

TEST REPORT

FCC ID: 2AXH8-BRJPWLFC

Product: Multi-Function Jump Starter

Model No.: DL-2000Li

Additional Model No.: SL1452, SL1489, SL1487, SL1517

Trade Mark: N/A

Report No.: TCT200821E007

Issued Date: Sep. 03, 2020

Issued for:

Schumacher Electric Corporation

801 Business Center Drive, Mt. Prospect, ILLINOIS 60056, United States

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in

the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

	est Certific							3
2. Te	st Result	Summar	y	(0)		<u> </u>		4
3. EU	JT Descrip	otion						5
4. Ge	eneral Info	rmation			<u>(6)</u>			6
4.1	. Test envir	onment a	nd mode					6
4.2	2. Description	on of Supp	ort Units.					6
5. Fa	cilities an	d Accred	ditations	(6)		<u>(G)</u>		7
5.1	. Facilities							7
	. Location .							
5.3	. Measuren	nent Unce	rtainty					7
6. Te	st Results	s and Me	asureme	ent Data .			•••••	8
	. Antenna r							
6.2	2. Conducte	d Emissio	n					9
Арре	B. Radiated and and a Radiated and a	hotograp	ohs of Te	st Setup				13

1. Test Certification

Report No.: TCT200821E007

Product:	Multi-Function Jump Starter
Model No.:	DL-2000Li
Additional Model No.:	SL1452, SL1489, SL1487, SL1517
Trade Mark:	N/A
Applicant:	Schumacher Electric Corporation
Address:	801 Business Center Drive, Mt. Prospect, ILLINOIS 60056, United States
Manufacturer:	Schumacher Electric Corporation
Address:	801 Business Center Drive, Mt. Prospect, ILLINOIS 60056, United States
Date of Test:	Aug. 24, 2020 – Sep. 02, 2020
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Kerin Huang

Date:

Sep. 02, 2020

Kevin Huang

Reviewed By:

Date:

Sep. 03, 2020

Approved By:

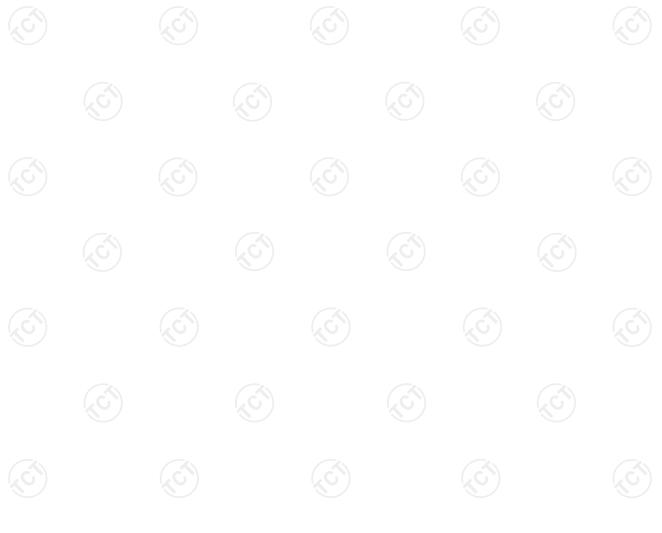
Date:

Sep. 03, 2020

2. Test Result Summary

Requirement	CFR 47 Section	Result		
Antenna requirement	§15.203	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Spurious Emission	§15.209(a)(f)	PASS		

Note:


- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.

3. EUT Description

Product:	Multi-Function Jump Starter
Model No.:	DL-2000Li
Additional Model No.:	SL1452, SL1489, SL1487, SL1517
Trade Mark:	N/A
Operation Frequency:	113.10KHz - 148.13KHz
Modulation Technology:	Load modulation
Antenna Type:	Inductive loop coil Antenna
Power Supply:	Rechargeable Li-ion Battery DC 14.8V
Remark:	All models above are identical in interior structure, electrical circuits and components, and model colors, appearance and power capacity are different in for the marketing requirement.

4. General Information

4.1. Test environment and mode

Operating Environment:								
Condition	Conducted Emission	Radiated Emission						
Temperature:	25.0 °C	25.0 °C						
Humidity:	55 % RH	55 % RH						
Atmospheric Pressure:	1010 mbar	1010 mbar						
Test Mode:								
Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations.								

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

All types of input and output have been tested. The worst mode charging(9V/1.67A) and discharging(10w) at the same time are shown in this report.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name	
Mobile Phone	SM-G9350	R28HA2ER3GT	/	SAMSUNG	
Adapter	JD-050200	2012010907576735	(3)	1 6	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 6 of 31

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab.

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab.

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

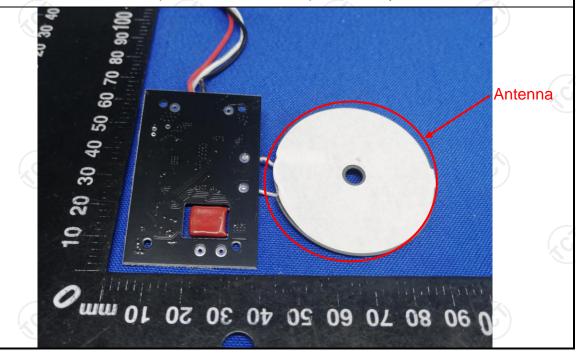
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:


FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is inductive loop coil antenna which permanently attached.

6.2. Conducted Emission

6.2.1. Test Specification

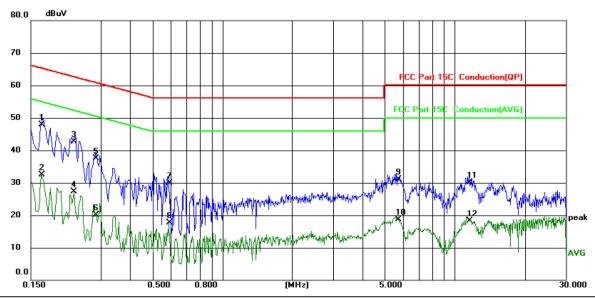
Toot Poquiroment	FCC Part15 C Section	15 207	(20						
Test Requirement:	ANSI C63.10:2013								
Test Method:	ANSI C63.10:2013 150 kHz to 30 MHz								
Frequency Range:	150 kHz to 30 MHz	(3)							
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto						
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	(dBuV) Average 56 to 46* 46 50							
	Refere	nce Plane							
Test Setup:	Test table/Insulation plan Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	Iter — AC power						
Test Mode:	Charging + Transmitting	ng Mode							
Test Procedure:	 The E.U.T is conne impedance stabilizy provides a 500hm/5 measuring equipme The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	cation network 50uH coupling in nt. ces are also connects are also connects with 50ohm terror diagram of the line are checkence. In order to five positions of equals must be changed.	(L.I.S.N.). This appedance for the ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum and the maximum uipment and all of ged according to						
Test Result:	PASS								

NTRE TECHNOLOGY Report No.: TCT200821E007

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)											
Equipment	Manufacturer	Model	Calibration Due								
Test Receiver	R&S	ESPI	101402	Jul. 27, 2021							
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2020							
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 08, 2020							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.2.3. Test data

Report No.: TCT200821E007

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

 Site
 Phase:
 L1
 Temperature:
 25 (C)

 Limit: FCC Part 15C Conduction(QP)
 Power:
 AC 120V/60Hz
 Humidity:
 55 %RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	*	0.1660	37.73	10.22	47.95	65.16	-17.21	QP	
2		0.1660	22.36	10.22	32.58	55.16	-22.58	AVG	
3		0.2300	32.52	10.23	42.75	62.45	-19.70	QP	
4		0.2300	17.13	10.23	27.36	52.45	-25.09	AVG	
5		0.2860	27.30	10.23	37.53	60.64	-23.11	QP	
6		0.2860	9.91	10.23	20.14	50.64	-30.50	AVG	
7		0.5899	19.74	10.23	29.97	56.00	-26.03	QP	
8		0.5899	7.56	10.23	17.79	46.00	-28.21	AVG	
9		5.7059	20.67	10.49	31.16	60.00	-28.84	QP	
10		5.7059	8.13	10.49	18.62	50.00	-31.38	AVG	
11		11.6178	19.41	10.61	30.02	60.00	-29.98	QP	
12		11.6178	7.72	10.61	18.33	50.00	-31.67	AVG	

Note:

Freq. = Emission frequency in MHz

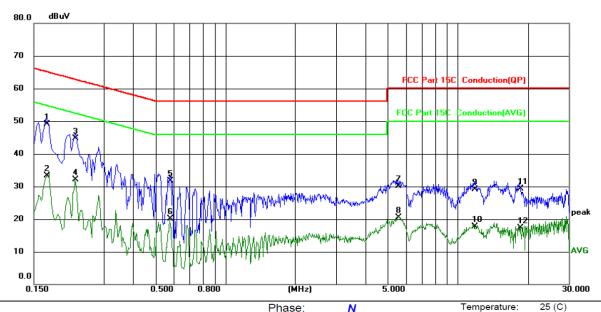
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: AC 120V/60Hz

Humidity: 55 %RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1	*	0.1712	38.80	10.22	49.02	64.90	-15.88	QP	
2		0.1712	23.15	10.22	33.37	54.90	-21.53	AVG	
3		0.2260	34.46	10.23	44.69	62.60	-17.91	QP	
4		0.2260	21.96	10.23	32.19	52.60	-20.41	AVG	
5		0.5780	21.50	10.23	31.73	56.00	-24.27	QP	
6		0.5780	9.85	10.23	20.08	46.00	-25.92	AVG	
7		5.5500	19.58	10.49	30.07	60.00	-29.93	QP	
8		5.5500	9.94	10.49	20.43	50.00	-29.57	AVG	
9		11.8419	18.50	10.62	29.12	60.00	-30.88	QP	
10		11.8419	7.12	10.62	17.74	50.00	-32.26	AVG	
11		18.5939	18.26	10.99	29.25	60.00	-30.75	QP	
12		18.5939	6.38	10.99	17.37	50.00	-32.63	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

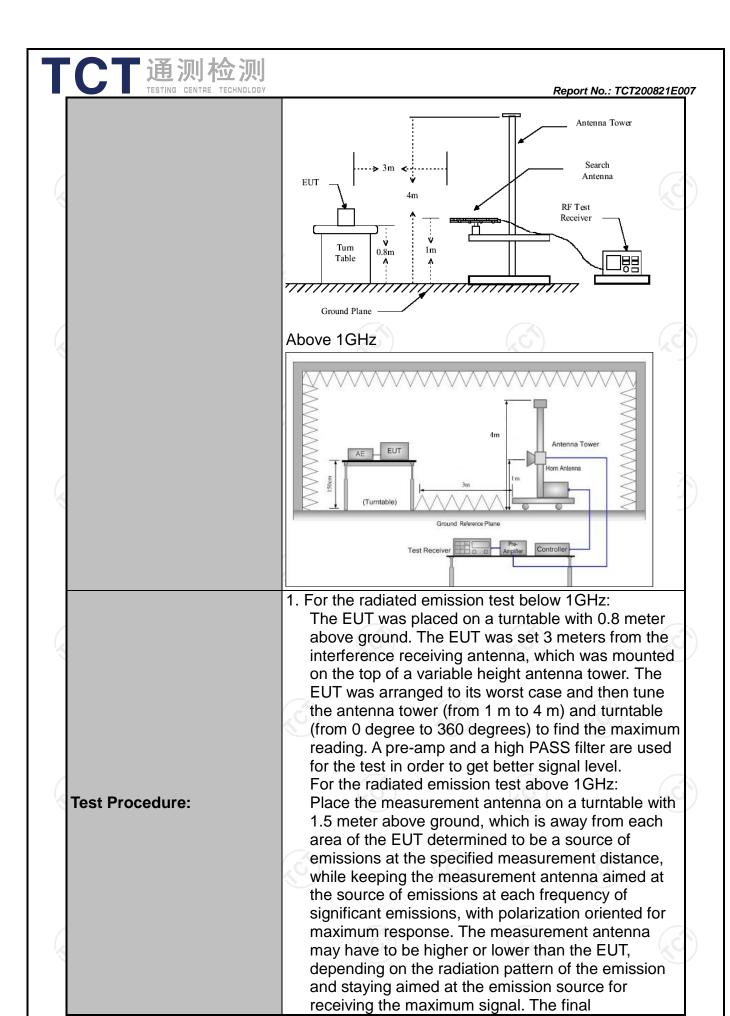
Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.



6.3. Radiated Spurious Emission Measurement

6.3.1. Test Specification

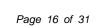
Test Requirement:	FCC Part15	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10	D: 2013									
Frequency Range:	9 kHz to 25 (GHz			C						
Measurement Distance:	3 m	K									
Antenna Polarization:	Horizontal &	Vertical									
Operation mode:	Refer to item	1 4.1	(, c(1)		Ć					
	Frequency 9kHz- 150kHz	Detector Quasi-peak		VBW 1kHz	Qua	Remark si-peak Value					
Receiver Setup:	150kHz- 30MHz	Quasi-peak	<u>(i)</u>	30kHz	(,c	si-peak Value					
	30MHz-1GHz Above 1GHz	Quasi-peak	1MHz	300KHz 3MHz	Р	eak Value					
		Peak	1MHz	10Hz	Ave	erage Value					
	Frequen	ncy	Field Str (microvolts		Measurement Distance (meters)						
	0.009-0.4		2400/F(300					
	0.490-1.7		24000/F	(KHz)	30						
	1.705-3		30		- (¿C	30					
	30-88		100 150		3 3						
Limit:	88-216 216-96		200		3						
Lilling.	Above 9	1	500			3					
	7 100 100	57)		(0)	<u>I</u>	(,C					
	Frequency		d Strength volts/meter)	Measure Distan (mete	се	Detector					
	Above 1GH	z	500 5000	3		Average					
Test setup:	For radiated	emissions	s below 30	Pre -	Compa	Peak					
	30MHz to 10		riane	(C.)		É					

PASS

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332

Test results:

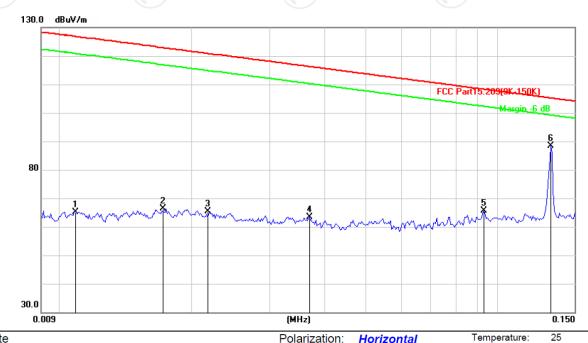
http://www.tct-lab.com



6.3.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021			
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020			
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020			
Pre-amplifier	HP	8447D	2727A05017	Sep. 08, 2020			
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 27, 2020 Sep. 06, 2020			
Broadband Antenna	Schwarzbeck	VULB9163	340				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 06, 2020			
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 06, 2020			
Antenna Mast	Keleto	RE-AM	N/A	N/A			
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 08, 2020			
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 08, 2020			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

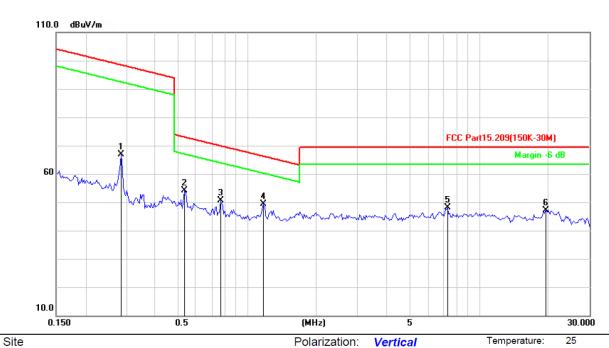
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.3.3. Test Data

Please refer to following diagram for individual 9KHz-30MHz

9KHz-150KHz:

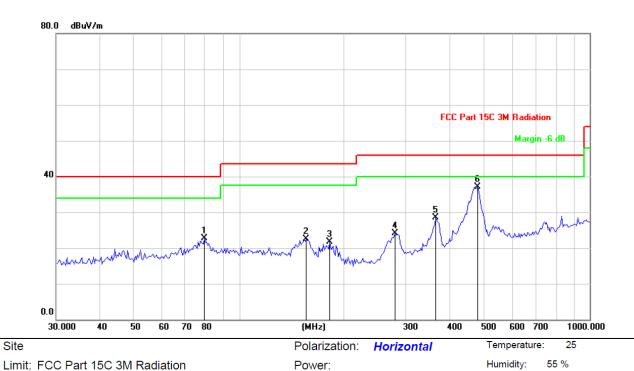


Site Polarization: Horizontal Temperature: 25
Limit: FCC Part15.209(9K-150K) Power: Humidity: 55 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1	0.0108	41.83	23.42	65.25	126.9	-61.68	peak
2	0.0171	46.26	20.08	66.34	122.9	-56.60	peak
3	0.0217	46.76	18.65	65.41	120.8	-55.47	peak
4	0.0371	43.69	19.69	63.38	116.2	-52.84	peak
5	0.0926	42.07	23.46	65.53	108.2	-42.76	peak
6 *	0.1324	62.94	25.53	88.47	105.1	-16.71	peak

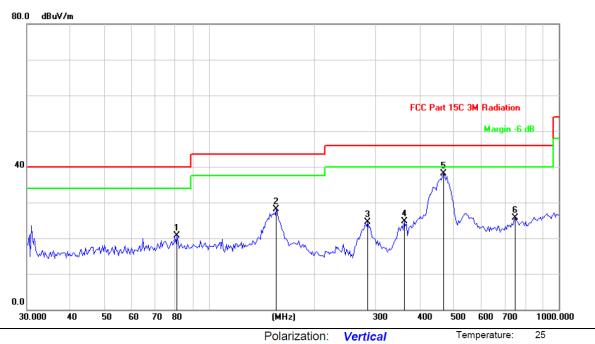
150KHz-30MHz:

Limit: FCC Part15.209(150K-30M)	Power:	Humidity:	55 %


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1	0.2867	41.16	25.83	66.99	98.46	-31.47	peak
2	0.5361	28.68	25.45	54.13	73.02	-18.89	peak
3	0.7691	25.12	25.45	50.57	69.90	-19.33	peak
4 *	1.1767	24.00	25.39	49.39	66.21	-16.82	peak
5	7.3083	22.31	25.73	48.04	69.50	-21.46	peak
6	19.4115	21.46	25.57	47.03	69.50	-22.47	peak

30MHz-1GHz

Horizontal:



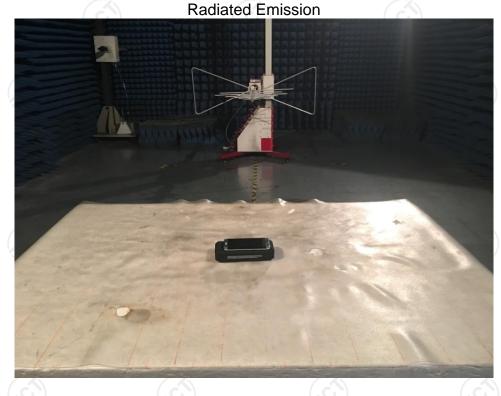
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV/m	dB/m	dB	Detector
1	79.6764	39.63	-16.99	22.64	40.00	-17.36	peak
2	155.3305	38.92	-16.37	22.55	43.50	-20.95	peak
3	181.3000	36.86	-15.14	21.72	43.50	-21.78	peak
4	278.3308	35.83	-11.78	24.05	46.00	-21.95	peak
5	363.5231	37.98	-9.50	28.48	46.00	-17.52	peak
6 *	478.1394	44.72	-7.63	37.09	46.00	-8.91	peak

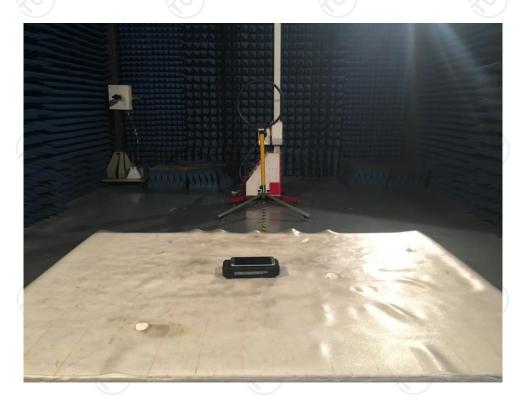
Vertical:

Site Polarization: Vertical Temperature: 2
Limit: FCC Part 15C 3M Radiation Power: Humidity: 55 %

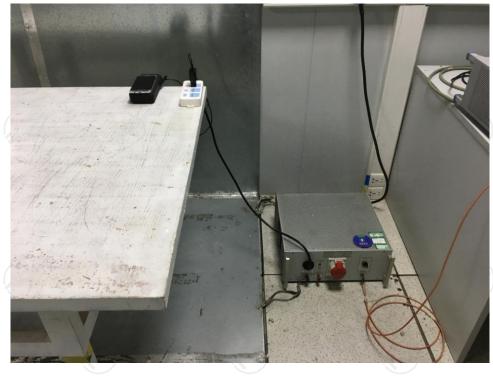
No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dB/m	dB	Detector
1		80.8042	37.32	-16.53	20.79	40.00	-19.21	peak
2		155.3305	44.53	-16.37	28.16	43.50	-15.34	peak
3		284.2606	36.16	-11.57	24.59	46.00	-21.41	peak
4		360.9775	34.25	-9.55	24.70	46.00	-21.30	peak
5	*	468.1650	45.98	-7.83	38.15	46.00	-7.85	peak
6		749.6761	29.73	-3.93	25.80	46.00	-20.20	peak

Note:


 ${\it Emission Level=Peak Reading + Correction Factor; Correction Factor=Antenna Factor + Cable loss-Pre-amplifier}$

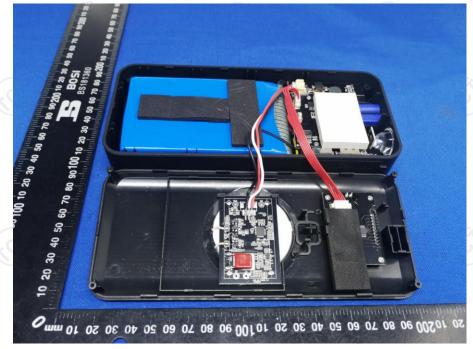


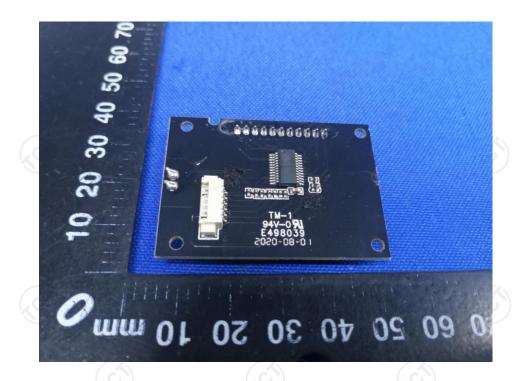
Appendix A: Photographs of Test Setup

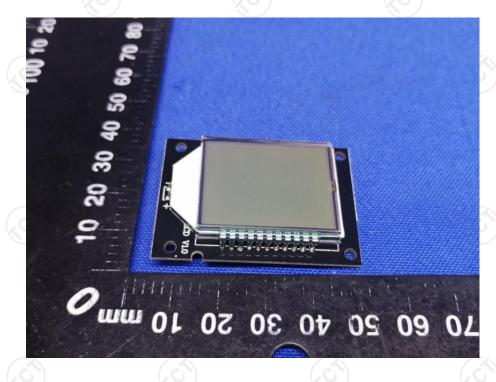

Product: Multi-Function Jump Starter
Model: DL-2000Li

Conducted Emission

Appendix B: Photographs of EUT Product: Multi-Function Jump Starter Model: DL-2000Li






Product: Multi-Function Jump Starter Model: DL-2000Li Internal Photos

