

# **TEST REPORT**

| Report No.:              | BCTC2306297855E<br>Shenzhen Creality 3D Technology Co., Ltd. |  |  |
|--------------------------|--------------------------------------------------------------|--|--|
| Applicant:               |                                                              |  |  |
| Product Name:            | 3D Printer                                                   |  |  |
| Model/Type<br>Reference: | CR-M4                                                        |  |  |
| Tested Date:             | 2023-06-26 to 2023-07-24                                     |  |  |
| Issued Date:             | 2023-08-04                                                   |  |  |
|                          |                                                              |  |  |
| She                      | nzhen BCTC Testing Co., Ltd.                                 |  |  |
|                          |                                                              |  |  |
| No.: BCTC/RF-EMC-005     | Page: 1 of 24                                                |  |  |



# FCC ID: 2AXH6-CR-M4

| Product Name:         | 3D Printer                                                                                                                                           |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Trademark:            | CREALITY                                                                                                                                             |  |  |
| Model/Type Ref.:      | CR-M4                                                                                                                                                |  |  |
| Prepared For:         | Shenzhen Creality 3D Technology Co., Ltd.                                                                                                            |  |  |
| Address:              | 18F, JinXiuHongDu Building, Meilong Blvd., Longhua Dist., Shenzhen,China<br>518131                                                                   |  |  |
| Manufacturer:         | Shenzhen Creality 3D Technology Co., Ltd.                                                                                                            |  |  |
| Address:              | 18F, JinXiuHongDu Building, Meilong Blvd., Longhua Dist., Shenzhen,China<br>518131                                                                   |  |  |
| Prepared By:          | Shenzhen BCTC Testing Co., Ltd.                                                                                                                      |  |  |
| Address:              | 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road,<br>Zhancheng , Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China |  |  |
| Sample Received Date: | 2023-06-26                                                                                                                                           |  |  |
| Sample tested Date:   | 2023-06-26 to 2023-07-24                                                                                                                             |  |  |
| Report No.:           | BCTC2306297855E                                                                                                                                      |  |  |
| Test Standards:       | FCC Part15.247<br>ANSI C63.10-2013                                                                                                                   |  |  |
| Test Results:         | PASS                                                                                                                                                 |  |  |

Tested by:

# Brave Zeng

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-005

Page: 2 of 24



# Table of Content

| Tes  | t Report Declaration                  | Page |
|------|---------------------------------------|------|
| 1.   | Version                               | 4    |
| 2.   | Test Summary                          |      |
| 4.Pr | oduct Information and Test Setup      | 7    |
| 4.1  | Product Information                   |      |
| 4.2  | Test Setup Configuration              | 9    |
| 4.3  | Support Equipment                     | 9    |
| 4.4  | Channel List                          | 10   |
| 4.5  | Test Mode                             |      |
| 5.Te | est Facility And Test Instrument Used | 11   |
| 5.1  | Test Facility                         |      |
| 5.2  | Test Instrument Used                  | 11   |
| 6.Cc | onducted Emissions                    | 13   |
| 6.1  | Block Diagram Of Test Setup           | 13   |
| 6.2  | Limit                                 | 13   |
| 6.3  | Test procedure                        | 13   |
| 6.4  | EUT Operating Conditions              | 13   |
|      | Test Result                           |      |
| 7.Ra | adiated Emissions                     | 16   |
| 7.1  | Block Diagram Of Test Setup           | 16   |
| 7.2  | Limit                                 |      |
| 7.3  | Test procedure                        |      |
| 7.4  | EUT operating Conditions              |      |
| 7.5  | Test Result                           | 20   |
| 8.EL | JT Test Setup Photographs             | 23   |

Page: 3 of 24



# 1. Version

| Report No.      | Issue Date | Description | Approved |
|-----------------|------------|-------------|----------|
| BCTC2306297855E | 2023-08-04 | Original    | Valid    |
|                 |            |             |          |





# 2. Test Summary

The Product has been tested according to the following specifications:

| No. | Test Parameter     | Clause No. | Results |
|-----|--------------------|------------|---------|
| 1   | Conducted Emission | 15.207     | PASS    |
| 2   | Radiated Emissions | 15.209     | PASS    |

Remark: Based on the following changes in the product, the RF chip remains unchanged. So the report is only updated Conducted emissions and Radiated Emissions for the original report (BCTC2210685862-1E/-2E) 。

#### content of change

Change the power supply, the original two power supplies with small power, replaced a power supply with large power



Page: 5 of 24



# 3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| No. | Item                                | Uncertainty     |
|-----|-------------------------------------|-----------------|
| 1   | humidity uncertainty                | U=5.3%          |
| 2   | Temperature uncertainty             | <b>U=0.59</b> ℃ |
| 3   | Conducted Emission (150kHz-30MHz)   | U=3.2dB         |
| 4   | Radiated disturbance(30MHz-1000MHz) | U=4.8dB         |
| 5   | Radiated disturbance(1GHz-6GHz)     | U=4.9dB         |
| 6   | Radiated disturbance(1GHz-18GHz)    | U=5.0dB         |

Page: 6 of 24



# 4. Product Information and Test Setup

# 4.1 Product Information

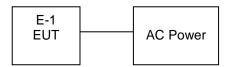
| Model/Type reference:           | CR-M4                   |
|---------------------------------|-------------------------|
| Model differences:              | N/A                     |
| Bluetooth Version::             | Bluetooth V5.0          |
| Hardware Version:               | N/A                     |
| Software Version:               | N/A                     |
| Operation Frequency:            | Bluetooth: 2402-2480MHz |
| Type of Modulation:             | Bluetooth: GFSK         |
| Number Of Channel:              | 40 channel              |
| Maximum Conducted Output Power: | -2.52 dBm               |
| Antenna installation:           | Internal antenna        |
| Antenna Gain:                   | 2.21 dBi                |
| Ratings:                        | AC 100V-240V~,50/60Hz   |
|                                 |                         |

| Model/Type Ref.                    | CR-M4                                                                                      |      |
|------------------------------------|--------------------------------------------------------------------------------------------|------|
| Model differences:                 | N/A                                                                                        | 1117 |
| Hardware Version:                  | N/A                                                                                        | HH A |
| Software Version:                  | N/A                                                                                        |      |
| IEEE 802.11 WLAN<br>Mode Supported | 802.11b<br>802.11g<br>802.11n(20MHz channel bandwidth)<br>802.11n(40MHz channel bandwidth) |      |
| Operation Frequency:               | 802.11b/g/n20MHz:2412~2462 MHz<br>802.11n40MHz:2422~2452 MHz                               |      |
| Type of Modulation:                | DSSS with DBPSK/DQPSK/CCK for 802.11b;<br>OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;   |      |
| Number Of Channel:                 | 11 channels for 802.11b/g/n(HT20);<br>7 Channels for 802.11n(HT40);                        |      |
|                                    |                                                                                            |      |



| Transmit Power Max    | 16.52 dBm             |
|-----------------------|-----------------------|
| Antenna installation: | Internal antenna      |
| Antenna Gain:         | 2.27 dBi              |
| Power supply:         | AC 100V-240V~,50/60Hz |




Page: 8 of 24



# 4.2 Test Setup Configuration

See test photographs attached in eut test setup photographs for the actual connections between product and support equipment.

Conducted Emission:



Radiated Spurious Emission:

| E-1 | AC Power |
|-----|----------|
| EUT |          |

# 4.3 Support Equipment

| No. | Device Type | Brand | Model | Series No. | Note |
|-----|-------------|-------|-------|------------|------|
| E-1 | 3D Printer  | N/A   | CR-M4 | N/A        | EUT  |

| ltem | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
| N/A  | N/A           | N/A          | N/A    | N/A  |

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

No.: BCTC/RF-EMC-005

Page: 9 of 24



### 4.4 Channel List

|         | Channel List       |         |                    |         |                    |  |  |  |
|---------|--------------------|---------|--------------------|---------|--------------------|--|--|--|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |  |  |
| 01      | 2402               | 11      | 2422               | 21      | 2442               |  |  |  |
| 02      | 2404               | 12      | 2424               | 22      | 2444               |  |  |  |
| 03      | 2406               | 13      | 2426               | 23      | 2446               |  |  |  |
| ~       | ~                  | ~       | ~                  | ~       | ~                  |  |  |  |
| 09      | 2418               | 19      | 2438               | 39      | 2478               |  |  |  |
| 10      | 2420               | 20      | 2440               | 40      | 2480               |  |  |  |

#### 4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| For All Mode | Description                   | Modulation Type |
|--------------|-------------------------------|-----------------|
| Mode 1       | Link mode (Radiated emission) |                 |

#### Note:

(1) The measurements are performed at the highest, middle, lowest available channels.



# 5.Test Facility And Test Instrument Used

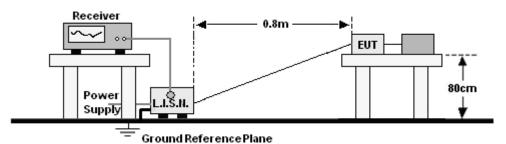
### 5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng , Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583 ISED CAB identifier: CN0017

| Conducted Emissions Test |                        |                 |                |              |              |  |  |  |
|--------------------------|------------------------|-----------------|----------------|--------------|--------------|--|--|--|
| Equipment                | Manufacturer           | Model#          | Serial#        | Last Cal.    | Next Cal.    |  |  |  |
| Receiver                 | rer R&S ESR3 102075 Ma |                 | May 15, 2023   | May 14, 2024 |              |  |  |  |
| LISN                     | R&S                    | ENV216          | 101375         | May 15, 2023 | May 14, 2024 |  |  |  |
| Software                 | Software Frad          |                 | EMC-CON<br>3A1 | ١            | ١            |  |  |  |
| Attenuator               | ١                      | 10dB<br>DC-6GHz | 1650           | May 15, 2023 | May 14, 2024 |  |  |  |

#### 5.2 Test Instrument Used

|                                     | RF Conducted Test |                          |         |              |                           |  |  |  |  |
|-------------------------------------|-------------------|--------------------------|---------|--------------|---------------------------|--|--|--|--|
| Equipment                           | Manufacturer      | Model#                   | Serial# | Last Cal.    | Next Cal.                 |  |  |  |  |
| Power Metter                        | Keysight          | E4419                    |         | May 15, 2023 | May 14, 2024              |  |  |  |  |
| Power Sensor<br>(AV)                | Keysight          | E9300A                   |         | May 15, 2023 | May 14, 2024              |  |  |  |  |
| Signal<br>Analyzer20kH<br>z-26.5GHz | Keysight          | Keysight N9020A MY491000 |         | May 15, 2023 | May 14, 2024              |  |  |  |  |
| Spectrum<br>Analyzer9kHz-<br>40GHz  | R&S               | FSP40                    | 100363  | May 15, 2023 | May 14, 2024              |  |  |  |  |
| Radio<br>frequency<br>control box   | MAIWEI            | MW100-RFC<br>B           |         |              |                           |  |  |  |  |
| Software                            | MAIWEI            | MTS 8310                 | ·····   |              | $\mathbf{V}_{\mathbf{r}}$ |  |  |  |  |




| Radiated Emissions Test (966 Chamber)         |              |                      |                   |               |               |  |  |
|-----------------------------------------------|--------------|----------------------|-------------------|---------------|---------------|--|--|
| Equipment                                     | Manufacturer | Model#               | Serial#           | Last Cal.     | Next Cal.     |  |  |
| 966 chamber                                   | ChengYu      | 966 Room             | 966               | Jun. 06. 2020 | Jun. 05, 2023 |  |  |
| Receiver R&S                                  |              | ESR3                 | 102075            | May 24, 2022  | May 23, 2023  |  |  |
| Receiver                                      | R&S          | ESRP                 | 101154            | May 24, 2022  | May 23, 2023  |  |  |
| Amplifier                                     | SKET         | LAPA_01G18<br>G-45dB | ١                 | May 24, 2022  | May 23, 2023  |  |  |
| Amplifier                                     | Schwarzbeck  | BBV9744              | 9744-0037         | May 24, 2022  | May 23, 2023  |  |  |
| TRILOG<br>Broadband<br>Antenna                | Schwarzbeck  | VULB9163             | 942               | May 26, 2022  | May 25, 2023  |  |  |
| Horn Antenna                                  | Schwarzbeck  | BBHA9120D            | 1541              | May 24, 2022  | May 23, 2023  |  |  |
| Horn Antenna<br>(18GHz-40GH Schwarzbeck<br>z) |              | BBHA9170             | 00822             | Jun. 15, 2021 | May 23, 2023  |  |  |
| Amplifier<br>(18GHz-40GH MITEQ<br>z)          |              | TTA1840-35-<br>HG    | 2034381           | May 26, 2022  | May 25, 2023  |  |  |
| Loop Antenna<br>(9KHz-30MHz<br>)              | Schwarzbeck  | FMZB1519B            | 00014             | May 26, 2022  | May 25, 2023  |  |  |
| RF cables1<br>(9kHz-30MHz)                    | Huber+Suhnar | 9kHz-30MHz           | B1702988-000<br>8 | May 26, 2022  | May 25, 2023  |  |  |
| RF cables2<br>(30MHz-1GHz<br>)                | Huber+Suhnar | 30MHz-1GHz           | 1486150           | May 26, 2022  | May 25, 2023  |  |  |
| RF cables3<br>(1GHz-40GHz<br>)                | Huber+Suhnar | 1GHz-40GHz           | 1607106           | May 28, 2021  | May 25, 2023  |  |  |
| Power Metter                                  | Keysight     | E4419                |                   | May 26, 2022  | May 25, 2023  |  |  |
| Power Sensor<br>(AV)                          | Keysight     | E9300A               |                   | May 26, 2022  | May 25, 2023  |  |  |
| Signal<br>Analyzer<br>20kHz-26.5G<br>Hz       |              | N9020A               | MY49100060        | May 26, 2022  | May 25, 2023  |  |  |
| Spectrum<br>Analyzer R&S<br>9kHz-40GHz        |              | FSP 40               |                   | May 26, 2022  | May 25, 2023  |  |  |
| Software                                      | Frad         | EZ-EMC               | FA-03A2 RE        | ١             | Y             |  |  |



# **6.Conducted Emissions**

# 6.1 Block Diagram Of Test Setup



#### 6.2 Limit

| Limit (dBuV) |                                               |  |
|--------------|-----------------------------------------------|--|
| Quas-peak    | Average                                       |  |
| 66 - 56 *    | 56 - 46 *                                     |  |
| 56.00        | 46.00                                         |  |
| 60.00        | 50.00                                         |  |
|              | Quas-peak           66 - 56 *           56.00 |  |

Notes:

1. \*Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

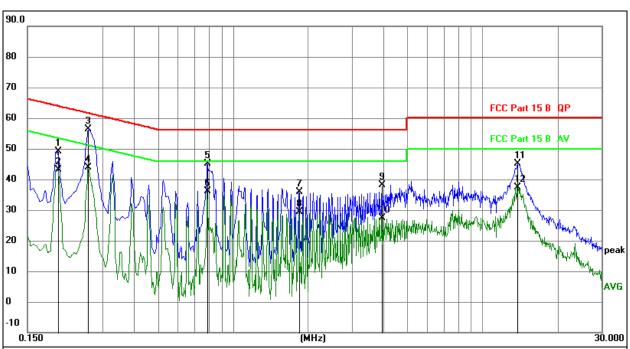
#### 6.3 Test procedure

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


#### 6.4 EUT Operating Conditions

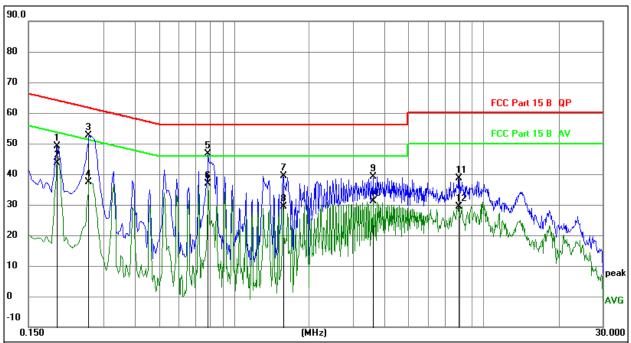
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



# 6.5 Test Result

| Temperature: | <b>24</b> ℃ | Relative Humidity: | 51%          |
|--------------|-------------|--------------------|--------------|
| Pressure:    | 101KPa      | Phase :            | L            |
| Test Mode:   | Mode 1      | Test Voltage :     | AC 120V/60Hz |




#### Remark:

- All readings are Quasi-Peak and Average values.
   Factor = Insertion Loss + Cable Loss.
   Measurement = Reading Level + Correct Factor
   Over = Measurement Limit

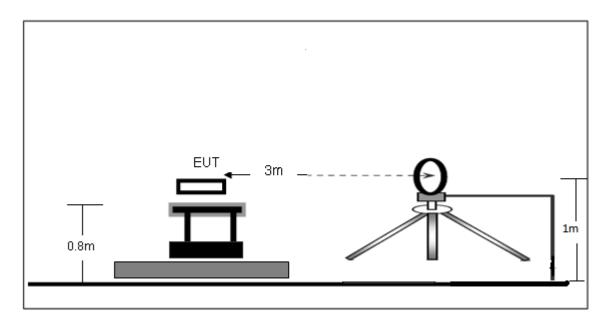
|     | meadure |         |                  |                   |                  |       |        | 1        |
|-----|---------|---------|------------------|-------------------|------------------|-------|--------|----------|
| No. | Mk.     | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|     |         | MHz     |                  | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |         | 0.1995  | 39.40            | 9.61              | 49.01            | 63.63 | -14.62 | QP       |
| 2   |         | 0.1995  | 33.45            | 9.61              | 43.06            | 53.63 | -10.57 | AVG      |
| 3   | *       | 0.2625  | 46.81            | 9.61              | 56.42            | 61.35 | -4.93  | QP       |
| 4   |         | 0.2625  | 34.19            | 9.61              | 43.80            | 51.35 | -7.55  | AVG      |
| 5   |         | 0.7890  | 35.56            | 9.65              | 45.21            | 56.00 | -10.79 | QP       |
| 6   |         | 0.7890  | 26.42            | 9.65              | 36.07            | 46.00 | -9.93  | AVG      |
| 7   |         | 1.8420  | 26.06            | 9.73              | 35.79            | 56.00 | -20.21 | QP       |
| 8   |         | 1.8420  | 19.56            | 9.73              | 29.29            | 46.00 | -16.71 | AVG      |
| 9   |         | 3.9480  | 28.17            | 9.84              | 38.01            | 56.00 | -17.99 | QP       |
| 10  |         | 3.9480  | 17.61            | 9.84              | 27.45            | 46.00 | -18.55 | AVG      |
| 11  |         | 13.8120 | 35.57            | 9.66              | 45.23            | 60.00 | -14.77 | QP       |
| 12  |         | 13.8120 | 27.72            | 9.66              | 37.38            | 50.00 | -12.62 | AVG      |
|     |         |         |                  |                   |                  |       |        |          |



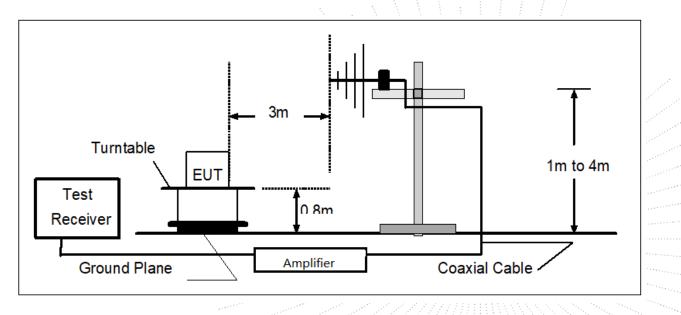
| Temperature: | <b>24</b> ℃ | Relative Humidity: | 51%          |
|--------------|-------------|--------------------|--------------|
| Pressure:    | 101KPa      | Phase :            | Ν            |
| Test Mode:   | Mode 1      | Test Voltage :     | AC 120V/60Hz |



Remark:

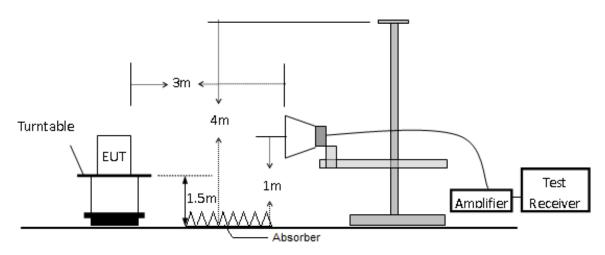

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor

|           |           |             | able Loss.     |         | 5 C      |       |        | 1        |
|-----------|-----------|-------------|----------------|---------|----------|-------|--------|----------|
|           |           | •           | evel + Correct | Factor  |          |       | 1      |          |
| 4. Over : | = Measure | ement - Lim | it             |         |          |       |        | i.       |
|           |           | _           | Reading        | Correct | Measure- |       | •      |          |
| No.       | Mk.       | Freq.       | Level          | Factor  | ment     | Limit | Over   |          |
|           |           | MHz         |                | dB      | dBuV     | dBuV  | dB     | Detector |
| 1         |           | 0.1945      | 39.59          | 9.60    | 49.19    | 63.84 | -14.65 | QP       |
| 2         |           | 0.1945      | 34.03          | 9.60    | 43.63    | 53.84 | -10.21 | AVG      |
| 3         | *         | 0.2615      | 43.06          | 9.61    | 52.67    | 61.38 | -8.71  | QP       |
| 4         |           | 0.2615      | 27.75          | 9.61    | 37.36    | 51.38 | -14.02 | AVG      |
| 5         |           | 0.7876      | 37.04          | 9.65    | 46.69    | 56.00 | -9.31  | QP       |
| 6         |           | 0.7876      | 27.29          | 9.65    | 36.94    | 46.00 | -9.06  | AVG      |
| 7         |           | 1.5684      | 29.62          | 9.73    | 39.35    | 56.00 | -16.65 | QP       |
| 8         |           | 1.5684      | 19.57          | 9.73    | 29.30    | 46.00 | -16.70 | AVG      |
| 9         |           | 3.6034      | 29.29          | 9.82    | 39.11    | 56.00 | -16.89 | QP       |
| 10        |           | 3.6034      | 21.25          | 9.82    | 31.07    | 46.00 | -14.93 | AVG      |
| 11        |           | 7.9353      | 28.93          | 9.72    | 38.65    | 60.00 | -21.35 | QP       |
| 12        |           | 7.9353      | 19.76          | 9.72    | 29.48    | 50.00 | -20.52 | AVG      |
|           |           |             |                |         |          |       |        |          |




# **7.Radiated Emissions**

- 7.1 Block Diagram Of Test Setup
  - (A) Radiated Emission Test-Up Frequency Below 30MHz










(C) Radiated Emission Test-Up Frequency Above 1GHz



# 7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequency     | Field Strength | Distance | Field Strength Limit at 3m Distance |                                      |  |  |  |
|---------------|----------------|----------|-------------------------------------|--------------------------------------|--|--|--|
| (MHz)         | uV/m           | (m)      | uV/m                                | dBuV/m                               |  |  |  |
| 0.009 ~ 0.490 | 2400/F(kHz)    | 300      | 10000 * 2400/F(kHz)                 | 20log <sup>(2400/F(kHz))</sup> + 80  |  |  |  |
| 0.490 ~ 1.705 | 24000/F(kHz)   | 30       | 100 * 24000/F(kHz)                  | 20log <sup>(24000/F(kHz))</sup> + 40 |  |  |  |
| 1.705 ~ 30    | 30             | 30       | 100 * 30                            | 20log <sup>(30)</sup> + 40           |  |  |  |
| 30 ~ 88       | 100            | 3        | 100                                 | 20log <sup>(100)</sup>               |  |  |  |
| 88 ~ 216      | 150            | 3        | 150                                 | 20log <sup>(150)</sup>               |  |  |  |
| 216 ~ 960     | 200            | 3        | 200                                 | 20log <sup>(200)</sup>               |  |  |  |
| Above 960     | 500            | 3        | 500                                 | 20log <sup>(500)</sup>               |  |  |  |

Limits Of Radiated Emission Measurement (Above 1000MHz)

|                 | Limit (dBuV/m) | (at 3M) |
|-----------------|----------------|---------|
| Frequency (MHz) | Peak           | Average |
| Above 1000      | 74             | 54      |
|                 |                | 11      |

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:



(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

# 7.3 Test procedure

| Receiver Parameter | Setting           |
|--------------------|-------------------|
| Attenuation        | Auto              |
| 9kHz~150kHz        | RBW 200Hz for QP  |
| 150kHz~30MHz       | RBW 9kHz for QP   |
| 30MHz~1000MHz      | RBW 120kHz for QP |

| Spectrum Parameter | Setting                          |
|--------------------|----------------------------------|
| 1-25GHz            | RBW 1 MHz /VBW 1 MHz for Peak,   |
|                    | RBW 1 MHz / VBW 10Hz for Average |

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.



b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

# 7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005

Page: 19 of 24



# 7.5 Test Result

#### Below 30MHz

| Temperature: | <b>24</b> ℃ | Relative Humidity: | 51%          |  |
|--------------|-------------|--------------------|--------------|--|
| Pressure:    | 101KPa      |                    | AC 120V/60Hz |  |
| Test Mode:   | Mode 1      | Test Voltage :     |              |  |

| Freq. | Reading  | Limit    | Margin | State |
|-------|----------|----------|--------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|       |          |          |        | PASS  |
|       |          |          |        | PASS  |

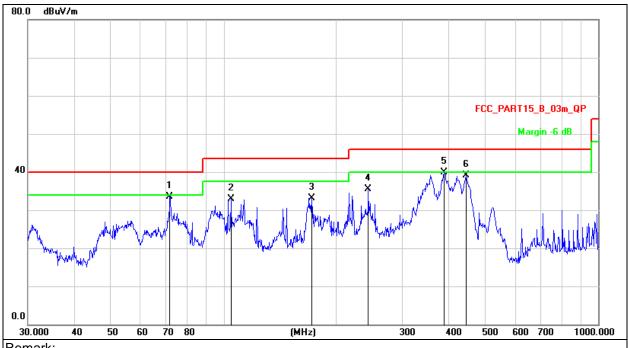
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the

permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.


No.: BCTC/RF-EMC-005

Page: 20 of 24



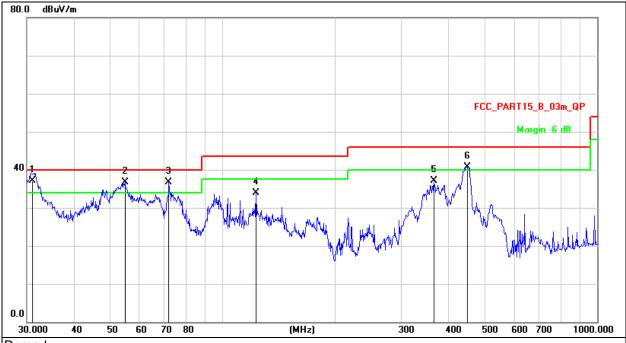
Between 30MHz - 1GHz

| Temperature: | <b>24</b> ℃ | Relative Humidity: | 51%          |
|--------------|-------------|--------------------|--------------|
| Pressure:    | 101KPa      | Phase :            | Horizontal   |
| Test Mode:   | Mode 1      | Test Voltage :     | AC 120V/60Hz |



Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.


2. Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

| No. | Mk.  | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|------|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |      | MHz     | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | -    | 71.8320 | 53.69            | -20.24            | 33.45            | 40.00 | -6.55  | QP       |
| 2   | 1(   | 04.5361 | 51.01            | -18.06            | 32.95            | 43.50 | -10.55 | QP       |
| 3   | 1    | 71.9946 | 52.54            | -19.43            | 33.11            | 43.50 | -10.39 | QP       |
| 4   | 24   | 13.3772 | 51.51            | -16.03            | 35.48            | 46.00 | -10.52 | QP       |
| 5   | * 38 | 37.9920 | 52.19            | -12.35            | 39.84            | 46.00 | -6.16  | QP       |
| 6   | 44   | 44.8514 | 50.75            | -11.56            | 39.19            | 46.00 | -6.81  | QP       |



| Temperature: | <b>24</b> ℃ | Relative Humidity: | 51%          |
|--------------|-------------|--------------------|--------------|
| Pressure:    | 101KPa      | Phase :            | Vertical     |
| Test Mode:   | Mode 1      | Test Voltage :     | AC 120V/60Hz |



Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over  |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|-------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB    | Detector |
| 1   | *   | 31.0250  | 55.24            | -18.21            | 37.03            | 40.00 | -2.97 | QP       |
| 2   | İ   | 54.8348  | 53.09            | -16.32            | 36.77            | 40.00 | -3.23 | QP       |
| 3   | İ   | 71.8320  | 56.92            | -20.24            | 36.68            | 40.00 | -3.32 | QP       |
| 4   |     | 122.8340 | 53.15            | -19.26            | 33.89            | 43.50 | -9.61 | QP       |
| 5   |     | 366.8231 | 49.61            | -12.59            | 37.02            | 46.00 | -8.98 | QP       |
| 6   | İ   | 451.1350 | 52.25            | -11.46            | 40.79            | 46.00 | -5.21 | QP       |
|     |     |          |                  |                   |                  |       |       |          |



# 8.EUT Test Setup Photographs

Conducted Emission Measurement Photos



Radiated Measurement Photos





# STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

**\*\*\*\*\*\* END \*\*\*\*** 

No.: BCTC/RF-EMC-005

Page: 24 of 24