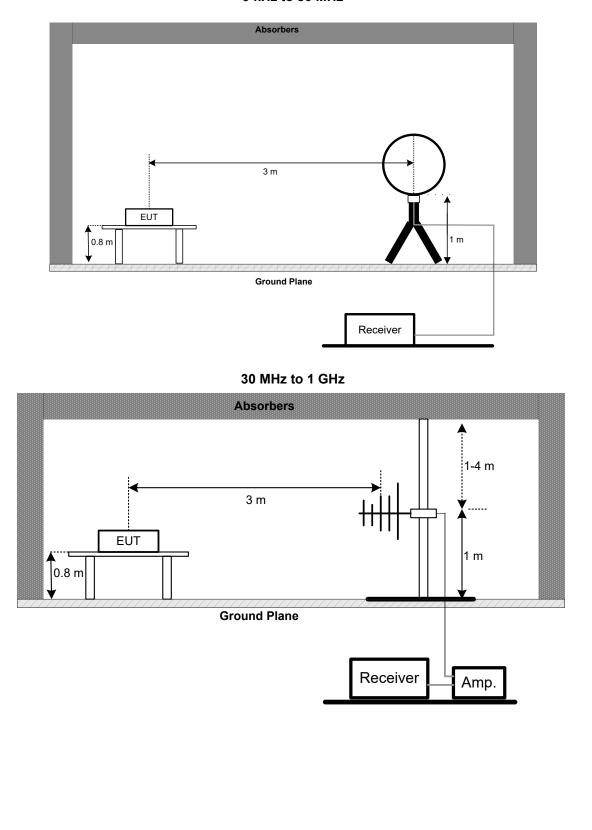


#### 4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

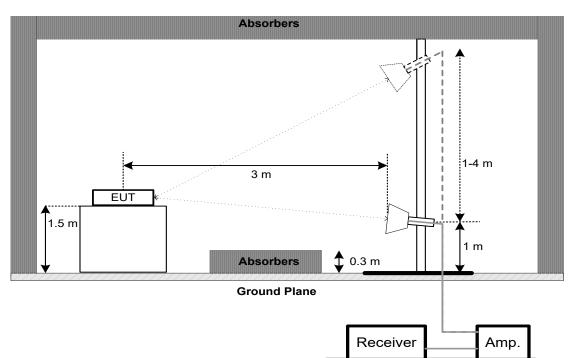
The following table is the setting of the receiver:

| Spectrum Parameters           | Setting                             |
|-------------------------------|-------------------------------------|
| Start ~ Stop Frequency        | 9 kHz~150 kHz for RBW 200 Hz        |
| Start ~ Stop Frequency        | 0.15 MHz~30 MHz for RBW 9 kHz       |
| Start ~ Stop Frequency        | 30 MHz~1000 MHz for RBW 100 kHz     |
| Spectrum Parameters           | Setting                             |
| Start Frequency               | 1000 MHz                            |
| Stop Frequency                | 10th carrier harmonic               |
| RBW / VBW                     | 1 MHz / 3 MHz for PK value          |
| (Emission in restricted band) | 1 MHz / 1/T Hz for AVG value        |
| Receiver Parameters           | Setting                             |
| Start ~ Stop Frequency        | 9 kHz~90 kHz for PK/AVG detector    |
| Start ~ Stop Frequency        | 90 kHz~110 kHz for QP detector      |
| Start ~ Stop Frequency        | 110 kHz~490 kHz for PK/AVG detector |
| Start ~ Stop Frequency        | 490 kHz~30 MHz for QP detector      |
| Start ~ Stop Frequency        | 30 MHz~1000 MHz for QP detector     |
| Start ~ Stop Frequency        | 1 GHz~26.5 GHz for PK/AVG detector  |




## 4.3 DEVIATION FROM TEST STANDARD

No deviation.


#### 4.4 TEST SETUP

9 kHz to 30 MHz





#### Above 1 GHz



#### 4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

#### 4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

#### Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

#### 4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

#### 4.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

#### Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.



# 5. BANDWIDTH

#### 5.1 LIMIT

| Section          | Test Item              | Limit           |
|------------------|------------------------|-----------------|
| FCC 15.247(a)(2) | 6 dB Bandwidth         | Minimum 500 kHz |
|                  | 99% Emission Bandwidth | -               |

#### 5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

| Setting                 |  |
|-------------------------|--|
| > Measurement Bandwidth |  |
| 100 kHz                 |  |
| 300 kHz                 |  |
| Peak                    |  |
| Max Hold                |  |
| Auto                    |  |
|                         |  |

#### For 99% Emission Bandwidth:

| Spectrum Parameters | Setting                                 |  |
|---------------------|-----------------------------------------|--|
| Span Frequency      | Between 1.5 times and 5.0 times the OBW |  |
| RBW                 | 300 kHz For 20MHz<br>1 MHz For 40MHz    |  |
| VBW                 | 1 MHz For 20MHz<br>3 MHz For 40MHz      |  |
| Detector            | Peak                                    |  |
| Trace               | Max Hold                                |  |
| Sweep Time          | Auto                                    |  |

5.3 DEVIATION FROM STANDARD

No deviation.

#### 5.4 TEST SETUP



#### 5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

#### 5.6 TEST RESULTS

Please refer to the APPENDIX E.



# 6. MAXIMUM AVERAGE OUTPUT POWER

#### 6.1 LIMIT

| Section          | Test Item                    | Limit                    |
|------------------|------------------------------|--------------------------|
| FCC 15.247(b)(3) | Maximum Average Output Power | 1.0000 Watt or 30.00 dBm |

#### 6.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.2.3.1 of ANSI C63.10-2013 and FCC KDB 662911 D01 v02r01 Multiple Transmitter Output.

#### **6.3 DEVIATION FROM STANDARD**

No deviation.

#### 6.4 TEST SETUP



#### 6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

#### 6.6 TEST RESULTS

Please refer to the APPENDIX F.



# 7. CONDUCTED SPURIOUS EMISSIONS

#### 7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

#### 7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

| For | Reference | امريم ا |
|-----|-----------|---------|
| FUL | Relefence | Level.  |

| Spectrum Parameters | Setting                         |  |
|---------------------|---------------------------------|--|
| Span Frequency      | $\geq$ 1.5 times the bandwidth. |  |
| RBW                 | 100 kHz                         |  |
| VBW                 | 300 kHz                         |  |
| Detector            | Peak                            |  |
| Trace               | Max Hold                        |  |
| Sweep Time          | Auto                            |  |

#### For Emission Level:

| Spectrum Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 30 MHz   |
| Stop Frequency      | 26.5 GHz |
| RBW                 | 100 kHz  |
| VBW                 | 300 kHz  |
| Detector            | Peak     |
| Trace               | Max Hold |
| Sweep Time          | Auto     |
|                     |          |

#### 7.3 DEVIATION FROM STANDARD

No deviation.

#### 7.4 TEST SETUP



#### 7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

#### 7.6 TEST RESULTS

Please refer to the APPENDIX G.



# 8. POWER SPECTRAL DENSITY

#### 8.1 LIMIT

| Section       | Test Item              | Limit          |
|---------------|------------------------|----------------|
| FCC 15.247(e) | Power Spectral Density | 8 dBm          |
|               |                        | (in any 3 kHz) |

#### 8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting                     |  |  |
|---------------------|-----------------------------|--|--|
| Span Frequency      | 1.5 times the DTS bandwidth |  |  |
| RBW                 | 3 kHz                       |  |  |
| VBW                 | 10 kHz                      |  |  |
| Detector            | Peak                        |  |  |
| Trace               | Max Hold                    |  |  |
| Sweep Time Auto     |                             |  |  |

#### 8.3 DEVIATION FROM STANDARD

No deviation.

#### 8.4 TEST SETUP



#### 8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

#### 8.6 TEST RESULTS

Please refer to the APPENDIX H.

# 9. MEASUREMENT INSTRUMENTS LIST

|      | AC Power Line Conducted Emissions |                       |                          |            |                  |  |  |  |  |  |
|------|-----------------------------------|-----------------------|--------------------------|------------|------------------|--|--|--|--|--|
| Item | Kind of Equipment                 | Manufacturer          | Type No.                 | Serial No. | Calibrated until |  |  |  |  |  |
| 1    | EMI Test Receiver                 | R&S                   | ESCI                     | 100382     | Jan. 22, 2023    |  |  |  |  |  |
| 2    | LISN                              | EMCO                  | 3816/2                   | 52765      | Jan. 23, 2023    |  |  |  |  |  |
| 3    | TWO-LINE<br>V-NETWORK             | $R_{\rm R} = 10^{-1}$ |                          | 101447     | Jan. 23, 2023    |  |  |  |  |  |
| 4    | 50Ω Terminator                    | SHX                   | TF5-3                    | 15041304   | Jan. 22, 2023    |  |  |  |  |  |
| 5    | Measurement<br>Software           | Farad                 | EZ-EMC<br>Ver.NB-03A1-01 | N/A        | N/A              |  |  |  |  |  |
| 6    | Cable                             | N/A                   | RG223                    | 12m        | Mar. 08, 2023    |  |  |  |  |  |
| 7    | 643 Shield Room                   | ETS                   | 6*4*3                    | N/A        | N/A              |  |  |  |  |  |

|      | Radiated Emissions - 9 kHz to 30 MHz |              |                          |               |                                |  |  |  |  |
|------|--------------------------------------|--------------|--------------------------|---------------|--------------------------------|--|--|--|--|
| Item | Kind of Equipment                    | Manufacturer | Type No.                 | Serial No.    | Calibrated until               |  |  |  |  |
| 1    | MXE EMI Receiver                     | Keysight     | N9038A                   | MY56400091    | Jan. 22, 2023                  |  |  |  |  |
| 2*   | Active Loop Antenna                  | R&S          | HFH2-Z2                  | 830749/020    | Aug. 23, 2024                  |  |  |  |  |
| 3    | Cable N/A RG<br>213/U(9kHz~1GHz)     |              | N/A                      | Jun. 17, 2023 |                                |  |  |  |  |
| 4    | Measurement<br>Software              | Farad        | EZ-EMC<br>Ver.NB-03A1-01 | N/A           | N/A                            |  |  |  |  |
| 5    | 966 Chamber Room                     | ETS          | 9*6*6                    | N/A           | Jul. 14, 2022<br>Jul. 14, 2023 |  |  |  |  |

|      | Radiated Emissions - 30 MHz to 1 GHz |                                  |                          |             |                                |  |  |  |  |
|------|--------------------------------------|----------------------------------|--------------------------|-------------|--------------------------------|--|--|--|--|
| Item | Kind of Equipment                    | Manufacturer                     | Type No.                 | Serial No.  | Calibrated until               |  |  |  |  |
| 1    | Antenna                              | Schwarzbeck                      | VULB9160                 | 9160-3232   | Mar. 03, 2023                  |  |  |  |  |
| 2    | Amplifier                            | HP                               | 8447D                    | 2944A08742  | Jan. 22, 2023                  |  |  |  |  |
| 3    | Cable                                | emci                             | LMR-400                  | N/A         | Nov. 30, 2022                  |  |  |  |  |
| 4    | Controller                           | roller CT SC100 N/A              |                          | N/A         | N/A                            |  |  |  |  |
| 5    | Controller                           | ontroller MF MF-7802 MF780208416 |                          | MF780208416 | N/A                            |  |  |  |  |
| 6    | Receiver                             | Agilent                          | N9038A                   | MY52130039  | Jan. 22, 2023                  |  |  |  |  |
| 7    | Measurement<br>Software              | Farad                            | EZ-EMC<br>Ver.NB-03A1-01 | N/A         | N/A                            |  |  |  |  |
| 8    | 966 Chamber Room                     | RM                               | 9*6*6                    | N/A         | Jul. 15, 2022<br>Jul. 15, 2023 |  |  |  |  |



| Radiated Emissions - Above 1 GHz                                   |                               |                  |                          |             |                                |  |  |  |
|--------------------------------------------------------------------|-------------------------------|------------------|--------------------------|-------------|--------------------------------|--|--|--|
| Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated |                               |                  |                          |             |                                |  |  |  |
| 1                                                                  | Double Ridged Horn<br>Antenna | ARA              | DRG-118A                 | 16554       | Apr. 18, 2023                  |  |  |  |
| 2                                                                  | Broad-Band Horn<br>Antenna    | Schwarzbeck      | BBHA 9170                | 9170319     | May 27, 2023                   |  |  |  |
| 3                                                                  | Amplifier                     | Agilent          | 8449B                    | 3008A02584  | Jul. 03, 2023                  |  |  |  |
| 4                                                                  | Controller                    | СТ               | SC100                    | N/A         | N/A                            |  |  |  |
| 5                                                                  | Controller                    | MF               | MF-7802                  | MF780208416 | N/A                            |  |  |  |
| 6                                                                  | Receiver                      | Agilent          | N9038A                   | MY52130039  | Jan. 22, 2023                  |  |  |  |
| 7                                                                  | EXA Spectrum<br>Analyzer      | Keysight         | N9010A                   | MY56480488  | Jan. 22, 2023                  |  |  |  |
| 8*                                                                 | Low Noise Amplifier           | CONNPHY          | CLN-18G40G-4330<br>-K    | 619413      | Jul. 05, 2025                  |  |  |  |
| 9                                                                  | Cable                         | Talent microwave | A81-SMAMSMAM-<br>12.5M   | N/A         | Oct. 15, 2022                  |  |  |  |
| 10                                                                 | Cable                         | Talent microwave | A40-2.92M2.92M-2.<br>5M  | N/A         | Nov. 30, 2022                  |  |  |  |
| 11                                                                 | Filter                        | STI              | STI15-9912               | N/A         | Jul. 03, 2023                  |  |  |  |
| 12                                                                 | Measurement<br>Software       | Farad            | EZ-EMC<br>Ver.NB-03A1-01 | N/A         | N/A                            |  |  |  |
| 13                                                                 | 966 Chamber Room              | RM               | 9*6*6                    | N/A         | Jul. 15, 2022<br>Jul. 15, 2023 |  |  |  |

| Bandwidth &<br>Conducted Spurious Emissions &<br>Power Spectral Density |                                          |              |       |        |               |  |  |
|-------------------------------------------------------------------------|------------------------------------------|--------------|-------|--------|---------------|--|--|
| Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated u    |                                          |              |       |        |               |  |  |
| 1                                                                       | Spectrum Analyzer                        | R&S          | FSP40 | 100185 | Jul. 03, 2023 |  |  |
| 2                                                                       | 2 Attenuator WOKEN 6SM3502 VAS1214NL N/A |              |       |        |               |  |  |
| 3                                                                       | RF Cable                                 | Tongkaichuan | N/A   | N/A    | N/A           |  |  |
| 4                                                                       | DC Block                                 | Mini         | N/A   | N/A    | N/A           |  |  |

|                                                             | Maximum Average Output Power |          |         |            |               |  |  |  |  |
|-------------------------------------------------------------|------------------------------|----------|---------|------------|---------------|--|--|--|--|
| Item Kind of Equipment Manufacturer Type No. Serial No. Cal |                              |          |         |            |               |  |  |  |  |
| 1                                                           | Peak Power Analyzer          | Keysight | 8990B   | MY51000506 | Jul. 03, 2023 |  |  |  |  |
| 2                                                           | Wideband power sensor        | Keysight | N1923A  | MY58310004 | Jul. 03, 2023 |  |  |  |  |
| 3                                                           | Attenuator                   | WOKEN    | 6SM3502 | VAS1214NL  | N/A           |  |  |  |  |
| 4                                                           | RF Cable Tongkaichuan        |          | N/A     | N/A        | N/A           |  |  |  |  |

Remark: "N/A" denotes no model name, serial no. or calibration specified.

"\*" calibration period of equipment list is three year.

Except \* item, all calibration period of equipment list is one year.

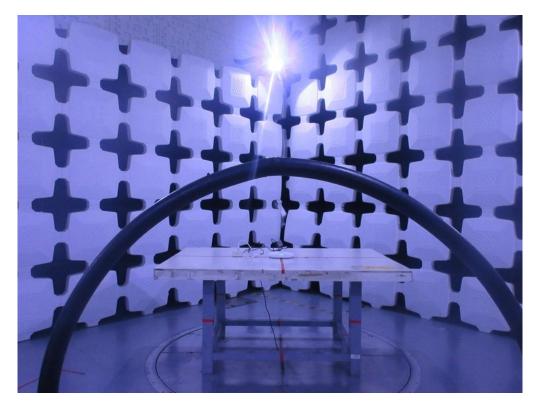


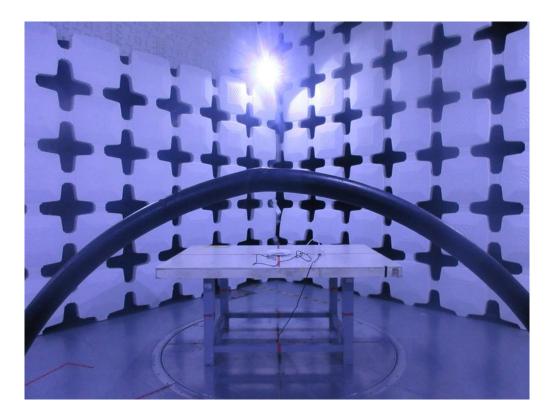


ĹL

3

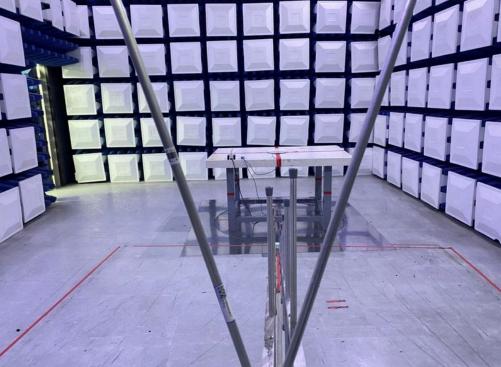
#### AC Power Line Conducted Emissions Test Photos






# **Radiated Emissions Test Photos**


9 kHz to 30 MHz







<section-header><section-header>





Radiated Emissions Test Photos

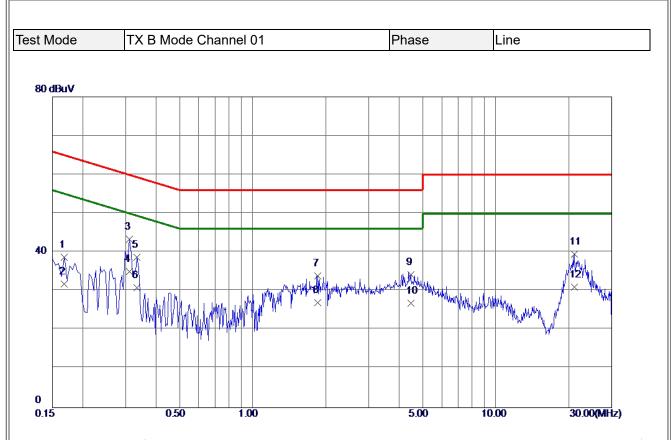
Above 1 GHz







#### **Conducted Test Photos**

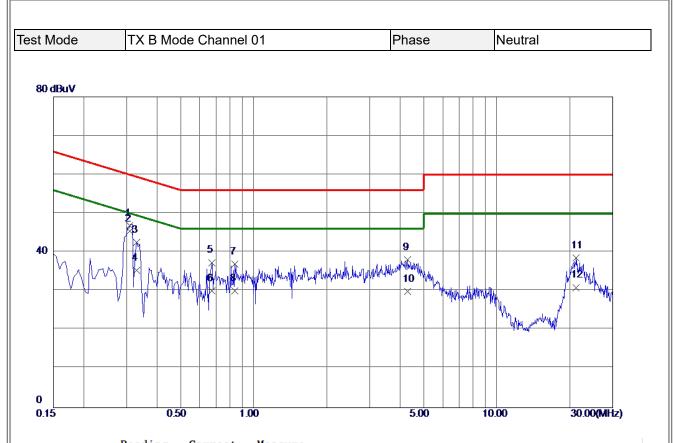







# **APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS**





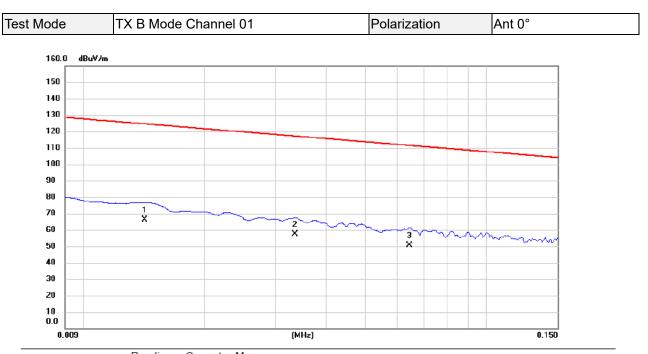

| No. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure<br>ment | Limit          | Margin  |          |         |
|-----|---------|------------------|-------------------|-----------------|----------------|---------|----------|---------|
|     | MHz     | dBuV             | dB                | dBuV            | dBuV           | dB      | Detector | Comment |
| 1   | 0.1680  | 29.01            | 9.67              | 38.68           | 65.06          | -26.38  | QP       |         |
| 2   | 0.1680  | 22.10            | 9.67              | 31.77           | 55. <b>0</b> 6 | -23. 29 | AVG      |         |
| 3   | 0.3120  | 33.66            | 9.72              | 43. 38          | <b>59.9</b> 2  | -16. 54 | QP       |         |
| 4 * | 0.3120  | 25. 30           | 9.72              | 35.02           | <b>49. 9</b> 2 | -14. 90 | AVG      |         |
| 5   | 0.3345  | 28.97            | 9.73              | 38.70           | 59.34          | -20.64  | QP       |         |
| 6   | 0.3345  | 21.10            | 9.73              | 30.83           | 49.34          | -18. 51 | AVG      |         |
| 7   | 1.8510  | 23.97            | 9.88              | 33.85           | 56.00          | -22.15  | QP       |         |
| 8   | 1.8510  | 17.20            | 9.88              | 27.08           | 46.00          | -18. 92 | AVG      |         |
| 9   | 4.4699  | 24.12            | 10.08             | 34.20           | 56.00          | -21.80  | QP       |         |
| 10  | 4.4699  | 16.80            | 10.08             | 26.88           | 46.00          | -19.12  | AVG      |         |
| 11  | 21.0660 | 28.72            | 10.80             | 39. 52          | 60.00          | -20. 48 | QP       |         |
| 12  | 21.0660 | 20. 30           | 10.80             | 31.10           | 50.00          | -18. 90 | AVG      |         |
|     |         |                  |                   |                 |                |         |          |         |

**REMARKS**:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



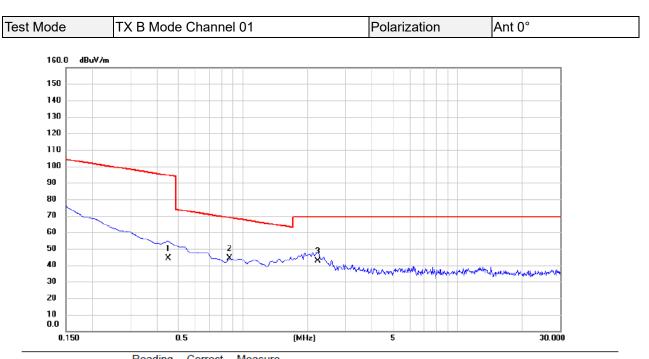



| No. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure<br>ment | Limit         | Margin          |          |         |
|-----|----------|------------------|-------------------|-----------------|---------------|-----------------|----------|---------|
|     | MHz      | dBuV             | dB                | dBuV            | dBuV          | dB              | Detector | Comment |
| 1   | 0.3100   | 37.09            | 9.75              | 46.84           | 59.97         | -13. 13         | QP       |         |
| 2 * | 0.3100   | 35.70            | 9.75              | 45.45           | 49.97         | -4. 52          | AVG      |         |
| 3   | 0.3300   | 32.82            | 9.76              | 42.58           | <b>59.4</b> 5 | -16.87          | QP       |         |
| 4   | 0.3300   | 25.61            | 9.76              | 35.37           | 49.45         | -14. <b>0</b> 8 | AVG      |         |
| 5   | 0.6720   | 27. 53           | 9.83              | 37.36           | 56.00         | -18. 64         | QP       |         |
| 6   | 0.6720   | 20. 30           | 9.83              | 30.13           | 46.00         | -15.87          | AVG      |         |
| 7   | 0.8385   | 27.16            | 9.83              | 36.99           | 56.00         | -19. 01         | QP       |         |
| 8   | 0.8385   | 20.30            | 9.83              | 30.13           | 46.00         | -15.87          | AVG      |         |
| 9   | 4.2990   | 27.91            | 10.10             | 38.01           | 56.00         | -17.99          | QP       |         |
| 10  | 4. 2990  | 19.80            | 10.10             | 29.90           | 46.00         | -16. 10         | AVG      |         |
| 11  | 21. 1875 | 27.65            | 10.86             | 38. 51          | 60.00         | -21. 49         | QP       |         |
| 12  | 21. 1875 | 20.10            | 10.86             | 30.96           | 50.00         | -19. 04         | AVG      |         |
|     |          |                  |                   |                 |               |                 |          |         |

**REMARKS**:

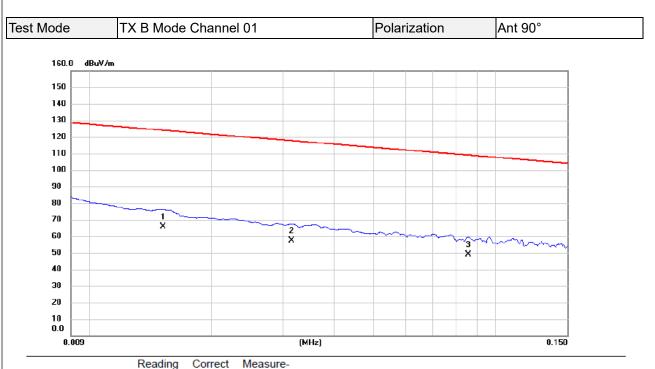
- Measurement Value = Reading Level + Correct Factor.
   Margin Level = Measurement Value Limit Value.




#### **APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ**



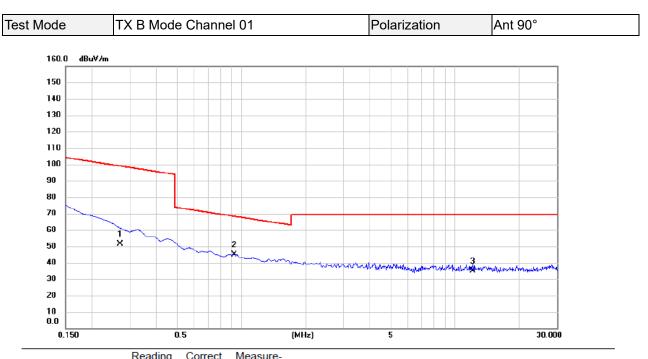
| No. | Mk. | Freq.  | Reading<br>Level |       | Measure-<br>ment |        | Margin |          |         |
|-----|-----|--------|------------------|-------|------------------|--------|--------|----------|---------|
|     |     | MHz    | dBuV             | dB    | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   | *   | 0.0142 | 50.02            | 16.11 | 66.13            | 124.56 | -58.43 | AVG      |         |
| 2   |     | 0.0335 | 43.59            | 13.98 | 57.57            | 117.10 | -59.53 | AVG      |         |
| 3   |     | 0.0644 | 37.15            | 13.61 | 50.76            | 111.43 | -60.67 | AVG      |         |


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





| No. Mk. | Freq.  |       | Factor | Measure-<br>ment |        | Margin |          |         |
|---------|--------|-------|--------|------------------|--------|--------|----------|---------|
|         | MHz    | dBuV  | dB     | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1       | 0.4485 | 30.28 | 13.73  | 44.01            | 94.57  | -50.56 | AVG      |         |
| 2 *     | 0.8663 | 30.99 | 13.31  | 44.30            | 68.85  | -24.55 | QP       |         |
| 3       | 2.2395 | 30.28 | 12.48  | 42.76            | 69.54  | -26.78 | QP       |         |

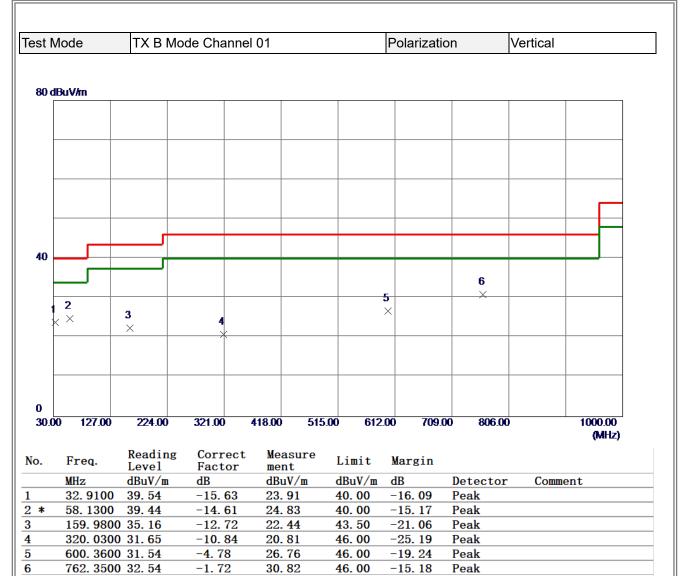

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



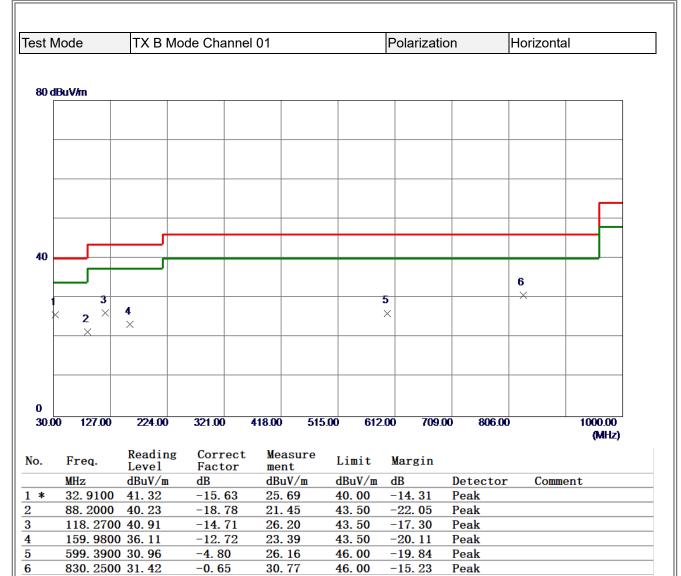
| No.   | Mk. | Freq.  | Level | Factor | ment   | Limit  | Margin |          |         |
|-------|-----|--------|-------|--------|--------|--------|--------|----------|---------|
|       |     | MHz    | dBuV  | dB     | dBuV/m | dBuV/m | dB     | Detector | Comment |
| 1     | *   | 0.0152 | 50.20 | 15.80  | 66.00  | 123.97 | -57.97 | AVG      |         |
| 2     |     | 0.0314 | 43.18 | 14.03  | 57.21  | 117.67 | -60.46 | AVG      |         |
| <br>3 |     | 0.0855 | 35.29 | 13.64  | 48.93  | 108.97 | -60.04 | AVG      |         |
|       |     |        |       |        |        |        |        |          |         |

- (1) Measurement Value = Reading Level + Correct Factor.
  (2) Margin Level = Measurement Value Limit Value.





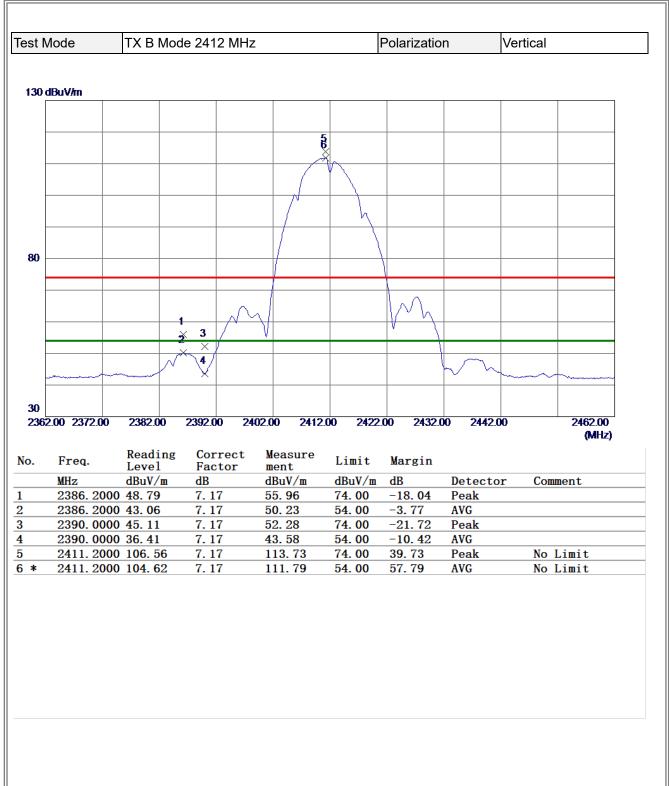

|   | No. Mk. | Freq.   | Level | Factor | ment   | Limit  | Margin |          |         |
|---|---------|---------|-------|--------|--------|--------|--------|----------|---------|
| - |         | MHz     | dBuV  | dB     | dBuV/m | dBuV/m | dB     | Detector | Comment |
| - | 1       | 0.2714  | 37.46 | 13.76  | 51.22  | 98.93  | -47.71 | AVG      |         |
| - | 2 *     | 0.9261  | 31.87 | 13.30  | 45.17  | 68.27  | -23.10 | QP       |         |
|   | 3       | 12.1198 | 22.49 | 12.35  | 34.84  | 69.54  | -34.70 | QP       |         |


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



#### APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

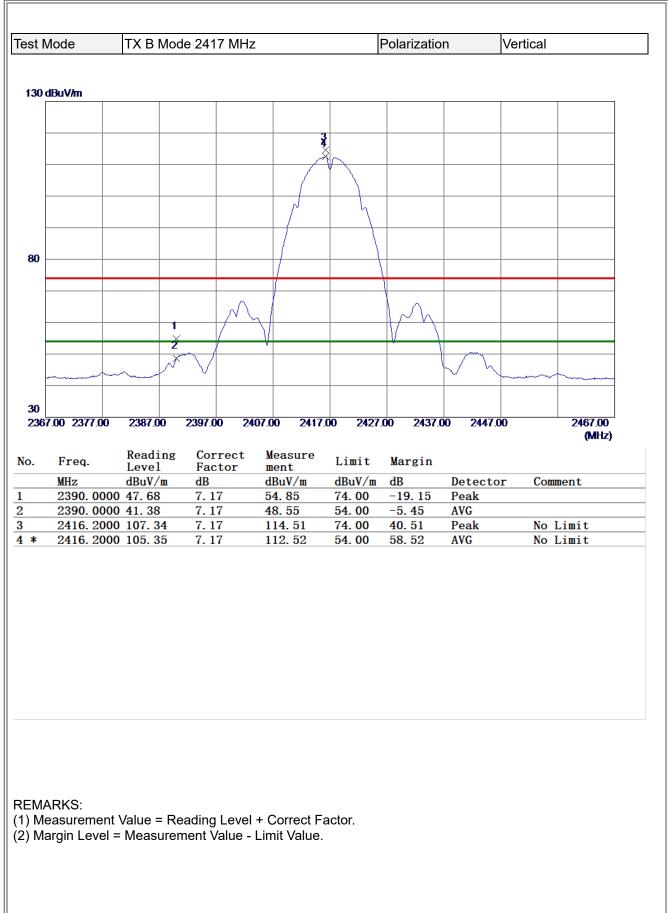



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



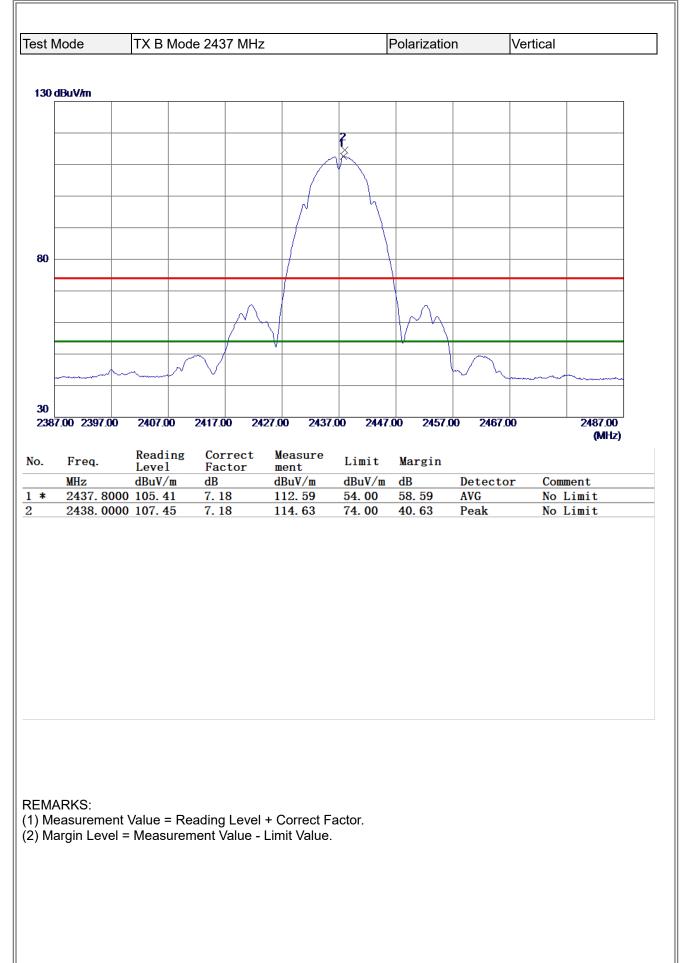
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.




#### **APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ**

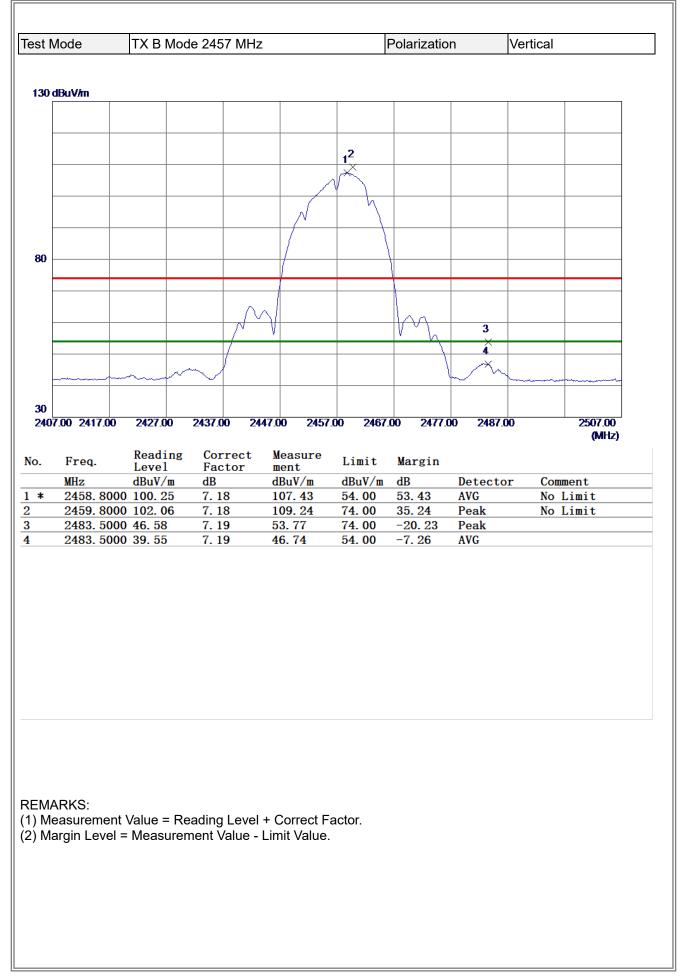


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


# **3**TL

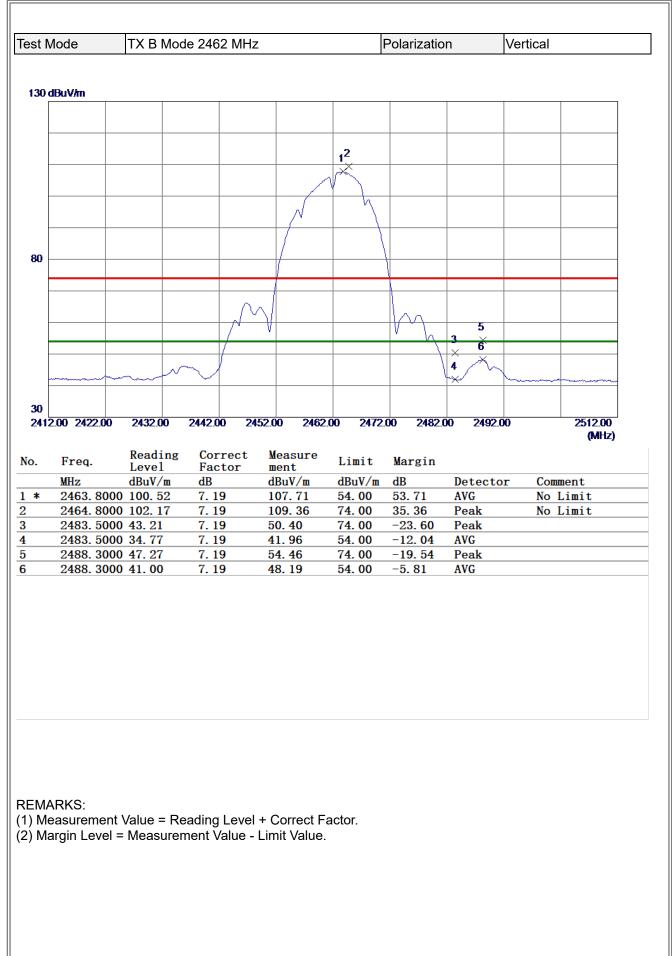
| est Mode                           | TV D                       | 1. 0440 1411           | _                      |           |             |          | V ( a set i se set i |
|------------------------------------|----------------------------|------------------------|------------------------|-----------|-------------|----------|----------------------|
|                                    | I X B Mo                   | ode 2412 MHz           | 2                      |           | Polarizatio | n        | Vertical             |
|                                    |                            |                        |                        |           |             |          |                      |
| 80 dBuV/m                          |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    | 1<br>Ž                     |                        |                        |           |             |          |                      |
|                                    | ×                          |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
| 30                                 |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
| -20<br>1000.00 3550.0              | 0 6100.00                  | 8650.00 11             | 200.00 13750           | ).00 1630 | 0.00 18850  | 00 21400 | .00 26500.00         |
|                                    |                            |                        |                        |           |             |          | (MHz)                |
| o. Freq.                           | Reading<br>Level           | g Correct<br>Factor    | Measure<br>ment        | Limit     | Margin      |          |                      |
| MHz                                | dBuV/m                     | dB                     | dBuV/m                 | dBuV/m    |             | Detecto  | or Comment           |
|                                    | 500 43.89                  | 4.23                   | 48.12                  | 74.00     | -25.88      | Peak     |                      |
|                                    | 600 38.43                  | 4. 23                  | 42.66                  | 54.00     | -11. 34     | AVG      |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
|                                    |                            |                        |                        |           |             |          |                      |
| * <u>4823.9</u><br>EMARKS:         | 600 38.43                  | 4. 23                  | 42.66                  | 54.00     |             |          |                      |
| * 4823.9<br>EMARKS:<br>) Measureme | 600 38.43<br>ent Value = F | 4. 23<br>Reading Level | 42. 66<br>+ Correct Fa | 54. 00    |             |          |                      |
| EMARKS:                            | 600 38.43<br>ent Value = F | 4. 23                  | 42. 66<br>+ Correct Fa | 54. 00    |             |          |                      |
| 2 * 4823.9<br>EMARKS:              | 600 38.43<br>ent Value = F | 4. 23<br>Reading Level | 42. 66<br>+ Correct Fa | 54. 00    |             |          |                      |
| * 4823.9<br>EMARKS:<br>) Measureme | 600 38.43<br>ent Value = F | 4. 23<br>Reading Level | 42. 66<br>+ Correct Fa | 54. 00    |             |          |                      |
| * 4823.9<br>EMARKS:<br>) Measureme | 600 38.43<br>ent Value = F | 4. 23<br>Reading Level | 42. 66<br>+ Correct Fa | 54. 00    |             |          |                      |
| * 4823.9<br>EMARKS:<br>) Measureme | 600 38.43<br>ent Value = F | 4. 23<br>Reading Level | 42. 66<br>+ Correct Fa | 54. 00    |             |          |                      |
| ⊧ 4823.9<br>MARKS:<br>Measureme    | 600 38.43<br>ent Value = F | 4. 23<br>Reading Level | 42. 66<br>+ Correct Fa | 54. 00    |             |          |                      |




# BLL

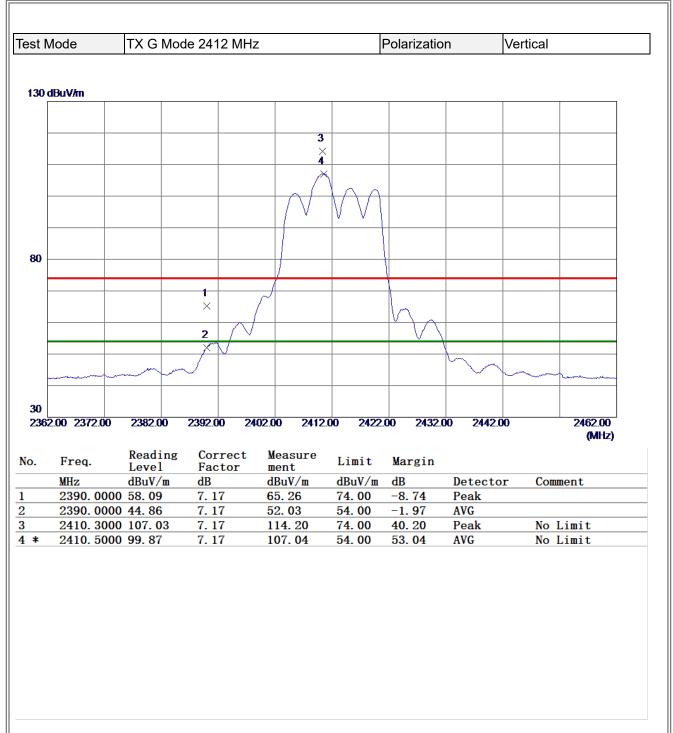
| st Mode              | TX B Mo         | de 2417 MHz | 2               |                 | Polarizatio | n              | Vertical |          |
|----------------------|-----------------|-------------|-----------------|-----------------|-------------|----------------|----------|----------|
|                      |                 |             |                 |                 |             |                |          |          |
| 0 dBuV/m             | 1 1             |             |                 |                 |             | 1              | 1        |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      | 2<br>K          |             |                 |                 |             |                |          |          |
|                      | ×               |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
| 30                   |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
|                      |                 |             |                 |                 |             |                |          |          |
| 20<br>1000.00 3550.0 | 0 6100.00       | 8650.00 11  | 200.00 13750    | 0.00 1630       | 0.00 18850  | 0.00 21400     | 0.00     | 26500.00 |
|                      | 0100.00         | 0000.00 TI  |                 |                 |             |                |          | (MHz)    |
| o. Freq.             | Reading         | Correct     | Measure         | Limit           | Margin      |                |          |          |
| MHz                  | Level<br>dBuV/m | Factor      | ment            |                 | _           |                |          |          |
|                      | ubuv/ш          | dB          | dBuV/m          | dBuV/m          | dB          | Detecto        | or Com   | ment     |
| * 4833.9             | 600 38.95       | dB<br>4. 26 | dBuV/m<br>43.21 | dBuV/m<br>54.00 | -10. 79     | Detecto<br>AVG | or Com   | ment     |
| * 4833.9             |                 |             |                 |                 |             |                | or Com   | ment     |
| * 4833.9             | 600 38.95       | 4.26        | 43. 21          | <b>54.00</b>    | -10. 79     | AVG            | or Com   | ment     |




# **B**TL

|                                           | TX B Mo                    | de 2437 MHz                  | 2                            |              | Polarizatio | n          | Vertical |          |
|-------------------------------------------|----------------------------|------------------------------|------------------------------|--------------|-------------|------------|----------|----------|
|                                           |                            |                              |                              |              |             |            |          |          |
| 0 dBuV/m                                  |                            |                              |                              |              |             | 1          |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           | 1                          |                              |                              |              |             |            |          |          |
|                                           | ž                          |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
| 0                                         |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
| 20<br>1000.00 3550.00                     | 6100.00                    | 8650.00 11                   | 200.00 13750                 | 0.00 1630    | 18850       | 0.00 21400 | 100      | 26500.00 |
| 000.00 000.00                             | 0100.00                    |                              |                              |              | 1000        | 2110       |          | (MHz)    |
| . Freq.                                   | Reading                    | Correct                      | Measure                      | Limit        | Margin      |            |          |          |
| MHz                                       | Level<br>dBuV/m            | Factor<br>dB                 | ment<br>dBuV/m               | dBuV/m       | dB          | Detecto    | or Com   | ment     |
| 4873.895                                  |                            | 4. 38                        | 45. 99                       | 74. 00       | -28. 01     | Peak       |          | шенс     |
| * 4873.950                                | 00 35.24                   | 4.38                         | 39.62                        | <b>54.00</b> | -14. 38     | AVG        |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
|                                           |                            |                              |                              |              |             |            |          |          |
| Measuremen                                | t Value = R                | eading Level                 | + Correct Fa                 | actor.       |             |            |          |          |
| EMARKS:<br>) Measuremen<br>) Margin Level | t Value = Re<br>= Measure  | eading Level<br>ment Value - | + Correct Fa<br>Limit Value. | actor.       |             |            |          |          |
| ) Measuremen                              | t Value = Ro<br>= Measure  | eading Level<br>ment Value - | + Correct Fa<br>Limit Value. | actor.       |             |            |          |          |
| ) Measuremen                              | t Value = Ri<br>= Measurei | eading Level<br>ment Value - | + Correct Fa<br>Limit Value. | actor.       |             |            |          |          |
| ) Measuremen                              | t Value = Ro<br>= Measure  | eading Level<br>ment Value - | + Correct Fa<br>Limit Value. | actor.       |             |            |          |          |
| Measuremen                                | t Value = Ri<br>= Measurei | eading Level<br>ment Value - | + Correct Fa<br>Limit Value. | actor.       |             |            |          |          |
| Measuremen                                | t Value = Re<br>= Measure  | eading Level<br>ment Value - | + Correct Fa<br>Limit Value. | actor.       |             |            |          |          |

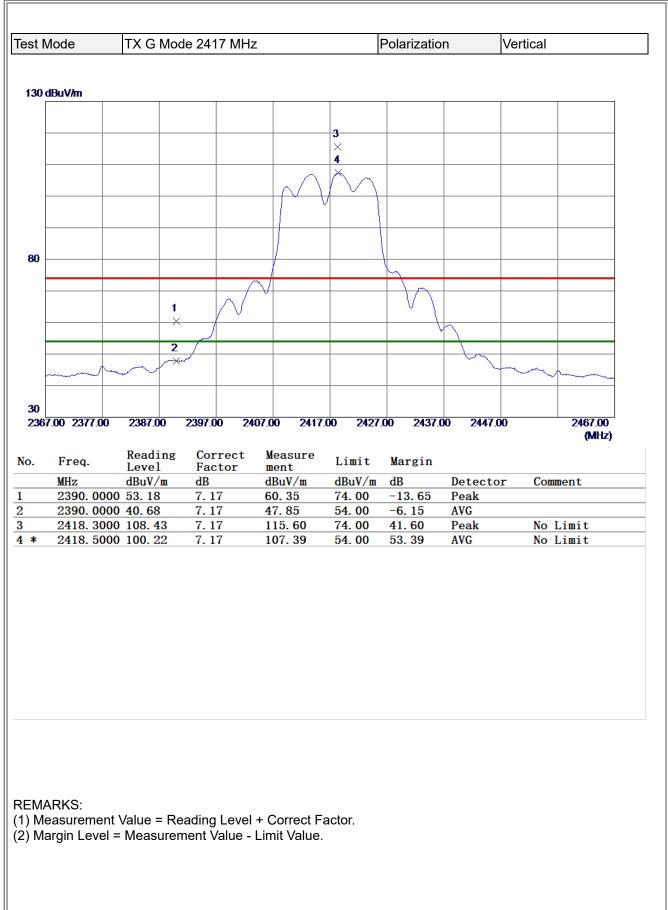



# **3**TL

|                | IXBM                | ode 2457            | MHz                  |                  | I               | Polarizatio   | n                      | Vertical |                   |
|----------------|---------------------|---------------------|----------------------|------------------|-----------------|---------------|------------------------|----------|-------------------|
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
| lBuV/m         |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                | 2                   |                     |                      |                  |                 |               |                        |          |                   |
|                | ×                   |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
|                |                     |                     |                      |                  |                 |               |                        |          |                   |
| 0.00 0550.0    |                     |                     | 44000.00             | 40750            |                 | 00 40050      | 00 04400               |          |                   |
| 0.00 3550.0    | 0 6100.00           | 8650.00             | 11200.00             | 13750            | .00 16300       | 0.00 18850    | .00 21400              | 0.00     | 26500.00<br>(MHz) |
| Freq.          | Readin              | g Corre             | at Mar               |                  |                 |               |                        |          |                   |
|                |                     |                     | ct mea               | isure            | Limit           | Margin        |                        |          |                   |
|                | Level               | Facto               | or men               | nt               | Limit           | Margin        | Dotooto                | r Cor    | mont              |
| MHz            | dBuV/m              | Facto<br>dB         | or men<br>dBu        | nt<br>IV/m       | dBuV/m          | dB            | Detecto<br>AVG         | or Con   | ment              |
| MHz<br>4913.98 |                     | Facto               | or men               | nt<br>IV/m<br>97 |                 |               | Detecto<br>AVG<br>Peak | or Con   | ment              |
| MHz<br>4913.98 | dBuV/m<br>350 34.48 | Facto<br>dB<br>4.49 | or men<br>dBu<br>38. | nt<br>IV/m<br>97 | dBuV/m<br>54.00 | dB<br>-15. 03 | AVG                    | or Con   | ment              |

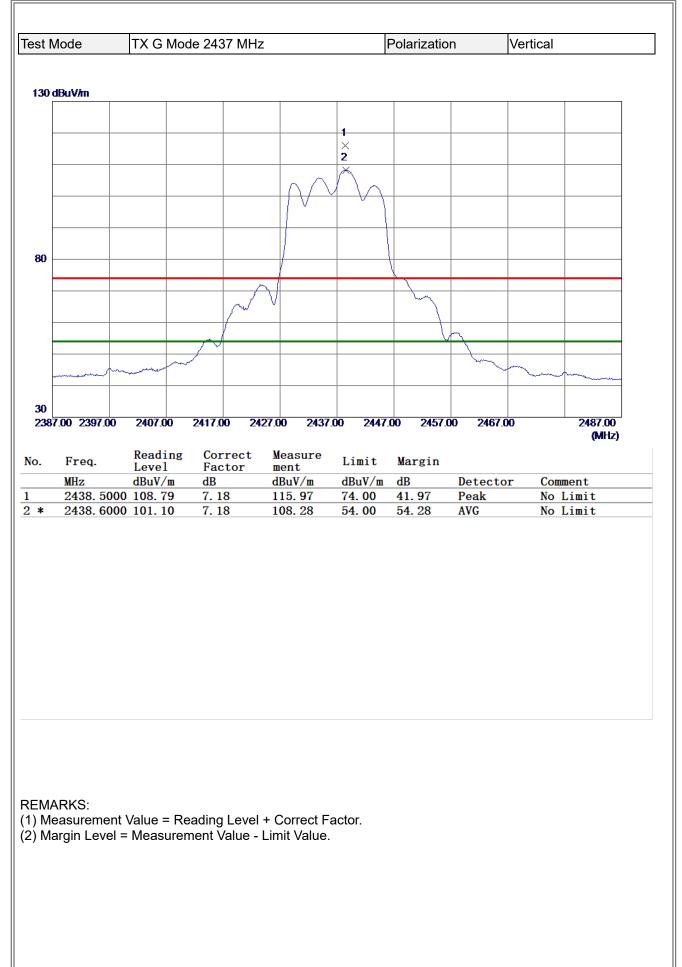


# **3**TL


|             | TX            | B Mod      | de 246             | 2 MHz    |                         |          |                  | Polarizatio   | on                    | Vertical |          |
|-------------|---------------|------------|--------------------|----------|-------------------------|----------|------------------|---------------|-----------------------|----------|----------|
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
| 80 dBuV/m   |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             | 1             |            |                    |          |                         |          |                  |               |                       |          |          |
|             | 2×            |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
| 30          |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
|             |               |            |                    |          |                         |          |                  |               |                       |          |          |
| -20         |               |            |                    |          |                         |          |                  |               |                       |          |          |
| 1000.00 355 | 0.00 61       | 00.00      | 8650.0             | 0 112    | 00.00 1                 | 13750.0  | 0 1630           | 0.00 1885     | 0.00 2140             | 0.00     | 26500.00 |
|             | P             |            |                    |          |                         |          |                  |               |                       |          | (MHz)    |
| o. Freq.    | . Ke          | ading      | Cor                | roct     |                         |          |                  |               |                       |          |          |
|             | Le            | vel        | Fac                |          | Measu:<br>ment          | re       | Limit            | Margin        |                       |          |          |
| MHz         | dB            | ıV∕m       | Fac<br>dB          | tor      | ment<br>dBuV/r          | n (      | dBuV/m           | dB            | Detect                | or Co    | mment    |
| 4923.       |               | uV/m<br>18 | Fac                | tor<br>2 | ment                    | <b>n</b> |                  |               | Detect<br>Peak<br>AVG | or Co    | nment    |
| 4923.       | dB<br>9500 42 | uV/m<br>18 | Fac<br>dB<br>4. 52 | tor<br>2 | ment<br>dBuV/r<br>46.70 | <b>n</b> | dBuV/m<br>74. 00 | dB<br>−27. 30 | Peak                  | or Co    | nment    |

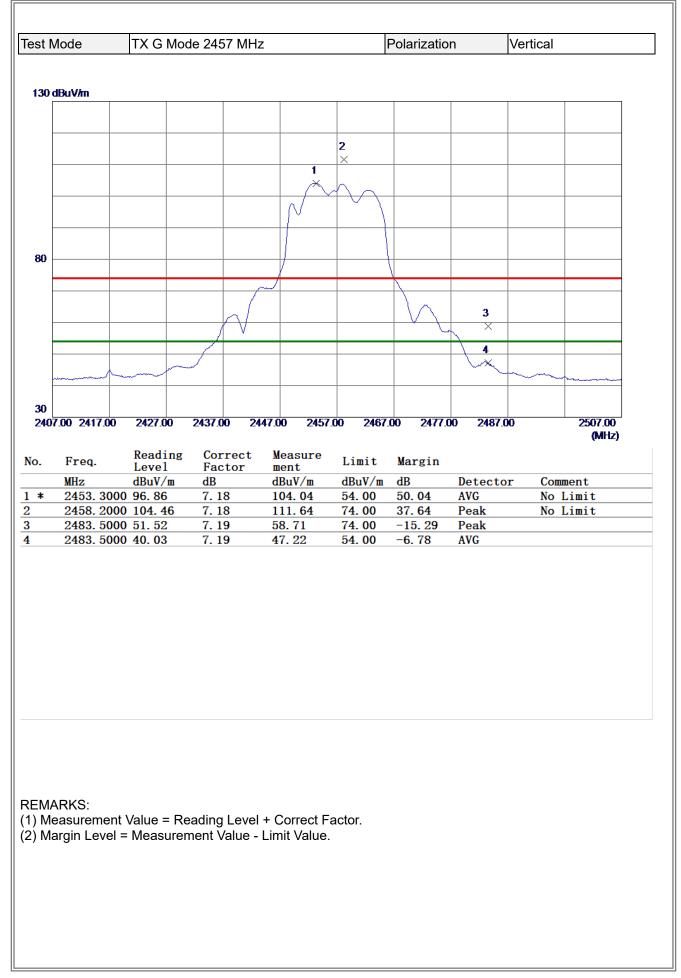


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


# **3**TL

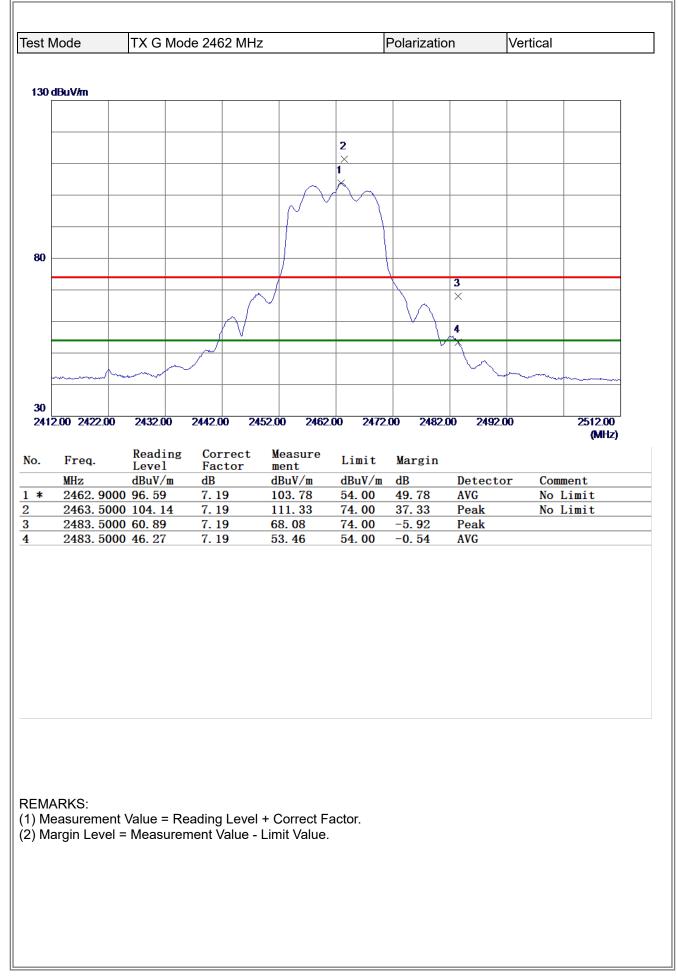
| t Mode             | TX G Mo                      | ode 2412 MH          | Z                       | I               | Polarizatio   | n                      | Vertical |          |
|--------------------|------------------------------|----------------------|-------------------------|-----------------|---------------|------------------------|----------|----------|
|                    |                              |                      |                         |                 |               |                        |          |          |
| 0 dBuV/m           |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    | 2                            |                      |                         |                 |               |                        |          |          |
|                    | ×                            |                      |                         |                 |               |                        |          |          |
|                    | ×                            |                      |                         |                 |               |                        |          |          |
| 0                  |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
|                    |                              |                      |                         |                 |               |                        |          |          |
| 0<br>000.00 3550.0 | 0 6100.00                    | 8650.00 11           | 200.00 13750            | ).00 16300      | 100 19950     | .00 21400              | 200      | 26500.00 |
| 000.00 5550.0      | 0 0100.00                    | 0000.00 11           | 200.00 13130            | 1.00 10.50      | 7.00 100.00   | .00 2140               |          | (MHz)    |
|                    |                              |                      |                         |                 |               |                        |          |          |
| . Freq.            | Reading                      | Correct              | Measure                 | Limit           | Margin        |                        |          |          |
| MHz                | Level<br>dBuV/m              | Factor<br>dB         | ment<br>dBuV/m          | dBuV/m          | dB            | Detecto                | or Com   | ment     |
| MHz<br>≰ 4823.7    | Level                        | Factor               | ment                    |                 |               | Detecto<br>AVG<br>Peak | or Com   | ment     |
| MHz<br>≰ 4823.7    | Level<br>dBuV/m<br>750 30.64 | Factor<br>dB<br>4.23 | ment<br>dBuV/m<br>34.87 | dBuV/m<br>54.00 | dB<br>-19. 13 | AVG                    | or Con   | ment     |




# **3**TL

| st Mode              | TX G Mo                | ode 2417 MHz      | 7                |                          | Polarizatio            | n                      | Vertical   |       |
|----------------------|------------------------|-------------------|------------------|--------------------------|------------------------|------------------------|------------|-------|
|                      |                        |                   |                  |                          |                        |                        |            |       |
| 0 dBuV/m             |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      | 1                      |                   |                  |                          |                        |                        |            |       |
|                      | ×                      |                   |                  |                          |                        |                        |            |       |
|                      | 2<br>×                 |                   |                  |                          |                        |                        |            |       |
| 30                   |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
|                      |                        |                   |                  |                          |                        |                        |            |       |
| 20<br>1000.00 3550.0 | 0 6100.00              | 8650.00 11        | 200.00 13750     | .00 1630                 | 0.00 18850             | .00 21400              | 00 2651    | 00.00 |
| 000.00 5550.0        | 0 0100.00              | 0000.00 11        | 200.00 13130     | 100 1030                 | 0.00 100.00            | .00 21400              |            | /Hz)  |
| . Freq.              | Reading<br>Level       | Correct<br>Factor | Measure<br>ment  | Limit                    | Margin                 |                        |            |       |
| MHz                  | dBuV/m                 | dB                |                  |                          |                        |                        |            |       |
|                      | a                      | <b>UD</b>         | dBuV/m           | dBuV/m                   | dB                     | Detecto                | or Comment |       |
| <b>4831.9</b> 4      | 400 41.06<br>300 29.83 | 4. 25<br>4. 26    | 45. 31<br>34. 09 | dBuV/m<br>74.00<br>54.00 | dB<br>-28.69<br>-19.91 | Detecto<br>Peak<br>AVG | or Comment |       |
| <b>4831. 9</b> 4     | 400 41.06              | 4.25              | 45.31            | 74.00                    | -28.69                 | Peak                   | or Comment |       |

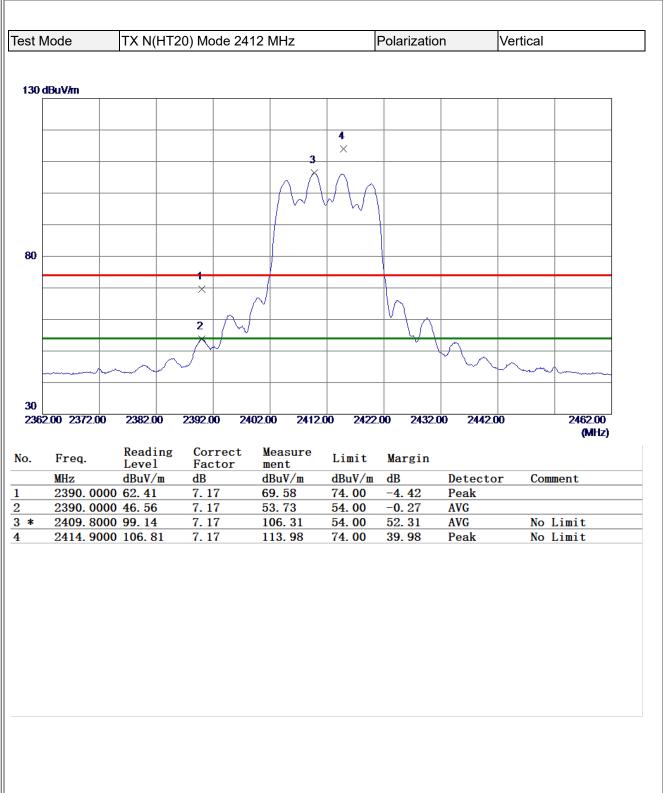



# BLL

| 80 dBuV/m<br>30 2 350.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 21400.00 2850.00 2850.00 21400.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850.00 2850 | t Mode                    | TX G                                  | Mode 2              | 437 M⊢                       | lz                                 | I                        | Polarizatio            | on            | Vertical |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|---------------------|------------------------------|------------------------------------|--------------------------|------------------------|---------------|----------|-------------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 dBuV/m                  |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| X       I       I       I       I       I       I       I         30       1       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| X       I       I       I       I       I       I       I         30       I       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| X       I       I       I       I       I       I       I         30       I       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| X       I       I       I       I       I       I       I         30       1       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 2                                     |                     |                              |                                    |                          |                        |               |          |                   |
| 30       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| I000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.         (MH           0.         Freq.         Reading<br>Level         Correct<br>Factor<br>ment         Measure<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                         | X                                     |                     |                              |                                    |                          |                        |               |          |                   |
| IODO.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.         (MH           .         Freq.         Reading         Correct         Measure         Limit         Margin           .         Freq.         Reading         Correct         Measure         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4873.7799         29.56         4.38         33.94         54.00         -20.06         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| IODO.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.         (MH           .         Freq.         Reading         Correct         Measure         Limit         Margin           .         Freq.         Reading         Correct         Measure         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4873.7799         29.56         4.38         33.94         54.00         -20.06         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| MHz         Buv/m         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| MHz         Buv/m         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| MHz         dBuV/m         dB         dBuV/m         dB         Duv/m         Duv/m         dB         Duv/m         Duv/m </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| MHz         dBuV/m         dB         dBuV/m         dB         Duv/m         Duv/m         dB         Duv/m         Duv/m </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| MHz         dBuV/m         dB         dBuV/m         dB         Duv/m         Duv/m         dB         Duv/m         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| (MH<br>b. Freq. Reading Correct Measure Limit Margin<br>MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment<br>* 4873.7799 29.56 4.38 33.94 54.00 -20.06 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| Freq.Reading<br>LevelCorrect<br>FactorMeasure<br>mentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment*4873.779929.564.3833.9454.00-20.06AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                       |                     |                              |                                    |                          |                        |               |          |                   |
| MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4873.7799         29.56         4.38         33.94         54.00         -20.06         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000.00 3550.0             | 0 6100.0                              | 0 865               | 0.00 1                       | 1200.00 1375                       | 0.00 1630                | 0.00 16650             | J.00 Z140     | 0.00     |                   |
| * 4873.7799 29.56 4.38 33.94 54.00 -20.06 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | Read                                  | ing C               | orrect                       |                                    |                          |                        | J.UU 2140     | 0.00     | 20500.00<br>(MHz) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Freq.                     | Readi<br>Leve                         | ing C<br>l F        | orrect<br>actor              | Measure<br>ment                    | Limit                    | Margin                 |               |          | (MHz)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Freq.<br>MHz              | Readi<br>Leve<br>dBuV/                | ing C<br>l F<br>m d | orrect<br>actor<br>B         | Measure<br>ment<br>dBuV/m          | Limit<br>dBuV/m          | Margin<br>dB           | Detect        |          | (MHz)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Freq.<br>MHz<br>* 4873.77 | Readi<br>Level<br>dBuV/<br>799 29. 56 | ing C<br>I F<br>M d | orrect<br>actor<br>B<br>. 38 | Measure<br>ment<br>dBuV/m<br>33.94 | Limit<br>dBuV/m<br>54.00 | Margin<br>dB<br>-20.06 | Detect<br>AVG |          | (MHz)             |



# **B**TL

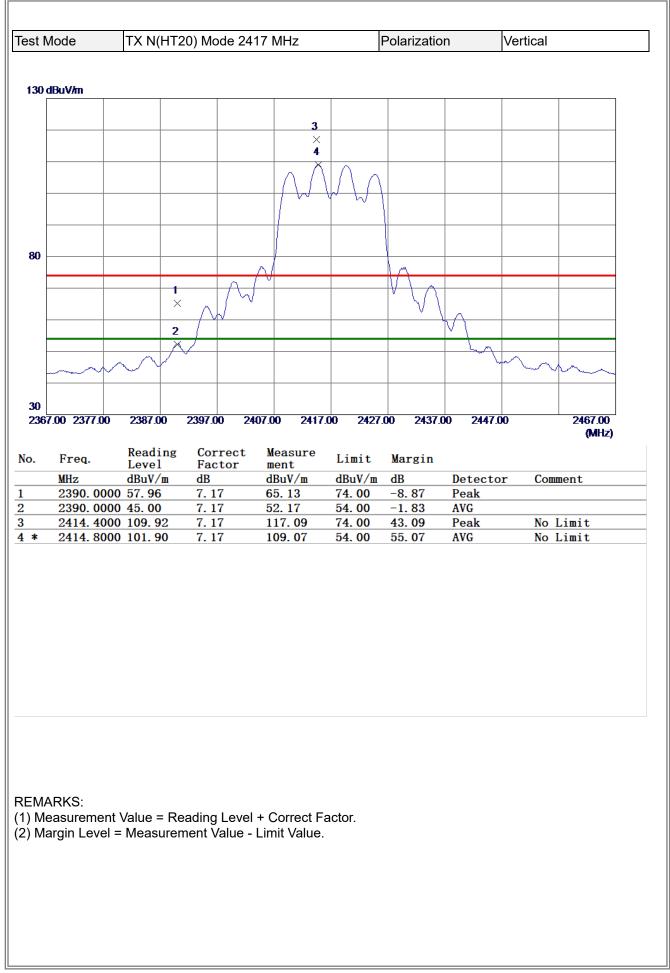

| 1         1         1           2         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X       X       X       X       X       X       X       X         30       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | TX G M                         | ode 2457 MH                 | lz                                | I         | Polarizatio | on        | Vertical |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|-----------------------------|-----------------------------------|-----------|-------------|-----------|----------|----------|
| Image: Contract Measure Level         Limit Margin           MHz         dBuV/m         dBuV/m <th>Image: Contract Measure Level         Limit Margin           MHz         dBuV/m         dBuV/m<th>Image: Contract Measure Level         Limit Margin           MHz         dBuV/m         dBuV/m<th>Image: Note of the second se</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th></th> | Image: Contract Measure Level         Limit Margin           MHz         dBuV/m         dBuV/m <th>Image: Contract Measure Level         Limit Margin           MHz         dBuV/m         dBuV/m<th>Image: Note of the second se</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th> | Image: Contract Measure Level         Limit Margin           MHz         dBuV/m         dBuV/m <th>Image: Note of the second se</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | Image: Note of the second se |              |                                |                             |                                   |           |             |           |          |          |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X         Image: Contract Measure Marks:             MRKS:   MARKS: Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dBuV/m     |                                |                             |                                   |           |             |           |          |          |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                |                             |                                   |           |             |           |          |          |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                |                             |                                   |           |             |           |          |          |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                |                             |                                   |           |             |           |          |          |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                |                             |                                   |           |             |           |          |          |
| ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                |                             |                                   |           |             |           |          |          |
| X       X       Image: Contract Measure Factor ment       Limit Margin         MHz       dBuV/m       dB       dBuV/m       dB       Detector Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                |                             |                                   |           |             |           |          |          |
| X       X       Image: Contract Measure Factor ment       Limit Margin         MHz       dBuV/m       dB       dBuV/m       dB       Detector Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 2                              |                             |                                   |           |             |           |          |          |
| 20         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARKS:           MARKS:           MARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30           |                                |                             |                                   |           |             |           |          |          |
| OOD.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00         (MHz)           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           0.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nobio         Operation         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~            |                                |                             |                                   |           |             |           |          |          |
| OOD.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00         (MHz)           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           0.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000:00         3550:00         6100:00         8650:00         11200:00         13750:00         16300:00         18850:00         21400:00         26500:00           b.         Freq.         Level         Factor         ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak           *         4912.0900         28.95         4.49         33.44         54.00         -20.56         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                |                             |                                   |           |             |           |          |          |
| OOD.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           0.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000:00         3550:00         6100:00         8650:00         11200:00         13750:00         16300:00         18850:00         21400:00         26500:00           b.         Freq.         Level         Factor         ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak           *         4912.0900         28.95         4.49         33.44         54.00         -20.56         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                |                             |                                   |           |             |           |          |          |
| OOD.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00         (MHz)           0.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IOD0000         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           .         Freq.         Level         Factor         ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak           *         4912.0900         28.95         4.49         33.44         54.00         -20.56         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                |                             |                                   |           |             |           |          |          |
| OOD.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           0.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000000       3550.00       6100.00       8650.00       11200.00       13750.00       16300.00       18850.00       21400.00       26500.00         0.       Freq.       Level       Factor       ment       Limit       Margin         MHz       dBuV/m       dB       dBuV/m       dB       Detector       Comment         4911.6050       40.11       4.49       44.60       74.00       -29.40       Peak         *       4912.0900       28.95       4.49       33.44       54.00       -20.56       AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                |                             |                                   |           |             |           |          |          |
| OOD.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00         (MHz)           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           0.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000000 3550.00       6100.00       8650.00       11200.00       13750.00       16300.00       18850.00       21400.00       26500.00         0.       Freq.       Level       Factor       ment       Limit       Margin         MHz       dBuV/m       dB       dBuV/m       dB       Detector       Comment         4911.6050 40.11       4.49       44.60       74.00       -29.40       Peak         *       4912.0900 28.95       4.49       33.44       54.00       -20.56       AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                |                             |                                   |           |             |           |          |          |
| OOD.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00         (MHz)           .         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Non-oo         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           0.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000000 3550.00       6100.00       8650.00       11200.00       13750.00       16300.00       18850.00       21400.00       26500.00         0.       Freq.       Level       Factor       ment       Limit       Margin         MHz       dBuV/m       dB       dBuV/m       dB       Detector       Comment         4911.6050 40.11       4.49       44.60       74.00       -29.40       Peak         *       4912.0900 28.95       4.49       33.44       54.00       -20.56       AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                |                             |                                   |           |             |           |          |          |
| MHz       Reading<br>Level       Correct<br>Factor       Measure<br>ment       Limit       Margin         MHz       dBuV/m       dB       dBuV/m       dB       Detector       Comment         4911.6050       40.11       4.49       44.60       74.00       -29.40       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MHz       Reading<br>Level       Correct<br>Factor       Measure<br>ment       Limit       Margin         MHz       dBuV/m       dB       dBuV/m       dBuV/m       dB       Detector       Comment         4911.6050       40.11       4.49       44.60       74.00       -29.40       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz       Reading<br>Level       Correct<br>Factor       Measure<br>ment       Limit       Margin         MHz       dBuV/m       dB       dBuV/m       dBuV/m       dB       Detector       Comment         4911.6050       40.11       4.49       44.60       74.00       -29.40       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak           *         4912.0900         28.95         4.49         33.44         54.00         -20.56         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                |                             |                                   |           |             |           |          |          |
| Freq.Reading<br>LevelCorrect<br>FactorMeasure<br>mentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment4911.605040.114.4944.6074.00-29.40Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freq.Reading<br>LevelCorrect<br>FactorMeasure<br>mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4911.605040.114.4944.6074.00-29.40Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Freq.Reading<br>LevelCorrect<br>FactorMeasure<br>mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4911.605040.114.4944.6074.00-29.40Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak           *         4912.0900         28.95         4.49         33.44         54.00         -20.56         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000.00 3550 | .00 6100.00                    | <b>8650.00</b> 1            | 1200.00 1375                      | 0.00 1630 | 0.00 18850  | 0.00 2140 | 0.00     |          |
| MHz         Level         Factor         ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHz         Level         Factor         ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dB         Detector         Comment           4911.6050         40.11         4.49         44.60         74.00         -29.40         Peak           *         4912.0900         28.95         4.49         33.44         54.00         -20.56         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Reading                        | Correct                     | Measure                           |           |             |           |          | (initiz) |
| 4911. 6050 40. 11 4. 49 44. 60 74. 00 -29. 40 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4911. 6050 40. 11 4. 49 44. 60 74. 00 -29. 40 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4911. 6050 40. 11 4. 49 44. 60 74. 00 -29. 40 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4911. 6050 40. 11 4. 49 44. 60 74. 00 -29. 40 Peak<br>* 4912. 0900 28. 95 4. 49 33. 44 54. 00 -20. 56 AVG<br>SMARKS:<br>Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Level                          | Factor                      | ment                              |           |             |           |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * 4912. 0900 28. 95 4. 49 33. 44 54. 00 -20. 56 AVG<br>EMARKS:<br>Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                |                             |                                   |           |             |           | or Com   | ment     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MARKS:<br>Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                |                             |                                   |           |             |           |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                |                             |                                   |           |             |           |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                |                             |                                   |           |             |           |          |          |
| Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurem     | ent Value = F                  | Reading Leve                | el + Correct Fa                   | actor.    |             |           |          |          |
| Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurem     | ent Value = F<br>/el = Measure | Reading Leve<br>ement Value | el + Correct Fa<br>- Limit Value. | actor.    |             |           |          |          |
| Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurem     | ent Value = F<br>/el = Measure | Reading Leve<br>ement Value | el + Correct Fa<br>- Limit Value. | actor.    |             |           |          |          |
| Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurem     | ent Value = F<br>/el = Measure | Reading Leve<br>ement Value | el + Correct Fa<br>- Limit Value. | actor.    |             |           |          |          |



# **B**L

| 0 dBuV/m              | 2                        |              |                |            |          |            |          |          |
|-----------------------|--------------------------|--------------|----------------|------------|----------|------------|----------|----------|
|                       | 2                        |              |                |            |          |            |          |          |
| D                     | 2                        |              |                |            |          |            |          |          |
| 0                     | 2                        |              |                |            |          |            | 1 1      |          |
| 0                     | 2                        |              |                |            |          | 1          |          |          |
| 0                     | 2                        |              |                |            |          |            |          |          |
| 0                     | 2                        |              |                |            |          |            |          |          |
| 0                     | 2                        |              |                |            |          |            |          |          |
| 0                     | ×                        |              |                |            |          |            |          |          |
| 0                     | 1                        |              |                |            |          |            |          |          |
| 0                     | ×                        |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
| 0 00.00 3550.00       | 6100.00                  | 8650.00 11   | 1200.00 13750  | 0.00 16300 | 00 18850 | 0.00 21400 | 00       | 26500.00 |
|                       |                          |              |                |            |          |            |          | (MHz)    |
| Freq.                 | Reading                  | Correct      | Measure        | Limit      | Margin   |            |          |          |
| MHz                   | Level<br>dBuV/m          | Factor<br>dB | ment<br>dBuV/m | dBuV/m     | dB       | Detecto    | r Commer | nt       |
| ■ 4921. 5750          |                          | 4. 52        | 33. 79         | 54.00      | -20. 21  | AVG        |          | 10       |
| 4923.0450             | 0 39.53                  | 4. 52        | 44.05          | 74.00      | -29.95   | Peak       |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
| MARKS:<br>Measurement | Value - R                | eading Level |                | actor      |          |            |          |          |
| Margin Level :        | - Value – R<br>= Measure | ment Value - | l imit Value   | 10101.     |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |
|                       |                          |              |                |            |          |            |          |          |

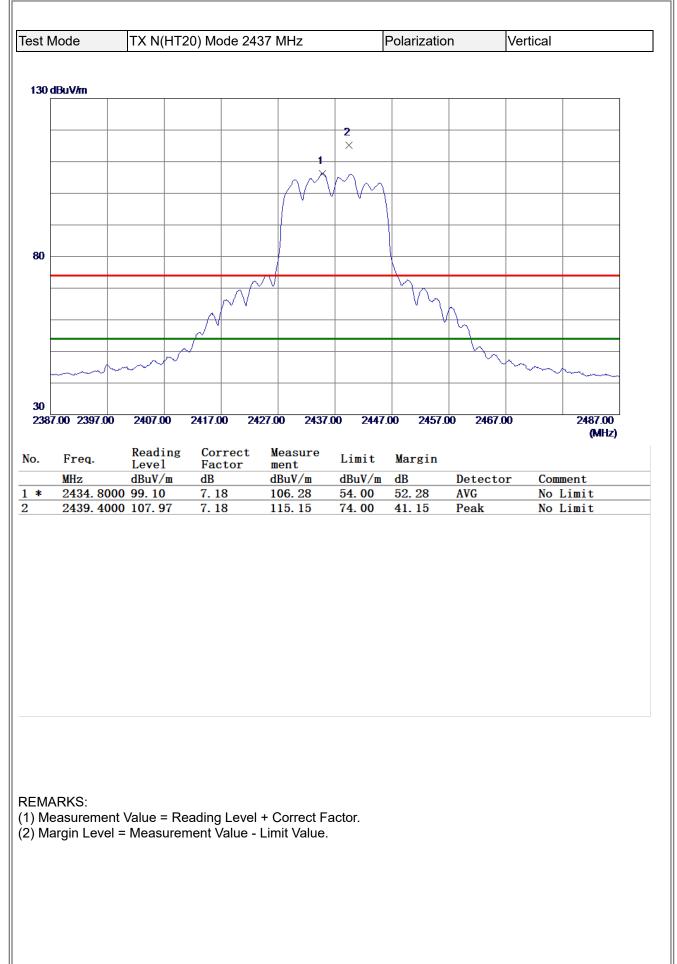





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



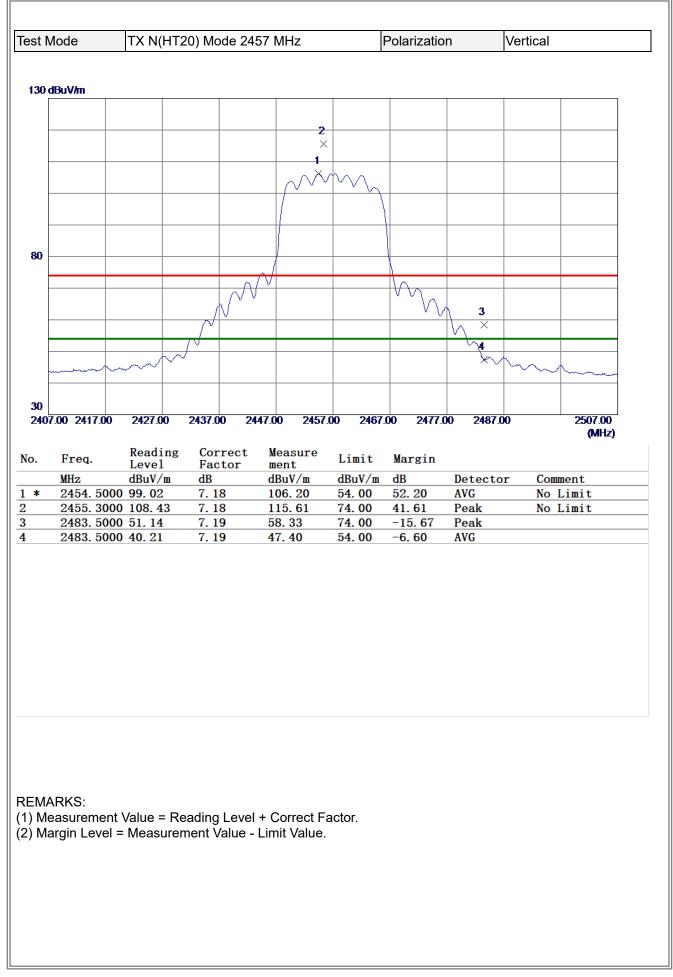
|           | Node                        | TX N(I                                    | HT20) M           | ode 241       | 2 MHz                                             |                          | Polarizatio   | n                      | Vertical |          |
|-----------|-----------------------------|-------------------------------------------|-------------------|---------------|---------------------------------------------------|--------------------------|---------------|------------------------|----------|----------|
| _         |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
| 0 0<br>   | lBuV/m                      |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             | 2<br>×                                    |                   |               |                                                   |                          |               |                        |          |          |
|           |                             | 1                                         |                   |               |                                                   |                          |               |                        |          |          |
| 0         |                             | ×                                         |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          |          |
| 0  <br>00 | 0.00 3550.00                | 6100.0                                    | 0 8650.           | 00 112        | 200.00 1375                                       | 0.00 16300               | 0.00 18850    | 0.00 2140              | 0.00     | 26500.00 |
|           |                             |                                           |                   |               |                                                   |                          |               |                        |          | (MHz)    |
|           |                             |                                           | _                 |               |                                                   |                          |               |                        |          |          |
|           | Freq.                       | Readi<br>Level                            | Fa                | rrect<br>ctor | Measure<br>ment                                   | Limit                    | Margin        |                        |          |          |
|           | MHz                         | Level<br>dBuV/                            | Fa<br>m dB        | ctor          | ment<br>dBuV/m                                    | dBuV/m                   | dB            |                        | or Con   | ment     |
| *         |                             | Leve1<br>dBuV/i<br>50 29.21               | Fa<br>m dB<br>4.2 | ctor<br>22    | ment                                              |                          |               | Detecto<br>AVG<br>Peak | or Com   | ment     |
|           | MHz<br>4821.933             | Leve1<br>dBuV/i<br>50 29.21               | Fa<br>m dB<br>4.2 | ctor<br>22    | ment<br>dBuV/m<br>33.43                           | dBuV/m<br>54.00          | dB<br>-20. 57 | AVG                    | or Con   | ment     |
|           | MHz<br>4821.933             | Leve1<br>dBuV/i<br>50 29.21               | Fa<br>m dB<br>4.2 | ctor<br>22    | ment<br>dBuV/m<br>33.43                           | dBuV/m<br>54.00          | dB<br>-20. 57 | AVG                    | or Con   | ment     |
|           | MHz<br>4821.933             | Leve1<br>dBuV/i<br>50 29.21               | Fa<br>m dB<br>4.2 | ctor<br>22    | ment<br>dBuV/m<br>33.43                           | dBuV/m<br>54.00          | dB<br>-20. 57 | AVG                    | or Con   | ment     |
|           | MHz<br>4821.933             | Leve1<br>dBuV/i<br>50 29.21               | Fa<br>m dB<br>4.2 | ctor<br>22    | ment<br>dBuV/m<br>33.43                           | dBuV/m<br>54.00          | dB<br>-20. 57 | AVG                    | or Con   | ment     |
| <u>k</u>  | MHz<br>4821.933<br>4824.820 | Leve1<br>dBuV/i<br>50 29.21               | Fa<br>m dB<br>4.2 | ctor<br>22    | ment<br>dBuV/m<br>33.43                           | dBuV/m<br>54.00          | dB<br>-20. 57 | AVG                    | or Con   | ment     |
| ⊧<br>M4   | MHz<br>4821.933<br>4824.820 | Leve1<br>dBuV/i<br>50 29. 21<br>00 39. 73 | Fa<br>m dB<br>4.  | g Level -     | ment<br>dBuV/m<br>33. 43<br>43. 96<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 57 | AVG                    | or Con   | ment     |
| ⊧<br>MA   | MHz<br>4821.933<br>4824.820 | Leve1<br>dBuV/i<br>50 29. 21<br>00 39. 73 | Fa<br>m dB<br>4.  | g Level -     | ment<br>dBuV/m<br>33.43<br>43.96                  | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 57 | AVG                    | or Con   | ment     |
| ⊧<br>MA   | MHz<br>4821.933<br>4824.820 | Leve1<br>dBuV/i<br>50 29. 21<br>00 39. 73 | Fa<br>m dB<br>4.  | g Level -     | ment<br>dBuV/m<br>33. 43<br>43. 96<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 57 | AVG                    | or Con   | ment     |
| ⊧<br>M4   | MHz<br>4821.933<br>4824.820 | Leve1<br>dBuV/i<br>50 29. 21<br>00 39. 73 | Fa<br>m dB<br>4.  | g Level -     | ment<br>dBuV/m<br>33. 43<br>43. 96<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 57 | AVG                    | or Con   | ment     |
| ⊧<br>M4   | MHz<br>4821.933<br>4824.820 | Leve1<br>dBuV/i<br>50 29. 21<br>00 39. 73 | Fa<br>m dB<br>4.  | g Level -     | ment<br>dBuV/m<br>33. 43<br>43. 96<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 57 | AVG                    | or Con   | ment     |







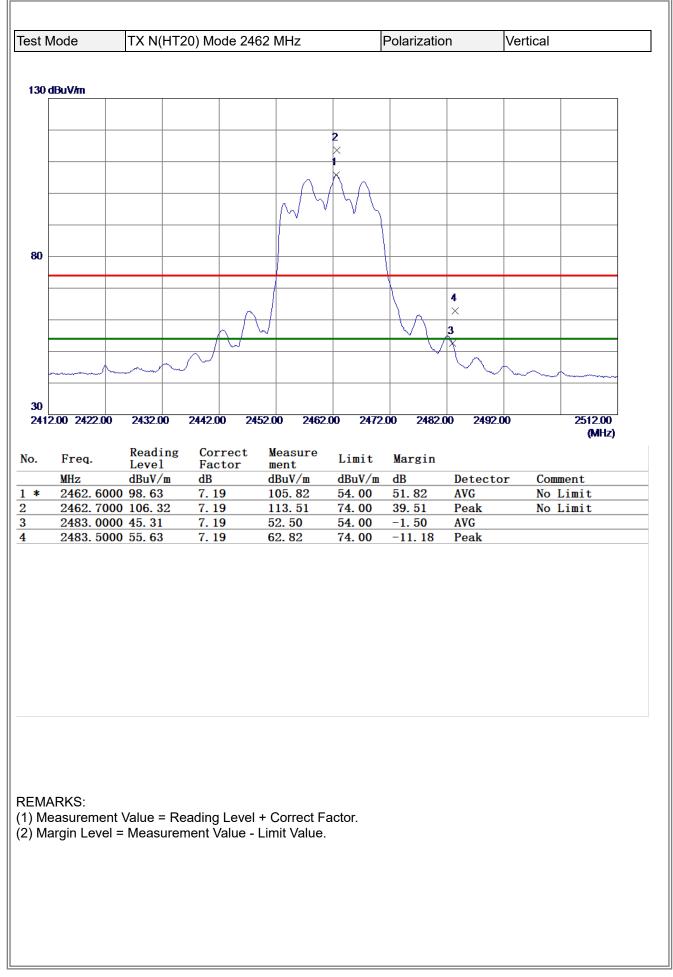

| 1000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00         (MHz)           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st N                                      | Node                        | TX N(H                                    | IT20) M           | ode 241       | 7 MHz                                           | l                        | Polarizatio   | n         | Vertical |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-------------------------------------------|-------------------|---------------|-------------------------------------------------|--------------------------|---------------|-----------|----------|-------|
| 2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th="">         2         <th2< th=""> <th2< th=""></th2<></th2<></th2<>                                                                                         | 80 4                                      | Bulles                      |                                           |                   |               |                                                 |                          |               |           |          |       |
| X       I       I       I       I       I       I       I         30       1       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                        | 000                                       |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| X       I       I       I       I       I       I       I         30       1       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                        |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| X       Image: Contract Measure Limit Margin         MHz       dBuV/m       dBuV/m |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| X       I       I       I       I       I       I       I         30       1       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                        |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| X       I       I       I       I       I       I       I         30       1       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                        |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| 30       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                  |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                             | 1                                         |                   |               |                                                 |                          |               |           |          |       |
| 1000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                        |                             | ×                                         |                   |               |                                                 |                          |               |           |          |       |
| MHz         dBuV/m         dB         dBuV/m         dB         V/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| 1000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| 1000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| 1000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| 1000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| 1000.00         3550.00         6100.00         8650.00         11200.00         13750.00         16300.00         18850.00         21400.00         26500.00           b.         Freq.         Reading<br>Level         Correct<br>Factor         Measure<br>ment         Limit         Margin           MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| MHz       Reading<br>Level       Correct<br>Factor       Measure<br>ment       Limit       Margin         MHz       dBuV/m       dB       dBuV/m       dBuV/m       dB       Detector       Comment         *       4831.6400       29.33       4.25       33.58       54.00       -20.42       AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -20                                       |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                       | 0.00 3550.00                | ) 6100.00                                 | 8650.             | 00 112        | 200.00 1375                                     | 0.00 1630                | 0.00 18850    | 0.00 2140 | 0.00     |       |
| MHz         dBuV/m         dB         dBuV/m         dBuV/m         dB         Detector         Comment           *         4831.6400         29.33         4.25         33.58         54.00         -20.42         AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                             |                                           |                   |               |                                                 |                          |               |           |          |       |
| * 4831. 6400 29. 33 4. 25 33. 58 54. 00 -20. 42 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                         | Freq                        | Readin                                    | ng Co             | rrect         |                                                 | Limit                    | Margin        |           |          |       |
| 4834. 2500 39. 76 4. 26 44. 02 74. 00 -29. 98 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | о.                                        |                             | Level                                     | Fa                | rrect<br>ctor | ment                                            |                          |               | Detect    | or Con   | nment |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | nment |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                         | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | nment |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                         | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | ment  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | ment  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                         | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | ment  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                         | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | ment  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                         | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | ment  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                         | MHz<br>4831.64              | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | ment  |
| EMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                         | MHz<br>4831.64<br>4834.25   | Leve1<br>dBuV/1<br>00 29.33               | Fa<br>1 dB<br>4.2 | ctor<br>25    | ment<br>dBuV/m<br>33.58                         | dBuV/m<br>54.00          | dB<br>-20. 42 | AVG       | or Con   | ment  |
| EMARKS:<br>) Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *<br>EMA<br>) M(                          | MHz<br>4831. 64<br>4834. 25 | Level<br>dBuV/n<br>00 29. 33<br>00 39. 76 | Reading           | g Level -     | ment<br>dBuV/m<br>33.58<br>44.02<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 42 | AVG       | or Con   | ment  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *<br>EMA<br>) M(                          | MHz<br>4831. 64<br>4834. 25 | Level<br>dBuV/n<br>00 29. 33<br>00 39. 76 | Reading           | g Level -     | ment<br>dBuV/m<br>33.58<br>44.02<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 42 | AVG       | or Con   | ment  |
| ) Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *<br>EMA<br>) M(                          | MHz<br>4831. 64<br>4834. 25 | Level<br>dBuV/n<br>00 29. 33<br>00 39. 76 | Reading           | g Level -     | ment<br>dBuV/m<br>33.58<br>44.02<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 42 | AVG       | or Con   | ment  |
| ) Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *<br>EMA<br>) M(                          | MHz<br>4831. 64<br>4834. 25 | Level<br>dBuV/n<br>00 29. 33<br>00 39. 76 | Reading           | g Level -     | ment<br>dBuV/m<br>33.58<br>44.02<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 42 | AVG       | or Con   | ment  |
| ) Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *<br>EMA<br>) M(                          | MHz<br>4831. 64<br>4834. 25 | Level<br>dBuV/n<br>00 29. 33<br>00 39. 76 | Reading           | g Level -     | ment<br>dBuV/m<br>33.58<br>44.02<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 42 | AVG       | or Con   | ment  |
| ) Measurement Value = Reading Level + Correct Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *<br>==================================== | MHz<br>4831. 64<br>4834. 25 | Level<br>dBuV/n<br>00 29. 33<br>00 39. 76 | Reading           | g Level -     | ment<br>dBuV/m<br>33.58<br>44.02<br>+ Correct F | dBuV/m<br>54.00<br>74.00 | dB<br>-20. 42 | AVG       | or Con   | ment  |







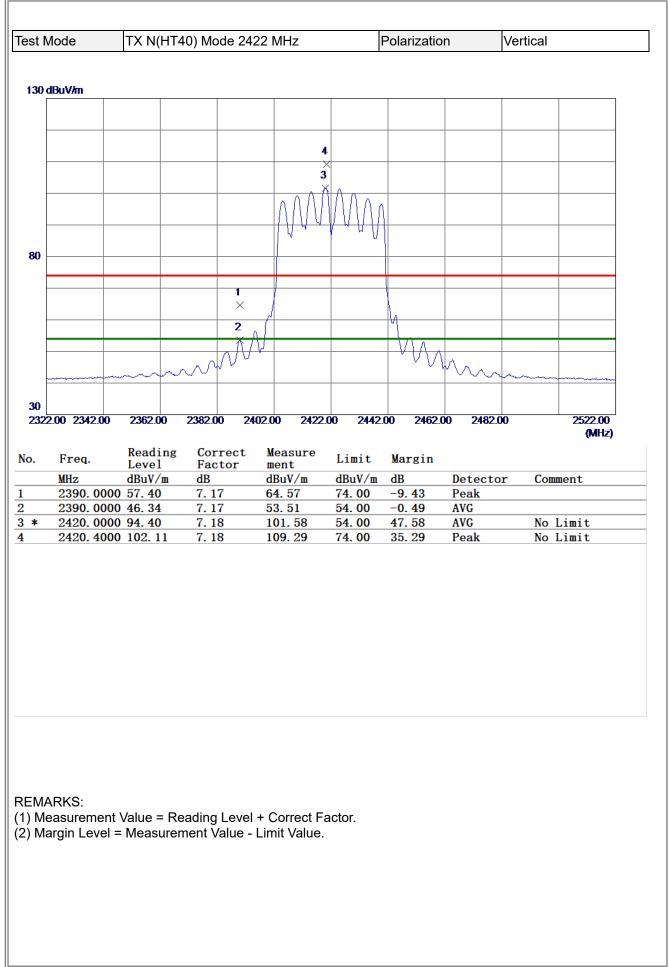

| t Mode            | TX N(H                   | [20) Mode 2          | 437 MHz                  |                          | Polarizatio              | n                      | Vertical |                  |
|-------------------|--------------------------|----------------------|--------------------------|--------------------------|--------------------------|------------------------|----------|------------------|
|                   |                          |                      |                          |                          |                          |                        |          |                  |
| 0 dBuV/m          |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   | 2                        |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
| 0                 |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
|                   |                          |                      |                          |                          |                          |                        |          |                  |
| 0<br>000.00 3550. | .00 6100.00              | 8650.00              | 11200.00 1375            | 0.00 1630                | 0.00 49950               | 00 21400               |          | 26500.00         |
| 000.00 3000       | .00 6100.00              | 00.000               | 11200.00 1375            | 0.00 1030                | 0.00 16650               | 200 21400              | 1.00     | 2000.00<br>(MHz) |
| Freq.             | Reading                  | g Correct            | Measure                  | Limit                    | Margin                   |                        |          |                  |
|                   | Level                    | Factor               | ment                     |                          | Margin                   |                        |          |                  |
|                   |                          |                      | 10 17 /                  | 10 17 /                  | 10                       | <b>D</b> · · ·         | <b>C</b> |                  |
| MHz<br>4873 0     | dBuV/m                   | dB<br>4 38           | dBuV/m<br>44 44          | dBuV/m<br>74 00          |                          | Detecto                | or Com   | ment             |
| 4873. 9           | 0800 40.06<br>3600 29.18 | dB<br>4. 38<br>4. 38 | dBuV/m<br>44.44<br>33.56 | dBuV/m<br>74.00<br>54.00 | dB<br>-29. 56<br>-20. 44 | Detecto<br>Peak<br>AVG | or Com   | ment             |
| 4873. 9           | 800 40.06                | 4. 38                | 44. 44                   | 74.00                    | -2 <b>9.</b> 56          | Peak                   | or Com   |                  |







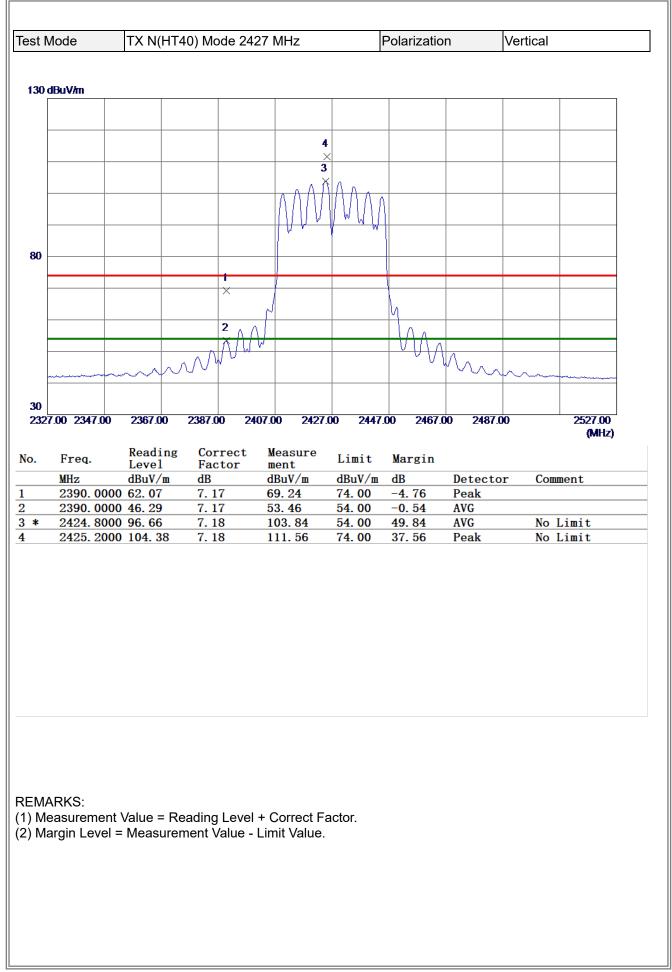

|          | lode            | TX N(HT            | 20) Mode            | 2457 M              | Hz                             |                 | Polarizatio   | on             | Vertical |                   |
|----------|-----------------|--------------------|---------------------|---------------------|--------------------------------|-----------------|---------------|----------------|----------|-------------------|
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
| 80 di    | BuV/m           |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
| $\vdash$ |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 | 2                  |                     |                     |                                |                 |               |                |          |                   |
|          |                 | ×                  |                     |                     |                                |                 |               |                |          |                   |
|          |                 | 1                  |                     |                     |                                |                 |               |                |          |                   |
| 30       |                 | ×                  |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
| F        |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          |                 |                    |                     |                     |                                |                 |               |                |          |                   |
| -20      |                 |                    |                     |                     |                                |                 |               |                |          |                   |
|          | 0.00 3550.00    | 6100.00            | 8650.00             | 11200.00            | ) 13750                        | 0.00 1630       | 0.00 1885     | 0.00 2140      | D.00     | 26500.00<br>(MHz) |
| о.       | Freq.           | Reading            | Corre               | et Mo               |                                |                 |               |                |          |                   |
|          |                 | T 1                |                     |                     | isure                          | Limit           | Margin        |                |          |                   |
|          |                 | Level<br>dBuV/m    | Facto               | r mei               | nt                             | Limit<br>dBuV/m | Margin<br>dB  | Detect         | or Com   | ment              |
|          | MHz<br>4912.253 | dBuV/m<br>50 29.22 | Facto<br>dB<br>4.49 | r mei<br>dBu<br>33. | nt<br>1 <mark>V/m</mark><br>71 | dBuV/m<br>54.00 | dB<br>-20. 29 | Detecto<br>AVG | or Com   | ment              |
| *        | MHz             | dBuV/m<br>50 29.22 | Facto<br>dB         | r mei<br>dBi        | nt<br>1 <mark>V/m</mark><br>71 | dBuV/m          | dB            |                | or Com   | ment              |
| *        | MHz<br>4912.253 | dBuV/m<br>50 29.22 | Facto<br>dB<br>4.49 | r mei<br>dBu<br>33. | nt<br>1 <mark>V/m</mark><br>71 | dBuV/m<br>54.00 | dB<br>-20. 29 | AVG            | or Com   | ment              |







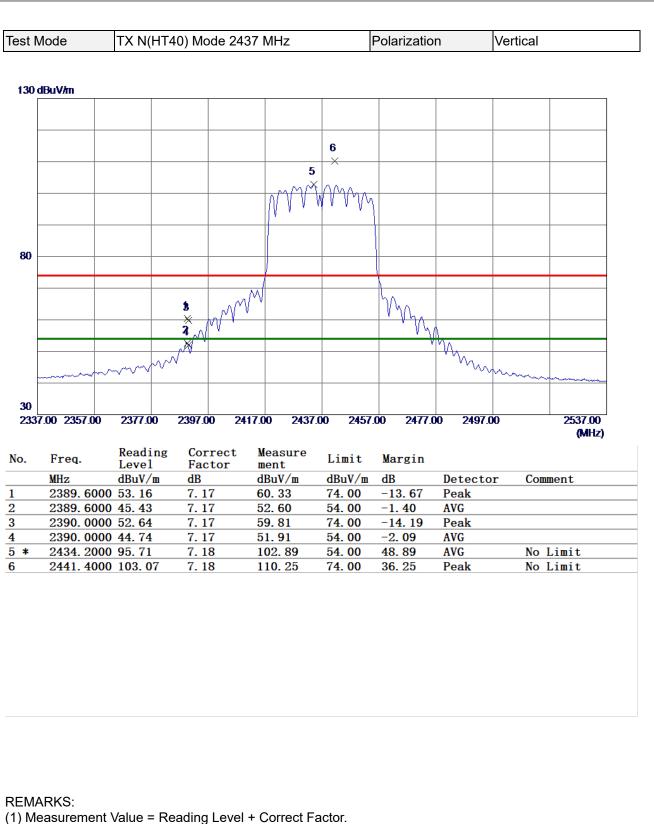

|            | IX N(H                     | [20) Mode 24        | 462 MHz          |                | Polarizatio | n           | Vertical |                   |
|------------|----------------------------|---------------------|------------------|----------------|-------------|-------------|----------|-------------------|
|            |                            |                     |                  |                |             |             |          |                   |
| 30 dBuV/m  |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            | 2<br>×                     |                     |                  |                |             |             |          |                   |
|            | 1                          |                     |                  |                |             |             |          |                   |
|            | ×                          |                     |                  |                |             |             |          |                   |
| 30         |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
|            |                            |                     |                  |                |             |             |          |                   |
| 20         |                            |                     |                  |                |             |             |          |                   |
| 000.00 355 | 0.00 6100.00               | 8650.00 1           | 1200.00 1375     | 0.00 1630      | 0.00 18850  | 0.00 2140   | 0.00     | 26500.00<br>(MHz) |
| o. Freq.   | Reading<br>Level           | g Correct<br>Factor | Measure<br>ment  | Limit          | Margin      |             |          |                   |
| MHz        | dBuV/m                     | dB                  | dBuV/m           | dBuV/m         | dB          | Detect      | or Com   | nent              |
|            |                            |                     |                  |                |             |             |          |                   |
|            | 8600 29.19                 | 4. 52               | 33.71            | 54.00          | -20. 29     | AVG         |          |                   |
|            | 8600 29. 19<br>8650 40. 20 | 4. 52<br>4. 52      | 33. 71<br>44. 72 | 54.00<br>74.00 |             | AVG<br>Peak |          |                   |
|            |                            |                     |                  |                | -20. 29     |             |          |                   |








| st Mode             | TX N(H          | ۲40) Mode 2      | 422 MHz        |            | Polarizatio | on         | Vertical |          |
|---------------------|-----------------|------------------|----------------|------------|-------------|------------|----------|----------|
|                     |                 |                  |                |            |             |            |          |          |
| i0 dBuV/m           |                 |                  |                |            |             | 1          | 1        |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     | 2               |                  |                |            |             |            |          |          |
|                     | ×               |                  |                |            |             |            |          |          |
|                     | 1               |                  |                |            |             |            |          |          |
| 90 <b></b>          | ×               |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |
| 20<br>1000.00 3550. | 00 6100.00      | <b>8650.00</b> 1 | 1200.00 1375   | 0.00 1630  | 0.00 18850  | ).00 21400 |          | 26500.00 |
| 1000.00 5550.       | 00 0100.00      | 0000.00          | 1200.00 1513   | 0.00 10.00 | 0.00 100.00 | 2140       |          | (MHz)    |
| . Freq.             | Reading         | g Correct        |                | Limit      | Margin      |            |          |          |
| MHz                 | Level<br>dBuV/m | Factor<br>dB     | ment<br>dBuV/m | dBuV/m     |             | Detecto    | or Con   | ment     |
| * 4842.4            | 950 29. 24      | 4.28             | 33. 52         | 54.00      | -20. 48     | AVG        |          |          |
| 4843. 3             | 050 39.93       | 4.28             | 44. 21         | 74.00      | -29.79      | Peak       |          |          |
|                     |                 |                  |                |            |             |            |          |          |
|                     |                 |                  |                |            |             |            |          |          |

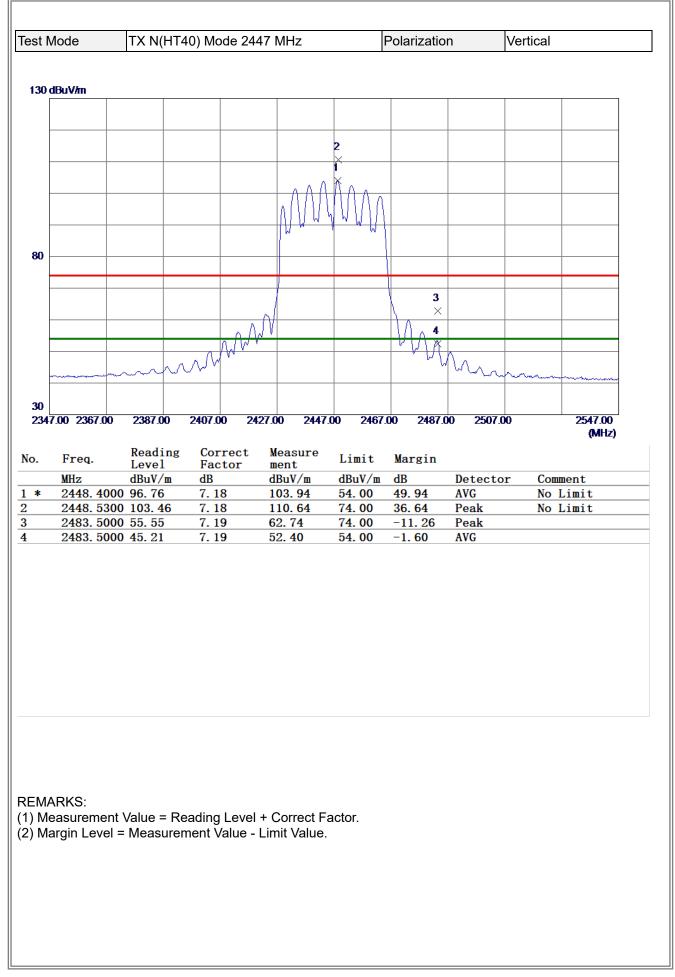







| t Mode       | TX N(H1                | <sup>-</sup> 40) Mode 2 | 427 MHz          |                | Polarizatio      | on          | Vertical |                   |
|--------------|------------------------|-------------------------|------------------|----------------|------------------|-------------|----------|-------------------|
|              |                        |                         |                  |                |                  |             |          |                   |
| ) dBuV/m     |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              | 1                      |                         |                  |                |                  |             |          |                   |
|              | ×                      |                         |                  |                |                  |             |          |                   |
|              | 2                      |                         |                  |                |                  |             |          |                   |
| 0            | ×                      |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
| 0            |                        |                         | 44000 00 4075    | 0.000 4000     | 0.00 40054       |             |          | 00500.00          |
| 000.00 3550. | 00 6100.00             | 8650.00                 | 11200.00 1375    | 0.00 1630      | 0.00 18850       | 0.00 2140   | 0.00     | 26500.00<br>(MHz) |
| -            | Reading                | Correct                 | Measure          |                |                  |             |          |                   |
| Freq.        | Reading<br>Level       |                         | ment             | Limit          | Margin           |             |          |                   |
| MHz          | dBuV/m                 | <u>dB</u>               | dBuV/m           | dBuV/m         |                  | Detect      | or Com   | ment              |
|              | 250 40.11<br>049 29.10 | 4.31<br>4.31            | 44. 42<br>33. 41 | 74.00<br>54.00 | -29.58<br>-20.59 | Peak<br>AVG |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |
|              |                        |                         |                  |                |                  |             |          |                   |

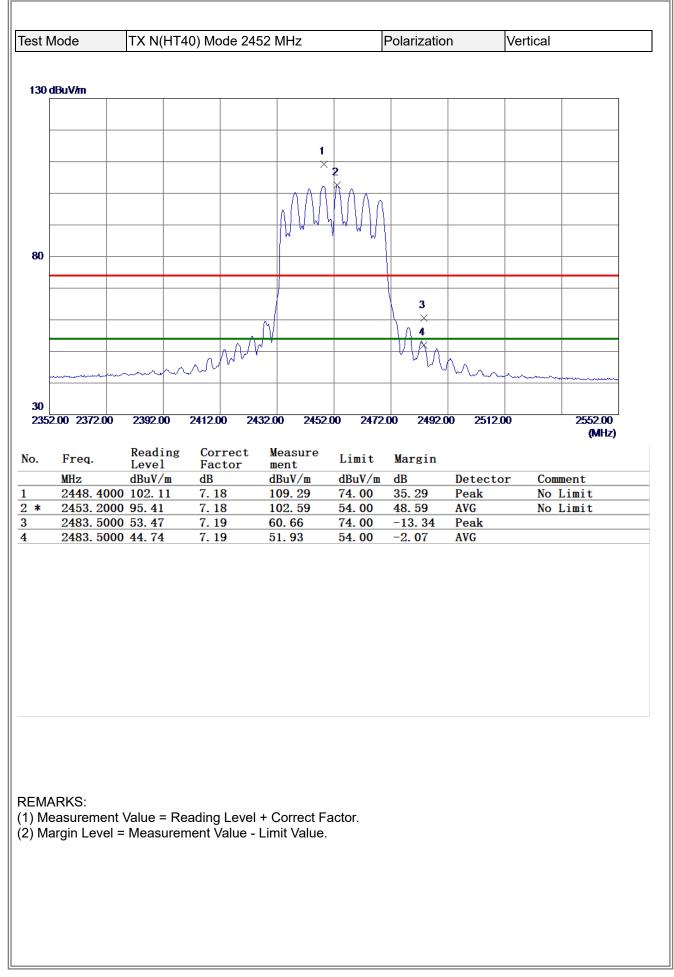





(2) Margin Level = Measurement Value - Limit Value.



|              | IX N(HI                    | 40) Mode 24                  | 37 MHz           |                | Polarizatic        | n           | Vertical |          |
|--------------|----------------------------|------------------------------|------------------|----------------|--------------------|-------------|----------|----------|
|              |                            |                              |                  |                |                    |             |          |          |
| 0 dBuV/m     |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              | 2<br>×                     |                              |                  |                |                    |             |          |          |
|              | 1                          |                              |                  |                |                    |             |          |          |
| _            | • ×                        |                              |                  |                |                    |             |          |          |
| 0            |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
|              |                            |                              |                  |                |                    |             |          |          |
| o            |                            |                              |                  |                |                    |             |          |          |
| 000.00 3550. | .00 6100.00                | 8650.00 11                   | 1200.00 1375     | 0.00 1630      | 0.00 18850         | .00 2140    | 0.00     | 26500.00 |
|              | Deading                    | Correct                      | Measure          |                |                    |             |          | (MHz)    |
| Freq.        | Reading<br>Level           | Factor                       | measure          | Limit          | Margin             |             |          |          |
| MHz          | dBuV/m                     | dB                           | dBuV/m           | dBuV/m         |                    | Detecto     | or Comm  | ient     |
|              |                            |                              |                  |                |                    |             |          |          |
|              | 2700 29. 13<br>2150 39. 85 | <u>4. 37</u><br><u>4. 37</u> | 33. 50<br>44. 22 | 54.00<br>74.00 | -20. 50<br>-29. 78 | AVG<br>Peak |          |          |
|              |                            |                              |                  |                |                    |             |          |          |





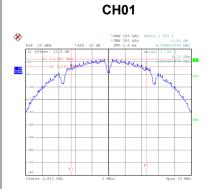



|            | TX N(H1         | 40) Mode 24  | 147 MHz       |            | Polarizatio | on         | Vertical |          |
|------------|-----------------|--------------|---------------|------------|-------------|------------|----------|----------|
|            |                 |              |               |            |             |            |          |          |
| dBuV/m     |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            | 2               |              |               |            |             |            |          |          |
|            | ×               |              |               |            |             |            |          |          |
|            | 1<br>×          |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |
| 00.00 3550 | 0.00 6100.00    | 8650.00 1    | 1200.00 1375  | 0.00 1630  | 0.00 18850  | 0.00 21400 | 00       | 26500.00 |
| 00.00 3330 |                 | 0050.00      | 1200.00 1515  | 0.00 10.00 | 0.00 10050  | 2140       |          | (MHz)    |
| Freq.      | Reading         | Correct      | Measure       | Limit      | Margin      |            |          |          |
| MHz        | Level<br>dBuV/m | Factor<br>dB | <br>dBuV/m    | dBuV/m     |             | Detecto    | or Com   | ment     |
|            | 9750 29. 22     | 4. 43        | 33.65         | 54.00      | -20.35      | AVG        |          |          |
| 4896.      | 3000 40.18      | 4. 44        | <b>44.6</b> 2 | 74.00      | -29.38      | Peak       |          |          |
|            |                 |              |               |            |             |            |          |          |
|            |                 |              |               |            |             |            |          |          |



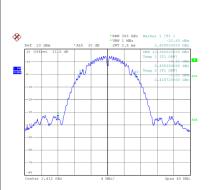





|     | /lode           | TX N(HT4           | 10) Mode 24 | 452 MHz         |                 | Polarizatio   | n              | Vertical |                   |
|-----|-----------------|--------------------|-------------|-----------------|-----------------|---------------|----------------|----------|-------------------|
|     |                 |                    |             |                 |                 |               |                |          |                   |
| ) d | BuV/m           |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
| ł   |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 | 2                  |             |                 |                 |               |                |          |                   |
|     |                 | ×                  |             |                 |                 |               |                |          |                   |
|     |                 | 1                  |             |                 |                 |               |                |          |                   |
|     |                 | ×                  |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
| ŀ   |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
| ł   |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
| U   | 0.00 3550.00    | 6100.00            | 8650.00 1   | 1200.00 1375    | 0.00 1630       | 0.00 18850    | 0.00 21400     | 0.00     | 26500.00<br>(MHz) |
|     | Ener            | Reading            | Correct     | Measure         | Limit           | Manada        |                |          |                   |
|     | Freq.           | Level              | Factor      | ment            | Limit           | Margin        | Detect         | Com      |                   |
| _   | MHz<br>4904.620 | dBuV/m<br>00 29.33 | dB<br>4.47  | dBuV/m<br>33.80 | dBuV/m<br>54.00 | dB<br>-20. 20 | Detecto<br>AVG | or com   | ment              |
|     |                 | 00 40. 33          | 4.47        | 44.80           | 74.00           | -29.20        | Peak           |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |
|     |                 |                    |             |                 |                 |               |                |          |                   |




## **APPENDIX E - BANDWIDTH**

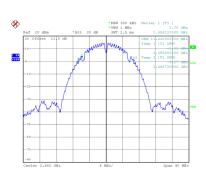



| Test Mod | Test Mode TX B Mode |                         |                                  |                                    |          |  |  |  |  |  |  |
|----------|---------------------|-------------------------|----------------------------------|------------------------------------|----------|--|--|--|--|--|--|
| Channel  | Frequency<br>(MHz)  | 6 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | 6 dB Bandwidth Min. Limit<br>(MHz) | Result   |  |  |  |  |  |  |
| 01       | 2412                | 9.100                   | 13.360                           | 0.5                                | Complies |  |  |  |  |  |  |
| 06       | 2437                | 9.140                   | 13.440                           | 0.5                                | Complies |  |  |  |  |  |  |
| 11       | 2462                | 9.110                   | 13.440                           | 0.5                                | Complies |  |  |  |  |  |  |





\*RBW 100 kEz \*VEW 300 kEz SWT 2.5 ms




-80 Center 2.462 GHz

Date: 16.JUL.2022 11:25:43

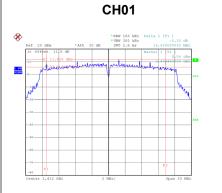
8

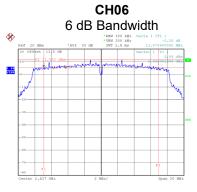
1 PK VIEW

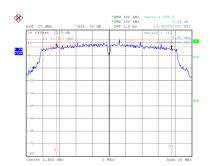


Date: 8.AUG.2022 09:45:06

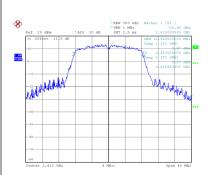
Date: 16.JUL.2022 11:23:02

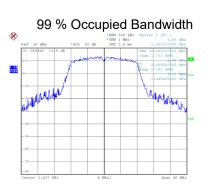

Date: 8.AUG.2022 09:45:24


Date: 16.JUL.2022 11:24:42

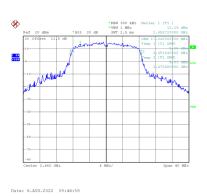

Date: 8.AUG.2022 09:45:42




| Test Mode | Test Mode TX G Mode |                         |                                  |                                    |          |  |  |  |  |  |  |
|-----------|---------------------|-------------------------|----------------------------------|------------------------------------|----------|--|--|--|--|--|--|
| Channel   | Frequency<br>(MHz)  | 6 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | 6 dB Bandwidth Min. Limit<br>(MHz) | Result   |  |  |  |  |  |  |
| 01        | 2412                | 14.430                  | 16.960                           | 0.5                                | Complies |  |  |  |  |  |  |
| 06        | 2437                | 13.878                  | 16.880                           | 0.5                                | Complies |  |  |  |  |  |  |
| 11        | 2462                | 13.959                  | 17.040                           | 0.5                                | Complies |  |  |  |  |  |  |





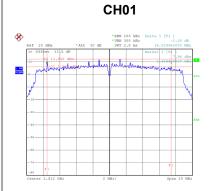

Date: 16.JUL.2022 11:26:49





Date: 16.JUL.2022 11:28:39

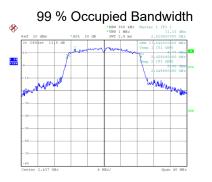



Date: 8.AUG.2022 09:46:11

Date: 8.AUG.2022 09:46:34

Date: 16.JUL.2022 11:27:50





| Test Mode | ∍ TX N             | N(HT20) Mode            |                                  |                                    |          |
|-----------|--------------------|-------------------------|----------------------------------|------------------------------------|----------|
|           |                    |                         |                                  |                                    |          |
| Channel   | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | 6 dB Bandwidth Min. Limit<br>(MHz) | Result   |
| 01        | 2412               | 15.030                  | 17.760                           | 0.5                                | Complies |
| 06        | 2437               | 15.100                  | 17.840                           | 0.5                                | Complies |
| 11        | 2462               | 16.049                  | 17.920                           | 0.5                                | Complies |
|           | CH01               |                         | CH06                             | CH11                               |          |





\*RBW 100 kHz \*VBW 300 kHz SWT 2.5 ms







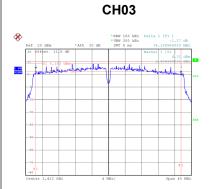
8

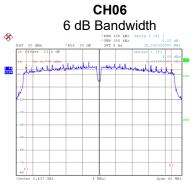
1 25

20 di

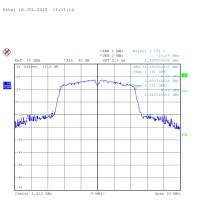


Date: 8.AUG.2022 09:47:33


Date: 16.JUL.2022 11:29:30


Date: 8.AUG.2022 09:48:02

Date: 16.JUL.2022 11:30:06



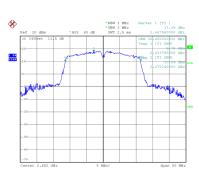

| Test Mode | Test Mode TX N(HT40) Mode |                         |                                  |                                    |          |  |  |  |  |  |  |
|-----------|---------------------------|-------------------------|----------------------------------|------------------------------------|----------|--|--|--|--|--|--|
| Channel   | Frequency<br>(MHz)        | 6 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | 6 dB Bandwidth Min. Limit<br>(MHz) | Result   |  |  |  |  |  |  |
| 03        | 2422                      | 35.190                  | 36.480                           | 0.5                                | Complies |  |  |  |  |  |  |
| 06        | 2437                      | 35.160                  | 36.480                           | 0.5                                | Complies |  |  |  |  |  |  |
| 09        | 2452                      | 35.080                  | 36.480                           | 0.5                                | Complies |  |  |  |  |  |  |





\*RBW 100 kHz \*VBW 300 kHz SWT 5 ms




BOB COCCUPICE DESCRIPTION CONTINUES CONTINUE Date: 16.JUL.2022 11:32:17

60-

Industrial household

Ø

1 25



Date: 8.AUG.2022 10:12:05

Date: 8.AUG.2022 10:12:26

Date: 16.JUL.2022 11:31:46

Date: 8.AUG.2022 10:12:44



# **APPENDIX F - MAXIMUM AVERAGE OUTPUT POWER**



| Test Mode | Test Mode TX B Mode_Ant. 1 |                       |             |                                        |                     |                   |          |  |  |  |  |
|-----------|----------------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|--|--|--|--|
| Channel   | Frequency<br>(MHz)         | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |  |  |  |  |
| 01        | 2412                       | 21.81                 | 0.00        | 21.81                                  | 29.43               | 0.8770            | Complies |  |  |  |  |
| 06        | 2437                       | 21.73                 | 0.00        | 21.73                                  | 29.43               | 0.8770            | Complies |  |  |  |  |
| 11        | 2462                       | 22.03                 | 0.00        | 22.03                                  | 29.43               | 0.8770            | Complies |  |  |  |  |

Test Mode TX B Mode\_Ant. 2

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|
| 01      | 2412               | 22.28                 | 0.00        | 22.28                                  | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 22.36                 | 0.00        | 22.36                                  | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 22.12                 | 0.00        | 22.12                                  | 29.43               | 0.8770            | Complies |

Test Mode TX B Mode\_Ant. 3

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|
| 01      | 2412               | 21.82                 | 0.00        | 21.82                                  | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 20.28                 | 0.00        | 20.28                                  | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 20.78                 | 0.00        | 20.78                                  | 29.43               | 0.8770            | Complies |

### Test Mode TX B Mode\_Total

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|---------------------|-------------------|----------|
| 01      | 2412               | 26.75                 | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 26.31                 | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 26.46                 | 29.43               | 0.8770            | Complies |



| Test Mode | TX G Mode_Ant. 1   |                       |             |                                        |                     |                   |          |  |  |
|-----------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|--|--|
|           |                    |                       |             | 0.4.4.0                                |                     |                   |          |  |  |
| Channel   | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |  |  |
| 01        | 2412               | 19.82                 | 0.17        | 19.99                                  | 29.43               | 0.8770            | Complies |  |  |
| 06        | 2437               | 21.77                 | 0.17        | 21.94                                  | 29.43               | 0.8770            | Complies |  |  |
| 11        | 2462               | 19.75                 | 0.17        | 19.92                                  | 29.43               | 0.8770            | Complies |  |  |

Test Mode TX G Mode\_Ant. 2

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|
| 01      | 2412               | 20.13                 | 0.17        | 20.30                                  | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 22.08                 | 0.17        | 22.25                                  | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 20.05                 | 0.17        | 20.22                                  | 29.43               | 0.8770            | Complies |

Test Mode TX G Mode\_Ant. 3

**Output Power** Max. Limit Max. Limit Frequency Output Power **Duty Factor** + Duty Factor Channel Result (MHz) (dBm) (dBm) (W) (dBm) 01 2412 20.69 0.17 20.86 29.43 0.8770 Complies 06 2437 20.52 0.17 20.69 29.43 0.8770 Complies 11 2462 20.16 0.17 20.33 29.43 0.8770 Complies

#### Test Mode TX G Mode\_Total

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|---------------------|-------------------|----------|
| 01      | 2412               | 25.17                 | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 26.45                 | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 24.93                 | 29.43               | 0.8770            | Complies |



| Test Mode | Test Mode TX N(HT20) Mode_Ant. 1 |                       |             |                                        |                     |                   |          |  |  |  |  |
|-----------|----------------------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|--|--|--|--|
| Channel   | Frequency<br>(MHz)               | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |  |  |  |  |
| 01        | 2412                             | 18.59                 | 0.19        | 18.78                                  | 29.43               | 0.8770            | Complies |  |  |  |  |
| 06        | 2437                             | 21.63                 | 0.19        | 21.82                                  | 29.43               | 0.8770            | Complies |  |  |  |  |
| 11        | 2462                             | 17.62                 | 0.19        | 17.81                                  | 29.43               | 0.8770            | Complies |  |  |  |  |

Test Mode TX N(HT20) Mode\_Ant. 2

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|
| 01      | 2412               | 19.16                 | 0.19        | 19.35                                  | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 22.38                 | 0.19        | 22.57                                  | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 18.19                 | 0.19        | 18.38                                  | 29.43               | 0.8770            | Complies |

Test Mode TX N(HT20) Mode\_Ant. 3

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|
| 01      | 2412               | 19.52                 | 0.19        | 19.71                                  | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 19.93                 | 0.19        | 20.12                                  | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 16.06                 | 0.19        | 16.25                                  | 29.43               | 0.8770            | Complies |

### Test Mode TX N(HT20) Mode\_Total

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|---------------------|-------------------|----------|
| 01      | 2412               | 24.07                 | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 26.39                 | 29.43               | 0.8770            | Complies |
| 11      | 2462               | 22.34                 | 29.43               | 0.8770            | Complies |



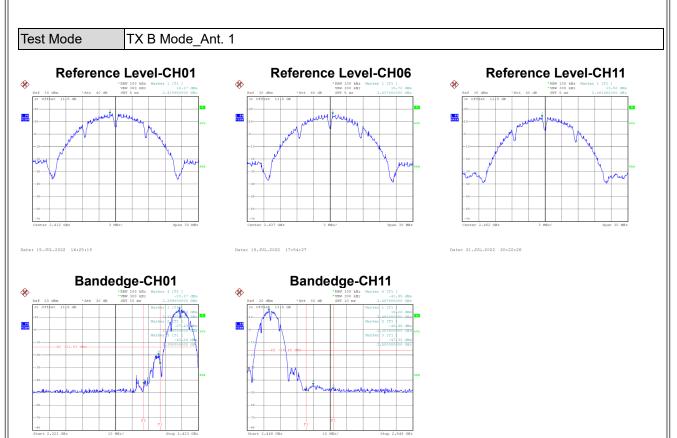
| Test Mode | Test Mode TX N(HT40) Mode_Ant. 1 |                       |             |                                        |                     |                   |          |  |  |  |  |
|-----------|----------------------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|--|--|--|--|
| Channel   | Frequency<br>(MHz)               | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |  |  |  |  |
| 03        | 2422                             | 16.43                 | 0.38        | 16.81                                  | 29.43               | 0.8770            | Complies |  |  |  |  |
| 06        | 2437                             | 21.25                 | 0.38        | 21.63                                  | 29.43               | 0.8770            | Complies |  |  |  |  |
| 09        | 2452                             | 17.57                 | 0.38        | 17.95                                  | 29.43               | 0.8770            | Complies |  |  |  |  |

Test Mode TX N(HT40) Mode\_Ant. 2

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|
| 03      | 2422               | 16.89                 | 0.38        | 17.27                                  | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 21.05                 | 0.38        | 21.43                                  | 29.43               | 0.8770            | Complies |
| 09      | 2452               | 17.74                 | 0.38        | 18.12                                  | 29.43               | 0.8770            | Complies |

Test Mode TX N(HT40) Mode\_Ant. 3

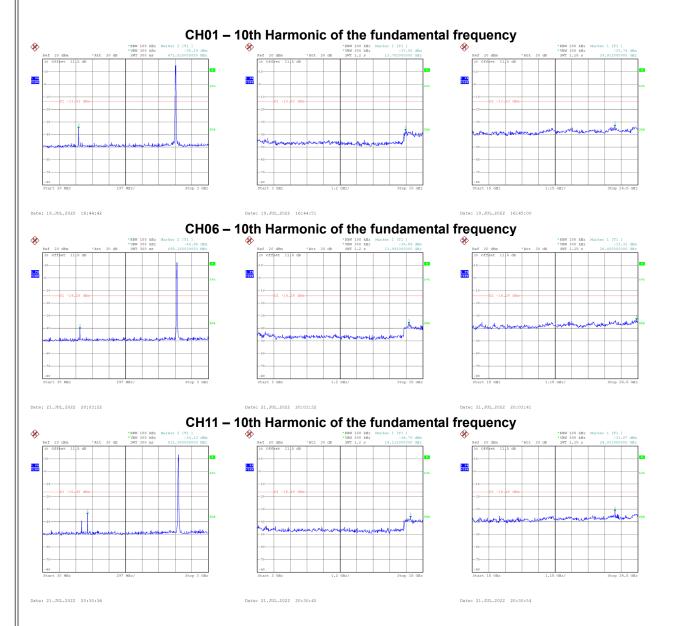
| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Duty Factor | Output Power<br>+ Duty Factor<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|-------------|----------------------------------------|---------------------|-------------------|----------|
| 03      | 2422               | 17.34                 | 0.38        | 17.72                                  | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 20.56                 | 0.38        | 20.94                                  | 29.43               | 0.8770            | Complies |
| 09      | 2452               | 15.54                 | 0.38        | 15.92                                  | 29.43               | 0.8770            | Complies |


### Test Mode TX N(HT40) Mode\_Total

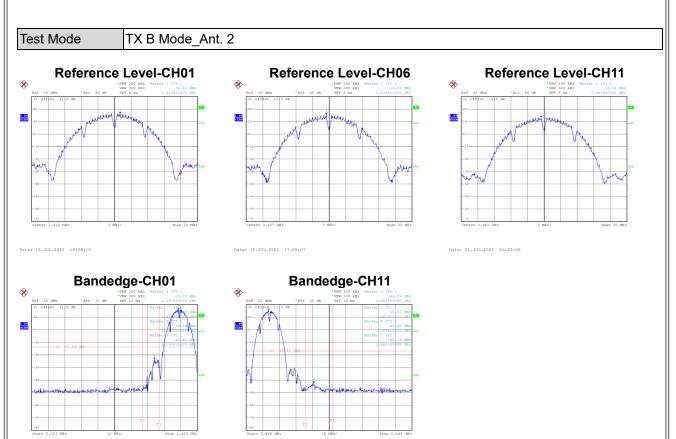
| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | Max. Limit<br>(dBm) | Max. Limit<br>(W) | Result   |
|---------|--------------------|-----------------------|---------------------|-------------------|----------|
| 03      | 2422               | 22.06                 | 29.43               | 0.8770            | Complies |
| 06      | 2437               | 26.12                 | 29.43               | 0.8770            | Complies |
| 09      | 2452               | 22.21                 | 29.43               | 0.8770            | Complies |



# **APPENDIX G - CONDUCTED SPURIOUS EMISSIONS**



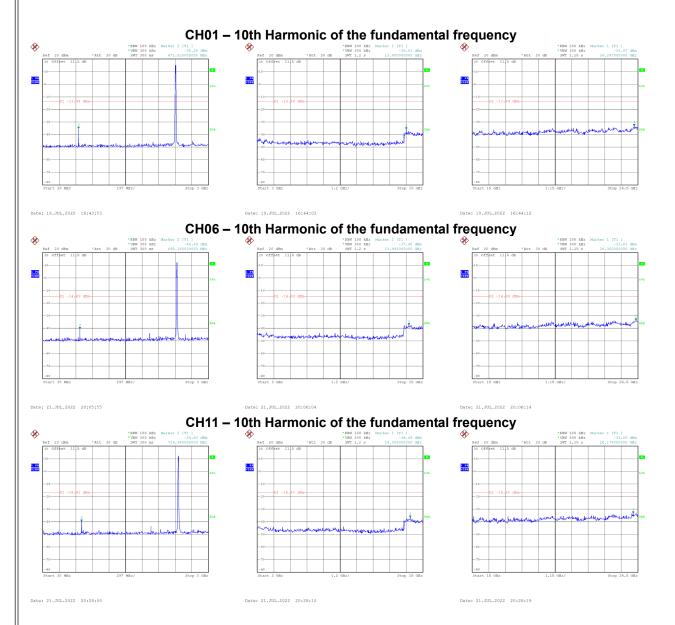




Date: 19.JUL.2022 17:48:05

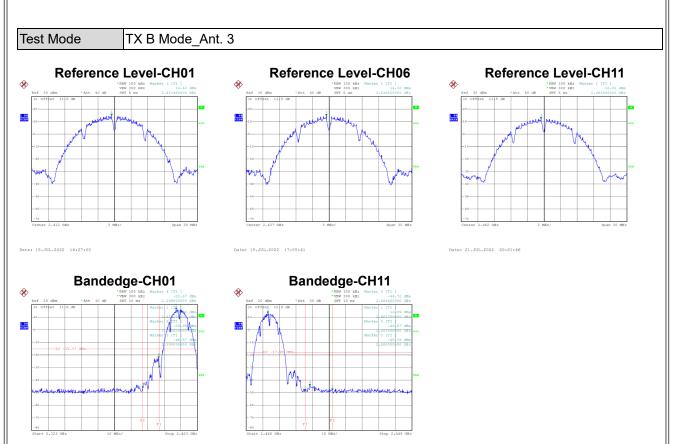
Date: 21.JUL.2022 20:30:00







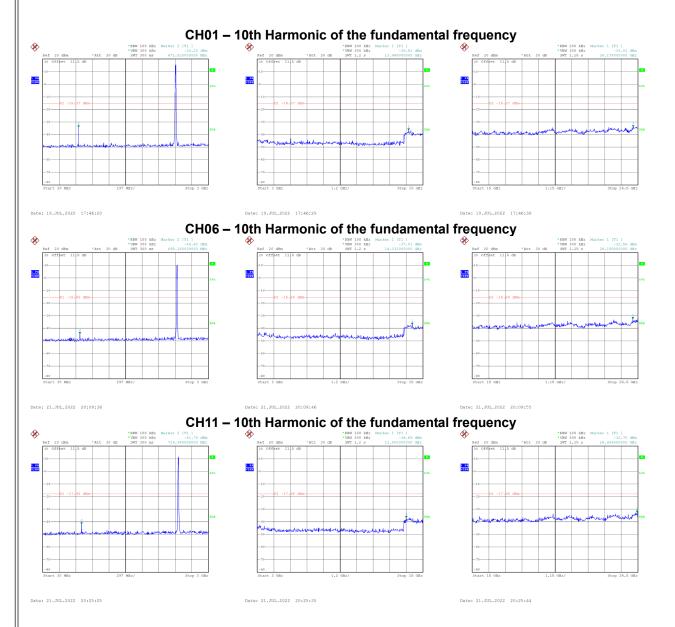




Date: 19.JUL.2022 17:52:20

Date: 21.JUL.2022 20:27:09










Date: 19.JUL.2022 17:44:19

Date: 21.JUL.2022 20:24:32



