

Test Graph

Page 65 of 122

Page 66 of 122

Page 67 of 122

Appendix F): Antenna Requirement

15.203 requirement:

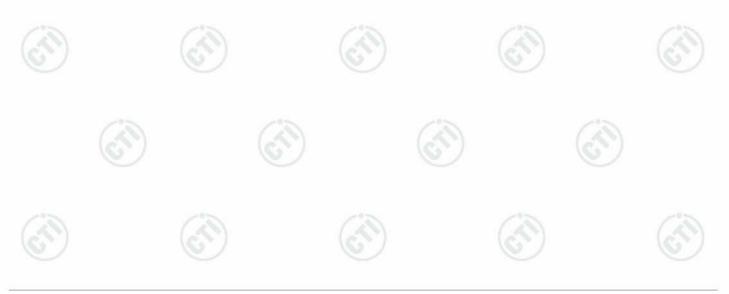
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

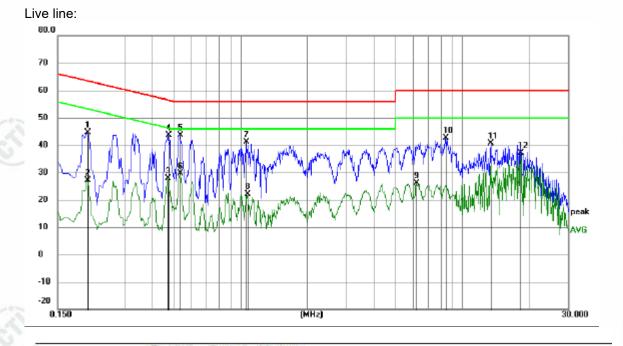

Appendix G): AC Power Line Conducted Emission

Test Procedure:	 Test frequency range :150KHz- 1) The mains terminal disturbar 2) The EUT was connected to Stabilization Network) which power cables of all other under the unit being measured. A power cables to a single LIS 3) The tabletop EUT was place reference plane. And for fluct horizontal ground reference 4) The test was performed with shall be 0.4 m from the reference plane was bonde was placed 0.8 m from the reference plane for LISNs distance was between the of of the EUT and associated of 5) In order to find the maximum the interface cables must measurement. 	the voltage test was a b AC power source to the provides a $50\Omega/5$ units of the EUT were ound reference plane multiple socket outle SN provided the rating ced upon a non-met por-standing arrange plane, in a vertical ground refer d to the horizontal gro boundary of the unit mounted on top of closest points of the L equipment was at lead in emission, the relative	hrough a LISN 1 (Lin 0μ H + 5 Ω linear im re connected to a set in the same way as t strip was used to co g of the LISN was not allic table 0.8m above ment, the EUT was ference plane. The re- rence plane. The re- round reference plane under test and bonder the ground reference LISN 1 and the EUT. st 0.8 m from the LIS ve positions of equipr	ne Impedance pedance. The cond LISN 2 the LISN 1 for innect multip exceeded. ve the groun placed on the ear of the EU ear of the USN ear of the USN				
Limit:	Frequency range (MHz)	Limit (o	dBµV)					
()	Frequency range (Miriz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
10	5-30 60 50							
	* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency							

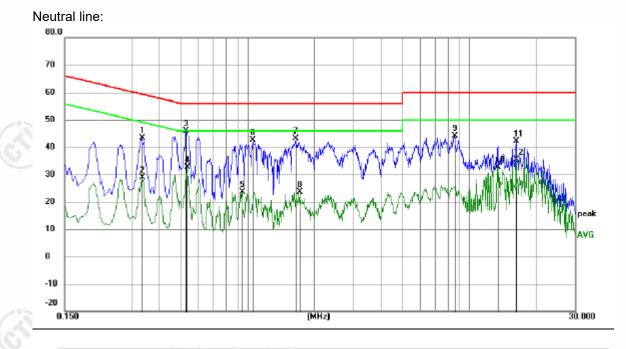
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 70 of 122

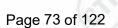

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2040	34.85	9.88	44.73	63.45	-18.72	QP	
2	0.2040	17.17	9.88	27.05	53.45	-26,40	AVG	
3	0.4695	17.98	9.96	27.94	46.52	-18.58	AVG	
4	0.4740	33.69	9.96	43.65	56.44	-12.79	QP	
5 *	0.5325	33.66	9.99	43.65	56.00	-12.35	QP	
6	0.5325	19.66	9.99	29.65	46.00	-16.35	AVG	
7	1.0635	31.27	9.83	41.10	56.00	-14.90	QP	
8	1.0770	12.21	9.83	22.04	46.00	-23,96	AVG	
9	6.2070	16.26	9.79	26.05	50.00	-23.95	AVG	
10	8.3940	32.96	9.79	42.75	60.00	-17.25	QP	
11	13.4790	30.72	9.88	40.60	60.00	-19.40	QP	
12	18.2445	27.17	9.96	37.13	50.00	-12.87	AVG	

Page 71 of 122

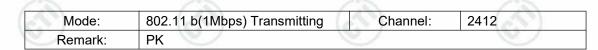
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3345	33.41	10.04	43.45	59.34	-15.89	QP	
2		0.3345	18.78	10.04	28.82	49.34	-20.52	AVG	
3	*	0.5280	35.94	9.98	45.92	56.00	-10.08	QP	
4		0.5370	22.59	9.99	32.58	46.00	-13.42	AVG	
5		0.9465	13.91	9.84	23.75	46.00	-22.25	AVG	
6		1.0545	32.82	9.83	42.65	56.00	-13.35	QP	
7		1.6485	33.28	9.80	43.08	56.00	-12.92	QP	
8		1.7205	13.86	9.80	23.66	46.00	-22.34	AVG	
9		8.5470	34.27	9.78	44.05	60.00	-15.95	QP	
10		13.3575	22.82	9.88	32.70	50.00	-17.30	AVG	
11		16.2285	32.12	9.94	42.06	60.00	-17.94	QP	
12		16.2285	25.55	9.94	35.49	50.00	-14.51	AVG	

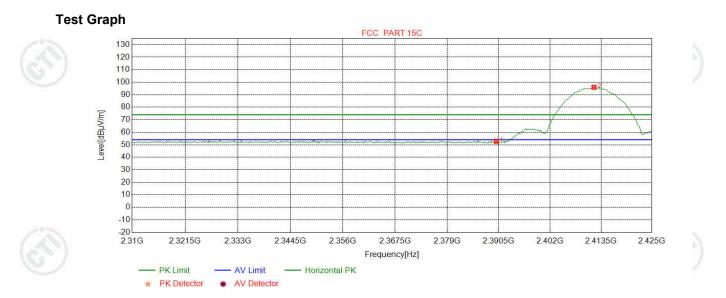
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



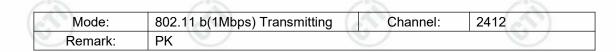
Appendix H): Restricted bands around fundamental frequency (Radiated)

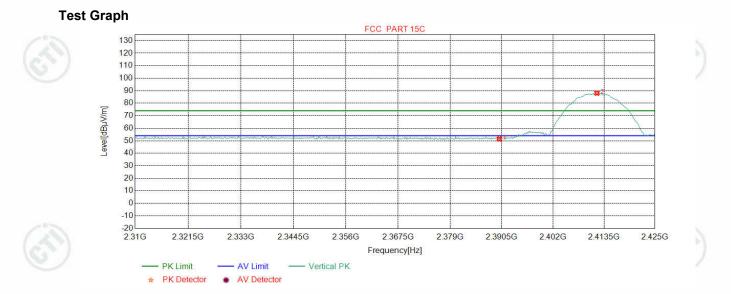

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 10Hz	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	1
Test Procedure:	Below 1GHz test procedu	re as below:	C.	9	(G
	 Test method Refer as KDB a. The EUT was placed or at a 3 meter semi-anect determine the position of b. The EUT was set 3 met was mounted on the top c. The antenna height is w determine the maximum polarizations of the anter d. For each suspected err the antenna was tuned was turned from 0 degr e. The test-receiver syster Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest or 	n the top of a ro hoic camber. T of the highest ra ters away from o of a variable-l varied from one n value of the fi enna are set to hission, the EU ⁻ to heights from ees to 360 deg m was set to Pe um Hold Mode. nd of the restric pliance. Also m um analyzer pla	the table wa adiation. the interfer height anter meter to for ield strength make the r T was arran n 1 meter to rees to find eak Detect cted band on neasure any	ence-receinna tower. bur meters n. Both hou neasureme ged to its 4 meters the maxin Function a closest to the emission	360 degrees to iving antenna, above the gro rizontal and ve ent. worst case an and the rotata num reading. nd Specified he transmit s in the restric	wh und ertic d th ble
	Above 1GHz test procedug. Different between abovto fully Anechoic Cham18GHz the distance is 7h. Test the EUT in the lowi. The radiation measurerTransmitting mode, andj. Repeat above procedure	e is the test site ber change form 1 meter and tab vest channel , t nents are perfo 1 found the X a:	m table 0.8 ble is 1.5 m the Highest brmed in X, xis position	meter to 1 eter). channel Y, Z axis p ing which i	.5 meter(Abo positioning for t is worse cas	ve
Limit:	 g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedure 	e is the test site ber change form 1 meter and tak vest channel , t ments are perfo 1 found the X as res until all freq	m table 0.8 ble is 1.5 m the Highest prmed in X, xis position uencies me	meter to 1 eter). channel Y, Z axis p ing which i easured wa	.5 meter(Abo positioning for t is worse cas as complete.	ve
Limit:	 g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur 	e is the test site ber change form 1 meter and tab vest channel , t nents are perfo 1 found the X a:	m table 0.8 ble is 1.5 m the Highest prmed in X, xis position uencies me	meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei	.5 meter(Abo positioning for t is worse cas as complete. mark	ve
Limit:	 g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedure 	e is the test site ber change form 1 meter and tab vest channel , t nents are perfo d found the X at res until all freq Limit (dBµV	m table 0.8 ble is 1.5 m the Highest prmed in X, xis position uencies me //m @3m) 0	meter to 1 eter). channel Y, Z axis p ing which i easured wa Ren Quasi-po	.5 meter(Abo positioning for t is worse cas as complete.	ve
Limit:	 g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur 	e is the test site ber change form 1 meter and tak vest channel , t nents are perfo 1 found the X at res until all freq Limit (dBµV 40.	m table 0.8 ble is 1.5 m the Highest prmed in X, xis position uencies me //m @3m) 0 5	meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	.5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ve
Limit:	g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	e is the test site ber change form 1 meter and tak vest channel , t nents are perfor 1 found the X at res until all freq Limit (dBµV 40. 43.	m table 0.8 ble is 1.5 me the Highest formed in X, xis position uencies me (/m @3m) 0 5 0	meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	.5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value	ve
Limit:	g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	e is the test site ber change form 1 meter and tak vest channel , t nents are perfo d found the X as res until all freq Limit (dBµV 40. 43. 46.	m table 0.8 ble is 1.5 m the Highest prmed in X, xis position juencies me (/m @3m) 0 5 0 0	meter to 1 eter). channel Y, Z axis p ing which i easured wa Ref Quasi-po Quasi-po Quasi-po	.5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value eak Value	ve
Limit:	g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	e is the test site ber change form 1 meter and tak vest channel , t nents are perfor 1 found the X at res until all freq Limit (dBµV 40. 43. 46. 54.	m table 0.8 ble is 1.5 m the Highest formed in X, xis position uencies me (/m @3m) 0 5 0 0 0 0	meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	.5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value eak Value eak Value	ve



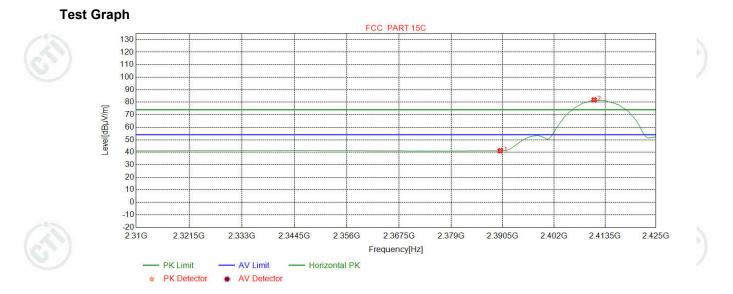
Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.27	52.77	74.00	21.23	Pass	Horizontal
2	2411.9024	32.28	13.35	-43.12	93.40	95.91	74.00	-21.91	Pass	Horizontal

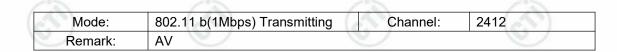


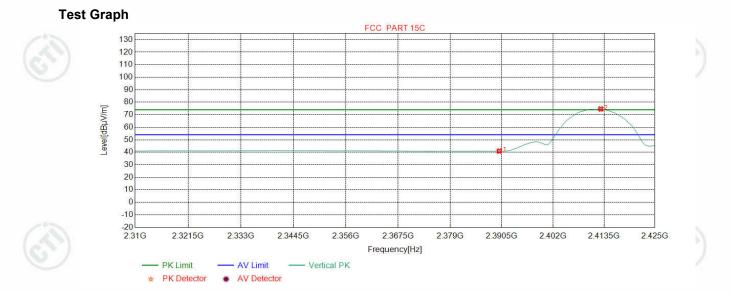


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.95	51.45	74.00	22.55	Pass	Vertical
2	2411.9024	32.28	13.35	-43.12	85.55	88.06	74.00	-14.06	Pass	Vertical

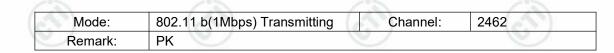


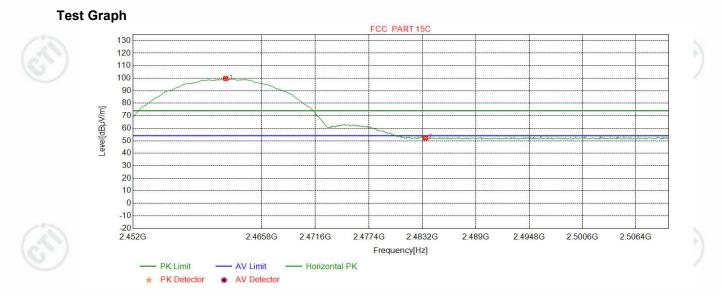
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.69	41.19	54.00	12.81	Pass	Horizontal
2	2411.0388	32.28	13.35	-43.12	79.33	81.84	54.00	-27.84	Pass	Horizontal



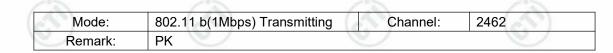


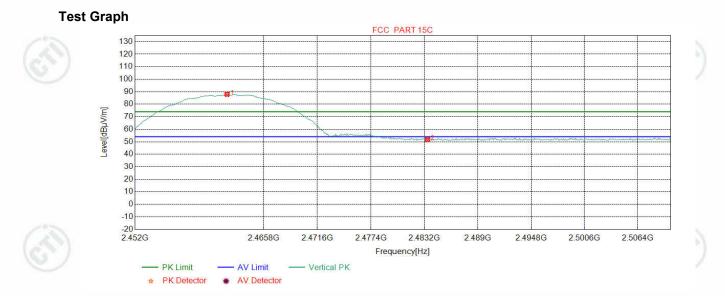
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.44	40.94	54.00	13.06	Pass	Vertical
2	2412.7660	32.28	13.36	-43.12	72.07	74.59	54.00	-20.59	Pass	Vertical



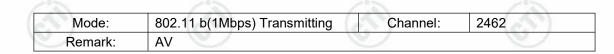


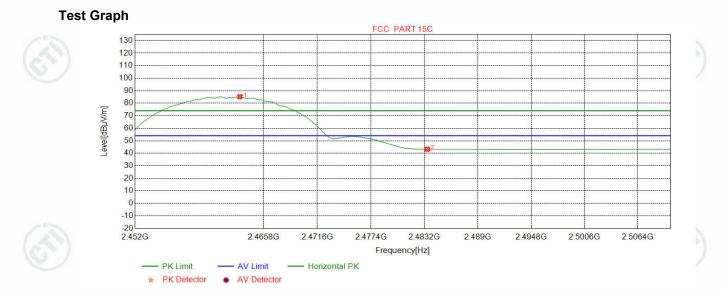
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.9449	32.35	13.48	-43.12	97.00	99.71	74.00	-25.71	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.53	52.18	74.00	21.82	Pass	Horizontal



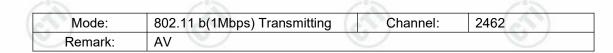


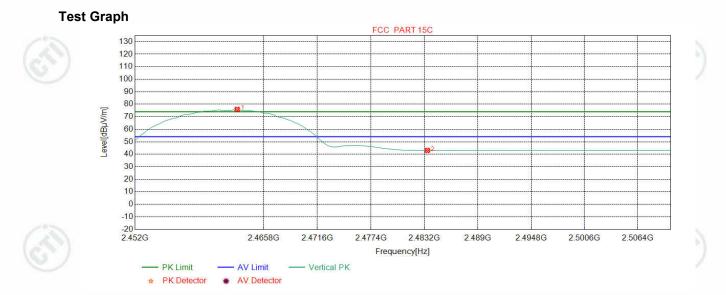
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.8723	32.35	13.48	-43.12	85.24	87.95	74.00	-13.95	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.14	51.79	74.00	22.21	Pass	Vertical



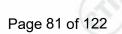


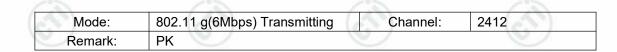
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.2516	32.35	13.47	-43.11	82.54	85.25	54.00	-31.25	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.60	43.25	54.00	10.75	Pass	Horizontal

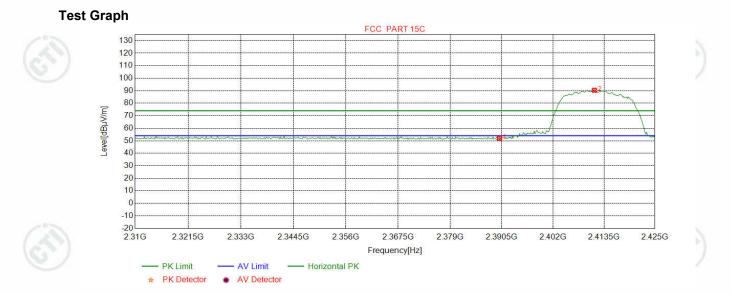




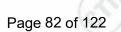
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.9612	32.35	13.47	-43.11	73.17	75.88	54.00	-21.88	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.39	43.04	54.00	10.96	Pass	Vertical

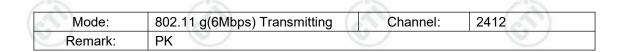


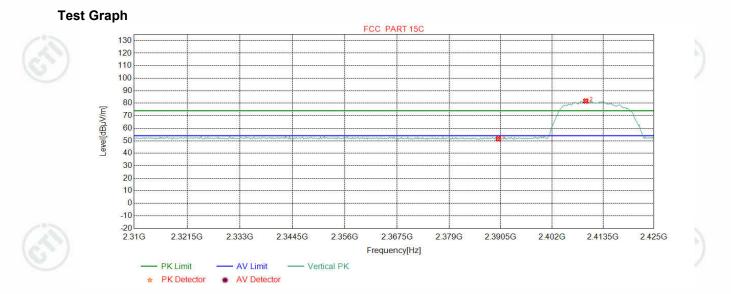




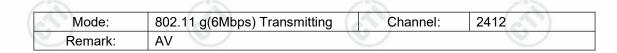
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.42	51.92	74.00	22.08	Pass	Horizontal
2	2411.3267	32.28	13.35	-43.12	87.85	90.36	74.00	-16.36	Pass	Horizontal

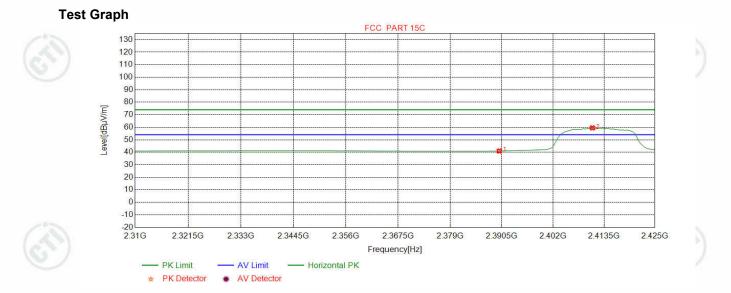




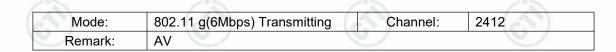


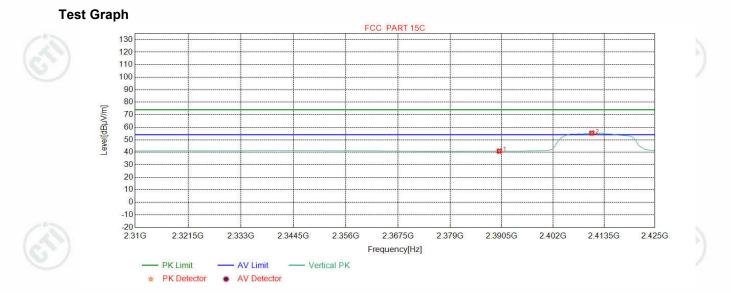
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.02	51.52	74.00	22.48	Pass	Vertical
2	2409.5995	32.27	13.34	-43.11	79.24	81.74	74.00	-7.74	Pass	Vertical



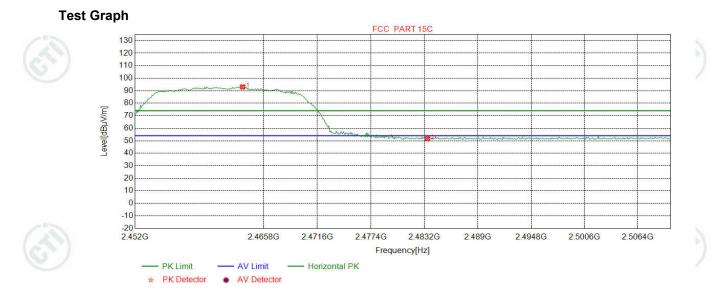


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.50	41.00	54.00	13.00	Pass	Horizontal
2	2410.8949	32.28	13.35	-43.12	56.94	59.45	54.00	-5.45	Pass	Horizontal



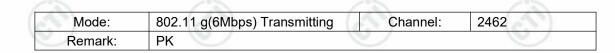


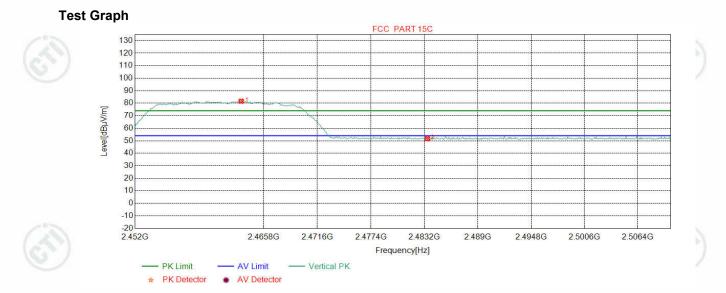
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.39	40.89	54.00	13.11	Pass	Vertical
2	2410.7509	32.28	13.35	-43.12	52.83	55.34	54.00	-1.34	Pass	Vertical



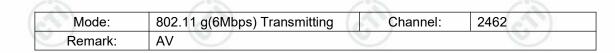
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.5419	32.35	13.47	-43.11	90.30	93.01	74.00	-19.01	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.05	51.70	74.00	22.30	Pass	Horizontal

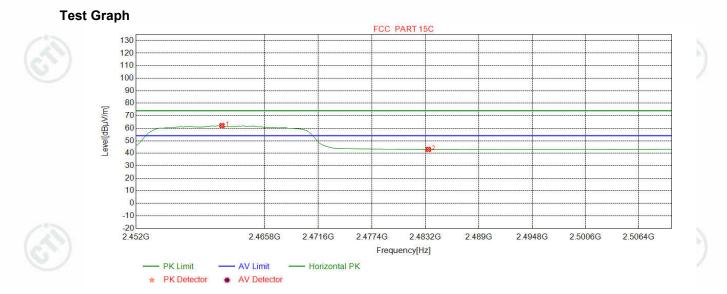




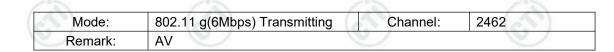


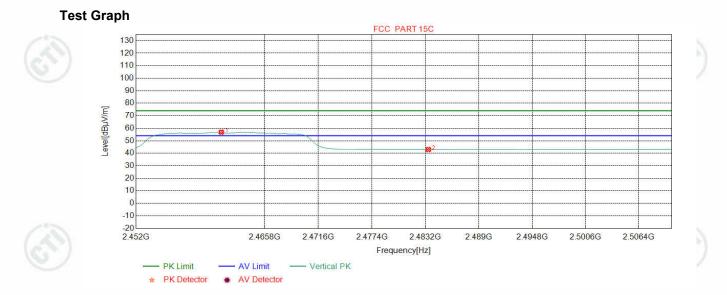
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.3967	32.35	13.47	-43.11	78.90	81.61	74.00	-7.61	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.03	51.68	74.00	22.32	Pass	Vertical



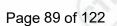


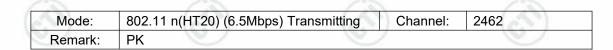
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2190	32.35	13.48	-43.11	59.40	62.12	54.00	-8.12	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.42	43.07	54.00	10.93	Pass	Horizontal

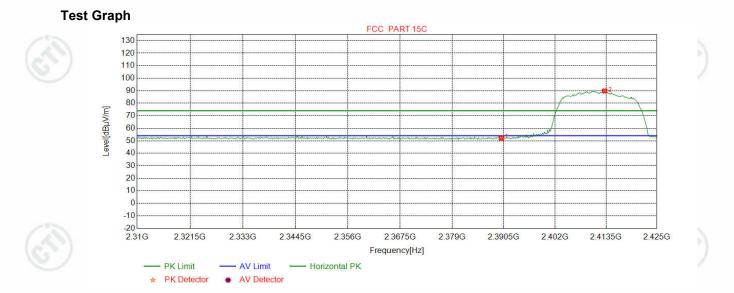




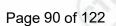
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.1464	32.35	13.48	-43.11	54.15	56.87	54.00	-2.87	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.36	43.01	54.00	10.99	Pass	Vertical

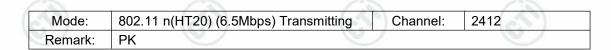


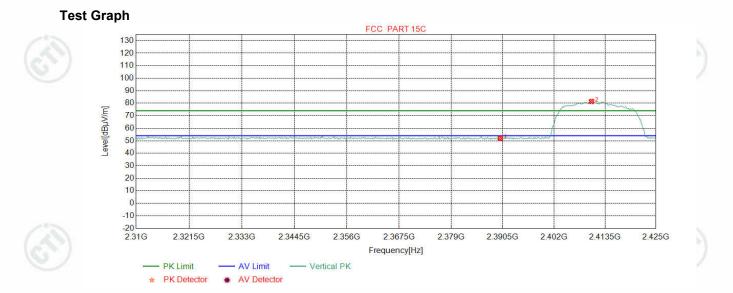




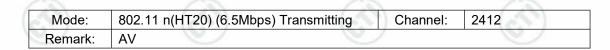
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.60	52.10	74.00	21.90	Pass	Horizontal
2	2413.1977	32.28	13.36	-43.12	87.28	89.80	74.00	-15.80	Pass	Horizontal

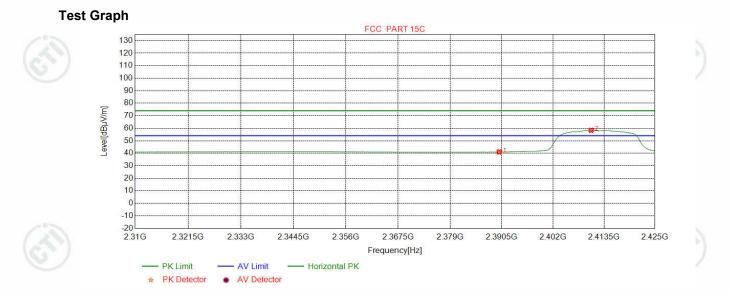




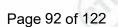


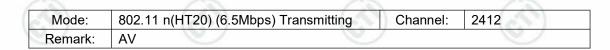
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.44	51.94	74.00	22.06	Pass	Vertical
2	2410.4631	32.27	13.35	-43.12	78.92	81.42	74.00	-7.42	Pass	Vertical

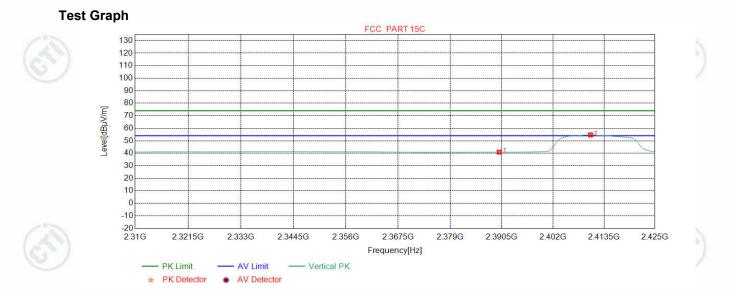




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.56	41.06	54.00	12.94	Pass	Horizontal
2	2410.6070	32.27	13.35	-43.11	55.84	58.35	54.00	-4.35	Pass	Horizontal

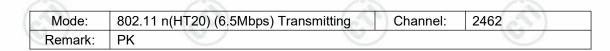


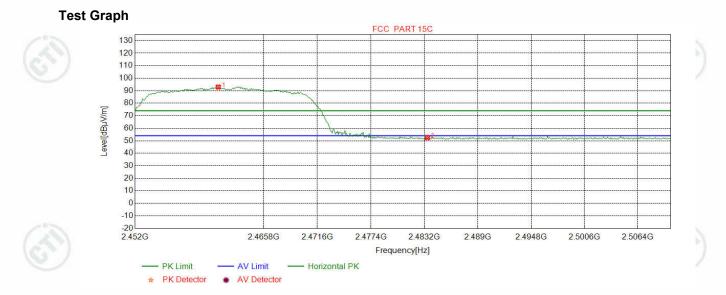




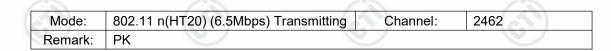
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.38	40.88	54.00	13.12	Pass	Vertical
2	2410.4631	32.27	13.35	-43.12	52.20	54.70	54.00	-0.70	Pass	Vertical

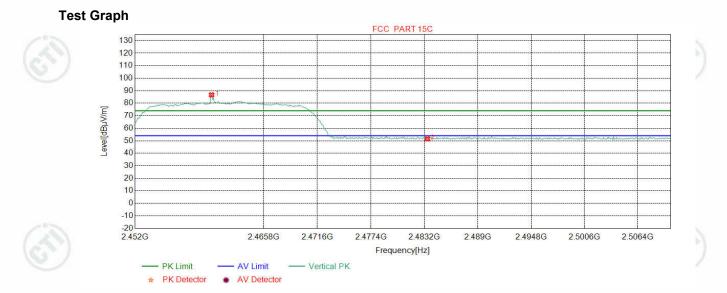






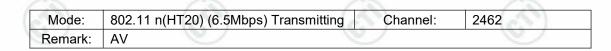
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.9287	32.35	13.48	-43.11	90.20	92.92	74.00	-18.92	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.86	52.51	74.00	21.49	Pass	Horizontal

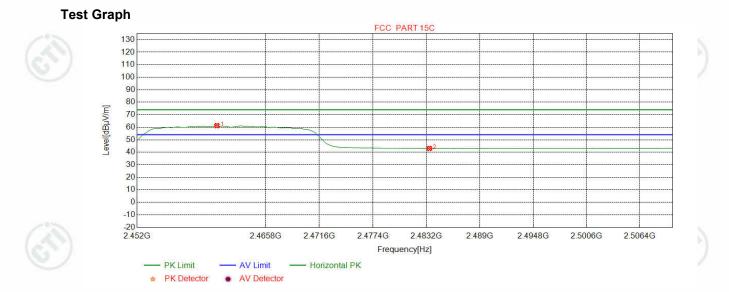




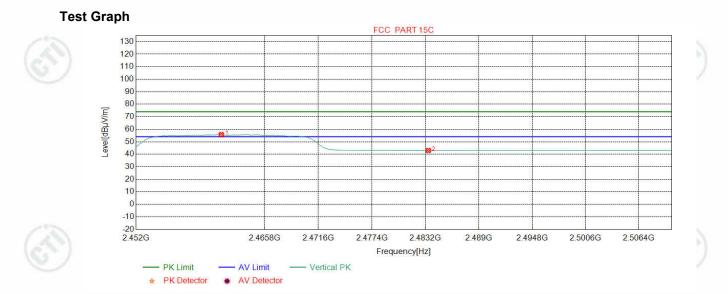
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.2028	32.34	13.48	-43.10	83.96	86.68	74.00	-12.68	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.85	51.50	74.00	22.50	Pass	Vertical



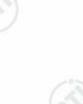


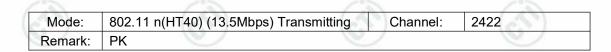


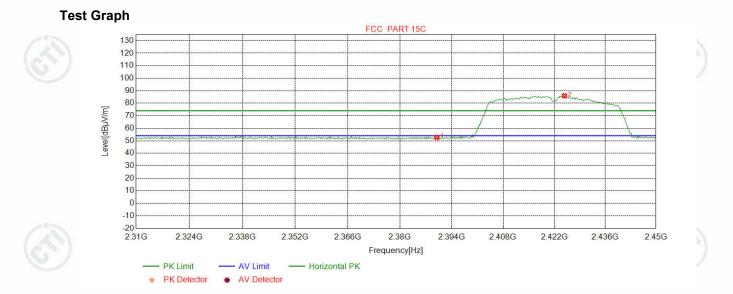
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.5657	32.34	13.48	-43.10	58.58	61.30	54.00	-7.30	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.43	43.08	54.00	10.92	Pass	Horizontal



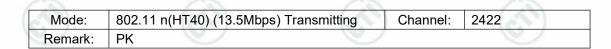
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.1464	32.35	13.48	-43.11	53.01	55.73	54.00	-1.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.37	43.02	54.00	10.98	Pass	Vertical

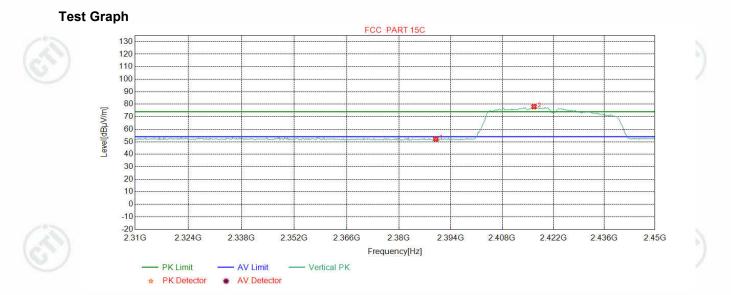




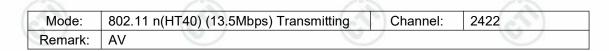


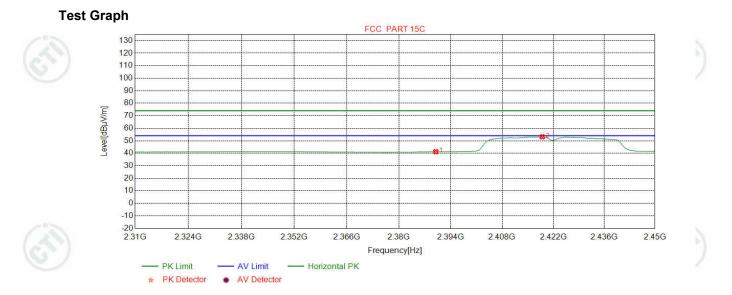
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.19	52.69	74.00	21.31	Pass	Horizontal
2	2424.7685	32.29	13.41	-43.11	83.30	85.89	74.00	-11.89	Pass	Horizontal



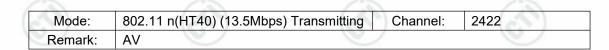


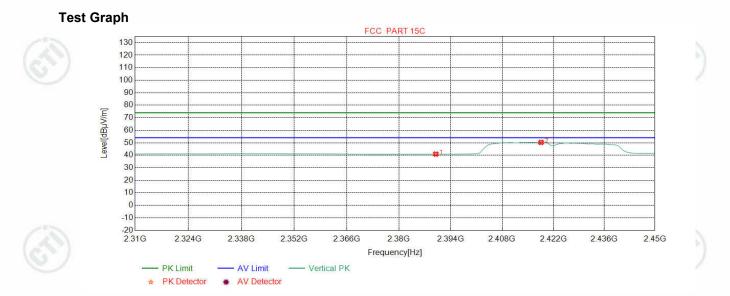
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.66	52.16	74.00	21.84	Pass	Vertical
2	2416.7084	32.28	13.38	-43.12	75.46	78.00	74.00	-4.00	Pass	Vertical



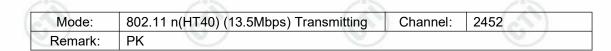


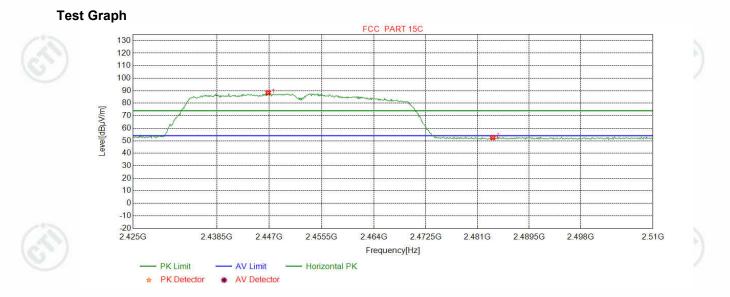
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.73	41.23	54.00	12.77	Pass	Horizontal
2	2418.9862	32.29	13.39	-43.12	50.61	53.17	54.00	0.83	Pass	Horizontal

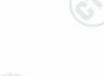




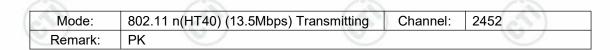
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.43	40.93	54.00	13.07	Pass	Vertical
2	2418.6358	32.29	13.39	-43.12	47.73	50.29	54.00	3.71	Pass	Vertical

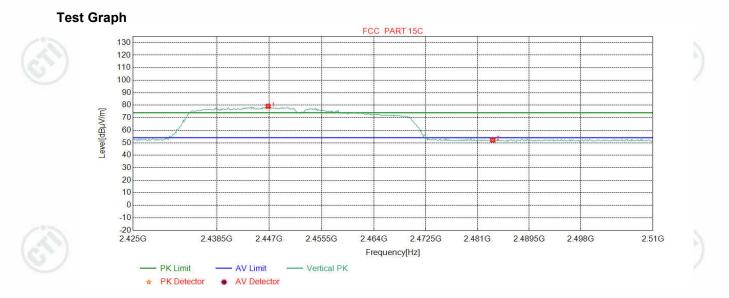




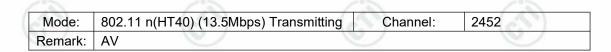


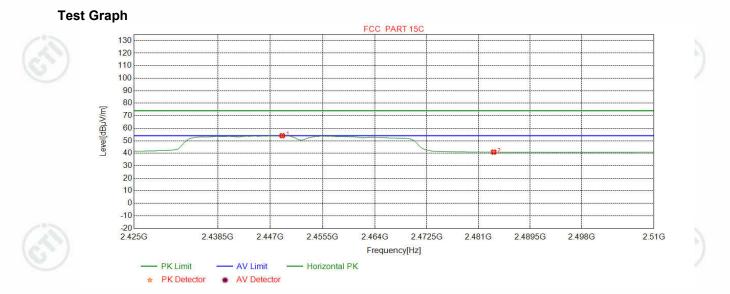
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2446.8085	32.33	13.52	-43.12	85.65	88.38	74.00	-14.38	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.89	52.54	74.00	21.46	Pass	Horizontal



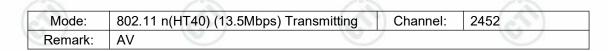


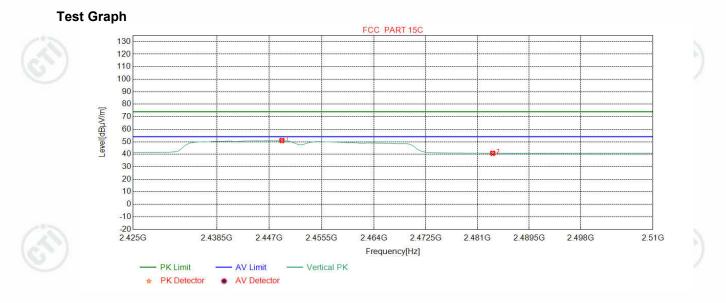
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2446.8085	32.33	13.52	-43.12	76.39	79.12	74.00	-5.12	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.48	52.13	74.00	21.87	Pass	Vertical





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2448.9362	32.33	13.53	-43.12	51.31	54.05	54.00	-0.05	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	38.28	40.93	54.00	13.07	Pass	Horizontal





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2449.0426	32.33	13.53	-43.12	48.27	51.01	54.00	2.99	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	38.17	40.82	54.00	13.18	Pass	Vertical

Note:

1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	1	1			12	
$(a^{(n)})$	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	13
 (a) 	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
/	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	V
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel, the middle channel ,the Highest channel .
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
	$(c^{(n)})$	0.009MHz-0.490MHz	2400/F(kHz)		-	300	
		0.490MHz-1.705MHz	24000/F(kHz)	~	-	30	
		1.705MHz-30MHz	30	-	-	30	
		30MHz-88MHz	100	40.0	Quasi-peak	3	20%
2		88MHz-216MHz	150	43.5	Quasi-peak	3	
2		216MHz-960MHz	200	46.0	Quasi-peak	3	(C)
		960MHz-1GHz	500	54.0	Quasi-peak	3	
		Above 1GHz	500	54.0	Average	3	
	(ST)	Note: 15.35(b), Unless 20dB above the m equipment under by the device.	naximum permitte	d average	emission limit	applicable to the	Э

j. Repeat above procedures until all frequencies measured was complete.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b, Channel 2437MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Mode	9:		802.11	b Transm	itting			Channel:		2437	_
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	52.14	32.64	40.00	7.36	Pass	н	PK
2	104.7945	10.95	1.20	-31.98	51.46	31.63	43.50	11.87	Pass	Н	PK
3	167.9478	8.34	1.52	-31.97	48.58	26.47	43.50	17.03	Pass	Н	PK
4	250.0180	12.20	1.88	-31.90	48.37	30.55	46.00	15.45	Pass	Н	PK
5	498.7509	16.98	2.67	-31.90	42.81	30.56	46.00	15.44	Pass	н	PK
6	750.0060	20.35	3.29	-32.04	34.28	25.88	46.00	20.12	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	52.95	33.45	40.00	6.55	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	47.84	24.83	43.50	18.67	Pass	V	PK
9	250.0180	12.20	1.88	-31.90	46.28	28.46	46.00	17.54	Pass	V	PK
10	439.9630	16.04	2.48	-31.88	38.13	24.77	46.00	21.23	Pass	V	PK
11	750.0060	20.35	3.29	-32.04	36.05	27.65	46.00	18.35	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	34.85	30.20	54.00	23.80	Pass	V	PK
	100			6		6			6		

Page 107 of 122

Transmitter Emission above 1GHz

Mode	e:		802.11	b(1Mbps)) Transmittir	ng		Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1592.4592	29.01	3.06	-42.91	53.42	42.58	74.00	31.42	Pass	Н	PK
2	1997.4998	31.68	3.47	-43.19	52.68	44.64	74.00	29.36	Pass	Н	PK
3	3911.0607	33.73	4.34	-43.02	50.05	45.10	74.00	28.90	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	49.34	45.65	74.00	28.35	Pass	Н	PK
5	7235.2824	36.34	5.79	-42.16	54.43	54.40	74.00	19.60	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.63	48.91	74.00	25.09	Pass	Н	PK
7	7235.6864	36.34	5.79	-42.15	48.89	48.87	54.00	5.13	Pass	Н	AV
8	1339.6340	28.24	2.81	-42.75	50.96	39.26	74.00	34.74	Pass	V	PK
9	2127.5128	31.88	3.62	-43.18	56.49	48.81	74.00	25.19	Pass	V	PK
10	3992.0661	33.79	4.33	-43.00	52.29	47.41	74.00	26.59	Pass	V	PK
11	4824.0000	34.50	4.61	-42.80	48.50	44.81	74.00	29.19	Pass	V	PK
12	7235.2824	36.34	5.79	-42.16	57.04	57.01	74.00	16.99	Pass	V	PK
13	9648.0000	37.66	6.72	-42.10	46.16	48.44	74.00	25.56	Pass	V	PK
14	7235.7444	36.34	5.79	-42.15	52.76	52.74	54.00	1.26	Pass	V	AV

Mode	ə:		802.11	b(1Mbps)) Transmittir	ıg		Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.0062	27.96	2.52	-43.03	55.61	43.06	74.00	30.94	Pass	Н	PK
2	1594.4594	29.02	3.07	-42.91	53.66	42.84	74.00	31.16	Pass	Н	PK
3	2133.3133	31.89	3.63	-43.18	58.99	51.33	74.00	22.67	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	52.41	48.89	74.00	25.11	Pass	Н	PK
5	7310.2874	36.41	5.85	-42.14	54.90	55.02	74.00	18.98	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	47.28	49.65	74.00	24.35	Pass	Н	PK
7	7310.7044	36.41	5.85	-42.14	51.22	51.34	54.00	2.66	Pass	Н	AV
8	1254.0254	28.15	2.69	-42.83	51.35	39.36	74.00	34.64	Pass	V	PK
9	2126.1126	31.88	3.62	-43.18	57.80	50.12	74.00	23.88	Pass	V	PK
10	4265.0843	34.17	4.48	-42.90	56.95	52.70	74.00	21.30	Pass	V	PK
11	4874.0000	34.50	4.78	-42.80	50.68	47.16	74.00	26.84	Pass	V	PK
12	7309.2873	36.41	5.85	-42.14	55.75	55.87	74.00	18.13	Pass	V	PK
13	9748.0000	37.70	6.77	-42.10	46.26	48.63	74.00	25.37	Pass	V	PK
14	7308.9753	36.41	5.85	-42.14	48.84	48.96	54.00	5.04	Pass	V	AV

Page 108 of 122

Mode	e:		802.11	b(1Mbps)) Transmittir	ng		Channel		2462	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1066.6067	27.97	2.53	-43.04	54.94	42.40	74.00	31.60	Pass	Н	PK
2	1596.6597	29.04	3.07	-42.91	53.07	42.27	74.00	31.73	Pass	Н	PK
3	3481.0321	33.39	4.47	-43.10	50.69	45.45	74.00	28.55	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	54.56	51.11	74.00	22.89	Pass	Н	PK
5	7386.2924	36.49	5.85	-42.13	54.50	54.71	74.00	19.29	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	49.07	51.54	74.00	22.46	Pass	Н	PK
7	7386.0434	36.49	5.85	-42.12	50.69	50.91	54.00	3.09	Pass	Н	AV
8	1446.8447	28.35	2.95	-42.88	51.56	39.98	74.00	34.02	Pass	V	PK
9	2123.9124	31.87	3.61	-43.17	57.72	50.03	74.00	23.97	Pass	V	PK
10	4248.0832	34.15	4.51	-42.90	52.16	47.92	74.00	26.08	Pass	V	PK
11	4924.0000	34.50	4.85	-42.80	52.75	49.30	74.00	24.70	Pass	V	PK
12	7386.2924	36.49	5.85	-42.13	54.05	54.26	74.00	19.74	Pass	V	PK
13	9848.0000	37.74	6.83	-42.10	46.76	49.23	74.00	24.77	Pass	V	PK
14	7386.0694	36.49	5.85	-42.12	51.12	51.34	54.00	2.66	Pass	V	AV

Mode	e:	_	802.11	g(6Mbps)) Transmittir	ng		Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.4331	28.23	2.79	-42.75	54.19	42.46	74.00	31.54	Pass	Н	PK
2	2657.3657	32.65	4.09	-43.09	55.43	49.08	74.00	24.92	Pass	Н	PK
3	3362.0241	33.34	4.53	-43.10	49.69	44.46	74.00	29.54	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	47.58	43.89	74.00	30.11	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	45.51	45.48	74.00	28.52	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	45.90	48.18	74.00	25.82	Pass	Н	PK
7	1363.4363	28.26	2.84	-42.71	51.22	39.61	74.00	34.39	Pass	V	PK
8	2131.7132	31.88	3.62	-43.16	59.05	51.39	74.00	22.61	Pass	V	PK
9	4249.0833	34.15	4.51	-42.90	51.63	47.39	74.00	26.61	Pass	V	PK
10	4824.0000	34.50	4.61	-42.80	47.45	43.76	74.00	30.24	Pass	V	PK
11	7236.0000	36.34	5.79	-42.16	46.23	46.20	74.00	27.80	Pass	V	PK
12	9648.0000	37.66	6.72	-42.10	45.60	47.88	74.00	26.12	Pass	V	PK
1		6	20		1.5		10	A. 21		12	2

Mode	9:		802.11	g(6Mbps)) Transmittir	ng		Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1298.2298	28.20	2.75	-42.79	52.53	40.69	74.00	33.31	Pass	Н	PK
2	2128.3128	31.88	3.62	-43.18	56.52	48.84	74.00	25.16	Pass	Н	PK
3	3810.0540	33.65	4.37	-43.04	49.66	44.64	74.00	29.36	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	47.61	44.09	74.00	29.91	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	46.48	46.60	74.00	27.40	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.41	48.78	74.00	25.22	Pass	Н	PK
7	1324.0324	28.22	2.78	-42.75	51.17	39.42	74.00	34.58	Pass	V	PK
8	2130.3130	31.88	3.62	-43.17	54.19	46.52	74.00	27.48	Pass	V	PK
9	4254.0836	34.16	4.50	-42.90	52.74	48.50	74.00	25.50	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	47.49	43.97	74.00	30.03	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	47.02	47.14	74.00	26.86	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	46.50	48.87	74.00	25.13	Pass	V	PK
1		- 6 -			1.4		1	100		1.4	

Maril			000 44		T		Channel		0400		
Mode	ə:		802.11	g(biMbps)) Transmittir	ng		Channel:		2462	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.8063	27.96	2.52	-43.03	54.95	42.40	74.00	31.60	Pass	Н	PK
2	1440.0440	28.34	2.94	-42.85	52.21	40.64	74.00	33.36	Pass	Н	PK
3	1991.8992	31.65	3.46	-43.18	53.31	45.24	74.00	28.76	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	47.17	43.72	74.00	30.28	Pass	Н	PK
5	7390.2927	36.49	5.85	-42.12	49.65	49.87	74.00	24.13	Pass	Н	PK
6	10400.493	38.36	7.20	-42.02	48.92	52.46	74.00	21.54	Pass	Н	PK
7	1421.0421	28.32	2.92	-42.77	51.40	39.87	74.00	34.13	Pass	V	PK
8	2128.5129	31.88	3.62	-43.17	58.96	51.29	74.00	22.71	Pass	V	PK
9	4253.0835	34.15	4.50	-42.89	53.31	49.07	74.00	24.93	Pass	V	PK
10	4924.0000	34.50	4.85	-42.80	47.76	44.31	74.00	29.69	Pass	V	PK
11	7468.2979	36.57	5.89	-42.11	49.39	49.74	74.00	24.26	Pass	V	PK
12	9825.4550	37.73	6.69	-42.10	48.36	50.68	74.00	23.32	Pass	V	PK

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 110 of 122

Mode	9:	_	802.11	n(HT20)	(6.5Mbps) T	ransmitting		Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.6063	27.96	2.52	-43.03	54.73	42.18	74.00	31.82	Pass	Н	PK
2	1593.8594	29.02	3.07	-42.92	55.43	44.60	74.00	29.40	Pass	Н	PK
3	4167.0778	34.03	4.50	-42.93	49.71	45.31	74.00	28.69	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	47.80	44.11	74.00	29.89	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	46.07	46.04	74.00	27.96	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.77	49.05	74.00	24.95	Pass	Н	PK
7	1261.4261	28.16	2.70	-42.83	51.30	39.33	74.00	34.67	Pass	V	PK
8	2130.7131	31.88	3.62	-43.17	52.17	44.50	74.00	29.50	Pass	V	PK
9	3987.0658	33.79	4.33	-43.00	51.27	46.39	74.00	27.61	Pass	V	PK
10	4824.0000	34.50	4.61	-42.80	47.59	43.90	74.00	30.10	Pass	V	PK
11	7236.0000	36.34	5.79	-42.16	47.30	47.27	74.00	26.73	Pass	V	PK
12	9648.0000	37.66	6.72	-42.10	45.74	48.02	74.00	25.98	Pass	V	PK
1.453			10 N		1.6	100	1	100	1	1.16	

Mode	ə:		802.11	n(HT20)	(6.5Mbps) T	ransmitting		Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1063.8064	27.96	2.52	-43.03	55.11	42.56	74.00	31.44	Pass	Н	PK
2	1329.0329	28.23	2.79	-42.75	52.14	40.41	74.00	33.59	Pass	Н	PK
3	2660.3660	32.66	4.10	-43.11	57.86	51.51	74.00	22.49	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	46.91	43.39	74.00	30.61	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	45.97	46.09	74.00	27.91	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	47.19	49.56	74.00	24.44	Pass	Н	PK
7	1338.4338	28.24	2.80	-42.74	51.26	39.56	74.00	34.44	Pass	V	PK
8	2130.3130	31.88	3.62	-43.17	58.79	51.12	74.00	22.88	Pass	V	PK
9	4249.0833	34.15	4.51	-42.90	52.90	48.66	74.00	25.34	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	47.09	43.57	74.00	30.43	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	46.36	46.48	74.00	27.52	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	46.66	49.03	74.00	24.97	Pass	V	PK

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 111 of 122

Mode:		802.11 n(HT20) (6.5Mbps) Transmitting					Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.6063	27.96	2.52	-43.03	52.43	39.88	74.00	34.12	Pass	Н	PK
2	1595.2595	29.03	3.07	-42.91	52.81	42.00	74.00	32.00	Pass	Н	PK
3	1999.5000	31.70	3.47	-43.20	53.42	45.39	74.00	28.61	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	47.20	43.75	74.00	30.25	Pass	Н	PK
5	7386.0000	36.49	5.85	-42.13	47.19	47.40	74.00	26.60	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	45.79	48.26	74.00	25.74	Pass	Н	PK
7	1279.2279	28.18	2.72	-42.81	52.36	40.45	74.00	33.55	Pass	V	PK
8	2130.9131	31.88	3.62	-43.17	56.23	48.56	74.00	25.44	Pass	V	PK
9	4257.0838	34.16	4.49	-42.89	53.60	49.36	74.00	24.64	Pass	V	PK
10	4924.0000	34.50	4.85	-42.80	46.90	43.45	74.00	30.55	Pass	V	PK
11	7386.0000	36.49	5.85	-42.13	46.09	46.30	74.00	27.70	Pass	V	PK
12	9848.0000	37.74	6.83	-42.10	46.45	48.92	74.00	25.08	Pass	V	PK
5	·]	- 6	<u> </u>		6	2	6	$\langle \gamma \rangle$		65	21
Mode	e:			<u> </u>	(13.5Mbps)	Transmitting	Channel:	el: 2422			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1			[]	[]							
	1328.6329	28.23	2.79	-42.76	54.51	42.77	74.00	31.23	Pass	Н	PK
2	1328.6329 1995.2995	28.23 31.67			54.51 53.91	42.77 45.86	74.00 74.00	31.23 28.14	Pass Pass	H H	PK PK
2 3			2.79	-42.76							
	1995.2995	31.67	2.79 3.47	-42.76 -43.19	53.91	45.86	74.00	28.14	Pass	Н	PK
3	1995.2995 3194.0129	31.67 33.28	2.79 3.47 4.64	-42.76 -43.19 -43.10	53.91 50.81	45.86 45.63	74.00 74.00	28.14 28.37	Pass Pass	H H	PK PK
3	1995.2995 3194.0129 4844.0000	31.67 33.28 34.50	2.79 3.47 4.64 4.66	-42.76 -43.19 -43.10 -42.80	53.91 50.81 47.40	45.86 45.63 43.76	74.00 74.00 74.00	28.14 28.37 30.24	Pass Pass Pass	H H H	PK PK PK
3 4 5	1995.29953194.01294844.00007266.0000	31.67 33.28 34.50 36.37	2.79 3.47 4.64 4.66 5.80	-42.76 -43.19 -43.10 -42.80 -42.15	53.91 50.81 47.40 46.24	45.86 45.63 43.76 46.26	74.00 74.00 74.00 74.00	28.14 28.37 30.24 27.74	Pass Pass Pass Pass	H H H H	PK PK PK PK
3 4 5 6	1995.2995 3194.0129 4844.0000 7266.0000 9688.0000	31.67 33.28 34.50 36.37 37.68	2.79 3.47 4.64 4.66 5.80 6.62	-42.76 -43.19 -43.10 -42.80 -42.15 -42.10	53.91 50.81 47.40 46.24 46.25	45.86 45.63 43.76 46.26 48.45	74.00 74.00 74.00 74.00 74.00	28.14 28.37 30.24 27.74 25.55	Pass Pass Pass Pass Pass	H H H H	PK PK PK PK PK
3 4 5 6 7	1995.29953194.01294844.00007266.00009688.00001630.6631	31.67 33.28 34.50 36.37 37.68 29.26	2.79 3.47 4.64 4.66 5.80 6.62 3.11	-42.76 -43.19 -43.10 -42.80 -42.15 -42.10 -42.82	53.91 50.81 47.40 46.24 46.25 51.70	45.86 45.63 43.76 46.26 48.45 41.25	74.00 74.00 74.00 74.00 74.00 74.00	28.14 28.37 30.24 27.74 25.55 32.75	Pass Pass Pass Pass Pass Pass	H H H H V	PK PK PK PK PK
3 4 5 6 7 8	1995.2995 3194.0129 4844.0000 7266.0000 9688.0000 1630.6631 2127.9128	31.67 33.28 34.50 36.37 37.68 29.26 31.88	2.79 3.47 4.64 4.66 5.80 6.62 3.11 3.62	-42.76 -43.19 -43.10 -42.80 -42.15 -42.10 -42.82 -43.18	53.91 50.81 47.40 46.24 46.25 51.70 57.67	45.86 45.63 43.76 46.26 48.45 41.25 49.99	74.00 74.00 74.00 74.00 74.00 74.00 74.00	28.14 28.37 30.24 27.74 25.55 32.75 24.01	Pass Pass Pass Pass Pass Pass Pass	H H H H V V	PK PK PK PK PK PK
3 4 5 6 7 8 9	1995.29953194.01294844.00007266.00009688.00001630.66312127.91284252.0835	31.67 33.28 34.50 36.37 37.68 29.26 31.88 34.15	2.79 3.47 4.64 4.66 5.80 6.62 3.11 3.62 4.51	-42.76 -43.19 -43.10 -42.80 -42.15 -42.10 -42.82 -43.18 -42.90	53.91 50.81 47.40 46.24 46.25 51.70 57.67 52.19	45.86 45.63 43.76 46.26 48.45 41.25 49.99 47.95	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	28.14 28.37 30.24 27.74 25.55 32.75 24.01 26.05	Pass Pass Pass Pass Pass Pass Pass Pass	H H H H V V V V	PK PK PK PK PK PK PK

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Mode	:		802.11	n(HT40)	(13.5Mbps)	Transmitting	9	Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1065.0065	27.97	2.53	-43.04	55.20	42.66	74.00	31.34	Pass	Н	PK
2	1440.2440	28.34	2.94	-42.85	52.13	40.56	74.00	33.44	Pass	Н	PK
3	2130.9131	31.88	3.62	-43.17	58.55	50.88	74.00	23.12	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	47.01	43.49	74.00	30.51	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	46.08	46.20	74.00	27.80	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.43	48.80	74.00	25.20	Pass	Н	PK
7	1299.2299	28.20	2.75	-42.79	52.33	40.49	74.00	33.51	Pass	V	PK
8	2131.7132	31.88	3.62	-43.16	56.77	49.11	74.00	24.89	Pass	V	PK
9	3992.0661	33.79	4.33	-43.00	52.29	47.41	74.00	26.59	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	47.49	43.97	74.00	30.03	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	46.10	46.22	74.00	27.78	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	46.04	48.41	74.00	25.59	Pass	V	PK

Mode	Mode:			n(HT40)	(13.5Mbps)	Transmitting	3	Channel:		2452	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.6330	28.23	2.79	-42.75	53.18	41.45	74.00	32.55	Pass	Н	PK
2	1997.8998	31.69	3.47	-43.20	52.45	44.41	74.00	29.59	Pass	Н	PK
3	3990.0660	33.79	4.33	-43.00	50.45	45.57	74.00	28.43	Pass	Н	PK
4	4904.0000	34.50	4.88	-42.80	47.22	43.80	74.00	30.20	Pass	Н	PK
5	7356.0000	36.46	5.85	-42.13	46.37	46.55	74.00	27.45	Pass	Н	PK
6	9808.0000	37.72	6.59	-42.10	46.50	48.71	74.00	25.29	Pass	Н	PK
7	1322.4322	28.22	2.78	-42.76	51.19	39.43	74.00	34.57	Pass	V	PK
8	2131.5132	31.88	3.62	-43.17	56.11	48.44	74.00	25.56	Pass	V	PK
9	3989.0659	33.79	4.33	-43.00	52.54	47.66	74.00	26.34	Pass	V	PK
10	4904.0000	34.50	4.88	-42.80	46.12	42.70	74.00	31.30	Pass	V	PK
11	7356.0000	36.46	5.85	-42.13	46.15	46.33	74.00	27.67	Pass	V	PK
12	9808.0000	37.72	6.59	-42.10	46.64	48.85	74.00	25.15	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

