

*FCC PART 18 TEST REPORT
TEST METHOD: ANSI C63.4: 2014 AND FCC OET/MP-5
LIMITS: FCC PART 18
For*

**DIACOM-LITE-FREQ
MODEL: UTIUM**

Prepared for

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY
JEDOVA 189, NERATOVICE
277 11, CZECH REPUBLIC

Prepared by: _____

HOWARD HUANG

Approved by: _____

CARLA ATIZADO

COMPATIBLE ELECTRONICS, INC.
20621 PASCAL WAY
LAKE FOREST, CALIFORNIA 92630
(949) 587-0400

DATE: JULY 15, 2020

	REPORT BODY	APPENDICES					TOTAL
		A	B	C	D	E	
PAGES	17	2	2	2	18	11	52

This report shall not be reproduced, except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
1.1 DECISION RULE & RISK	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. Description of Test Configuration	9
4.1 Description of Test Configuration - EMI	9
4.1.1 Photograph of Test Configuration - EMI	9
4.1.2 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 EMI Test Equipment	12
5.3 Test Software	12
6. TEST SITE DESCRIPTION	13
6.1 Test Facility Description	13
6.2 EUT Mounting, Bonding and Grounding	13
6.3 Facility Environmental Characteristics	13
6.4 Measurement Uncertainty	13
7. TEST PROCEDURES	14
7.1 RF Emissions	14
7.1.1 Conducted Emissions Test	14
7.1.2 Radiated Emissions Test	15
7.1.3 RF Emissions Test Results	16
8. DEVIATIONS FROM THE TEST PROCEDURES	17
9. CONCLUSIONS	17

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Accreditations
B	Modifications to the EUT
C	Models Covered Under This Report
D	Diagrams, Charts and Photos <ul style="list-style-type: none">• Test Setup Diagrams• Antenna and Amplifier Gain Factors• Radiated and Conducted Emissions Photos
E	Data Sheets and FCC Compliance Information Statement

LIST OF TABLES

TABLE	TITLE
1	Conducted Emissions Test Results
2	Radiated Emissions Test Results

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Low Frequency Test Setup
3	Radiated Emissions 3-Meter Semi -Anechoic Test Chamber Test SetUp
4	High Frequency Test Setup

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. government.

Device Tested: Diacom-Lite-FREQ
Model: Utium
S/N: NONE

Product Description: The Utium is a device designed to scan and generate low-frequency electromagnetic frequencies up to 1 MHz. (Dimensions: 156 x 180 x 36 mm)

Modifications: The EUT was not modified during the testing in order to comply with the specifications.

Manufacturer: Khachatur Mkrtchyan - Diacom Technology
Jedova 189, Neratovice
277 11, Czech Republic

Test Date: July 9 and 10, 2020

Test Specifications Covered by Accreditation:

FCC CFR Title 47, Part 18 Subpart C

FCC OET/MP-5

Test Procedure: ANSI C63.4: 2014.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz.	Complies with the limits in FCC CFR Title 47, Part 18, Subpart C, Section 18.307 and FCC OET/MP-5
2	Radiated RF Emissions, 9 kHz – 26,000 MHz.	Complies with the limits in FCC CFR Title 47, Part 18, Subpart C, Section 18.305 and FCC OET/MP-5

1. PURPOSE

This document is a verification test report based on the Electromagnetic Compatibility (EMC) tests performed on the Diacom-Lite-FREQ Model: UTIUM. The EMC measurements were performed according to the measurement procedure described in ANSI C63.4: 2014 and FCC OET/MP-5 (1986) FCC Methods of Measurement of Radio Noise Emissions for ISM Equipment (cited in 47 CFR FCC Part 18 - Industrial, Scientific, and Medical Equipment). The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the FCC specification limits for part 18.305 (c) and 18.307 (c).

1.1 DECISION RULE & RISK

If a measured value exceeds a specification limit it implies non-compliance. If the value is below a specification limit it implies compliance. Measurement uncertainty of the laboratory is reported with all measurement results but generally not taken into consideration unless a standard, rule or law requires it to be considered.

Qualification test reports are only produced for products that are in compliance with the test requirements, therefore results are always in conformity. Otherwise, an engineering report or just the data is provided to the customer.

When performing a measurement and making a statement of conformity, in or out-of-specification to manufacturer's specifications or Pass/Fail against a requirement, there are two possible outcomes:

- The result is reported as conforming with the specification
- The result is reported as not conforming with the specification

The decision rule is defined below.

When the test result is found to be below the limit but within our measurement uncertainty of the limit, it is our policy that the final acceptance decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be exactly on the specification, it is our policy, in the case of unwanted emissions measurements to consider the result non-compliant, however, the final decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be over the specification limit under any condition, it is our policy to consider the result non-compliant.

In terms of uncertainty of measurement, the laboratory is a calibrated and tightly controlled environment and generally exceptionally stable, the measurement uncertainties are evaluated without the consideration of the test sample. When it comes to the test sample however, as most testing is performed on a single sample rather than a sample population, and that sample is often a pre-production representation of the final product, that test sample represents a significantly higher source of measurement uncertainty. We advise our customers of this and that when in doubt (small test to limit margins), they may wish to perform statistical sampling on a population to gain a higher confidence in the results. All lab reported results are that of a single sample in any event.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 20621 Pascal Way, Lake Forest, California 92630.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Khachatur Mkrtchyan - Diacom Technology

David Galustov
Compatible Electronics, Inc.

Johnny Le Test Technician
Howard Huang Test Engineer
Carla Atizado QA Specialist

2.4 Date Test Sample was Received

The test sample was received on July 9, 2020. Received as described in product description.

2.5 Disposition of the Test Sample

The test sample was returned to Khachatur Mkrtchyan - Diacom Technology.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

CML	Corrected Meter Limit
EMI	Electromagnetic Interference
EUT	Equipment Under Test
HP	Hewlett Packard
ITE	Information Technology Equipment
LED	Light-emitting Diode
LISN	Line Impedance Stabilization Network
NCR	No Calibration Required
P/N	Part Number
PSU	Power Supply Unit
RF	Radio Frequency
S/N	Serial Number

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CISPR 16 1993	Specification for radio disturbance and immunity measuring apparatus and methods.
FCC CFR Title 47, Part 18 Subpart C.	FCC Rules – Industrial, Scientific and Medical Equipment (including ultrasonic equipment)
ANSI C63.4 2014	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.
FCC/OST MP-5	Part 18, ISM Methods of Measurements of Radio Noise Emissions from Industrial, Scientific, and Medical equipment (February 1986)

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

The EUT was set up in a table-top configuration. The EUT was connected to a Laptop, Headphone and a Reprinter. The EUT was scanning and generating a low-frequency electromagnetic frequency up to 1 MHz continuously. This configuration was determined to produce the highest emissions. The EUT was utilizing software by Diacom.

The cables were moved to maximize the emissions. The final conducted and radiated data was taken in this mode of operation. All initial investigations were performed with EMI Receiver in manual mode scanning the frequency range continuously. The cables were routed as shown in the photographs in Appendix D.

4.1.1 Photograph of Test Configuration - EMI

4.1.2 **Cable Construction and Termination**

Cable 1

This is a 1.6 meter, unshielded, cable that connects the EUT to a 1M OHM Resistor. It has a 3.5 MM connector at both ends. The cable was bundled to a length of 1 meter.

Cable 2

This is a 1.65 meter, unshielded, cable that connects the EUT to the Reprinter. It has a 3.5 MM connector at both ends. The cable was bundled to a length of 1 meter.

Cable 3

This is a 1.6 meter, unshielded, cable that connects the EUT to the Headphone. It has a 3.5 MM connector at both ends. The cable was bundled to a length of 1 meter.

Cable 4

This is a 1.55 meter, unshielded, cable that connects the EUT to Laptop. It has a USB A connector at Laptop end and a USB B connector at the EUT end. The cable was bundled to a length of 1 meter.

Cable 5

This is a 1.5 meter, unshielded, cable that connects the Laptop to the Laptop PSU. It has a barrel connector at the laptop end and is hardwired at the adapter end.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT**5.1 EUT and Accessory List**

#	EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER
1	DIACOM-LITE-FREQ (EUT)	KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY	UTIUM	S/N: NONE
2	HEADPHONE	PHILLIP	SHP1900	S/N: NONE
3	LAPTOP	SONY	SVE151J11V	S/N: 545123000001001
4	LAPTOP PSU	SONY	VGP-AC19V44	S/N: 1487693310135954
5	REPRINTER	KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY	NONE	S/N: NONE

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Thermometer & Hygrometer	Davis Instruments	6312C	NONE	09/20/2018	09/20/2021
Computer	Compatible Electronics	NONE	NONE	NCR	NCR
EMI Receiver	Keysight Technologies	N9038A	MY55330012	01/21/2020	01/21/2021
Antenna, Loop	Com-Power	AL-130	121049	3/21/2019	3/21/2021
Antenna, CombiLog	Com-Power	AC-220	10030023	08/23/2019	08/23/2021
Antenna, Horn	Com-Power	AH-118	10050074	07/19/2019	07/19/2021
Antenna, Horn	Com-Power	AH-826	081078	07/23/2019	07/23/2021
Preamplifier 1-18 GHz	Com-Power	PAM-118A	551033	01/15/2020	01/15/2021
Preamplifier 18-40 GHz	Com-Power	PA-840	181289	7/23/2019	7/23/2020
Mast, Antenna Positioner	Sunol Science Corporation	SC104V	020808-1	NCR	NCR
Antenna Mast	Sunol Science Corporation	TWR 95-4	020808-3	NCR	NCR
Turntable	Sunol Science Corporation	FM2001	NONE	NCR	NCR
LISN (EUT)	Com-Power	LI-215	191944	08/08/2019	08/08/2020

5.3 Test Software

LAB(S)	SOFTWARE TITLE	MANUFACTURER	VERSION
P, R	Measurement and Automation Software	TDK Test Lab	5.53

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5-meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

6.3 Facility Environmental Characteristics

When applicable refer to the data sheets in Appendix E for the relative humidity, air temperature and barometric pressure.

6.4 Measurement Uncertainty

"Compatible Electronics' U_{lab} value is less than U_{cispr} , thus based on this – compliance is deemed to occur if no measured disturbance exceeds the disturbance limit

$$u_c(y) = \sqrt{\sum_i c_i^2 u^2(x_i)}$$

Measurement		U_{cispr}	$U_{lab} = 2 u_c(y)$
Conducted disturbance (mains port)	(150 kHz – 30 MHz)	3,6 dB	2.88
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(30 MHz – 1000 MHz)	5,2 dB	3.53
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(1 GHz - 6 GHz)	5.2 dB	3.59 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(6 GHz – 18 GHz)	5.5 dB	3.71 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(18 GHz – 26 GHz)	N/A	3.71 dB

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The EMI Receiver was used as a measuring meter. A 10-dB attenuation pad was used for the protection of the EMI Receiver input stage. All factors associated with attenuator and cables were recorded into the EMI Software Program accordingly to display the actual corrected measured level. The LISN output was connected to the input of the EMI Receiver. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

The final data was collected under program control in several overlapping sweeps by running the EMI Receiver at a minimum scan rate of 10 seconds per octave. The test results are located in Appendix E. The six highest emissions are listed in Table 1.

7.1.2 Radiated Emissions Test

The EMI Receiver was used as the measuring meter. The EMI Receiver was used in the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (120 kHz for 30 MHz to 1 GHz and 1 MHz for 1 GHz and above).

A Broadband Combilog, Loop Antenna and Horn Antenna were used as transducers during the measurement. The Loop Antenna was used from 9 kHz-30 MHz, the Combilog Antenna was used from 30 MHz to 1000 MHz. Horn Antennas were used from 1 GHz to 26 GHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

The TDK FAC-3 shielded test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is set up according to CISPR 16. Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The EUT was tested at a 3-meter test distance from 30 MHz to 26 GHz to obtain final test data. The six highest emissions are listed in Table 2.

7.1.3 RF Emissions Test Results

Table 1.0 CONDUCTED EMISSION RESULTS
Diacom-Lite-FREQ

Model: UTIUM

Frequency MHz	Emission Level* dBuV	Average Specification Limit dBuV	Delta (Spec. limit – Emission) dB
11.56 L	42.28 A	47.87	-5.59
0.15 L	50.15 A	55.78	-5.63
0.18 N	47.93 A	54.39	-6.47
0.16 N	48.62 A	55.36	-6.74
0.20 N	46.30 A	53.53	-7.23
26.64 N	42.06 A	49.73	-7.68

Table 2.0 RADIATED EMISSION RESULTS
Diacom-Lite-FREQ

Model: UTIUM

Frequency MHz	Corrected Reading* dBuV	Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
300.00 H	51.43 #	63.50	-12.07
96.00 H	44.27 #	63.50	-19.23
112.00 H	43.09 #	63.50	-20.41
96.00 V	40.33 #	63.50	-23.17
2067.00 V	24.42 A	56.00	-31.58
1594.00 V	24.25 A	56.00	-31.75

Notes: * The complete emissions data is given in Appendix E of this report.

** The antenna factors and preamplifier gain are attached in Appendix D of this report.

Quasi-Peak Reading

A Average Reading

N Neutral

L Line

8. DEVIATIONS FROM THE TEST PROCEDURES

There were no deviations from the test procedures.

9. CONCLUSIONS

The Diacom-Lite-FREQ Model: UTIUM meets all of the FCC specification limits for part 18.305(c), and 18.307(c) and FCC OET/MP-5 for Diacom-Lite-FREQs "consumer equipment".

APPENDIX A***LABORATORY ACCREDITATIONS***

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025.

For the most up-to-date version of our scopes and certificates please visit

<http://celectronics.com/quality/scope/>

Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

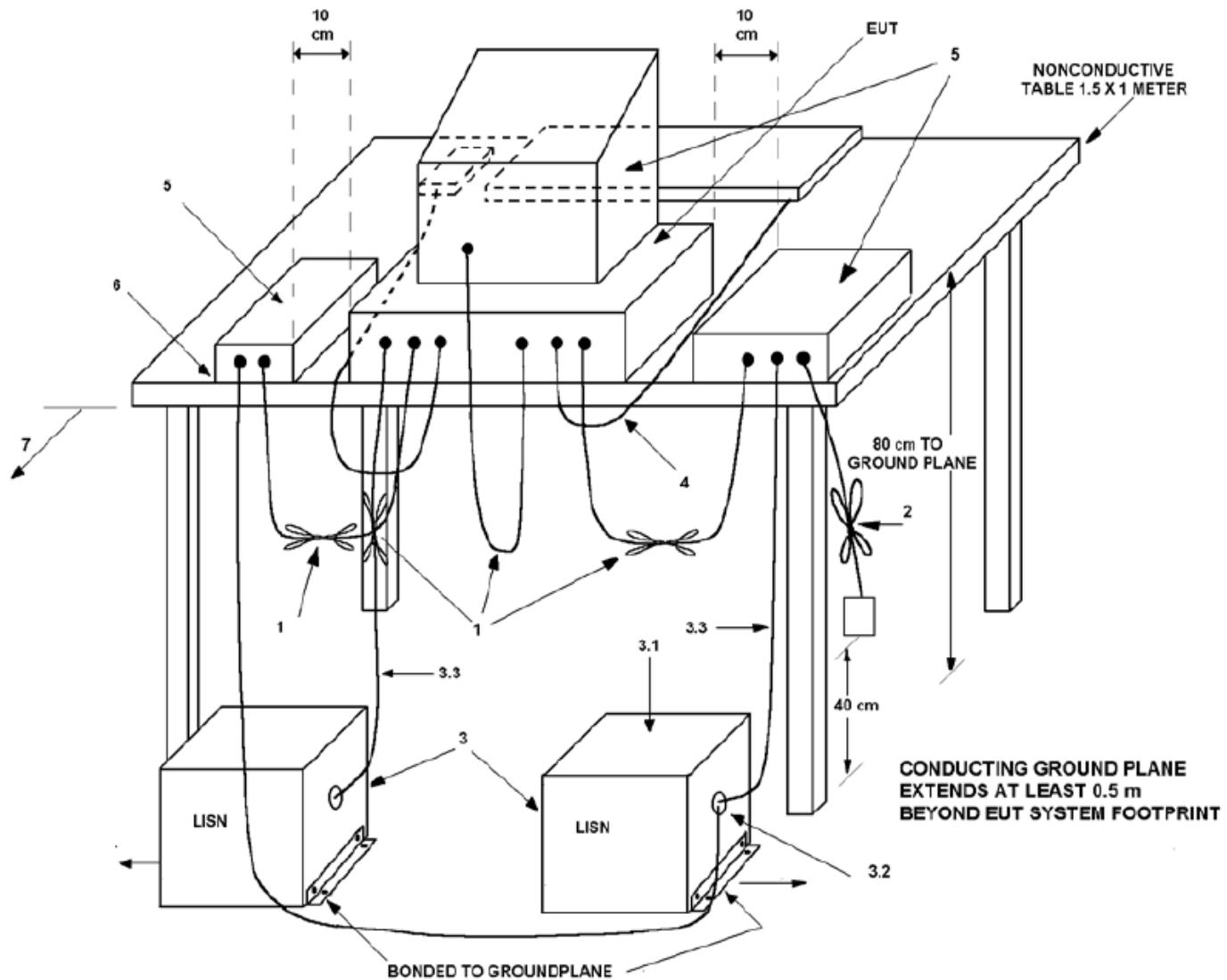
Innovation, Science and Economic Development Canada Lab Code 2154C

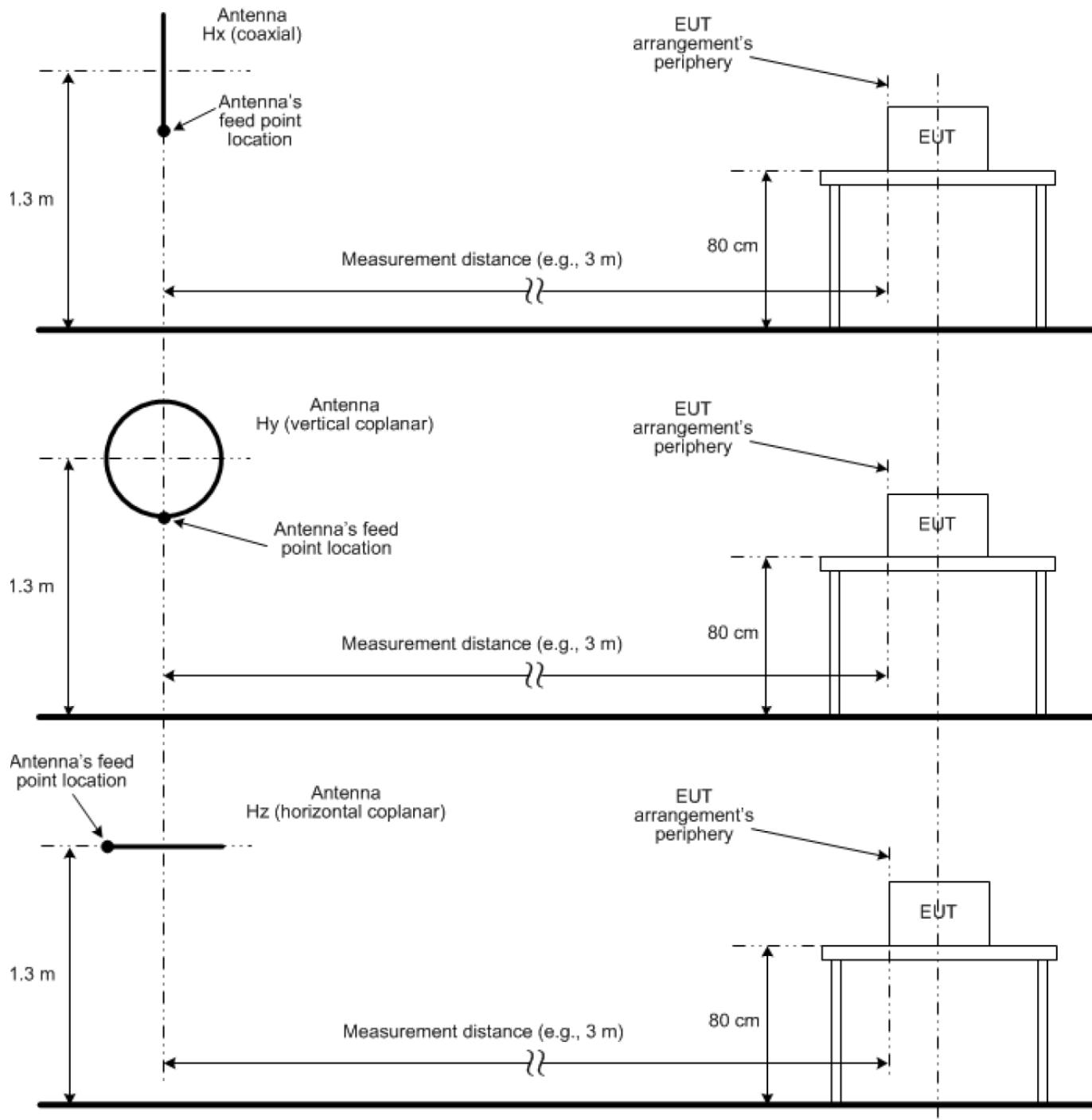
APPENDIX B***MODIFICATIONS TO THE EUT***

MODIFICATIONS TO THE EUT

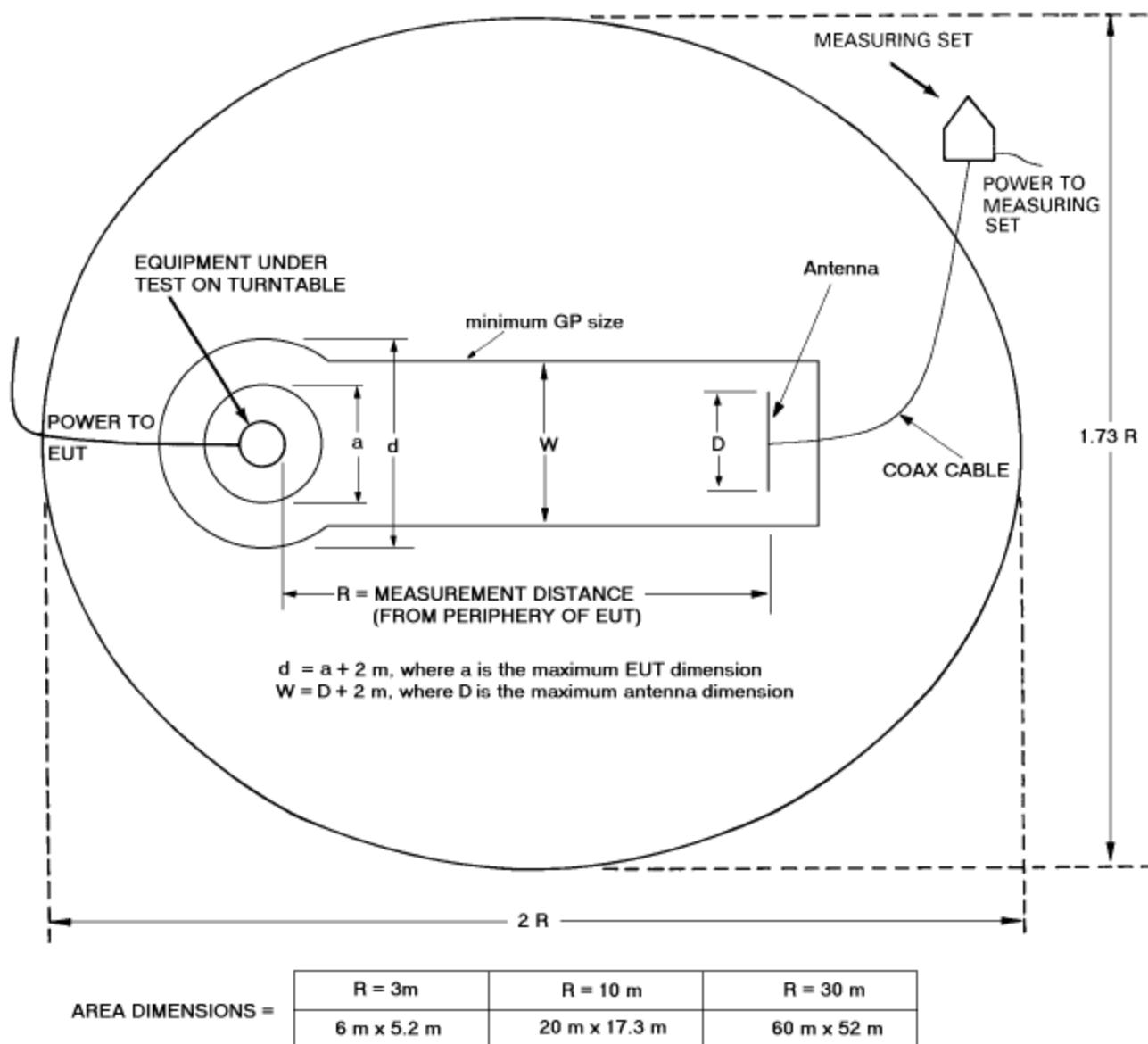
There were no modifications made to the EUT.

APPENDIX C***MODELS COVERED
UNDER THIS REPORT***


MODELS COVERED UNDER THIS REPORT


USED FOR THE PRIMARY TEST

DIACOM-LITE-FREQ
Model: UTIUM
S/N: NONE


There were no additional models covered under this report.

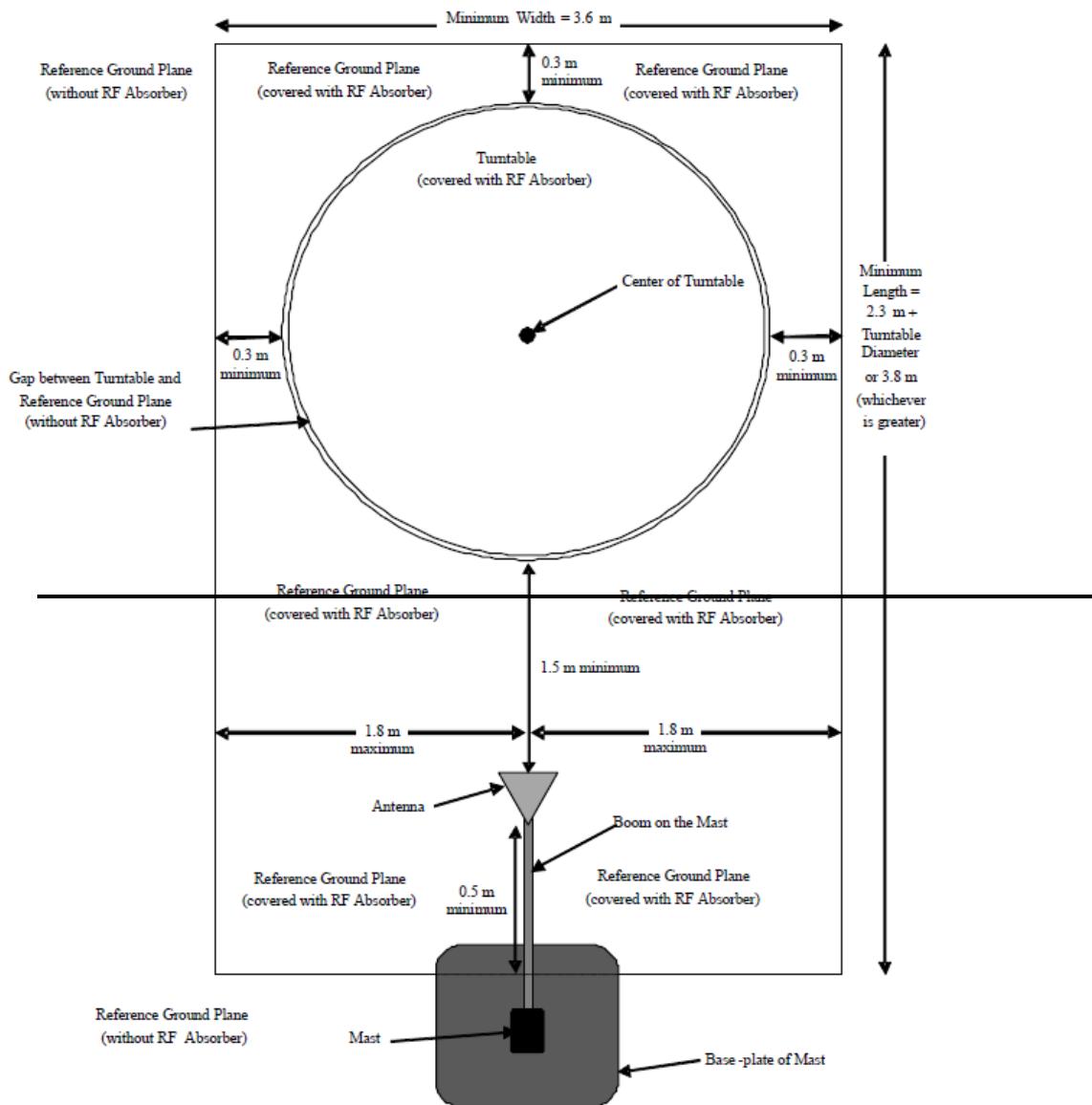

APPENDIX D***DIAGRAMS, CHARTS AND PHOTOS***

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: LOW FREQUENCY TEST SETUP

**FIGURE 3: RADIATED EMISSIONS 3-METER
SEMI -ANECHOIC TEST CHAMBER TEST SET UP**

FIGURE 4: HIGH FREQUENCY TEST SETUP

COM-POWER AC-220

LAB P - COMBILOG ANTENNA

S/N: 10030023

CALIBRATION DATE: AUGUST 23, 2019

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	22.5	160	15.5
35	21.4	180	14.9
40	20.5	200	15.2
45	19.8	250	16.7
50	18.7	300	18.5
60	15.1	400	20.6
70	12.0	500	22.0
80	11.7	600	24.4
90	13.4	700	24.3
100	14.5	800	26.1
120	16.0	900	27.2
140	14.6	1000	27.8

COM-POWER AH-118**HORN ANTENNA****S/N: 10050074****CALIBRATION DATE: JULY 19, 2019**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
700	25.84	7500	37.73
750	25.46	8000	38.05
800	24.96	8500	38.29
850	24.51	9000	38.93
900	24.01	9500	39.64
950	23.73	10000	39.12
1000	23.83	10500	39.16
1250	24.81	11000	39.18
1500	25.32	11500	39.85
1750	26.30	12000	40.27
2000	27.94	12500	40.91
2250	28.16	13000	40.50
2500	29.07	13500	40.59
3000	30.07	14000	40.44
3500	30.81	14500	40.62
4000	31.68	15000	43.35
4500	32.64	15500	40.76
5000	33.79	16000	41.61
5500	34.20	16500	40.38
6000	35.24	17000	40.88
6500	35.74	17500	42.79
7000	37.17	18000	43.86

COM-POWER AH-826**HORN ANTENNA****S/N: 081078****CALIBRATION DATE: JULY 23, 2019**

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
18.00	32.83	21.25	33.71
18.10	32.74	21.50	33.58
18.20	32.68	21.75	33.70
18.30	32.67	22.00	33.88
18.40	32.73	22.25	33.88
18.50	32.83	22.50	34.00
18.60	32.90	22.75	33.91
18.70	32.95	23.00	33.93
18.80	33.00	23.25	34.07
18.90	33.06	23.50	34.17
19.00	33.08	23.75	34.36
19.10	33.12	24.00	34.35
19.20	33.17	24.25	34.29
19.30	33.18	24.50	34.34
19.40	33.15	24.75	34.40
19.50	33.10	25.00	34.58
19.75	33.07	25.25	34.65
20.00	33.21	25.50	34.60
20.25	33.31	25.75	34.61
20.50	33.64	26.00	34.64
20.75	33.65	26.25	34.74
21.00	33.58	26.50	35.08

COM-POWER PAM-118A**1-18GHz - PREAMPLIFIER****S/N: 551033****CALIBRATION DATE: JANUARY 15, 2020**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
500	39.68	6000	41.31
600	39.94	6500	41.35
700	39.99	7000	41.61
800	40.24	7500	41.72
900	39.93	8000	41.73
1000	40.44	8500	40.82
1250	40.63	9000	40.78
1500	40.80	9500	42.10
1750	41.00	10000	42.62
2000	41.35	10500	41.43
2250	41.60	11000	41.00
2500	41.82	11500	41.26
2750	42.08	12000	41.50
3000	42.33	12500	41.01
3250	42.50	13000	40.50
3500	42.59	13500	40.28
3750	42.64	14000	40.32
4000	42.60	14500	40.55
4250	42.42	15000	40.62
4500	42.20	15500	40.74
4750	42.04	16000	40.69
5000	41.88	16500	40.98
5250	41.69	17000	40.16
5500	41.59	17500	39.29
5750	41.44	18000	39.52

COM-POWER PA-840**18-40GHz - PREAMPLIFIER****S/N: 181289****CALIBRATION DATE: JULY 23, 2019**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
18.00	33.29	29.50	31.82
18.50	28.81	30.00	31.25
19.00	26.91	30.50	30.24
19.50	29.21	31.00	29.51
20.00	30.70	31.50	30.09
20.50	31.88	32.00	31.10
21.00	32.88	32.50	31.40
21.50	33.13	33.00	31.28
22.00	32.55	33.50	30.97
22.50	31.67	34.00	30.80
23.00	31.04	34.50	30.63
23.50	30.84	35.00	30.22
24.00	30.97	35.50	29.87
24.50	31.33	36.00	29.88
25.00	31.86	36.50	29.98
25.50	32.53	37.00	30.06
26.00	33.21	37.50	30.08
26.50	33.68	38.00	30.33
27.00	33.88	38.50	31.29
27.50	33.75	39.00	32.78
28.00	33.36	39.50	33.67
28.50	32.87	40.00	33.27
29.00	32.29		

FRONT VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY
DIACOM-LITE-FREQ

MODEL: UTIUM

FCC PART 18- RADIATED EMISSIONS under 30 MHz

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY

DIACOM-LITE-FREQ

MODEL: UTIUM

FCC PART 18- RADIATED EMISSIONS under 30 MHz

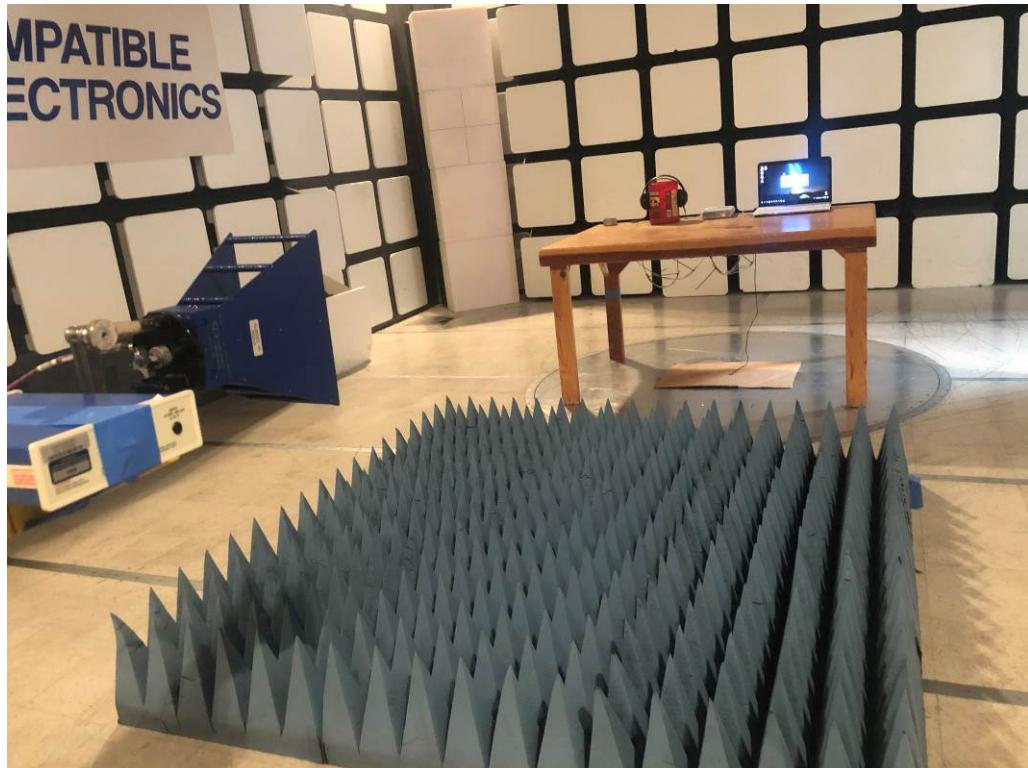
**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

FRONT VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY

DIACOM-LITE-FREQ

MODEL: UTIUM


FCC PART 18- RADIATED EMISSIONS from 30-1000MHz

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY
DIACOM-LITE-FREQ
MODEL: UTIUM
FCC PART 18- RADIATED EMISSIONS from 30-1000MHz
**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

FRONT VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY

DIACOM-LITE-FREQ

MODEL: UTIUM

FCC PART 18- RADIATED EMISSIONS 1-26GHz

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY

DIACOM-LITE-FREQ

MODEL: UTIUM

FCC PART 18- RADIATED EMISSIONS 1-26GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

FOR MAXIMUM EMISSIONS

FRONT VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY
DIACOM-LITE-FREQ
MODEL: UTIUM
FCC PART 18- CONDUCTED EMISSIONS

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

KHACHATUR MKRTCHYAN - DIACOM TECHNOLOGY
DIACOM-LITE-FREQ
MODEL: UTIUM
FCC PART 18- CONDUCTED EMISSIONS

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

APPENDIX E***DATA SHEETS AND FCC COMPLIANCE INFORMATION STATEMENT***

Test title: FCC PART 18

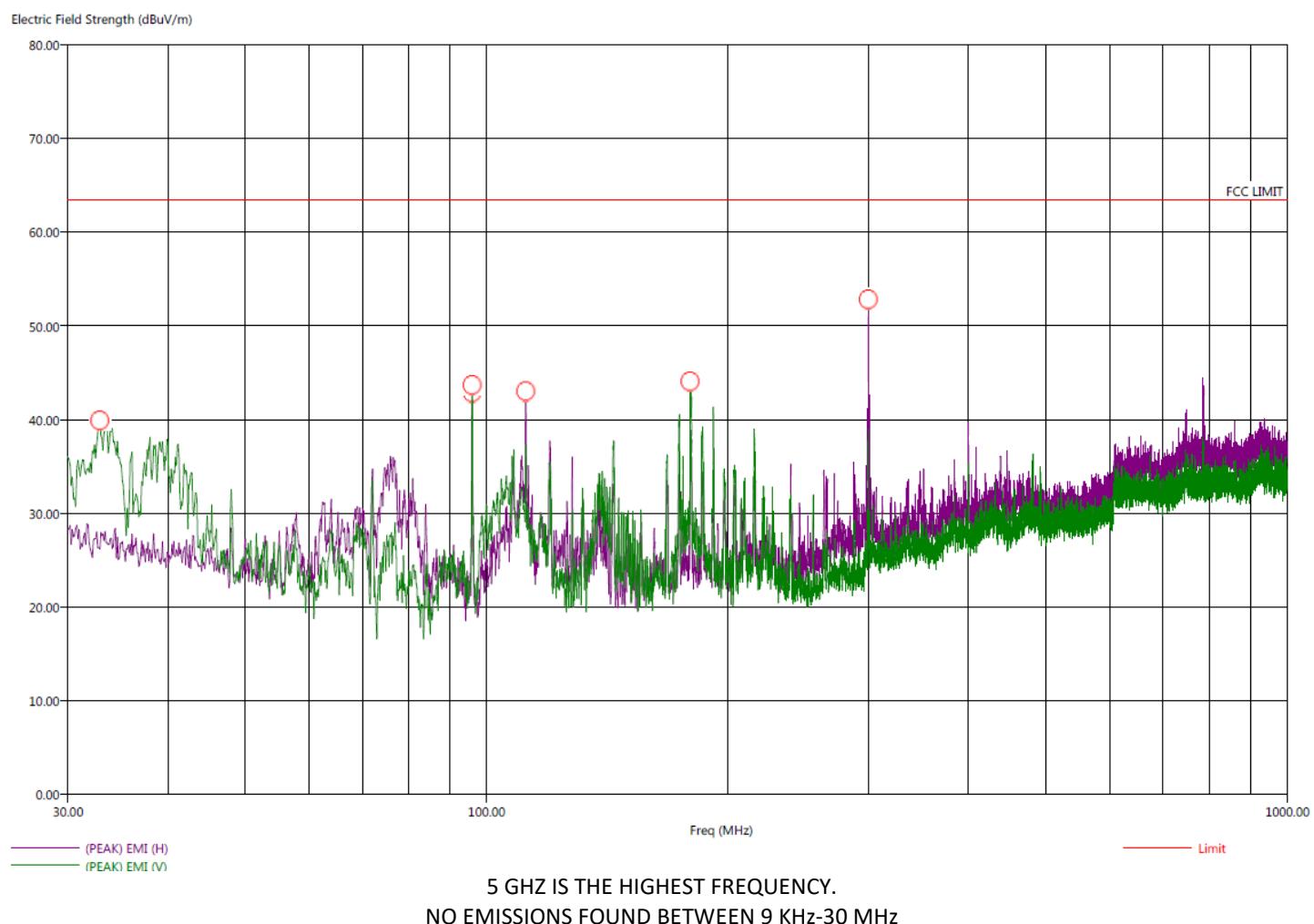
7/9/2020 3:24:37 PM

File: Radiated Pre-Scan 30-1000MHz.set

Sequence: Preliminary Scan

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium


EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology

Temp: 76f

Hum: 50%

USB powered

Compatible Electronics, Inc. FAC-3 (LAB P)

Test title: FCC PART 18

7/9/2020 3:39:05 PM

File: Radiated Final 30-1000MHz.set

Sequence: Final Measurements

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium

EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology

Temp: 76f

Hum: 50%

USB powered

Compatible Electronics, Inc. FAC-3 (LAB P)

Freq (MHz)	Pol	(QP) Margin (dB)	(QP) EMI (dB μ V/m)	(PEAK) EMI (dB μ V/m)	Limit (dB μ V/m)	Ttbl Agl (deg)	Twr Ht (cm)	Transducer (dB)	Cable (dB)
32.90	V	-38.13	25.37	33.00	63.50	194.75	140.47	21.87	0.40
96.00	H	-19.23	44.27	46.00	63.50	210.00	339.76	14.20	0.71
96.00	V	-23.17	40.33	41.81	63.50	256.25	109.17	14.20	0.71
112.00	H	-20.41	43.09	45.37	63.50	216.75	201.94	15.40	0.80
179.70	V	-36.13	27.37	32.41	63.50	287.50	103.11	14.90	1.09
300.00	H	-12.07	51.43	53.96	63.50	7.75	105.41	18.50	1.42

Test title: FCC PART 18

7/9/2020 4:32:37 PM

File: Radiated Pre-scan 1-18GHz Vertical.set

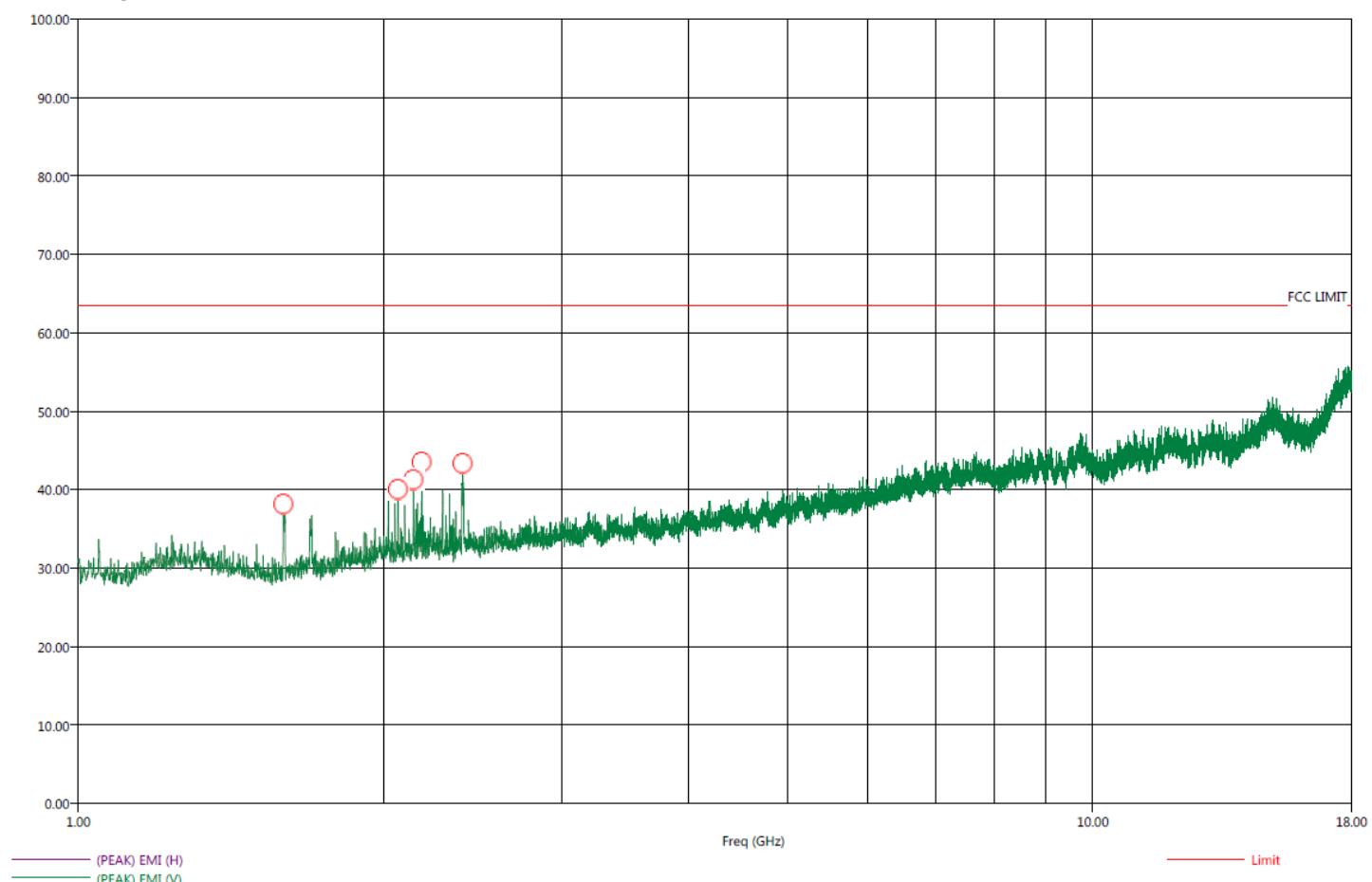
Sequence: Preliminary Scan

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium

EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology


Temp: 76f

Hum: 50%

USB powered

Compatible Electronics, Inc. FAC-3 (LAB P)

Electric Field Strength (dBuV/m)

NO EMISSIONS FOUND BETWEEN 18-26 GHz

Test title: FCC PART 18

7/9/2020 4:22:33 PM

File: Radiated Pre-scan 1-18GHz Horizontal.set

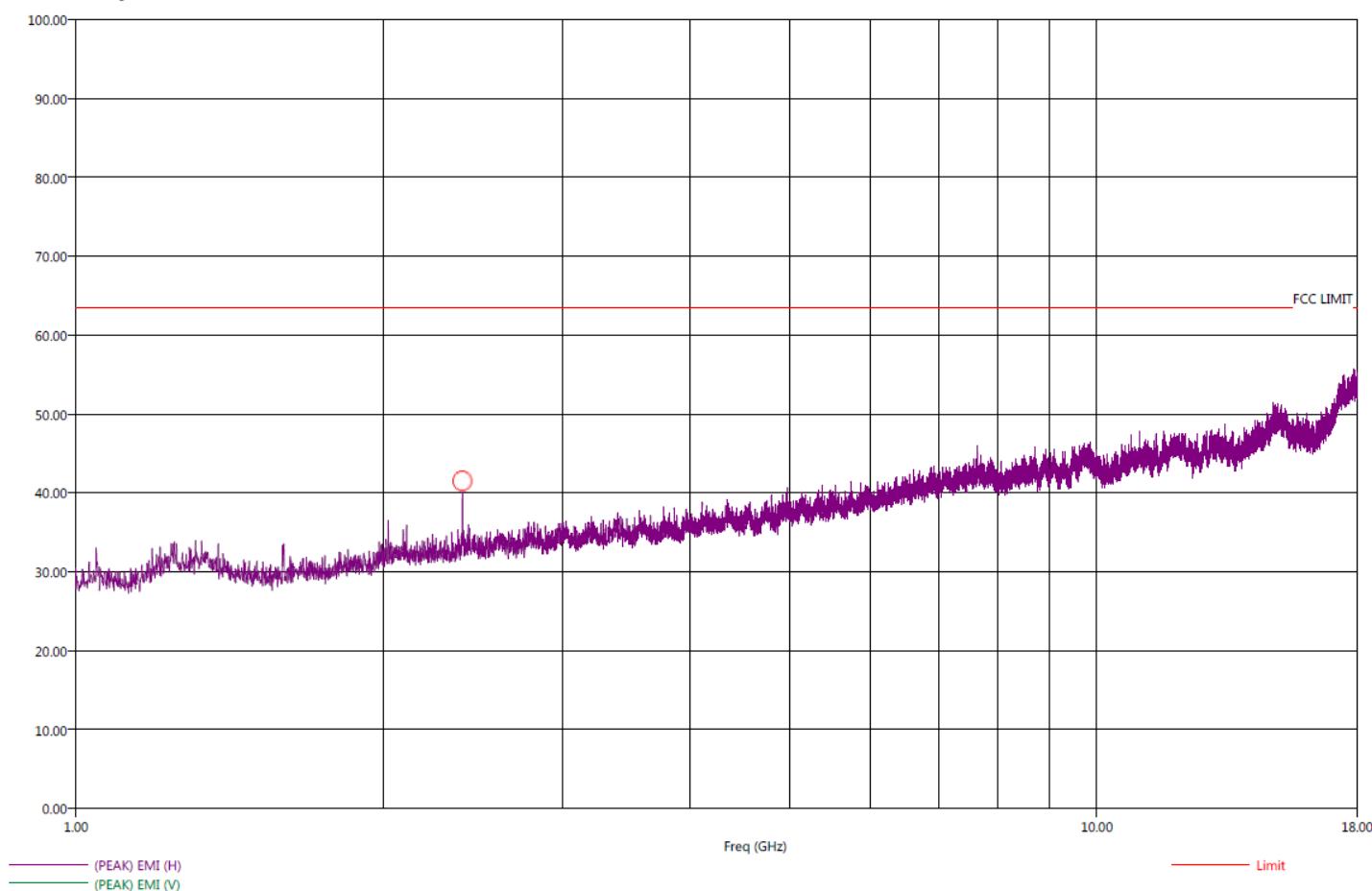
Sequence: Preliminary Scan

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium

EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology


Temp: 76f

Hum: 50%

USB powered

Compatible Electronics, Inc. FAC-3 (LAB P)

Electric Field Strength (dBuV/m)

NO EMISSIONS FOUND BETWEEN 18-26 GHz

Test title: FCC PART 18

7/9/2020 4:47:50 PM

File: Radiated Final-scan 1-6GHz.set

Sequence: Final Measurements

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium

EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology

Temp: 76f

Hum: 50%

USB powered

Compatible Electronics, Inc. FAC-3 (Lab P)

Freq (MHz)	Pol	(PEAK) EMI (dB μ V/m)	(AVG) EMI (dB μ V/m)	(PEAK)Limit (dB μ V/m)	(AVG)Limit (dB μ V/m)	(PEAK) Margin (dB)	(AVG) Margin (dB)	Ttbl Agl (deg)	Twr Ht (cm)
1594.00	V	42.65	24.25	76.00	56.00	-33.35	-31.75	237.00	15.25
2067.00	V	39.33	24.42	76.00	56.00	-36.67	-31.58	143.41	81.50
2141.00	V	36.90	22.52	76.00	56.00	-39.10	-33.48	244.47	236.00
2182.00	V	40.17	22.66	76.00	56.00	-35.83	-33.34	176.00	86.50
2393.00	H	36.75	22.99	76.00	56.00	-39.25	-33.01	214.82	24.75
2394.00	V	38.47	23.36	76.00	56.00	-37.53	-32.64	191.58	266.00

Test title: FCC PART 18

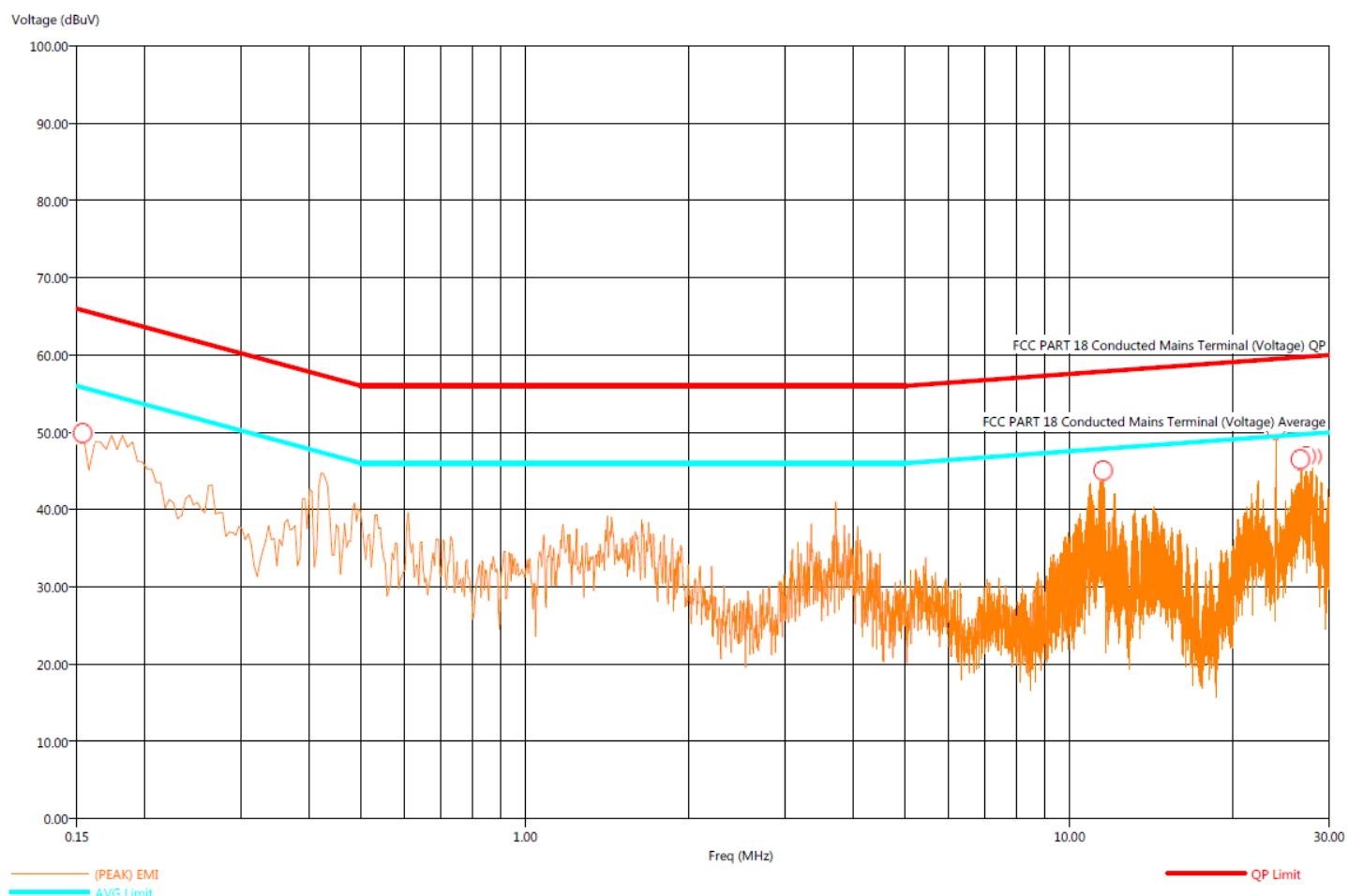
7/10/2020 8:44:51 AM

File: Conducted Pre-Line.set

Sequence: Preliminary Scan

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium


EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology

Temp: 70F

Hum: 53%

USB powered

Compatible Electronics, Inc. FAC- 3 (LAB P)

Test title: FCC PART 18

7/10/2020 8:57:53 AM

File: Conducted Final-Line .set

Sequence: Final Measurements

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium

EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology

Temp: 70f

Hum: 53%

USB powered

Compatible Electronics, Inc. FAC- 3 (LAB P)

Freq (MHz)	(PEAK) EMI (dB μ V)	(QP) EMI (dB μ V)	(AVG) EMI (dB μ V)	(QP) LIMIT (dB μ V)	(AVG) LIMIT (dB μ V)	(QP) Margin (dB)	(AVG) Margin (dB)	Cable(dB)	Transducer (dB)
0.15	61.29	57.38	50.15	65.78	55.78	-8.40	-5.63	0.01	0.43
11.56	45.63	44.22	42.28	57.87	47.87	-13.65	-5.59	0.27	0.05
24.00	51.43	47.75	40.64	59.50	49.50	-11.75	-8.86	0.36	0.28
26.60	46.33	43.77	38.36	59.73	49.73	-15.97	-11.38	0.37	0.33
27.28	46.76	45.28	41.81	59.79	49.79	-14.50	-7.97	0.38	0.35
27.96	48.14	46.08	41.22	59.84	49.84	-13.76	-8.62	0.38	0.36

Test title: FCC PART 18

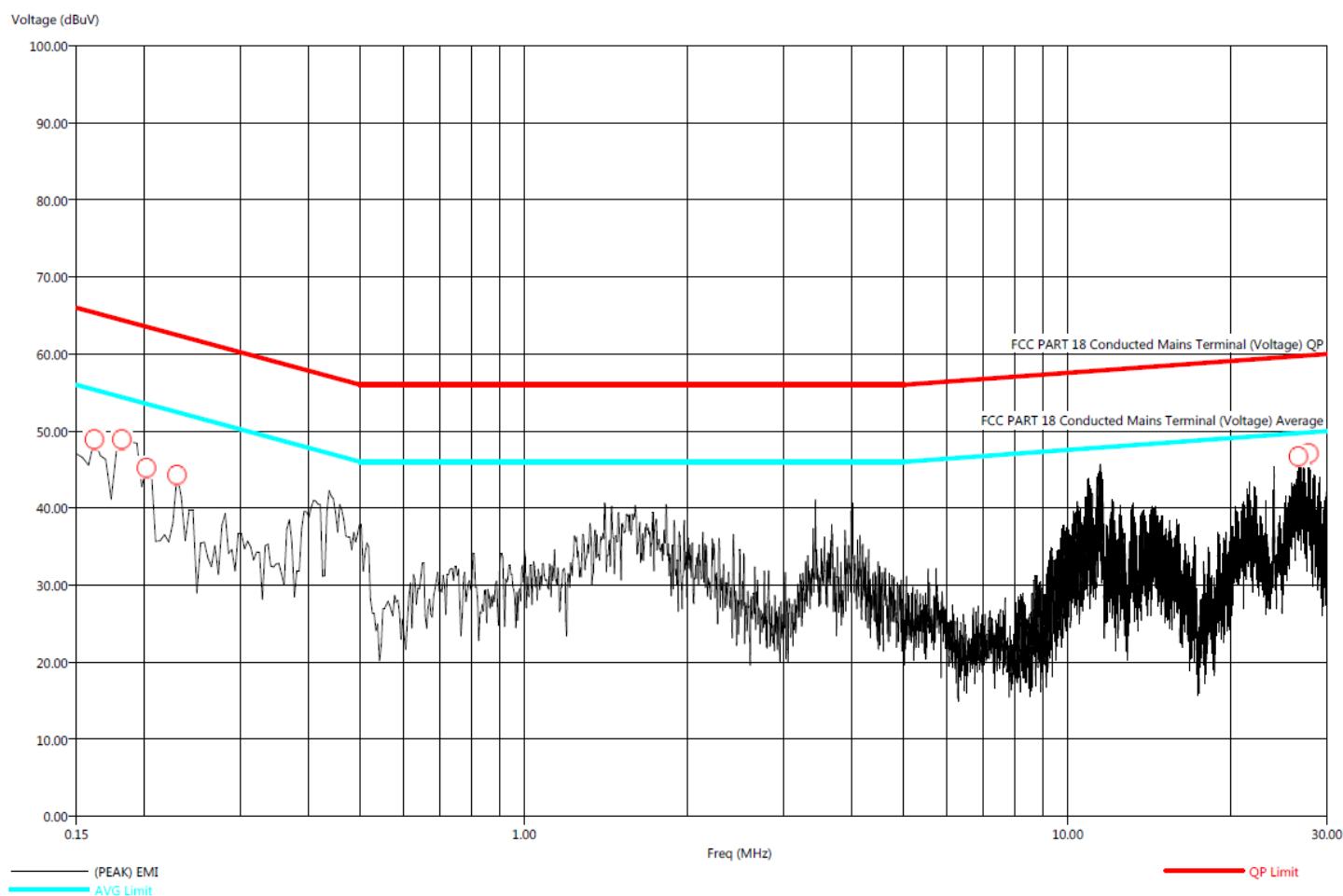
7/10/2020 9:03:46 AM

File: Conducted Pre-Neutral.set

Sequence: Preliminary Scan

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium


EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology

Temp: 70f

Hum: 53%

USB powered

Compatible Electronics, Inc. FAC- 3 (LAB P)

Test title: FCC PART 18

7/10/2020 9:10:21 AM

File: Conducted Final-Neutral.set

Sequence: Final Measurements

Operator name: Johnny Le

EUT type: Diacom-Lite-FREQ/Utium

EUT condition: The EUT is scanning and generating low frequencies up to 1 MHz.

Notes: Company: Khachatur Mkrtchyan - Diacom Technology

Temp: 70f

Hum: 53%

USB powered

Compatible Electronics, Inc. FAC- 3 (LAB P)

Freq (MHz)	(PEAK) EMI (dB μ V)	(QP) EMI (dB μ V)	(AVG) EMI (dB μ V)	(QP) LIMIT (dB μ V)	(AVG) LIMIT (dB μ V)	(QP) Margin (dB)	(AVG) Margin (dB)	Cable(dB)	Transducer (dB)
0.16	60.15	55.64	48.62	65.36	55.36	-9.72	-6.74	0.01	0.40
0.18	59.50	54.85	47.93	64.39	54.39	-9.55	-6.47	0.01	0.38
0.20	57.87	53.23	46.30	63.53	53.53	-10.30	-7.23	0.01	0.33
0.23	54.20	49.92	42.95	62.45	52.45	-12.53	-9.50	0.01	0.23
26.64	47.63	45.76	42.06	59.73	49.73	-13.98	-7.68	0.37	0.20
27.84	48.11	29.67	24.88	59.83	49.83	-30.16	-24.95	0.38	0.21

**Supplier's Declaration of Conformity
47CFR § 2.1077 Compliance Information**

IDENTIFICATION OF PRODUCT: DIACOM-Lite-FREQ-Utium

RESPONSIBLE PARTY (U.S. Contact Information)

NAME: House of HAOS Inc.

ADDRESS: 14039 Sherman Way #102, Van Nuys, CA 91405

TELEPHONE: (424) 532-1444

E-Mail: galustov.diacom@gmail.com

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

SIGNATURE OF REPRESENTATIVE

