



#### FCC RF EXPOSURE REPORT

For

BE9300 Tri-Band Wi-Fi 7 Router

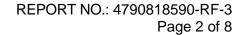
**MODEL NUMBER: Archer BE550** 

REPORT NUMBER: 4790818590-1-RF-3

**ISSUE DATE: June 15, 2023** 

FCC ID: 2AXJ4BE550

Prepared for


TP-Link Corporation Limited
Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road, Tsim Sha
Tsui, Kowloon, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com





## **Revision History**

| Rev. | Issue Date     | Revisions                                             | Revised By |
|------|----------------|-------------------------------------------------------|------------|
| V0   | May 26, 2023   | Initial Issue                                         | Kebo.Zhang |
| V1   | March 30, 2023 | Add WIFI 5G UNII-2A and UNII-2C and WIFI 6G test data | Kebo.Zhang |



# **TABLE OF CONTENTS**

| 1. | ATTESTATION OF TEST RESULTS  | 4 |
|----|------------------------------|---|
| 2. | TEST METHODOLOGY             | 5 |
|    | FACILITIES AND ACCREDITATION |   |
|    | DESCRIPTION OF EUT           |   |
|    | REQUIREMENT                  |   |



REPORT NO.: 4790818590-RF-3 Page 4 of 8

### 1. ATTESTATION OF TEST RESULTS

**Applicant Information** 

Company Name: TP-Link Corporation Limited

Address: Room 901, 9/F., New East Ocean Centre, 9 Science Museum

Road, Tsim Sha Tsui, Kowloon, Hong Kong

**Manufacturer Information** 

Company Name: TP-Link Corporation Limited

Address: Room 901, 9/F., New East Ocean Centre, 9 Science Museum

Road, Tsim Sha Tsui, Kowloon, Hong Kong

**EUT Information** 

**Operations Manager** 

EUT Name: BE9300 Tri-Band Wi-Fi 7 Router

Model: Archer BE550
Series Model: Archer BE9300
Model Difference: Refer to section 4

Brand: tp-link

Sample Received Date: April 23, 2023
Sample Status: Normal
Sample ID: 6014565

Date of Tested: April 23, 2023 to June 14, 2023

| APPLICABLE STANDARDS  |      |  |  |  |
|-----------------------|------|--|--|--|
| STANDARD TEST RESULTS |      |  |  |  |
| FCC 47CFR§2.1091      | PASS |  |  |  |
| KDB-447498 D01 V06    | PASS |  |  |  |

| Prepared By:            | Checked By:             |
|-------------------------|-------------------------|
| kelo. Thurz             | Danny Grany             |
| Kebo Zhang              | Denny Huang             |
| Senior Project Engineer | Senior Project Engineer |
| Approved By:            |                         |
| Stephenemo              |                         |
| Stephen Guo             |                         |



### 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 and KDB 447498 D01 General RF Exposure Guidance v06.

## 3. FACILITIES AND ACCREDITATION

|               | A2LA (Certificate No.: 4102.01)                                        |  |  |  |
|---------------|------------------------------------------------------------------------|--|--|--|
|               | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.  |  |  |  |
|               | has been assessed and proved to be in compliance with A2LA.            |  |  |  |
|               | FCC (FCC Designation No.: CN1187)                                      |  |  |  |
|               | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.  |  |  |  |
|               | Has been recognized to perform compliance testing on equipment subject |  |  |  |
|               | to the Commission's Delcaration of Conformity (DoC) and Certification  |  |  |  |
|               | rules                                                                  |  |  |  |
|               | ISED (Company No.: 21320)                                              |  |  |  |
| Accreditation | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.  |  |  |  |
| Certificate   | has been registered and fully described in a report filed with ISED.   |  |  |  |
|               | The Company Number is 21320 and the test lab Conformity Assessment     |  |  |  |
|               | Body Identifier (CABID) is CN0046.                                     |  |  |  |
|               | VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)         |  |  |  |
|               | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.  |  |  |  |
|               | has been assessed and proved to be in compliance with VCCI, the        |  |  |  |
|               | Membership No. is 3793.                                                |  |  |  |
|               | Facility Name:                                                         |  |  |  |
|               | Chamber D, the VCCI registration No. is G-20019 and R-20004            |  |  |  |
|               | Shielding Room B, the VCCI registration No. is C-20012 and T-20011     |  |  |  |

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.



# 4. DESCRIPTION OF EUT

| EUT Name/PMN:                         |                      | BE9300 Tri-Band Wi-Fi 7 Router                                                                                                                                                                                                                                                             |  |
|---------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Model/HVIN1:                          |                      | Archer BE550                                                                                                                                                                                                                                                                               |  |
| Series Model/H                        | VIN2:                | Archer BE9300                                                                                                                                                                                                                                                                              |  |
| Model Difference:                     |                      | Archer BE9300 has the same RF technical construction including circuit diagram, PCB Layout, components, component layout and performance with Archer BE550. Only the model number are difference.                                                                                          |  |
|                                       | Frequency<br>Range:  | 2412 MHz to 2462 MHz                                                                                                                                                                                                                                                                       |  |
| Product<br>Description<br>(2.4G WLAN) | Type of Modulation:  | IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA(1024-QAM,64-QAM, 16-QAM, QPSK, BPSK)                                                                                                                                           |  |
|                                       | Radio<br>Technology: | IEEE802.11b/g/n HT20/n HT40/ax HE20/ax HE40                                                                                                                                                                                                                                                |  |
|                                       | Frequency<br>Range:  | 5180 MHz to 5240 MHz(U-NII-1)<br>5745 MHz to 5825 MHz(U-NII-3)                                                                                                                                                                                                                             |  |
| Product<br>Description<br>(5G RLAN)   | Type of Modulation:  | IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM(256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11be: OFDMA (4096QAM, 1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK) |  |
|                                       | Radio<br>Technology: | IEEE802.11a/n HT20/n HT40/<br>ac VHT20/ac VHT40/ac VHT80/<br>ax HE20/ax HE40/ax HE80/<br>be EHT20/be EHT40/be EHT80                                                                                                                                                                        |  |
| FVIN:                                 |                      | V1.0                                                                                                                                                                                                                                                                                       |  |
| Normal Test Voltage:                  |                      | DC 12 V via adapter                                                                                                                                                                                                                                                                        |  |

REPORT NO.: 4790818590-RF-3 Page 7 of 8

### 5. REQUIREMENT

#### **LIMIT AND CALCULATION METHOD**

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with. Limits for General Population/Uncontrolled Exposure

#### **RF EXPOSURE LIMIT**

| Frequency<br>Range<br>(MHz) | E-field Strength<br>(E)<br>(V/m) | Magnetic Field<br>Strength (H)<br>(A/m) | Power Density<br>(S)<br>(mW/cm²) | Averaging Time<br> E ²,  H ² or S<br>(Minutes) |
|-----------------------------|----------------------------------|-----------------------------------------|----------------------------------|------------------------------------------------|
| 0.3 1.34                    | 614                              | 1.63                                    | (100)*                           | 30                                             |
| 1.34 30                     | 824/f                            | 2.19/f                                  | (180/f <sup>2</sup> )*           | 30                                             |
| 30 300                      | 27.5                             | 0.073                                   | 0.2                              | 30                                             |
| 300 1500                    |                                  |                                         | f/1500                           | 30                                             |
| 1500 100,000                |                                  |                                         | 1.0                              | 30                                             |

### **CALCULATION METHOD**

 $S=PG/4\pi R^2$ 

Where:

S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

# **CALCULATED RESULTS**

Radio Frequency Radiation Exposure Evaluation

| (Worst case)      |                                                   |       |                        |       |  |
|-------------------|---------------------------------------------------|-------|------------------------|-------|--|
| Operating<br>Mode | Max. Tune up Power  Max. Directional Antenna Gain |       | Power density          | Limit |  |
| Wode              | (dBm)                                             | (dBi) | (mW/ cm <sup>2</sup> ) |       |  |
| WIFI 2.4G         | 27.5                                              | 2     | 0.17731                | 1     |  |

| (Worst case)      |                    |                                  |                        |   |  |
|-------------------|--------------------|----------------------------------|------------------------|---|--|
| Operating<br>Mode | Max. Tune up Power | Max. Directional<br>Antenna Gain | I Power density I      |   |  |
| Wode              | (dBm)              | (dBi)                            | (mW/ cm <sup>2</sup> ) |   |  |
| WIFI 5G           | 29.0               | 3                                | 0.31530                | 1 |  |

| (Worst case)      |                    |                                  |                        |   |  |
|-------------------|--------------------|----------------------------------|------------------------|---|--|
| Operating<br>Mode | Max. Tune up Power | Max. Directional<br>Antenna Gain | Power density Limit    |   |  |
| Wode              | (dBm)              | (dBi)                            | (mW/ cm <sup>2</sup> ) |   |  |
| WIFI 6G           | 26.0               | 3                                | 0.10114                | 1 |  |

#### Note:

- 1. The calculated distance is 20 cm.
- 2. The power comes from operation description.
- 3. 2.4 GHz WiFi + 5 GHz WiFi + 6 GHz WiFi = 0.17731 + 0.31530 + 0.10114= 0.59375 (mW/cm<sup>2</sup>)

Therefor the maximum calculations of above situations are less than the "1" limit.

**END OF REPORT**