

FCC Radio Test Report

FCC ID: 2AXJ4C110

This report concerns: Original Grant

Project No.	: 2008C121B
Equipment	: Home Security Wi-Fi Camera
Brand Name	tp-link, tapo
Test Model	: Tapo C110
Series Model	: N/A
Applicant	: TP-Link Corporation Limited
Address	Room 901, 9/F. , New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hong Kong
Manufacturer	: TP-Link Corporation Limited
Address	: Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hong Kong
Date of Receipt	: Feb. 19, 2021 Jul. 21, 2021
Date of Test	: Mar. 02, 2021 ~ Aug. 05, 2021
Issued Date	: Aug. 09, 2021
Report Version	: R00
Test Sample	: Engineering Sample No.: DG2021021990 for conducted, DG2021052138 and DG2021072138 for radiated .
Standard(s)	: FCC CFR Title 47, Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Theng chella

Prepared by : Chella Zheng

Schan Ma

Approved by : Ethan Ma

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
1.3 TEST ENVIRONMENT CONDITIONS	9
2 . GENERAL INFORMATION	10
2.1 GENERAL DESCRIPTION OF EUT	10
2.2 DESCRIPTION OF TEST MODES	11
2.3 PARAMETERS OF TEST SOFTWARE	12
2.4 DUTY CYCLE	13
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	15
2.6 SUPPORT UNITS	15
3 . AC POWER LINE CONDUCTED EMISSIONS	16
3.1 LIMIT	16
3.2 TEST PROCEDURE	16
3.3 DEVIATION FROM TEST STANDARD	16
3.4 TEST SETUP	17
3.5 EUT OPERATION CONDITIONS	17
3.6 TEST RESULTS	17
4. RADIATED EMISSIONS	18
4.1 LIMIT	18
4.2 TEST PROCEDURE	19
4.3 DEVIATION FROM TEST STANDARD	20
4.4 TEST SETUP	20
4.5 EUT OPERATION CONDITIONS	21
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	21
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	21
4.8 TEST RESULTS - ABOVE 1000 MHZ	21
5. BANDWIDTH	22
5.1 LIMIT	22
5.2 TEST PROCEDURE	22
5.3 DEVIATION FROM STANDARD	22
5.4 TEST SETUP	22

Table of Contents	Page
5.5 EUT OPERATION CONDITIONS	22
5.6 TEST RESULTS	22
6 . MAXIMUM AVERAGE OUTPUT POWER	23
6.1 LIMIT	23
6.2 TEST PROCEDURE	23
6.3 DEVIATION FROM STANDARD	23
6.4 TEST SETUP	23
6.5 EUT OPERATION CONDITIONS	23
6.6 TEST RESULTS	23
7 . CONDUCTED SPURIOUS EMISSIONS	24
7.1 LIMIT	24
7.2 TEST PROCEDURE	24
7.3 DEVIATION FROM STANDARD	24
7.4 TEST SETUP	24
7.5 EUT OPERATION CONDITIONS	24
7.6 TEST RESULTS	24
8 . POWER SPECTRAL DENSITY	25
8.1 LIMIT	25
8.2 TEST PROCEDURE	25
8.3 DEVIATION FROM STANDARD	25
8.4 TEST SETUP	25
8.5 EUT OPERATION CONDITIONS	25
8.6 TEST RESULTS	25
9 . MEASUREMENT INSTRUMENTS LIST	26
10 . EUT TEST PHOTO	28
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	33
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	36
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	41
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	44
APPENDIX E - BANDWIDTH	105
APPENDIX F - MAXIMUM AVERAGE OUTPUT POWER	109
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS	111

Table of Contents Page **APPENDIX H - POWER SPECTRAL DENSITY** 118

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Aug. 09, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C								
Standard(s) Section	Test Item	Test Result	Judgment	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS					
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS					
15.247(a)(2)	Bandwidth	APPENDIX E	PASS					
15.247(b)(3)	Maximum Average Output Power	APPENDIX F	PASS					
15.247(d)	Conducted Spurious Emissions	APPENDIX G	PASS					
15.247(e)	Power Spectral Density	APPENDIX H	PASS					
15.203	Antenna Requirement		PASS	Note(2)				

Note:

(1) "N/A" denotes test is not applicable in this test report.(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China. BTL's Test Firm Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.68

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		9kHz ~ 30MHz	-	3.02
		30MHz ~ 200MHz	V	4.26
DG-CB03	CISPR	30MHz ~ 200MHz	Н	3.38
		200MHz ~ 1,000MHz	V	3.98
		200MHz ~ 1,000MHz	Н	3.94
		1GHz ~ 6GHz	I	3.96
		6GHz ~ 18GHz	I	5.24
		18GHz ~ 26.5GHz	I	3.62
		26.5GHz ~ 40GHz	-	4.00

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Maximum Output Power	±0.95 dB
Conducted Spurious Emission	±2.71 dB
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	25°C	68%	AC 120V/60Hz	Laughing Zhang
Radiated Emissions-9kHz to 30 MHz	25°C	60%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-30MHz to 1000MHz	22°C	54%	AC 120V/60Hz	Hayden Chen
Radiated Emissions-Above 1000MHz	23°C	66%	AC 120V/60Hz	Kwok Guo
Bandwidth	23°C	53%	AC 120V/60Hz	Hayden Chen
Maximum Average Output Power	23°C	53%	AC 120V/60Hz	Silly Zheng
Conducted Spurious Emissions	23°C	53%	AC 120V/60Hz	Hayden Chen
Power Spectral Density	23°C	53%	AC 120V/60Hz	Hayden Chen

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Home Security Wi-Fi Camera		
Brand Name	tp-link, tapo		
Test Model	Tapo C110		
Series Model	N/A		
Model Difference(s)	N/A		
Power Source	DC voltage supplied from AC adapter. Model: T090060-2B1		
Power Rating	I/P: 100-240V~ 50/60Hz 0.3A O/P: 9V === 0.6A		
Operation Frequency	2412 MHz ~ 2462 MHz		
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM		
Bit Rate of Transmitter	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps		
Maximum Average Output Power IEEE 802.11b: 17.19 dBm (0.0524 W)			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) F						Frequency (MHz)	
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Antenna Specification:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	tp-link	2070501005	Internal	N/A	3.08

Note: The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3	TX N(HT20) Mode Channel 01/06/11
Mode 4	TX B Mode Channel 01
Mode 5	TX B Mode Channel 01/02/06/10/11
Mode 6	TX G Mode Channel 01/02/06/10/11
Mode 7	TX N(HT20) Mode Channel 01/02/06/10/11

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test	
Final Test Mode Description	
Mode 4	TX B Mode Channel 01

Radiated emissions test - Below 1GHz	
Final Test Mode	Description
Mode 4	TX B Mode Channel 01

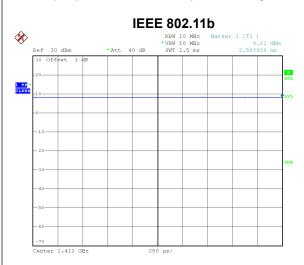
Radiated emissions test- Above 1GHz		
Final Test Mode	Description	
Mode 5	TX B Mode Channel 01/02/06/10/11	
Mode 6	TX G Mode Channel 01/02/06/10/11	
Mode 7	TX N(HT20) Mode Channel 01/02/06/10/11	

Conducted test	
Final Test Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3	TX N(HT20) Mode Channel 01/06/11

NOTE:

- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX B Mode Channel 01 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

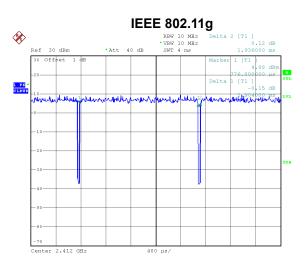
2.3 PARAMETERS OF TEST SOFTWARE


Test Software Version

SstarWifi_ETF_V2.10.211

2.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.


Date: 26.FEB.2021 09:22:20

Duty cycle = 2.500 ms / 2.500 ms = 100%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$

EEE 802.11n(HT20)

Date: 26.FEB.2021 09:23:26

Duty cycle = 1.776 ms / 1.808 ms = 98.23% Duty Factor = 10 log(1/Duty cycle) = 0.00

Date: 26.FEB.2021 09:23:05

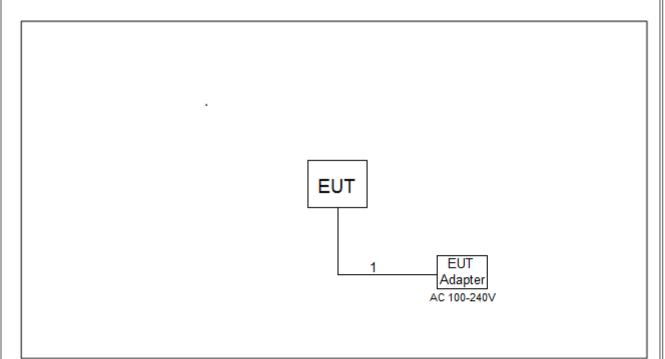
Duty cycle = 1.904 ms / 1.936 ms = 98.35% Duty Factor = 10 log(1/Duty cycle) = 0.00

NOTE:

For IEEE 802.11b:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11g:


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11n(HT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.2m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (d	BμV)
Frequency of Emission (MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

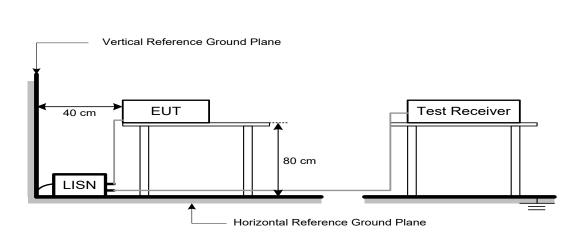
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

	(dBuV/m at 3 m)		
Frequency (MHz)		Peak	Average
	Above 1000	74	54

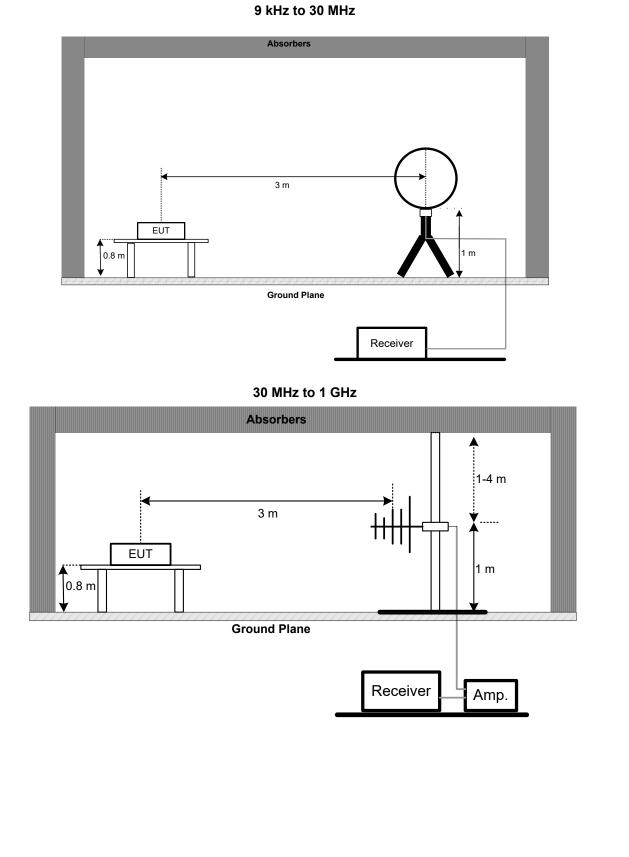
NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

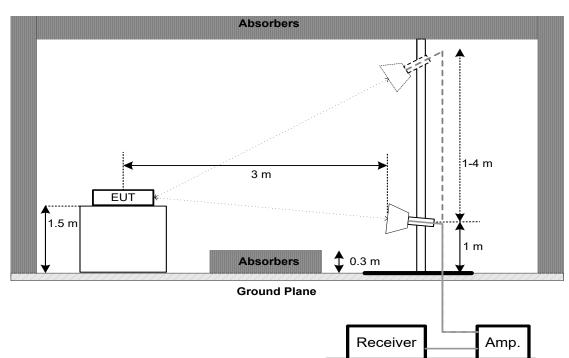
4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value
Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP

Above 1 GHz

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(2)	6 dB Bandwidth	Minimum 500 kHz
	99% Emission Bandwidth	-

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Spectrum Parameters	Setting		
Span Frequency	> Measurement Bandwidth		
RBW	100 kHz		
VBW	300 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

For 99% Emission Bandwidth:

Spectrum Parameters	Setting		
Span Frequency	Between 1.5 times and 5.0 times the OBW		
RBW	300 kHz		
VBW	1 MHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

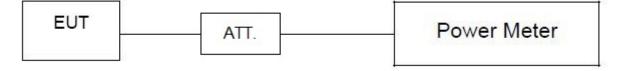
5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. MAXIMUM AVERAGE OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Average Output Power	1.0000 Watt or 30.00 dBm


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.2.3.1 of ANSI C63.10-2013 .

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7. CONDUCTED SPURIOUS EMISSIONS

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Enr	Reference	
FUL	Nelelelice	

Spectrum Parameters	Setting		
Span Frequency	\geq 1.5 times the bandwidth.		
RBW	100 kHz		
VBW	300 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

For Emission Level:

Spectrum Parameters	Setting			
Start Frequency	30 MHz			
Stop Frequency	26.5 GHz			
RBW	100 kHz			
VBW	300 kHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. POWER SPECTRAL DENSITY

8.1 LIMIT

Section	Test Item	Limit	
FCC 15.247(e)	Power Spectral Density	Power Spectral Density 8 dBm	
FCC 15.247(e)	Power Spectral Density	(in any 3 kHz)	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting			
Span Frequency	25 MHz			
RBW	3 kHz			
VBW	10 kHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022	
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022	
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022	
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022	
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
6	Cable	N/A	RG223	12m	Mar. 09, 2022	
7	643 Shield Room	ETS	6*4*3m	N/A	N/A	

	Radiated Emissions - 9 kHz to 30 MHz				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Loop Antenna	EM	EM-6876-1	230	Apr. 28, 2022
2	Cable	N/A	RG 213/U	N/A	May 27, 2022
3	EMI Test Receiver	R&S	ESCI	100895	Feb. 27, 2022
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
5	966 Chambe Room	RM	9*6*6m	N/A	Jul. 24, 2022

	Radiated Emissions - 30 MHz to 1 GHz				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022
2	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022
3	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022
4	Cable	emci	LMR-400(30MHz-1 GHz)(8m+5m)	N/A	May 20, 2022
5	Controller	СТ	SC100	N/A	N/A
6	Controller	MF	MF-7802	MF780208416	N/A
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
8	966 Chambe Room	RM	9*6*6m	N/A	Jul. 24, 2022

Radiated Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Double Ridged Guide Antenna	ETS	3115	75789	May 10, 2022		
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022		
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022		
4	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Feb. 28, 2022		
5	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022		
6	Controller	СТ	SC100	N/A	N/A		
7	Controller	MF	MF-7802	MF780208416	N/A		
8	Cable	N/A	EMC104-SM-SM-6 000	N/A	Oct. 16, 2021		
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
10	Filter	STI	STI15-9912	N/A	Jul. 10, 2022		
11	966 Chambe Room	RM	9*6*6m	N/A	Jul. 24, 2022		

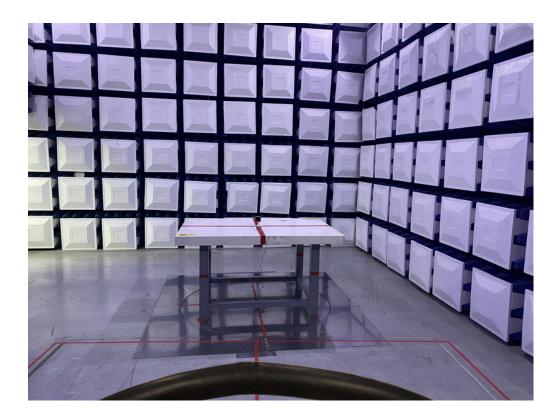
Bandwidth & Conducted Spurious Emissions & Power Spectral Density								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 10, 2022			
2	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022			
3	RF Cable	Tongkaichuan	N/A	N/A	N/A			
4	DC Block	Mini	N/A	N/A	N/A			

Maximum Average Output Power								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Peak Power Analyzer	Keysight	8990B	MY51000506	Jul. 10, 2022			
2	Wideband power sensor	Keysight	N1923A	MY58310004	Jul. 10, 2022			
3	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022			
4	RF Cable	Tongkaichuan	N/A	N/A	N/A			

Remark: "N/A" denotes no model name, serial no. or calibration specified.

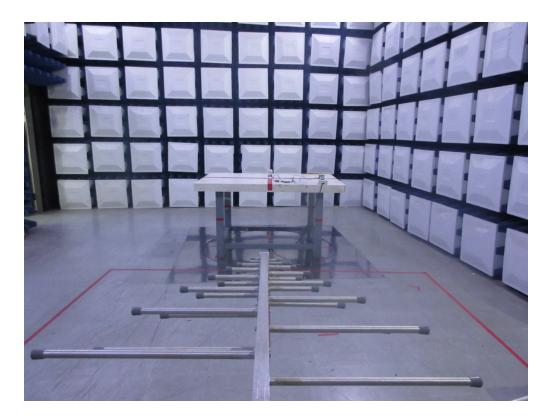
All calibration period of equipment list is one year.

10. EUT TEST PHOTO



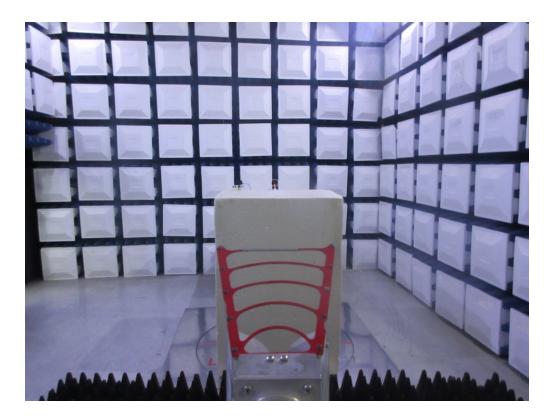
Radiated Emissions Test Photos

9 kHz to 30 MHz

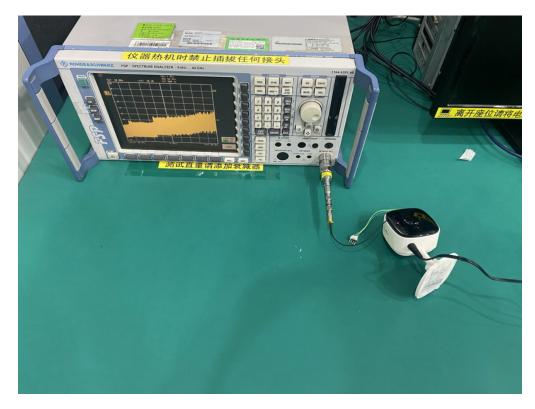


Radiated Emissions Test Photos

30 MHz to 1 GHz



Radiated Emissions Test Photos


Above 1 GHz



Conducted Test Photos



APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

BIL

REMARKS:

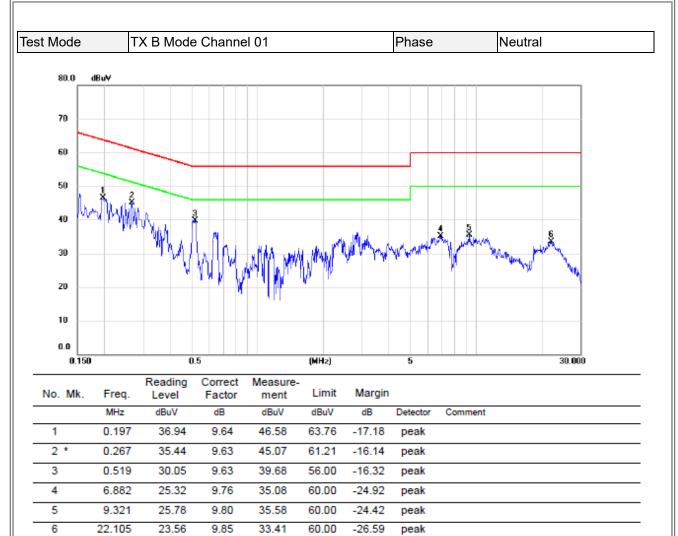
6

23.064

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

22.57

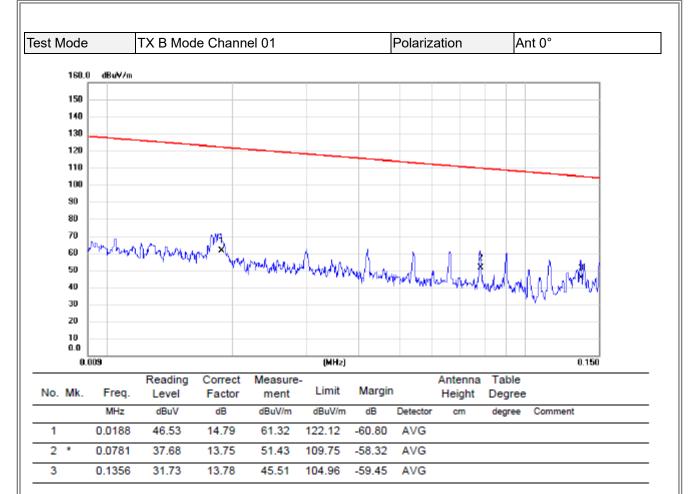
9.85


32.42

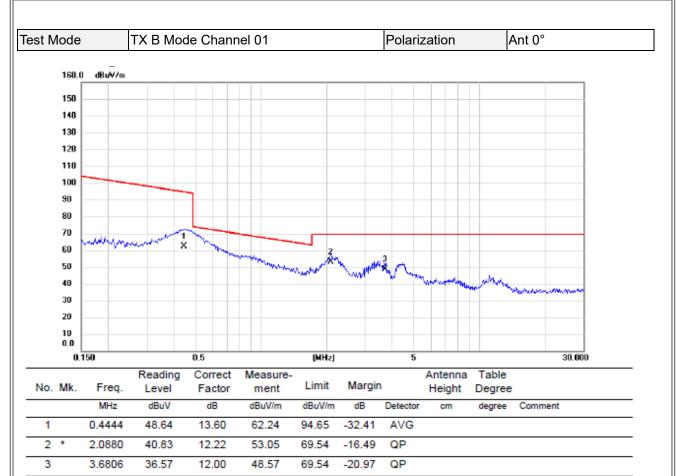
60.00

-27.58

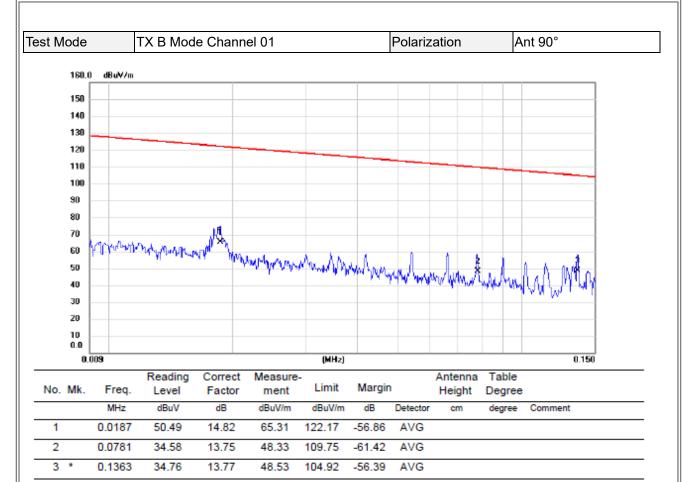
peak


BIL

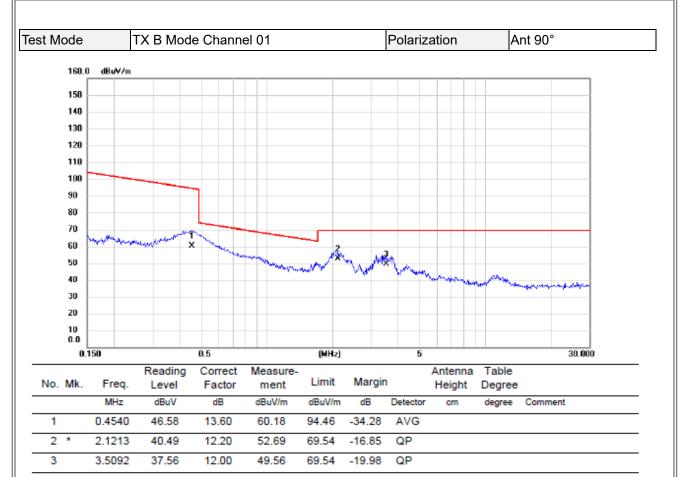
REMARKS:


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

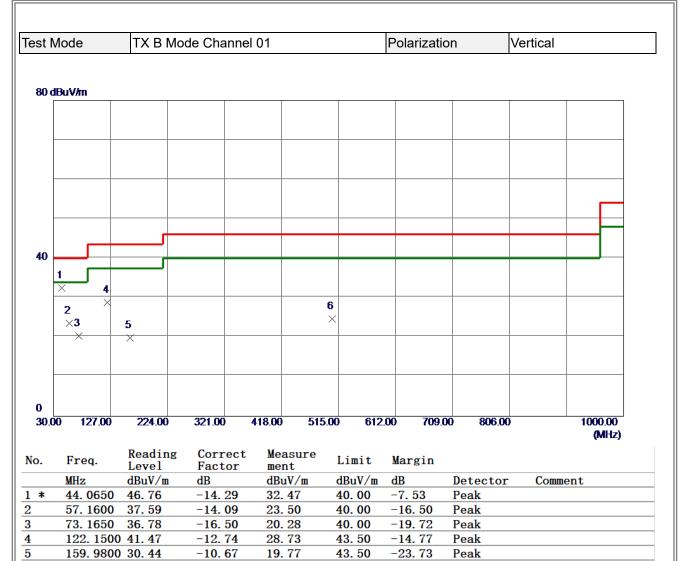


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

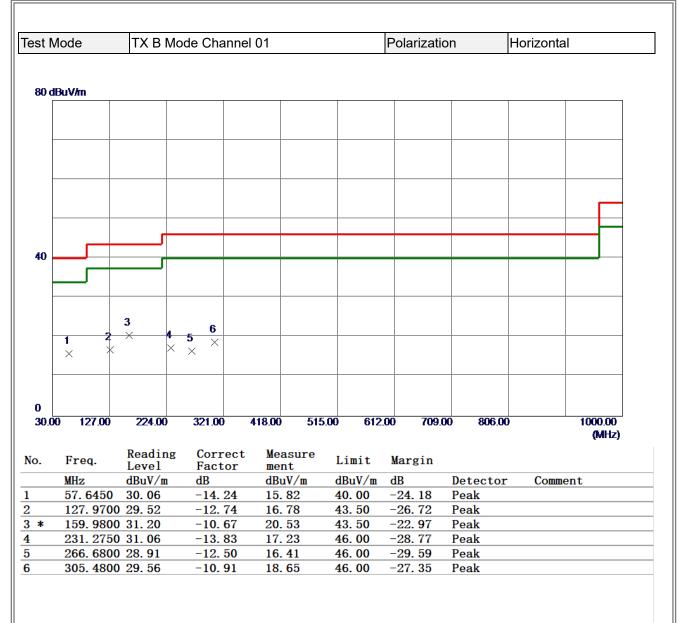
-21.40

Peak

46.00

REMARKS:

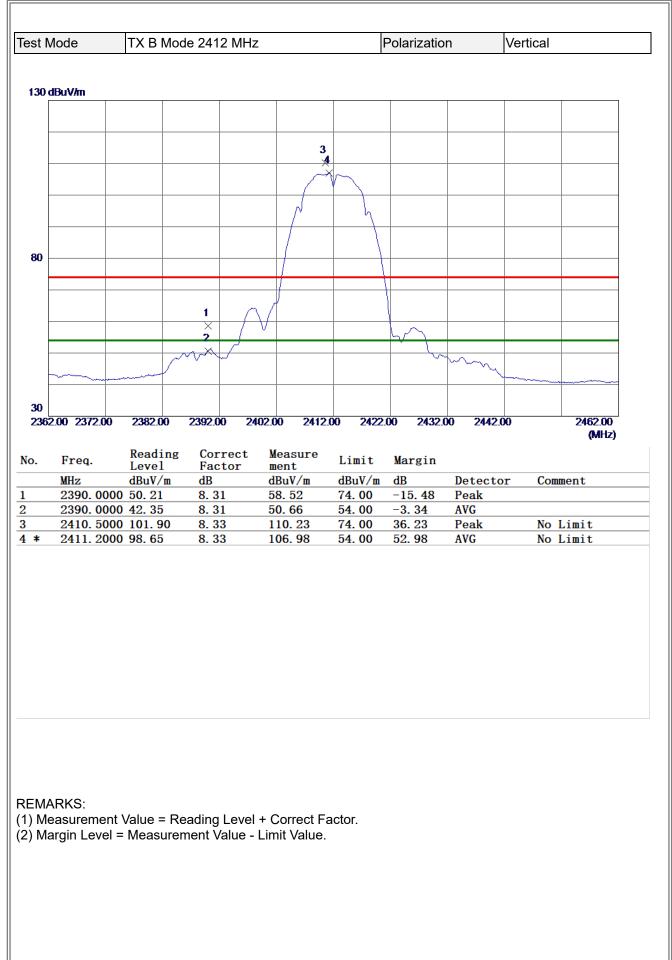
6

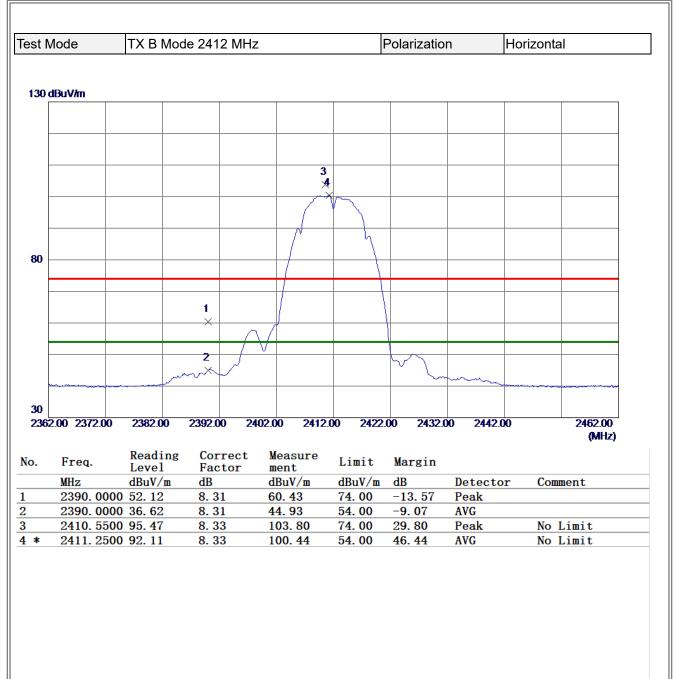

504. 3300 31. 82

(1) Measurement Value = Reading Level + Correct Factor.

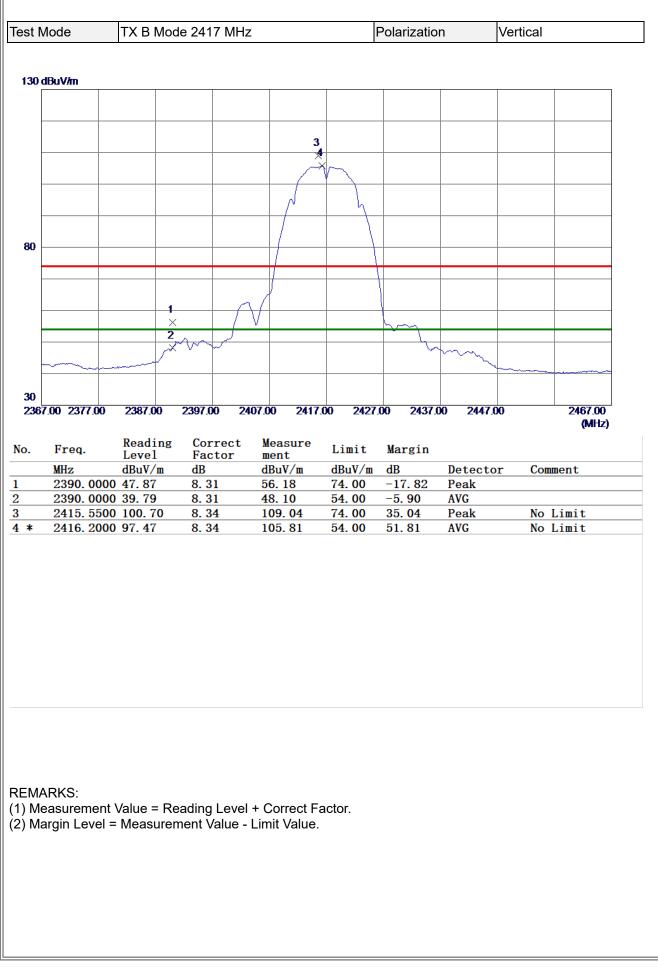
-7.22

24.60

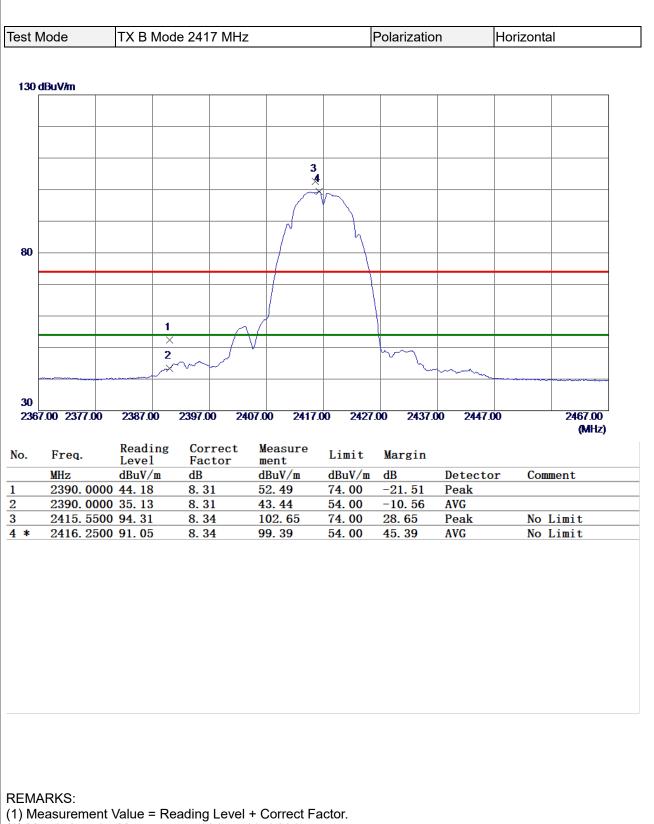

(2) Margin Level = Measurement Value - Limit Value.

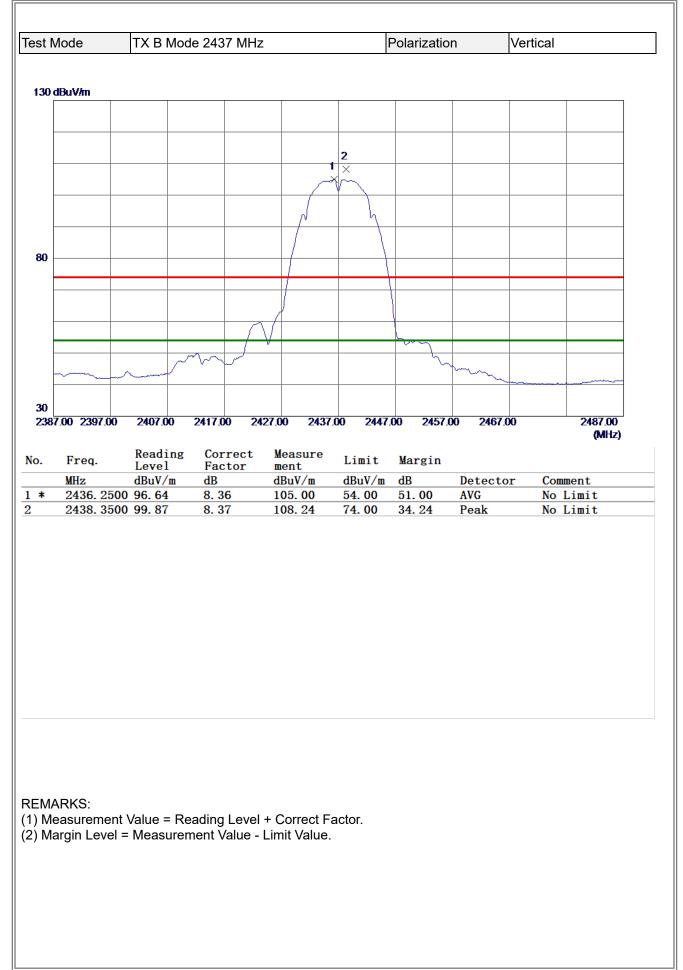

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

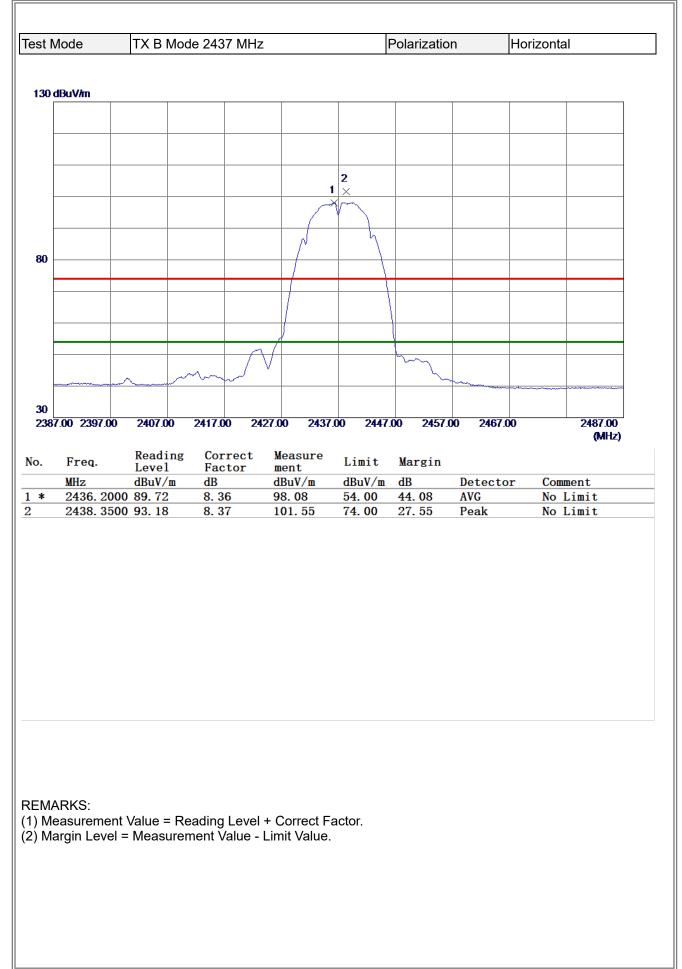

	TX B Mo	ode 2412 MH	Z	l	Polarizatio	n	Vertical	
0 dBuV/m								
	1							
	2 × ×							
	~							
0								
0								
0								
000.00 3550.0	0 6100.00	8650.00 1	1200.00 13750	0.00 1630	0.00 18850	0.00 2140	0.00	26500.00
								(MHz)
Freq.	Reading Level	g Correct Factor	Measure ment	Limit	Margin			
MHz								
	dBuV/m	dB	dBuV/m	dBuV/m		Detect	or Com	ment
4823.8	dBuV/m 500 42.61 200 37.82	dB 5. 23 5. 23		dBuV/m 74.00 54.00	dB -26. 16 -10. 95	Detecto Peak AVG	or Com	ment
4823.8	500 42.61	5. 23	dBuV/m 47.84	74.00	-26. 16	Peak	or Com	ment

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


est Mode	TX B N	/lode 2412	MHz		F	Polarizatio	n	Horizon	tal
80 dBuV/m									
	1								
	2 ×								
30									
	_								
20									
1000.00 3550	0.00 6100.00) 8650.00	11200.0	0 13750	00 16300).00 18850	00 21400	00_0	26500.00
	Poodi	ag Comm	oot V						(MHz)
o. Freq.	Readi: Level	ng Corr Fact		easure ent	Limit	Margin			(MILZ)
MHz	Level dBuV/r	Fact n dB	or me dE	easure ent BuV/m	dBuV/m	dB	Detecto	or Co	mment
MHz 4823.	Level dBuV/r 8100 41.26	Fact dB 5.23	or me dE 46	easure ent GuV/m 5.49	dBuV/m 74.00	dB -27. 51	Peak	or Co	
MHz 4823.	Level dBuV/r	Fact n dB	or me dE 46	easure ent BuV/m	dBuV/m	dB		or Co	
MHz 4823.	Level dBuV/r 8100 41.26	Fact dB 5.23	or me dE 46	easure ent GuV/m 5.49	dBuV/m 74.00	dB -27. 51	Peak	or Co	

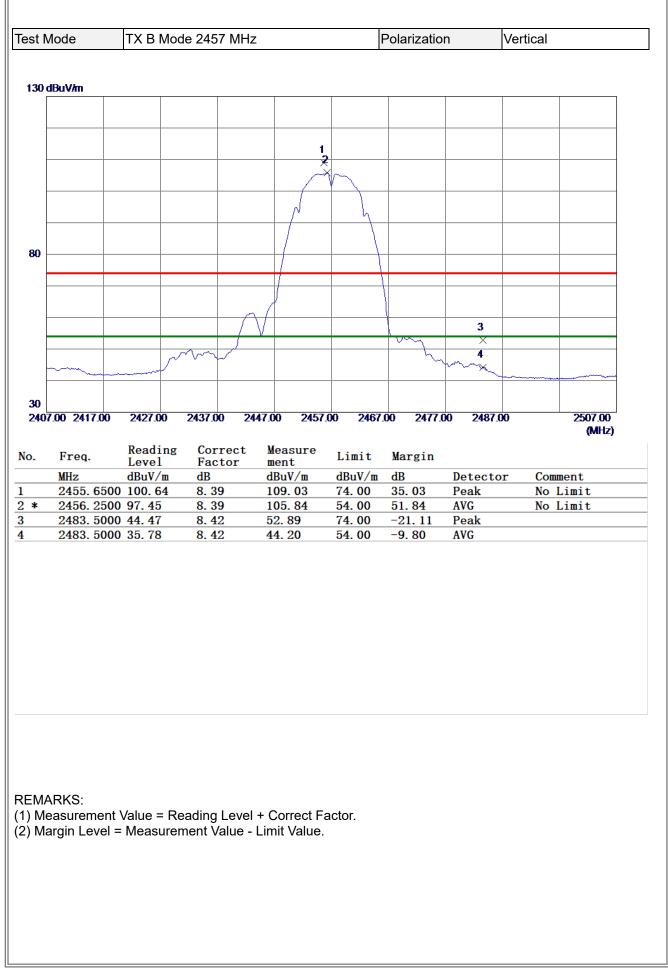

BTL

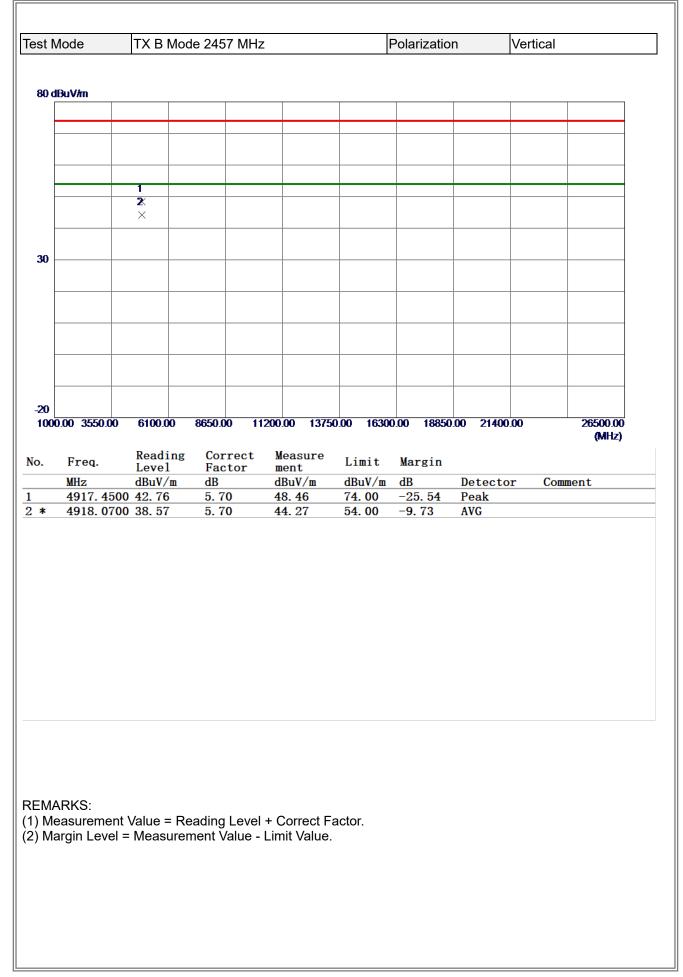
Act N											
031 1	lode	TX B I	Mode	2417	MHz			Polarizat	ion	Vertical	
80 d	BuV/m										
-		2 1									
		×									
30											
ŀ											
-20 1000	0.00 3550.00	6100.0	0 86	350.00	112	00.00 13	750.00 16	300.00 188	50.00 2140	00.00	26500.00
											(MHz)
lo.	Freq.	Readi									
	rreq.	Level	ng	Corre	ect	Measure	, Limit	Margin			
	MHz	Level dBuV/	-	Corre Facto dB	ect or	Measure ment dBuV/m	Cimit dBuV/		Detect	or Co	omment
	MHz 4833.470	Level dBuV/ 00 38.51	<u></u>	Facto dB 5.28	ect or	ment dBuV/m 43.79	dBuV/ 54.00	m dB -10.21	Detect AVG	cor Co	omment
*	MHz	Level dBuV/ 00 38.51	<u></u>	Facto dB	ect or	ment dBuV/m	dBuV/	m dB -10.21	Detect AVG	cor Co	omment
	MHz 4833.470	Level dBuV/ 00 38.51	<u></u>	Facto dB 5.28	ect or	ment dBuV/m 43.79	dBuV/ 54.00	m dB -10.21	Detect AVG	cor Co	omment

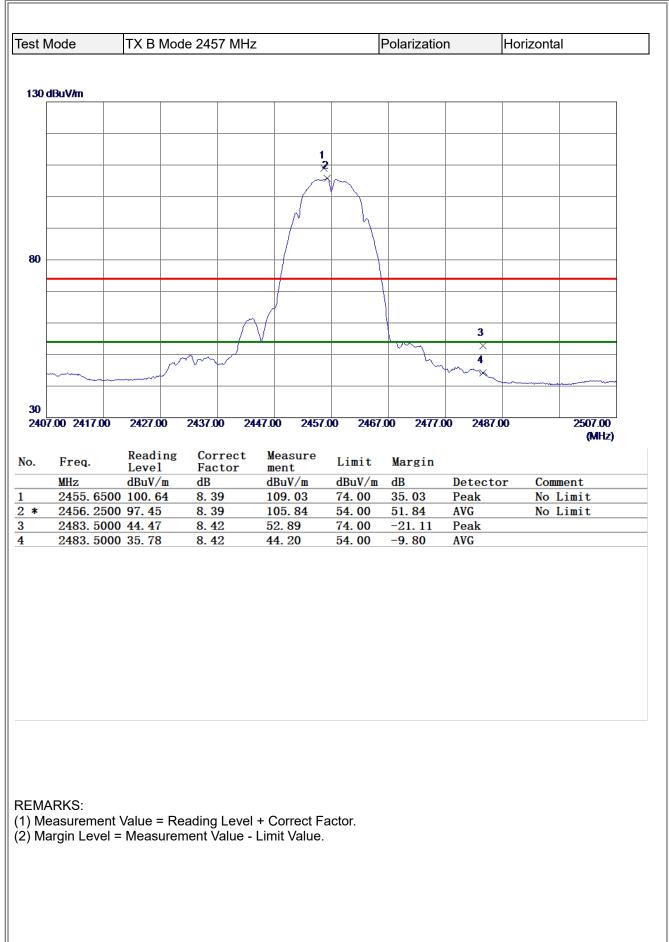


BLL

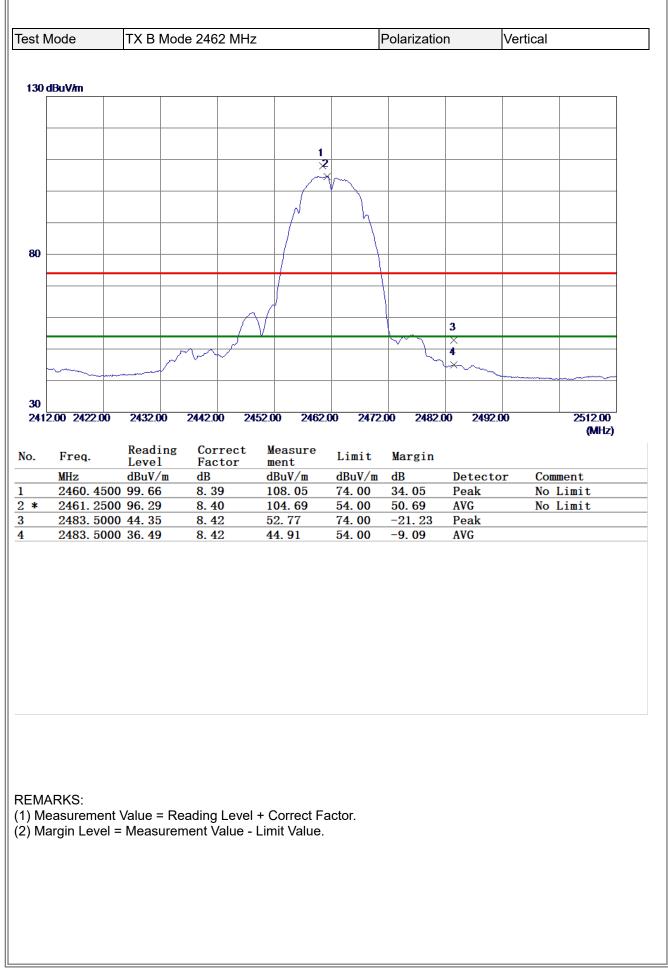
Test N	Node	TX B M	ode 241	7 MHz			Polarizatio	n	Horizont	al
90.4	lBuV/m									
000										
		2								
		k								
		×								
30										
								1		
-20										
100	0.00 3550.00	0 6100.00	8650.0	0 11:	200.00 1375	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00 (MHz)
										(min rec)
		Deedin	~ Cam	meet	Veccure					
No.	Freq.	Readin Level	g Cor Fac	rect	Measure ment	Limit	Margin			
No.	Freq. MHz	Readin Level dBuV/m	Fac	rect	Measure ment dBuV/m	Limit dBuV/m		Detecto	or Cor	nment
	MHz 4831.44	Level dBuV/m 50 37.37	Fac dB 5. 2	tor	ment dBuV/m 42.64	dBuV/m 54. 00	dB -11. 36	AVG	or Coi	nment
1	MHz 4831.44	Level dBuV/m	Fac dB	tor	ment dBuV/m	dBuV/m	dB		or Cor	nment
No. 1 2 *	MHz 4831.44	Level dBuV/m 50 37.37	Fac dB 5. 2	tor	ment dBuV/m 42.64	dBuV/m 54. 00	dB -11. 36	AVG	or Cor	nment

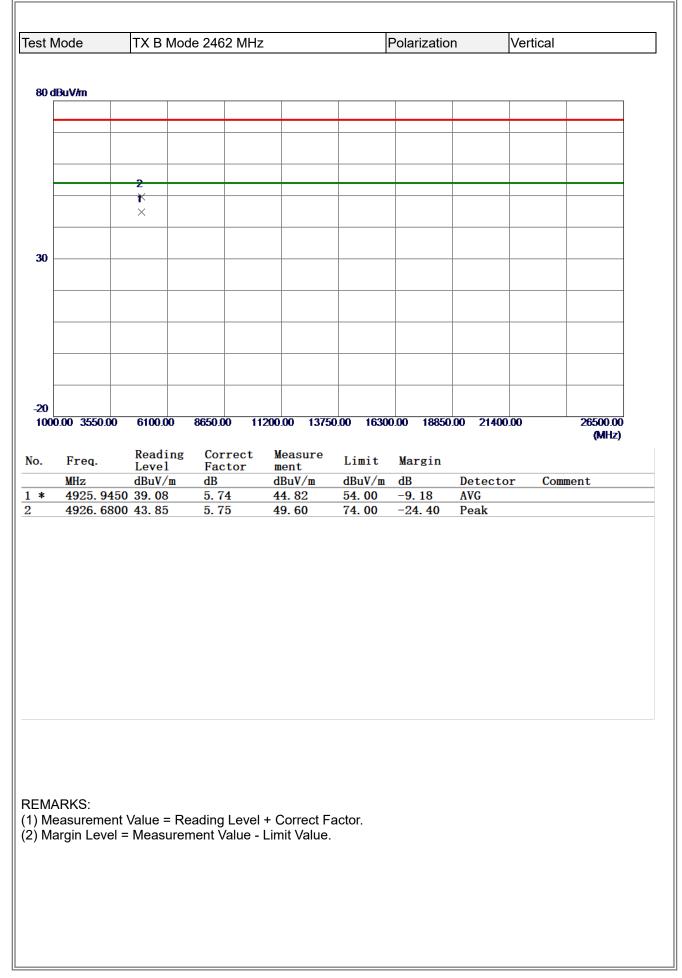


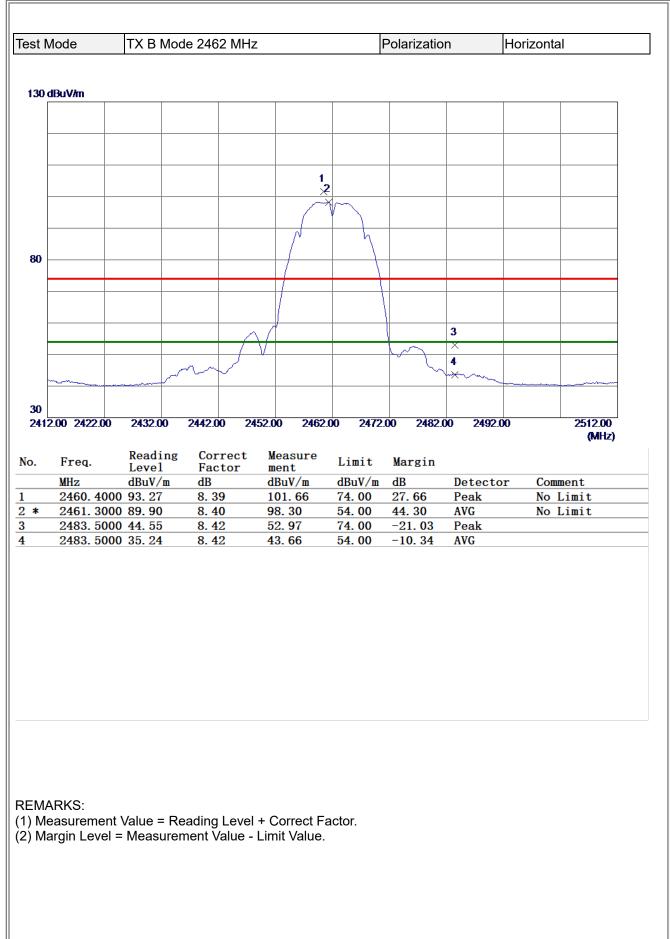

	/lode	TX B Mo	de 2437 MHz	<u> </u>	ŀ	Polarizatio	n	Vertical	
80 d	BuV/m								
ŀ									
-		2 1K							
		×							
30									
-									
ŀ									
ŀ									
-20 100ř	0.00 3550.00	6100.00	8650.00 11	200.00 13750	0.00 16300	0.00 18850	.00 21400	00	26500.00
1000		0100.00		200.00 10100					(MHz)
o.	Freq.	Reading	Correct	Measure	Limit	Margin			
		Level	Factor	ment					
	MHZ	dBuV/m	dB		dBuV/m	dB	Detecto	or Com	ment
*		dBuV/m 50 38.16	dB 5. 50	dBuV/m 43.66	dBuV/m 54.00	dB -10.34	Detecto AVG	or Com	ment
	4878. 34			dBuV/m				or Com	ment
	4878. 34	50 38.16	5. 50	dBuV/m 43.66	54.00	-10. 34	AVG	or Com	ment
	4878. 34	50 38.16	5. 50	dBuV/m 43.66	54.00	-10. 34	AVG	or Com	ment
	4878. 34	50 38.16	5. 50	dBuV/m 43.66	54.00	-10. 34	AVG	or Com	ment
	4878. 34	50 38.16	5. 50	dBuV/m 43.66	54.00	-10. 34	AVG	or Com	ment
	4878.34	50 38.16	5. 50	dBuV/m 43.66	54.00	-10. 34	AVG	or Com	ment
	4878.34	50 38.16	5. 50	dBuV/m 43.66	54.00	-10. 34	AVG	or Com	ment
	4878. 343	50 38.16	5. 50	dBuV/m 43.66	54.00	-10. 34	AVG	or Com	ment
EMA	4878. 343 4878. 999	50 38. 16 50 42. 24	5.50 5.51	dBuV/m 43.66 47.75	54.00 74.00	-10. 34	AVG	or Com	ment
EMA) Me	4878. 345 4878. 995	50 38. 16 50 42. 24 nt Value = R	5. 50 5. 51 eading Level	dBuV/m 43. 66 47. 75 + Correct Fa	54. 00 74. 00	-10. 34	AVG	or Com	ment
2 EMA 1) Me	4878. 345 4878. 995	50 38. 16 50 42. 24 nt Value = R	5.50 5.51	dBuV/m 43. 66 47. 75 + Correct Fa	54. 00 74. 00	-10. 34	AVG	or Com	ment
1) Me	4878. 345 4878. 995	50 38. 16 50 42. 24 nt Value = R	5. 50 5. 51 eading Level	dBuV/m 43. 66 47. 75 + Correct Fa	54. 00 74. 00	-10. 34	AVG		ment
EMA) Me	4878. 345 4878. 995	50 38. 16 50 42. 24 nt Value = R	5. 50 5. 51 eading Level	dBuV/m 43. 66 47. 75 + Correct Fa	54. 00 74. 00	-10. 34	AVG		
EMA) Me	4878. 345 4878. 995	50 38. 16 50 42. 24 nt Value = R	5. 50 5. 51 eading Level	dBuV/m 43. 66 47. 75 + Correct Fa	54. 00 74. 00	-10. 34	AVG	or Com	ment
ΞΜΑ	4878. 345 4878. 995	50 38. 16 50 42. 24 nt Value = R	5. 50 5. 51 eading Level	dBuV/m 43. 66 47. 75 + Correct Fa	54. 00 74. 00	-10. 34	AVG		

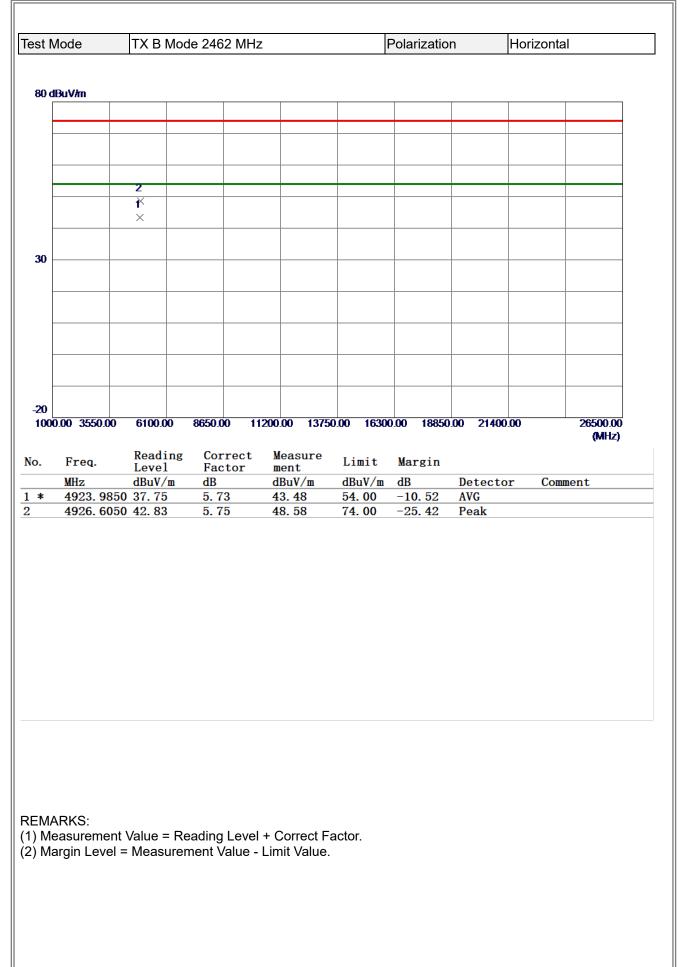


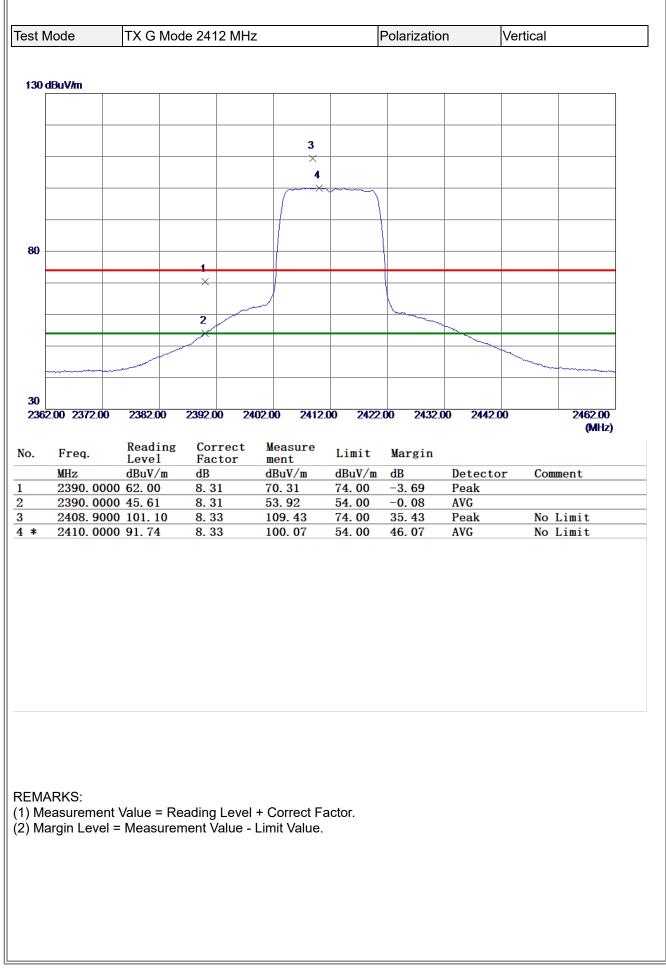
3TL

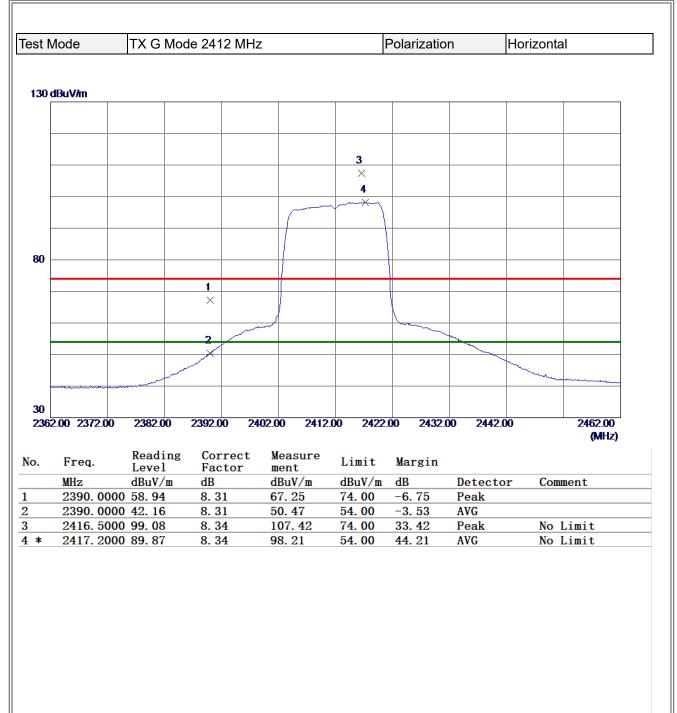

st Mode	TX B Mo	de 2437 MHz	Z	I	Polarizatio	n	Horizon	tal
80 dBuV/m								
	1							
	2 ×							
30								
0.								
20								
000.00 3550.0	0 6100.00	8650.00 11	1200.00 1375	0.00 1630	0.00 18850	0.00 2140	0.00	26500.00
		0000.00	1200.00 1313					(MHz)
	Poading							(MHz)
o. Freq.	Reading Level		Measure ment	Limit	Margin			(MHZ)
MHz	Level dBuV/m	Correct Factor dB	Measure ment dBuV/m	Limit dBuV/m	dB	Detect	or Co	(MHz) mment
MHz 4877.9	Level dBuV/m 100 41.42	Correct Factor dB 5.50	Measure ment dBuV/m 46.92	Limit dBuV/m 74.00	dB −27. 08	Peak	or Co	
MHz 4877.9	Level dBuV/m	Correct Factor dB	Measure ment dBuV/m	Limit dBuV/m	dB		or Co	
MHz 4877.9	Level dBuV/m 100 41.42	Correct Factor dB 5.50	Measure ment dBuV/m 46.92	Limit dBuV/m 74.00	dB −27. 08	Peak	or Co	

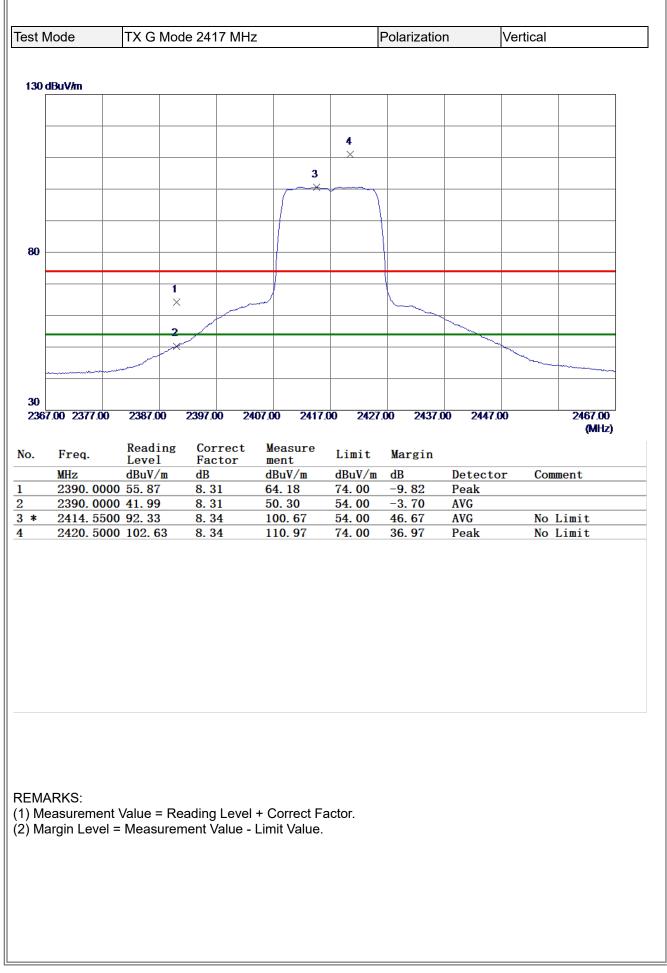




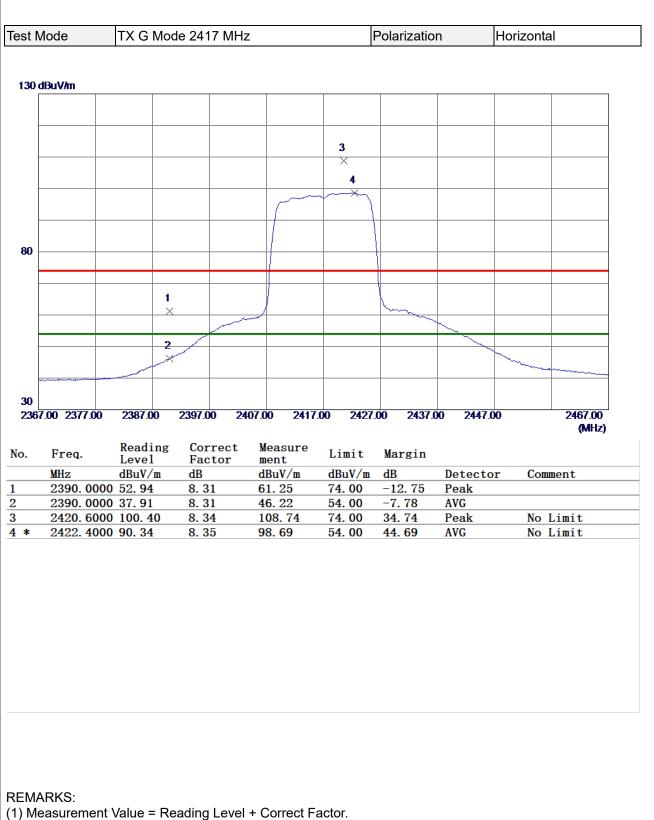



estin	lode	TX B M	ode 2457 M⊦	lz	I	Polarizatio	n	Horizonta	al
80 d	BuV/m								
[
		2							
		<u> </u>							
		×							
30									
-20									
100	0.00 3550.0	0 6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400).00	26500.00 (MHz)
		Readin	g Correct	v					
o .	Freq.	Lowel	g Correct		Limit	Margin			
D.	Freq. MHz	Level	Factor	ment	Limit dBuV/m	Margin dB	Detecto	or Com	ment
	MHz 4917.69	Level dBuV/m 000 37.49	Factor dB 5.70	ment dBuV/m 43.19	dBuV/m 54.00	dB -10. 81	Detecto AVG	or Com	ment
*	MHz 4917.69	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB		or Com	ment
¥.	MHz 4917.69	Level dBuV/m 000 37.49	Factor dB 5.70	ment dBuV/m 43.19	dBuV/m 54.00	dB -10. 81	AVG	or Com	ment



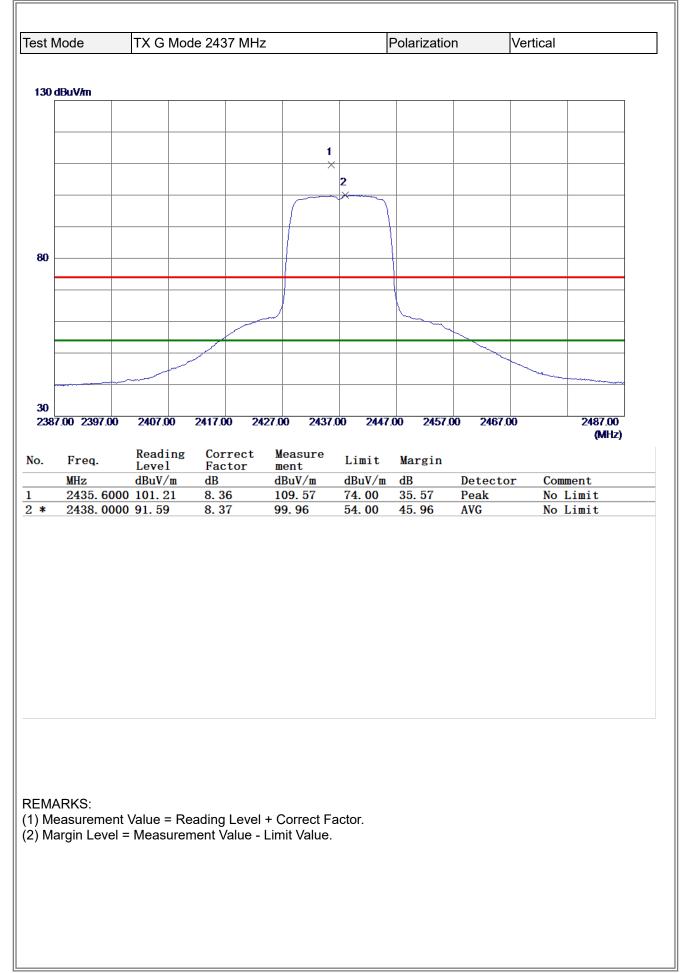


	Node	TX G Mo	de 2412 MH	7		Polarizatio	n	Vertical	
80 c	lBuV/m					1	1	1	
		2							
		×							
30									
-20									
100	0.00 3550.00) 6100.00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	0.00 2140	0.00	26500.00 (MHz)
		Reading	Correct	Measure					(MILZ)
0.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detect	or Com	ment
*	4823 94	00 36 47	5 23	41 70	54 00	-12 30	AVG		
		00 36.47 00 46.18	5. 23 5. 23	41. 70 51. 41	54.00 74.00	-12. 30 -22. 59	AVG Peak		
<u>l *</u>									


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

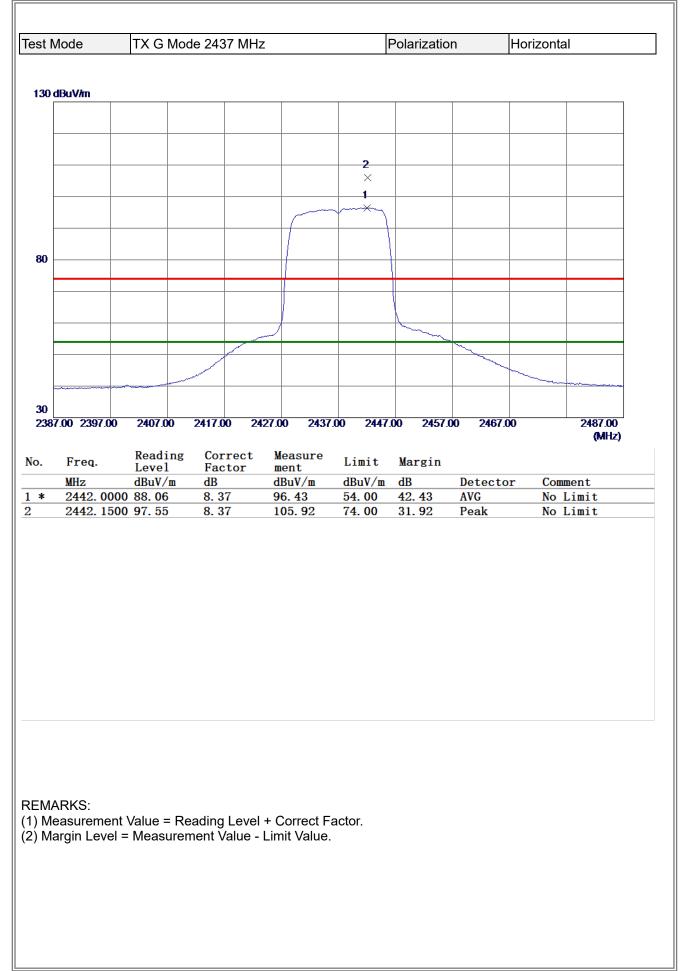
lo. Freq. Reading Correct Measure Level Factor ment Limit Margin	Image: state stat
2 2 2 1 1 1 × 1 1	Image: state stat
2 2 2 1 1 1 30 1 1 1 1 1 20 1 1 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26 20 1 </th <th>Image: state stat</th>	Image: state stat
X I I I 1 X I	Image: state of the state
X I	
X I	
X I	
X I	
30 ×	
30 ×	
20	
20	
Non-on-state Reading Correct Measure Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4823.9550.35.26 5.23 40.49 54.00 -13.51 AVG 26	
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AVG Comment Comment <thcomment< th=""> Comment <thc< td=""><td></td></thc<></thcomment<>	
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AVG Comment Comment <thcomment< th=""> Comment <thc< td=""><td></td></thc<></thcomment<>	
Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26 D. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4823.9550 35.26 5.23 40.49 54.00 -13.51 AVG	
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AVG Comment Comment <thcomment< th=""> Comment <thc< td=""><td></td></thc<></thcomment<>	
Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26 D. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4823.9550 35.26 5.23 40.49 54.00 -13.51 AVG	
Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26 D. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4823.9550 35.26 5.23 40.49 54.00 -13.51 AVG	
Non-oo 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26 b. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4823.9550 35.26 5.23 40.49 54.00 -13.51 AVG	
Non-on-state Reading Correct Measure Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4823.9550.35.26 5.23 40.49 54.00 -13.51 AVG 26	
 b. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 4823.9550 35.26 5.23 40.49 54.00 -13.51 AVG 	0.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00
Reading LevelCorrect FactorMeasure mentLimit 	0.00 0030.00 11200.00 13730.00 10300.00 10630.00 21400.00 20300.00 (MHz)
MHz BuV/m dB dBuV/m dB Detector Comment * 4823.9550 35.26 5.23 40.49 54.00 -13.51 AVG	ding Correct Necessro
★ 4823. 9550 35. 26 5. 23 40. 49 54. 00 -13. 51 AVG	vel Factor ment
4823. 9600 45. 96 5. 23 51. 19 74. 00 -22. 81 Peak	
	00 0.20 01.10 11.00 22.01 10ax

3TL

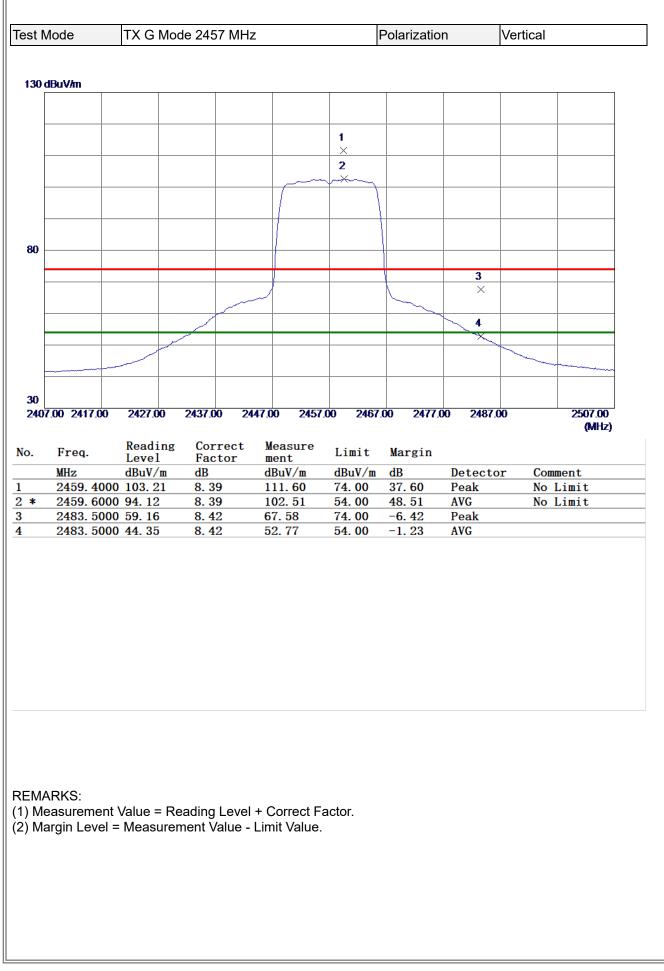

	TX G M	ode 2417 M⊦	lz	F	Polarizatio	n	Vertical	
0 dBuV/m								
	1 ×							
	2 ×							
0								
20 000.00 3550.0	0 6100.00	8650.00 1	1200.00 13750	00 40304	0.00 18850	00 0140		26500.00
000.00 3330.0	00.0010	00.000	1200.00 13750	100 10300	0.00 16650	0.00 21400	00.00	2000.00 (MHz)
Emore	Reading	g Correct	Measure	Limit	Venzin			
. Freq. MHz	Level	Factor	ment	LIMIU	Margin			
MHZ		JD		JD V /	- n	Detect	C	
	dBuV/m 400 46 50	dB 5_30	dBuV/m	dBuV/m 74 00	dB -22, 20	Detecto	or Co	nment
4838. 0	dBuV/m 400 46.50 650 34.90	dB 5. 30 5. 30		dBuV/m 74.00 54.00	dB -22. 20 -13. 80	Detecto Peak AVG	or Cor	nment
4838. 0	400 46.50	5.30	dBuV/m 51.80	74.00	-22. 20	Peak	or Co	ment

(2) Margin Level = Measurement Value - Limit Value.

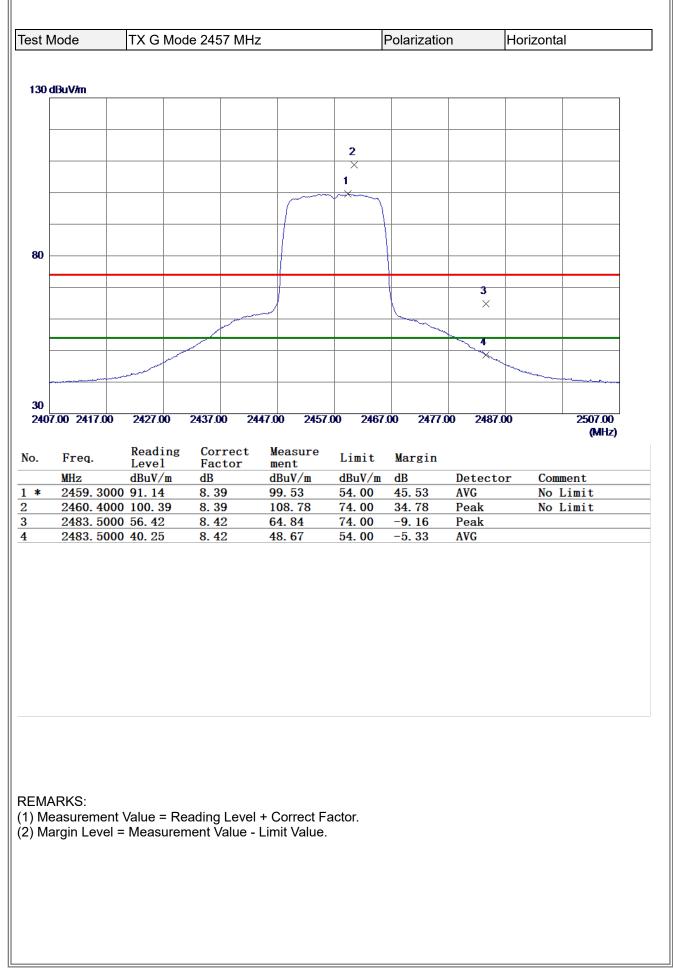
3TL


t Mode	TX G M	lode 2417	MHz		Polarizatio	on	Horizor	ntal
0 dBuV/m								
	2 ×							
	×							
0								
~								
0 000.00 3550.0	0 6100.00	8650.00	11200.00	13750.00 163	00.00 1885	00 2140	0.00	26500.00
	0100.00		112.00.00	10100.00 100		2110	0.00	
								(MHz)
Enco	Readir	ig Corre		ire Limit	Vangin			(MFLZ)
Freq.	Readir Level	Facto	or ment					
MHz	Level dBuV/m	Facto dB	or ment dBuV/	/m dBuV/i	n dB	Detect	or Co	(MRZ)
MHz ≰ 4836.2	Level	Facto	or ment	/m dBuV/r 3 54.00	n dB -14.47	Detect AVG Peak	or Co	
MHz ≰ 4836.2	Level dBuV/m 700 34.24	Facto dB 5.29	or ment dBuV/ 39.53	/m dBuV/r 3 54.00	n dB -14.47	AVG	or Co	

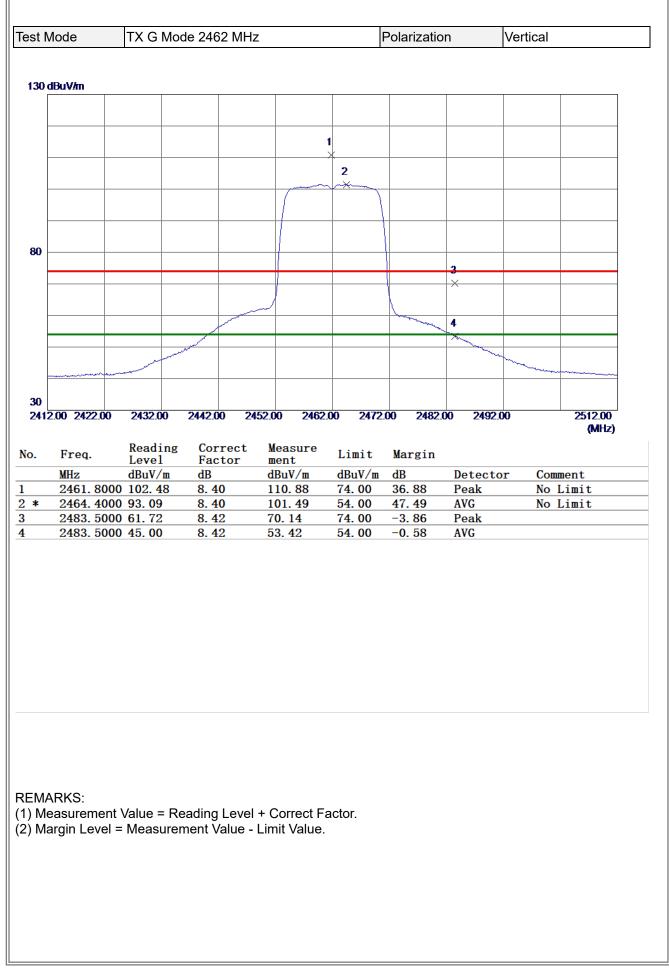
3TL


st N	lode	TX G M	ode 2437	MHz			Polarizatio	n	Vertical	
0 d	BuV/m									
-										
		1								
		X								
		2								
		X								
30										
30										
ŀ						_				
-										
-20										
1000	0.00 3550.00	6100.00	8650.00	11200	00 1375	0.00 1630	0.00 18850	0.00 2140	0.00	26500.00
										(MHz)
		D 11	0							
lo.	Freq.	Readin Level	g Corre Facto	or m	easure ent	Limit	Margin			
	MHz	Level dBuV/m	Facto dB	or me di	ent BuV/m	dBuV/m	dB	Detect	or Co	mment
		Level dBuV/m 50 46.56	Facto	or mo di 52	ent			Detecto Peak AVG	or Co	mment
Io.	MHz 4874.78	Level dBuV/m 50 46.56	Facto dB 5.49	or mo di 52	ent 3uV/m 2. 05	dBuV/m 74.00	dB -21. 95	Peak	or Co	mment

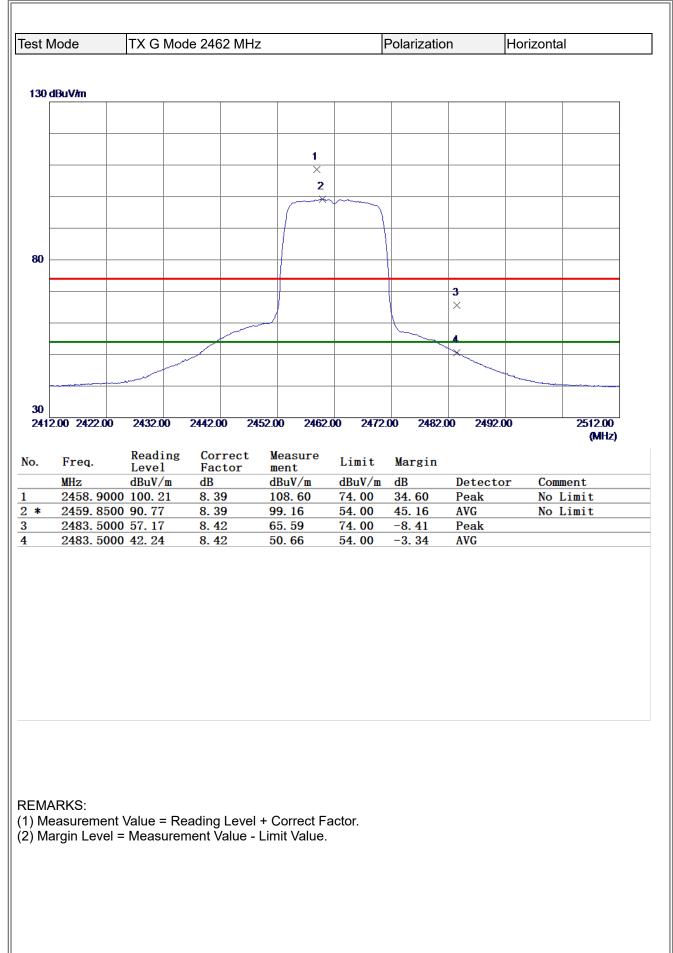
BIL


30 dBxV/m Image: Correct Measure Limit Margin MHz dBxV/m dB dBxV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak		TX G Mo	ode 2437 MH	Z		Polarizatio	n	Horizon	tal
1 1 2 1 X 1									
X X X 2 X X 30 X	∃uV/m								
X X X 2 X X 30 X									
X X X 2 X X 30 X									
X X									
X X									
2 × Image: Content Measure Factor Image: Content Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment									
30 ×									
30									
-20 -20 -20 -20 -20 -20 -20 -20									
-20 -20 -20 -20 -20 -20 -20 -20									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 b. Freq. Reading Level Correct Factor ment Measure Limit Margin Margin 1000.00 21 20 20 20 20 21 20 21 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 21 20 21									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 p. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 21 o. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak									
o. Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak	00 3550.00	0 0400 00	0000 4	1000.00 4075	0.00 4022	0.00 40050	00 2442	0.00	26500.00
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak	.00 3330.00	00.0010	1 00.0006	1200.00 1375	0.00 1630	0.00 16650	.00 2140	0.00	2000.00 (MHz)
D. Freq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4874.7850 46.56 5.49 52.05 74.00 -21.95 Peak		Reading	Correct	Measure		. .			
4874. 7850 46. 56 5. 49 52. 05 74. 00 -21. 95 Peak		Level	Factor	ment					
								or Co	mment
* 4070. 5530 33. 62 3. 31 41. 33 34. 00 12. 01 AVG									

3TL


		de 2457 MHz	2		Polarizatio	n	Vertical	
dBuV/m						1]
	1 ×							
	2							
	×							
00.00 3550.00) 6100.00	8650.00 11	200.00 13750).00 1630	0.00 18850	0.00 2140	0.00	26500.00
								(MHz)
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detect	or Com	nent
	50 47.50 50 37.21	5. 69 5. 69	53. 19 42. 90	74.00 54.00	-20.81	Peak AVG		
				01.00	-11. 10	AVO		
					-11.10	AVG		

BIL


BTL

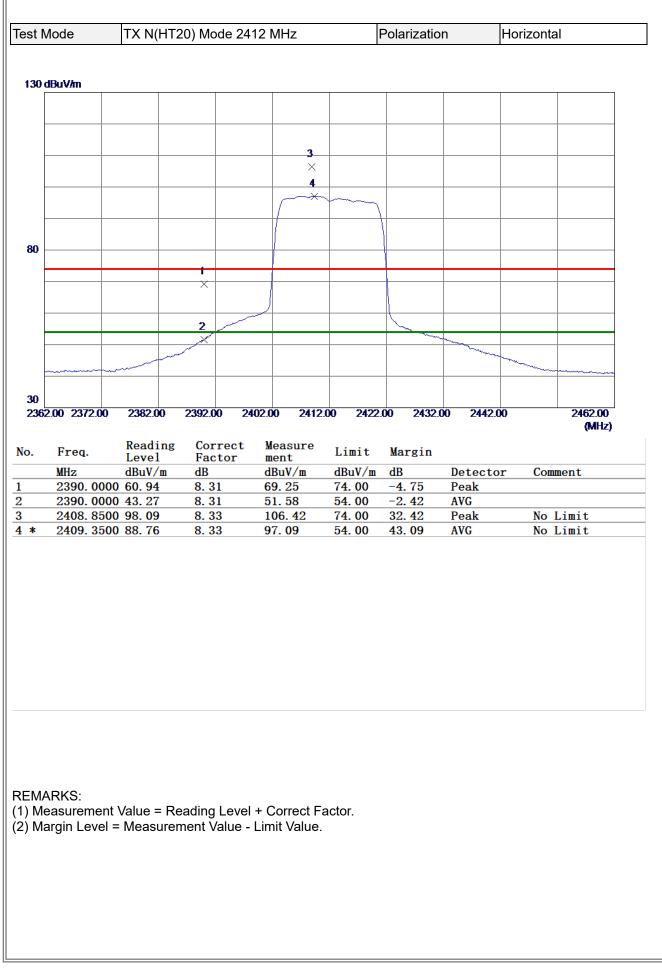
30 2 1		Node	IX G Mo	de 2457 MH	Z		Polarizatio	n	Horizonta	al
2 2 2 2 X 1 2										
2 2 2 2 X 1 2	n a	BuV <i>I</i> m								
X I I I I 1 X I]									
X I I I 30 1 X I	ŀ									
X Image: Content Measure Limit Margin MHz dBuV/m dBuV/m										
X I I I 30 I X I										
X I I I 30 1 X I			2							
X X <thx< th=""> <thx< th=""> <thx< th=""></thx<></thx<></thx<>										
X X <thx< th=""> <thx< th=""> <thx< th=""></thx<></thx<></thx<>			1							
20										
20 .										
I000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) 0. Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4914.6600 35.20 5.69 40.89 54.00 -13.11 AVG	30									
MHz BuV/m B										
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AVG	ł									
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AV AVG										
MHz BuV/m B										1
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AVG										
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AVG										
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB Detector Comment * 4914.6600 35.20 5.69 40.89 54.00 -13.11 AVG										
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AVG	~									
(MHz) Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 4914.6600 35.20 5.69 40.89 54.00 -13.11 AVG		0 00 3550 00	6100.00	8650.00 1	1200.00 13750	0.00 1630	0 00 18850	00 2140	0.00	26500.00
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4914.6600 35.20 5.69 40.89 54.00 -13.11 AVG										
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4914.6600 35.20 5.69 40.89 54.00 -13.11 AVG		From	Reading	Correct		Limit	Margin			
* 4914. 6600 35. 20 5. 69 40. 89 54. 00 −13. 11 AVG								D ()		
	*								or Com	ment
	T									
EMARKS: Measurement Value = Reading Level + Correct Factor.) Me	easuremer	nt Value = R	eading Leve	I + Correct Fa	actor.				
) Me	easuremer	nt Value = R I = Measure	eading Leve ment Value	I + Correct Fa - Limit Value.	actor.				

Mode	TX G	Mode 24	62 MHz			Polarizatio	า	Vertica	al
dBuV/m									
	1								
	×								
	2 ×								
00.00 3550.0	00 6100.0	0 8650.	00 112	200.00 1375	0.00 1630	0.00 18850	00 214	00.00	26500.00
N.00 5.005	0100.0	0 0000	00 112		0.00 1000		00 214	00.00	(MHz)
Freq.	Readi	ng Co	rrect	Measure	Limit	Margin			
Freq. MHz	Level	. Fa	rrect ctor	ment	Limit dBuV/m	Margin dB	Detec	tor (Comment
MHz 4925.5	Level dBuV/ 400 47.19	Fa <u>m dB</u> 5.	ctor 74	ment dBuV/m 52.93	dBuV/m 74.00	dB -21. 07	Detec Peak	tor C	Comment
MHz 4925.5	Level dBuV/	Fa <u>m dB</u> 5.	ctor 74	ment dBuV/m	dBuV/m	dB		tor C	Comment
MHz 4925.5	Level dBuV/ 400 47.19	Fa <u>m dB</u> 5.	ctor 74	ment dBuV/m 52.93	dBuV/m 74.00	dB -21. 07	Peak	tor C	Comment

BIL

3โL

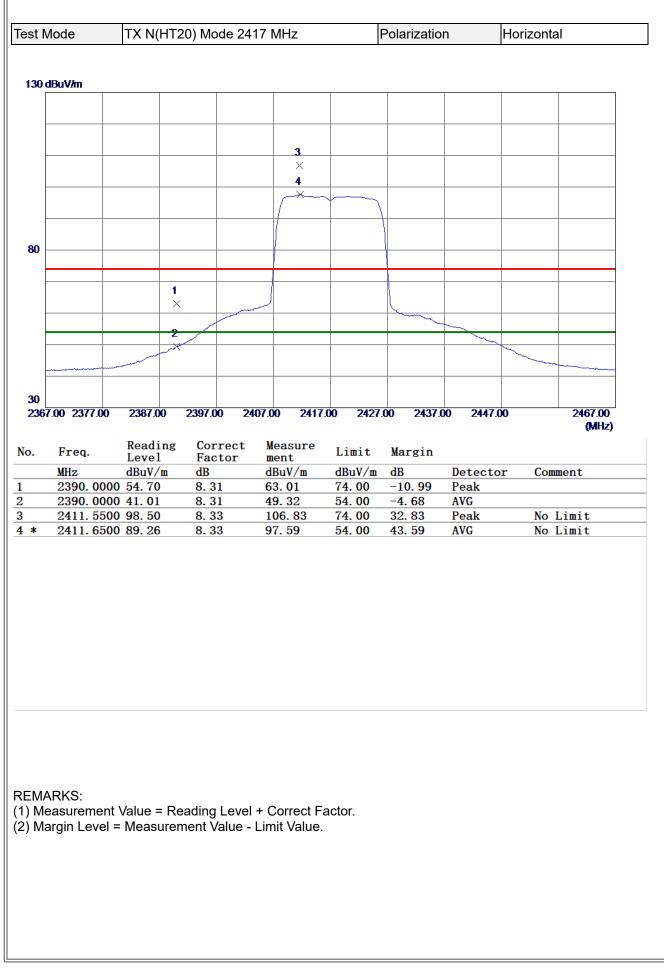
estr	/lode	TX G Mod	e 2462 MHz	7	I	Polarizatio	n	Horizonta	al
80 d	BuV/m								
		2							
		X							
		1							
		X							
30									
~									
-20									
100	0.00 3550.00	6100.00	8650.00 11	200.00 13750	0.00 16300	0.00 18850	00 21400	.00	26500.00 (MHz)
		Deedine							(
		keading	Correct	Measure	.				
10.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	-		
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detecto	or Com	nent
*		Level dBuV/m 00 35.85	Factor	ment			Detecto AVG Peak	or Com	nent
No. 1 * 2	MHz 4928.120	Level dBuV/m 00 35.85	Factor dB 5.76	ment dBuV/m 41.61	dBuV/m 54. 00	dB -12. 39	AVG	o <u>r Com</u>	nent



Fest N	/lode	TX N(H	T20) Mode 2	412 MHz	F	Polarizatio	n	Vertical	
1 3 0 d	dBuV/m								
[
-									
				4					
ŀ				×					
				3					
				<u> </u>					
ŀ									
80									
ł			1						
			2			m			
-							- The second	an way	
								and the second	
30 2362	2.00 2372.0	0 2382.00	2392.00	2402.00 2412.0	00 2422.0	00 2432.0	0 2442.0	0	2462.00
								-	(MHz)
о.	Freq.	Readin Level	g Correct Factor	: Measure ment	Limit	Margin			
	MHz	dBuV/m		dBuV/m	dBuV/m	dB	Detecto	r Com	nent
		00 58.77	8.31	67.08	74.00	-6.92	Peak		
; ; *		000 45.57 000 91.31	8. 31 8. 33	53.88 99.64	54.00 54.00	-0. 12 45. 64	AVG AVG	No	Limit
1		00 100.67		109.00	74.00	35.00	Peak		Limit
1) Me				el + Correct Fa - Limit Value.	actor.				

t Mod	е	TX N(I	HT20) №	lode 24	12 MHz		Polarizatio	n	Vertical	
0 dBuV/	łm							1		
		1								
		×								
		2 ×								
o —										
										_
0					1000 00 1075					
000.00	3550.00	6100.0	0 8650	0.00 1°	1200.00 1375	0.00 1630	0.00 18850	0.00 2140	0.00	26500.00 (MHz)
E.		Readi	ng Co	orrect	Measure	Limit	Venzin			
	req.	Readi Level	Fa	actor	ment	Limit	Margin	Detect		
MH	Iz	Level dBuV/	Fa m dE	actor S	ment dBuV/m	dBuV/m	dB	Detect	or Co	mment
MH 48	lz 323. 935	Level	Fa m dE 5.	actor	ment			Detecto Peak AVG	or Co	mment
MH 48	lz 323. 935	Level dBuV/1 0 46.47	Fa m dE 5.	actor 23	ment dBuV/m 51.70	dBuV/m 74.00	dB -22. 30	Peak	or Co	mment

BuV/m	2 ×							
	1							
	× –							
							1	
0.00 3550.00	6100.00	8650.00 1	1200.00 13750	0.00 1630	00 19950	.00 21400.	00	26500.00
1.00 5.50.00	0100.00	0000.00 1	1200.00 13130	0.00 10.00	7.00 100.00	.00 21400.	.00	(MHz)
Freq.	Reading	Correct	Measure	Limit	Margin			
	Level	Factor	ment			Detecto		
MHz 4823.8900	dBuV/m 35, 24	dB 5. 23	dBuV/m 40.47	dBuV/m 54.00	dB -13. 53	Detecto: AVG	r com	lent
4823. 9800		5. 23	50.84	74.00	-23. 16	Peak		



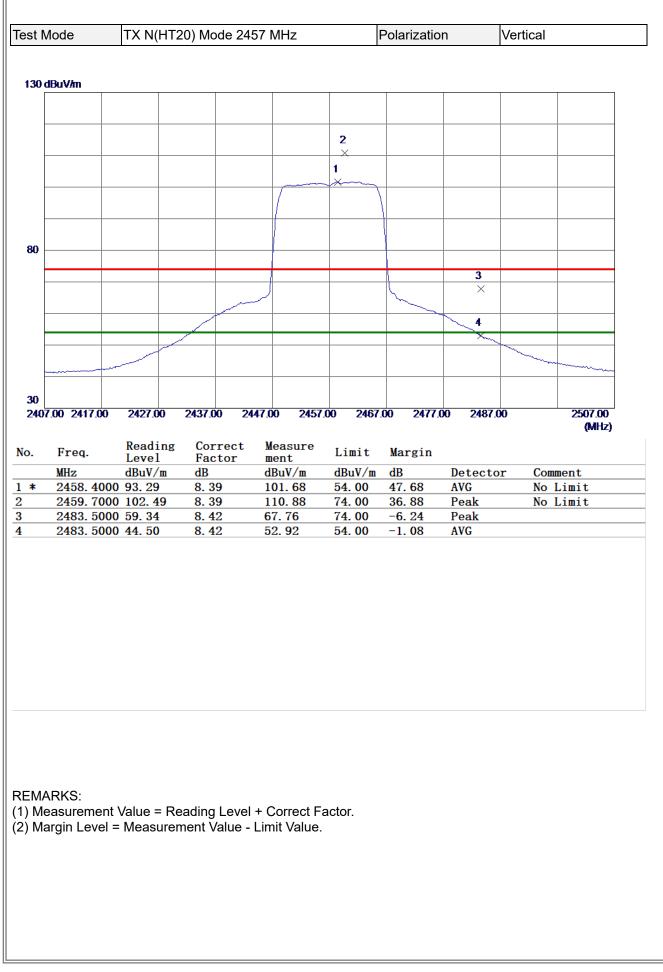
	ode	TX N(F	IT20) Mc	ode 2417	7 MHz	F	Polarization	n	Vertical	
130 dl	BuV/m									
						3				
_										
						4				
					1					
-						· · · ·				
80 -										
°U [
			1		-					
			×		لم		hanne			
			2					mont		
			,XM							
30 2267	.00 2377.00	2387.00	2397.0	0 2407	7.00 2417.	00 2427 .	00 2437.0	0 2447.0	0	2467.00
2307.		2307.00	2397.0	NJ 24U	r.∪∪ Z417.	UU Z4Z[]	UU 2437.U	NU 2447.U	U.	2467.00 (MHz)
D.	Freq.	Readin	ng Cor	rect	Measure	Limit	Margin			
	MHz	Level dBuV/m		tor	ment dBuV/m	dBuV/m		Detecto	r Com	ment
	2390.0000	57.73	8. 3	1	66. 04	74.00	-7. 96	Peak		
	2390.0000 2420.1500		8.3 8.3		50.97 110.14	54.00 74.00	-3. 03 36. 14	AVG Peak	No	Limit
*	2420. 1500		8.3		100.89	54.00	46.89	AVG		Limit

	Node	TX N(HT2	20) Mode 24	17 MHz	I	Polarizatio	'n	Vertical	
	D								
ס טג 	lBuV/m								
		1 ×							
		2							
30									
-20									
	0.00 3550.00	6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 2140	0.00	26500.00
		Deedi-	Correct	Measure					(MHz)
) .	Freq.	Reading	correct	Measure					
		Level	Factor	ment	Limit	Margin			
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detecto	or Com	ment
		Level dBuV/m 50 45.64	Factor	ment			Detecto Peak AVG	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
	MHz 4838.345	Level dBuV/m 50 45.64	Factor dB 5.30	ment dBuV/m 50.94	dBuV/m 74. 00	dB -23. 06	Peak	or Com	ment
*	MHz 4838.345 4838.509	Leve1 dBuV/m 50 45. 64 99 34. 88	Factor dB 5. 30 5. 30	ment dBuV/m 50.94 40.18	dBuV/m 74.00 54.00	dB -23. 06	Peak	or Com	ment
* ====================================	MHz 4838. 345 4838. 509	Leve1 dBuV/m 50 45. 64 99 34. 88	Factor dB 5. 30 5. 30	ment dBuV/m 50. 94 40. 18	dBuV/m 74.00 54.00	dB -23. 06	Peak	or Com	ment
* EM/	MHz 4838. 345 4838. 509	Leve1 dBuV/m 50 45. 64 99 34. 88	Factor dB 5. 30 5. 30	ment dBuV/m 50.94 40.18	dBuV/m 74.00 54.00	dB -23. 06	Peak	or Com	ment
* EM/	MHz 4838. 345 4838. 509	Leve1 dBuV/m 50 45. 64 99 34. 88	Factor dB 5. 30 5. 30	ment dBuV/m 50. 94 40. 18	dBuV/m 74.00 54.00	dB -23. 06	Peak	or Com	ment
* EM/	MHz 4838. 345 4838. 509	Leve1 dBuV/m 50 45. 64 99 34. 88	Factor dB 5. 30 5. 30	ment dBuV/m 50. 94 40. 18	dBuV/m 74.00 54.00	dB -23. 06	Peak	or Com	ment
* EM/	MHz 4838. 345 4838. 509	Leve1 dBuV/m 50 45. 64 99 34. 88	Factor dB 5. 30 5. 30	ment dBuV/m 50. 94 40. 18	dBuV/m 74.00 54.00	dB -23. 06	Peak	or Com	ment
* ====================================	MHz 4838. 345 4838. 509	Leve1 dBuV/m 50 45. 64 99 34. 88	Factor dB 5. 30 5. 30	ment dBuV/m 50. 94 40. 18	dBuV/m 74.00 54.00	dB -23. 06	Peak	or Com	ment

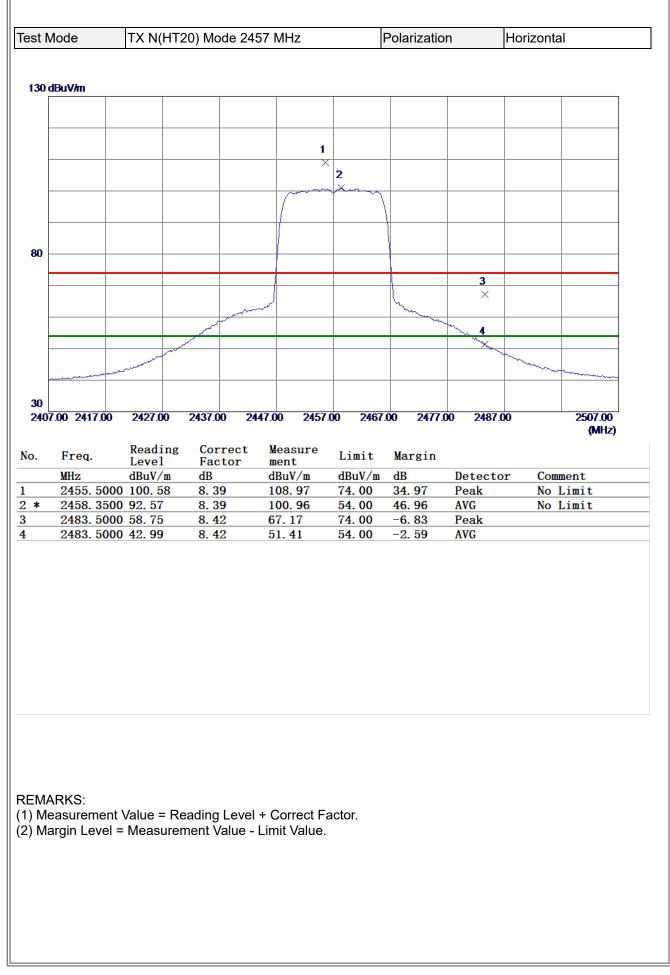


MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	1 -		ode	TX N(H	IT20) Mo	de 2417	MHz		Polarizatio	n	Horizon	tal
1 1 X 1	1 1 X 1											
× ×	× ×	0 dE	3uV/m									
× ×	× ×	-										
× ×	× ×											
× ×	× ×											
2 . 2 .	2 . 2 .	┝										
00 X	X X <thx< th=""> <thx< th=""> <thx< th=""></thx<></thx<></thx<>											
00 00<	00 00 <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	_										
00 00<	00 00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB dBuV/m dB d	000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	"										
000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	+										
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Limit Margin . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak											
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Limit Margin . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak											
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Limit Margin . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	\vdash										
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Limit Margin . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak											
OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	OOD.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Correct Measure Limit Margin . Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	20										
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment4838.310046.345.3051.6474.00-22.36Peak	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBDetectorComment4838.310046.345.3051.6474.00-22.36Peak		.00 3550.00	6100.00	8650.0	0 11200	0.00 137:	50.00 1630	0.00 18850	0.00 21400).00	
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4838.3100 46.34 5.30 51.64 74.00 -22.36 Peak			Poodin	a Cor	root 1	loaguro					(MHZ)
4838. 3100 46. 34 5. 30 51. 64 74. 00 -22. 36 Peak	4838. 3100 46. 34 5. 30 51. 64 74. 00 -22. 36 Peak	•		Level	Fac	tor 1	lent					
											or Co	mment
		*										
			RKS									
MARKS	MARKS	MΔ			Deedine	level+(Correct F	- a ata n				
MARKS: Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Ме	asurement	Value =	Reading			actor.				
MARKS: Measurement Value = Reading Level + Correct Factor. Margin Level = Measurement Value - Limit Value.	Measurement Value = Reading Level + Correct Factor.) Me	asurement	Value = = Measu	rement V	alue - Lir	nit Value					
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Me	asurement	: Value = = Measui	rement V	alue - Lir	nit Value	actor.				
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Me	asurement	Value = = Measui	rement V	alue - Lir	nit Value	actor.				
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Ме	asurement	: Value = = Measui	rement V	alue - Lir	nit Value					

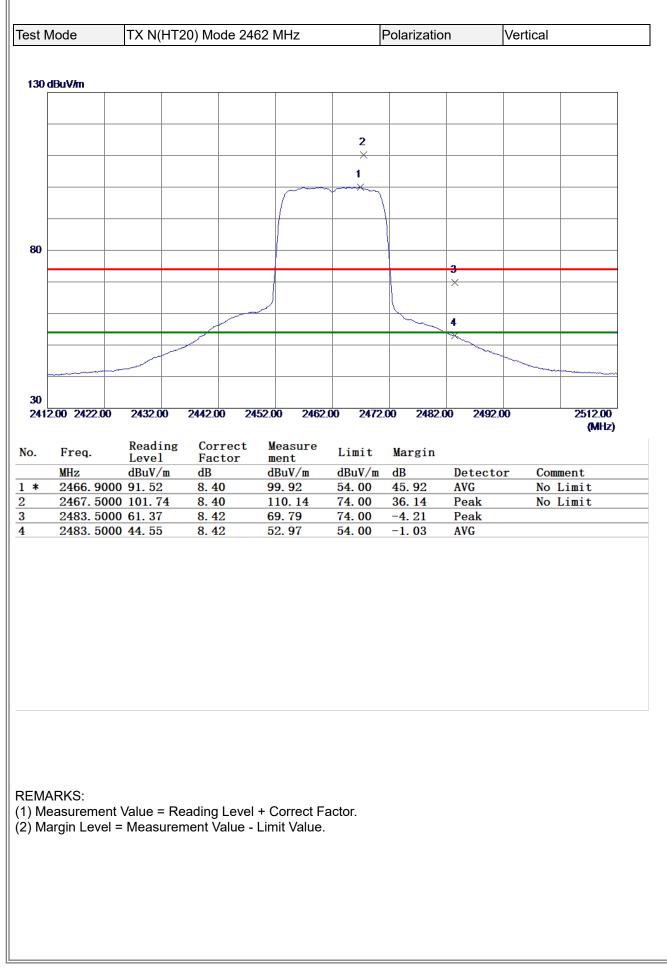
2 2 2 2 1 1 1 1 1 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 <th2< th=""> 2 <th2< th=""> <th2< th=""></th2<></th2<></th2<>	X I I I 30 X I	st N	Node	TX N(HT2	20) Mode 243	37 MHz	I	Polarizatio	n	Vertical	
2 3 3 3 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X X 1 X X X X X X 1 X X X X X X X 1 X X X X X	2 3 3 3 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X X 1 X X X X X X 1 X X X X X X X 1 X X X X X	2 3 3 3 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × 1 × × × × × 1 × × × × × × 000.00 3350.00 6100.00 8650.00 13750.00 16300.00 18850.00 21400.00 26500.00 000.00 335										
X I	X I	X I	10 d	lBuV/m								
× ×	× ×	X I										
X I	X I I I I 30 1 X I I I I 30 X I I I I I I 30 X I I I I I I I 30 I I I I I I I I I 30 I	X I										
X I	X I I I I 30 1 X I I I I 30 X I I I I I I 30 X I I I I I I I 30 I I I I I I I I I 30 I	X I										
1 1	1 1	1 1										
30 ×	30 ×	30 ×										
30	30	30										
20 .	20	20										
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz Buv/m B	30									
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz Buv/m B	MHz Buv/m B										
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG										
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG										
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB UV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG										
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB UV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG										
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Duv/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG										
IODO.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) . Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz dBuV/m dB dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz Buv/m B	20									
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment*4878.990034.255.5139.7654.00-14.24AVG	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment*4878.990034.255.5139.7654.00-14.24AVG	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment*4878.990034.255.5139.7654.00-14.24AVG		0.00 3550.00	6100.00	8650.00 11	200.00 13750	0.00 1630	0.00 18850	0.00 21400	00	
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG	MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4878.9900 34.25 5.51 39.76 54.00 -14.24 AVG										(MITZ)
* 4878. 9900 34. 25 5. 51 39. 76 54. 00 -14. 24 AVG	* 4878. 9900 34. 25 5. 51 39. 76 54. 00 -14. 24 AVG	* 4878. 9900 34. 25 5. 51 39. 76 54. 00 -14. 24 AVG			Reading	Correct	Maggiro					
					Level	Factor	ment					
).	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB		or Com	nent
). *	MHz 4878.990	Level dBuV/m 00 34.25	Factor dB 5.51	ment dBuV/m 39.76	dBuV/m 54.00	dB -14. 24	AVG	or Com	nent
				MHz 4878.990 4879.000	Level dBuV/m 00 34.25	Factor dB 5.51	ment dBuV/m 39.76	dBuV/m 54.00	dB -14. 24	AVG	or Com	
			». *	MHz 4878.990 4879.000	Level dBuV/m 00 34. 25 00 45. 03	Factor dB 5.51 5.51	ment dBuV/m 39.76 50.54	dBuV/m 54.00 74.00	dB -14. 24	AVG	or Com	nent
Measurement Value = Reading Level + Correct Factor.	EMARKS: Measurement Value = Reading Level + Correct Factor. Margin Level = Measurement Value - Limit Value.	EMARKS:) Measurement Value = Reading Level + Correct Factor.) Margin Level = Measurement Value - Limit Value.	5. *	MHz 4878.990 4879.000	Level dBuV/m 00 34. 25 00 45. 03	Factor dB 5.51 5.51	ment dBuV/m 39.76 50.54 + Correct Fa	dBuV/m 54.00 74.00	dB -14. 24	AVG	or Com	
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	о. *	MHz 4878.990 4879.000	Level dBuV/m 00 34. 25 00 45. 03	Factor dB 5.51 5.51	ment dBuV/m 39.76 50.54 + Correct Fa	dBuV/m 54.00 74.00	dB -14. 24	AVG	or Com	nent
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	о. *	MHz 4878.990 4879.000	Level dBuV/m 00 34. 25 00 45. 03	Factor dB 5.51 5.51	ment dBuV/m 39.76 50.54 + Correct Fa	dBuV/m 54.00 74.00	dB -14. 24	AVG	or Com	nent
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	5. *	MHz 4878.990 4879.000	Level dBuV/m 00 34. 25 00 45. 03	Factor dB 5.51 5.51	ment dBuV/m 39.76 50.54 + Correct Fa	dBuV/m 54.00 74.00	dB -14. 24	AVG	or Com	nent
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	≥. *	MHz 4878.990 4879.000	Level dBuV/m 00 34. 25 00 45. 03	Factor dB 5.51 5.51	ment dBuV/m 39.76 50.54 + Correct Fa	dBuV/m 54.00 74.00	dB -14. 24	AVG	or Com	



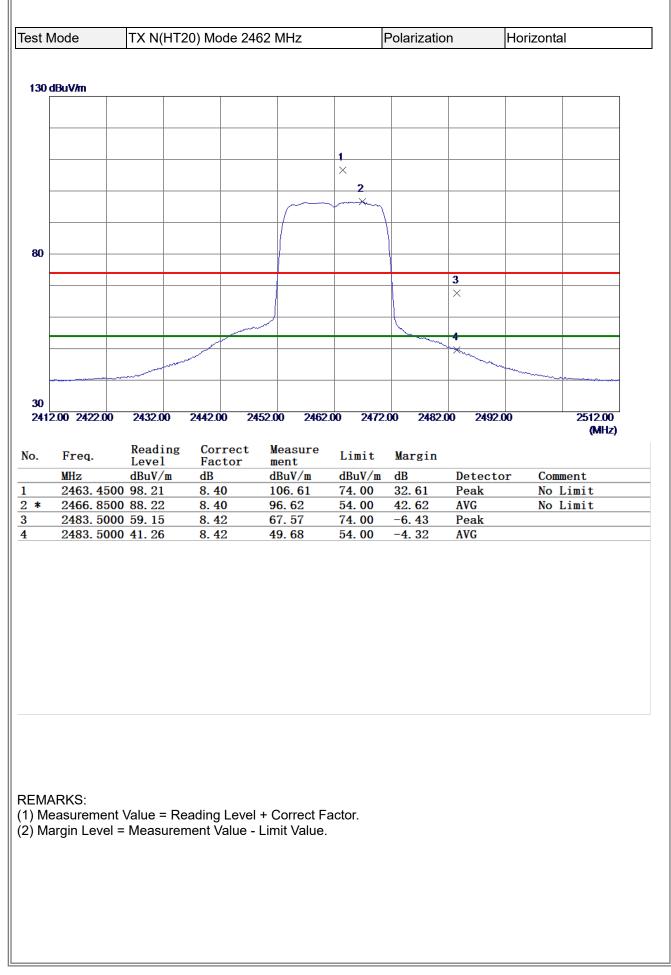
	ode	TX N(HT	20) Mode 24	37 MHz		Polarizatio	n	Horizont	al
80 dB	uV/m						1		
		2							
		X							
		1 ×							
30 -									
-20									
1000.0	00 3550.00	6100.00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00 (MHz)
	P	Reading	Correct	Measure		. ·			(
	Freq.	Level	Factor	ment	Limit	Margin	Detect		
	MHz 4878.985	dBuV/m 50 34.10	dB 5. 51	dBuV/m 39.61	dBuV/m 54.00		Detecto	or to	ment
			0.01	00.01	54.00	-14.39	AVG		
	4878.990	00 44. 99	5. 51	50. 50	74.00	-14. 39 -23. 50	AVG Peak		
	4878.990								



	Node	TX N(H	HT20) M	ode 24	57 MHz		Polarizatio	n	Vertical	
80 c	lBuV/m							1	1	
		1								
		× _								
		2 ×								
30										
-20 100	0.00 3550.00	6100.00) 8650.	00 11	200.00 1375	00 1630	0.00 18850	00 21400	00	26500.00
										(MHz)
b.	Freq.	Readi Level	ng Co	rrect	Measure	Limit	Margin			
							margin			
	MHz			ctor	 dBuV/m			Detecto	or Co	ment
	MHz 4915.009	dBuV/1 99 46.76	n dB 5.6	69	dBuV/m 52.45	dBuV/m 74.00	dB -21. 55	Detecto Peak	or Cor	nment
		dBuV/1 99 46.76	n dB	69	dBuV/m	dBuV/m	dB		or Cor	nment
*	4915.009	dBuV/1 99 46.76	n dB 5.6	69	dBuV/m 52.45	dBuV/m 74.00	dB -21. 55	Peak	or Coi	nment



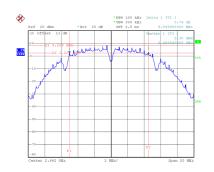
st Mode	TX N	(HT20) Mode	2457	MHz		Polarizatio	n	Horizon	tal
80 dBuV/m										
	1 ×									
	2									
	×									
30										
20 1000.00 3550	.00 6100.0	0 8	650.00	1120	0.00 1375	0.00 1630	0.00 18850	0.00 2140	n 00	26500.00
	0100.			1120	0.00 1010	0.00 1000		2110		(MHz)
o. Freq.	Read	ing	Correc	ct I	Measure	Limit	Margin			
o. Freq.	Read Leve		Factor	r i	ment	Limit dBuV/m	Margin	Detecto	or Co	mment
MHz 4915.	dBuV/ 5800 46. 21	/ m L	Factor dB 5.69		ment dBuV/m 51.90	dBuV/m 74.00	dB -22. 10	Detecto Peak	or Co	mment
MHz 4915.	dBuV	/ m L	Factor dB		ment dBuV/m	dBuV/m	dB		or Co	mment
MHz 4915.	dBuV/ 5800 46. 21	/ m L	Factor dB 5.69		ment dBuV/m 51.90	dBuV/m 74.00	dB -22. 10	Peak	or Co	mment



1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) p. Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	st N	/lode	TX N(HT2	20) Mode 246	62 MHz	I	Polarizatio	n	Vertical	
2										
X X Image: Contract Measure Limit Margin MHz dBuV/m dBuV/m <td< th=""><th>30 d</th><th>BuV/m</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th></td<>	30 d	BuV/m								
X X X 1 X X X 30 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
X X X 1 X X X 30 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
X X X 1 X X X 30 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <t< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			2							
X X Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment # 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
30										
20										
MHz dBuV/m dB dBuV/m dB V/m dB V/m dB V/m dB V/m AU	30									
MHz dBuV/m dB dBuV/m dB dBuV/m dB visit Margin * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
MHz dBuV/m dB dBuV/m dB dBuV/m dB visit Margin * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
MHz dBuV/m dB dBuV/m dB dBuV/m dB visit Margin * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
MHz dBuV/m dB dBuV/m dB dBuV/m dB visit Margin * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
MHz dBuV/m dB dBuV/m dB dBuV/m dB visit Margin * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
MHz dBuV/m dB dBuV/m dB dBuV/m dB visit Margin * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
(MHz) D. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG	-20									
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG	100	0.00 3550.00	6100.00	8650.00 11	200.00 13750	0.00 1630	0.00 18850	0.00 21400).00	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4923.8849 38.09 5.73 43.82 54.00 -10.18 AVG										
	D.	Freq.	Reading	Correct		Limit	Margin			
4928. 7599 47. 82 5. 76 53. 58 74. 00 -20. 42 Peak	0.		Level	Factor	ment			Detecto	or Com	ment
		MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
		MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
		MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
		MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
	*	MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
	*	MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
	*	MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
		MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
		MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
	*	MHz 4923.884	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
	*	MHz 4923.884 4928.759	Level dBuV/m 9 38.09	Factor dB 5.73	ment dBuV/m 43.82	dBuV/m 54.00	dB -10. 18	AVG	or Com	ment
MARKS: Measurement Value = Reading Level + Correct Factor.	*	MHz 4923. 884 4928. 759	Level dBuV/m 9 38.09 9 47.82	Factor dB 5.73 5.76	ment dBuV/m 43.82 53.58	dBuV/m 54.00 74.00	dB -10. 18	AVG	or Com	ment
MARKS: Measurement Value = Reading Level + Correct Factor. Margin Level = Measurement Value - Limit Value.	* ====================================	MHz 4923. 884 4928. 759	Level dBuV/m 9 38. 09 9 47. 82	Factor dB 5.73 5.76	ment dBuV/m 43. 82 53. 58 + Correct Fa	dBuV/m 54.00 74.00	dB -10. 18	AVG	or Com	ment
Measurement Value = Reading Level + Correct Factor.) Me	MHz 4923. 884 4928. 759	Level dBuV/m 9 38. 09 9 47. 82	Factor dB 5.73 5.76	ment dBuV/m 43. 82 53. 58 + Correct Fa	dBuV/m 54.00 74.00	dB -10. 18	AVG	or Com	ment
Measurement Value = Reading Level + Correct Factor.	* EM4	MHz 4923. 884 4928. 759	Level dBuV/m 9 38. 09 9 47. 82	Factor dB 5.73 5.76	ment dBuV/m 43. 82 53. 58 + Correct Fa	dBuV/m 54.00 74.00	dB -10. 18	AVG	or Com	ment
Measurement Value = Reading Level + Correct Factor.	* EM/	MHz 4923. 884 4928. 759	Level dBuV/m 9 38. 09 9 47. 82	Factor dB 5.73 5.76	ment dBuV/m 43. 82 53. 58 + Correct Fa	dBuV/m 54.00 74.00	dB -10. 18	AVG	or Com	ment
Measurement Value = Reading Level + Correct Factor.	* ====================================	MHz 4923. 884 4928. 759	Level dBuV/m 9 38. 09 9 47. 82	Factor dB 5.73 5.76	ment dBuV/m 43. 82 53. 58 + Correct Fa	dBuV/m 54.00 74.00	dB -10. 18	AVG	or Com	ment


80 GBuV/m 30 30 30 30 30 50 50 50 50 50 50 50 50 50 5		/lode	TX N(HT	20) Mode 24	62 MHz		Polarizatio	n	Horizonta	l
1 1 1 × </th <th></th>										
X X	80 d	BuV/m				1		1	1	
X X										
X X										
X X										
30 2 X Image: Constraint of the state of the sta	-									
30 X	ŀ									
20										
20										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 p. Freq. Reading Level Correct Measure Factor Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak	30									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 p. Freq. Reading Level Correct Measure Factor Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 p. Freq. Reading Level Correct Measure Factor Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 p. Freq. Reading Level Correct Measure Factor Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak	ŀ									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 p. Freq. Reading Level Correct Measure Factor Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 p. Freq. Reading Level Correct Measure Factor Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 p. Freq. Reading Level Correct Measure Factor Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak	╞									
MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak			0100.00		1000 00 1075			00 0440		00500.00
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak	1000	1.00 3350.00	6100.00	00.0001	1200.00 13750	100 1630	0.00 18850	1.00 2140	0.00	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4922.5950 46.55 5.73 52.28 74.00 -21.72 Peak) .	Freq.	Reading	Correct		Limit	Margin			
4922. 5950 46. 55 5. 73 52. 28 74. 00 -21. 72 Peak								Detect	or Com	nent
* 4926. 6050 35. 12 5. 75 40. 87 54. 00 -13. 13 AVG		4922. 598	50 46. 55	5.73	52.28	74.00	-21.72	Peak		
	=M4	ARKS.								
) Measurement Value = Reading Level + Correct Factor.) Me	easuremen	it Value = R	eading Leve	I + Correct Fa	actor.				
EMARKS:) Measurement Value = Reading Level + Correct Factor.) Margin Level = Measurement Value - Limit Value.) Me	easuremen	it Value = Ri = Measure	eading Leve ment Value -	I + Correct Fa Limit Value.	actor.				
) Measurement Value = Reading Level + Correct Factor.) Me	easuremen	it Value = R = Measure	eading Leve ment Value -	I + Correct Fa Limit Value.	actor.				
) Measurement Value = Reading Level + Correct Factor.) Me	easuremen	it Value = Ri = Measure	eading Leve ment Value -	I + Correct Fa Limit Value.	actor.				
) Measurement Value = Reading Level + Correct Factor.) Me	easuremen	it Value = R = Measure	eading Leve ment Value -	I + Correct Fa Limit Value.	actor.				

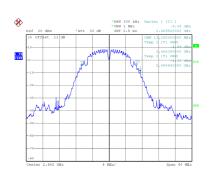
APPENDIX E - BANDWIDTH



Test Mode	e TX E	3 Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	9.36	13.36	0.50	Complies
06	2437	9.92	13.28	0.50	Complies
11	2462	9.60	13.28	0.50	Complies



CH11



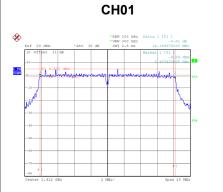
Date: 2.MAR.2021 09:11:47

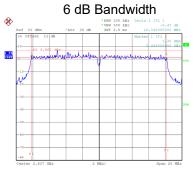
99 % Occupied Bandwidth Ø 1 PK VIST JUL)

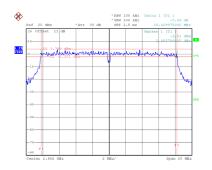
Date: 2.MAR.2021 09:16:37

Date: 2.MAR.2021 09:11:55

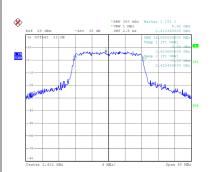
Date: 2.MAR.2021 09:14:24

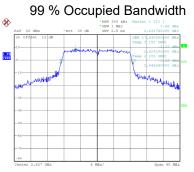

Date: 2.MAR.2021 09:14:17

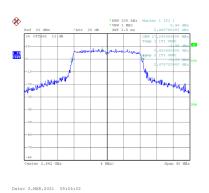

Date: 2.MAR.2021 09:16:45


Test Mode	e TX (G Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	16.35	16.80	0.50	Complies
06	2437	16.34	17.44	0.50	Complies
11	2462	16.43	17.28	0.50	Complies

CH06

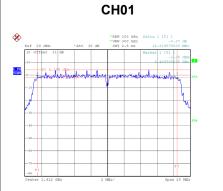


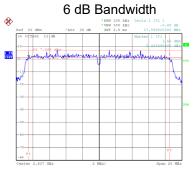

CH11

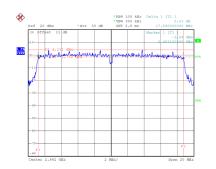

Date: 2.MAR.2021 09:20:10

Date: 2.MAR.2021 09:22:13

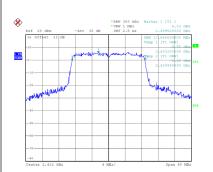
Date: 2.MAR.2021 09:23:54


Date: 2.MAR.2021 09:20:17

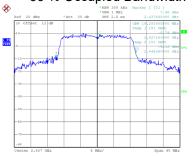

Date: 2.MAR.2021 09:22:21


Test Mode	e TX N	I(HT20) Mode			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	16.92	17.68	0.50	Complies
06	2437	17.06	19.20	0.50	Complies
11	2462	17.59	17.84	0.50	Complies

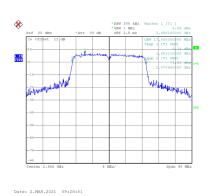
CH06



CH11



Date: 2.MAR.2021 09:25:55



99 % Occupied Bandwidth

Date: 2.MAR.2021 09:27:21

Date: 2.MAR.2021 09:28:44

Date: 2.MAR.2021 09:26:02

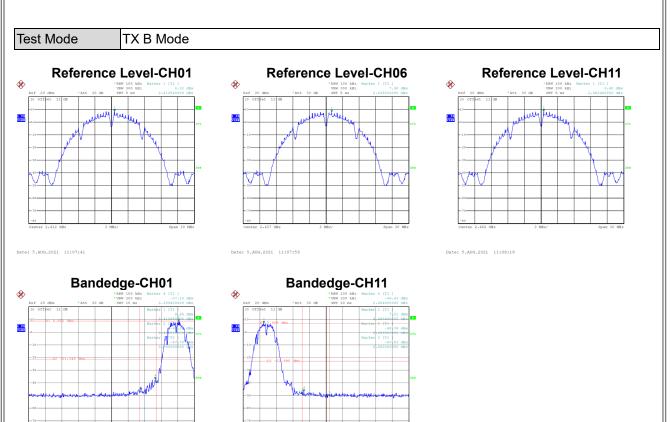
Date: 2.MAR.2021 09:27:28

APPENDIX F - MAXIMUM AVERAGE OUTPUT POWER

Test Mode	TX B M	ode					
Channel	Frequency (MHz)	Average Output Power (dBm)	Duty Factor	Average Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	17.19	0.00	17.19	30.00	1.0000	Complies
06	2437	17.15	0.00	17.15	30.00	1.0000	Complies
11	2462	17.02	0.00	17.02	30.00	1.0000	Complies

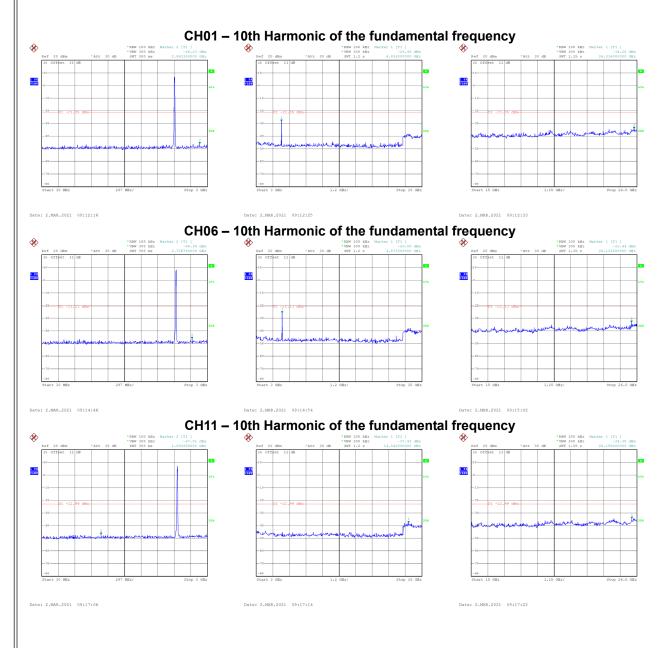
Test Mode TX G Mode

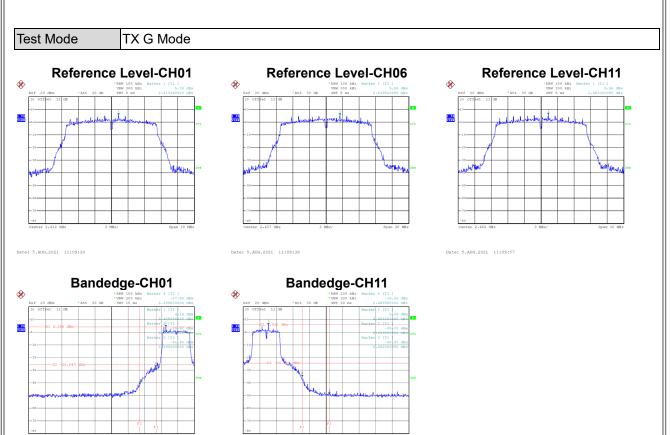
Channel	Frequency (MHz)	Average Output Power (dBm)	Duty Factor	Average Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	16.68	0.00	16.68	30.00	1.0000	Complies
06	2437	17.17	0.00	17.17	30.00	1.0000	Complies
11	2462	16.57	0.00	16.57	30.00	1.0000	Complies


Test Mode TX N(HT20) Mode

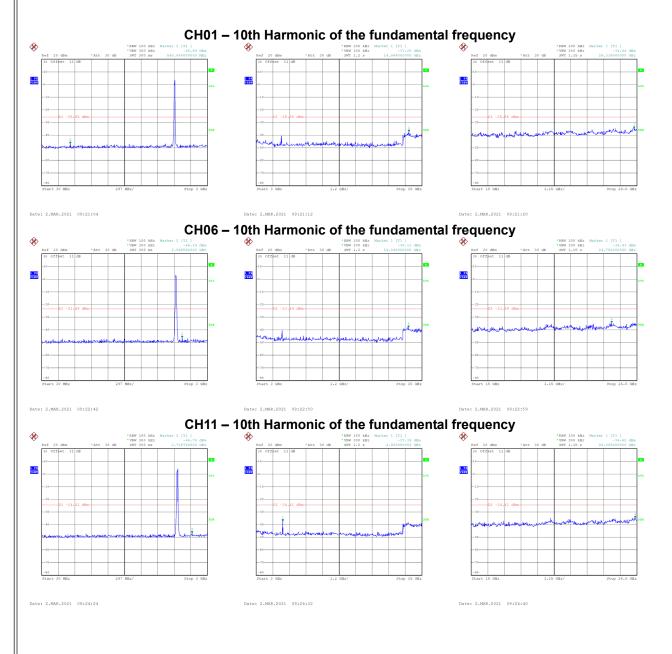
Channel	Frequency (MHz)	Average Output Power (dBm)	Duty Factor	Average Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	15.83	0.00	15.83	30.00	1.0000	Complies
06	2437	17.08	0.00	17.08	30.00	1.0000	Complies
11	2462	15.72	0.00	15.72	30.00	1.0000	Complies

APPENDIX G - CONDUCTED SPURIOUS EMISSIONS




Date: 2.MAR.2021 09:12:03

Date: 2.MAR.2021 09:16:53



Date: 2.MAR.2021 09:20:51

Date: 2.MAR.2021 09:24:10

