CERTIFICATION OF COMPLIANCE

Manufacturing Description
Manufacturer
Model name
Test Device Serial No.:
Rule Part(s)
Frequency Range
Data of issue

This test report is issued under the authority of:

Ja-Beom Koo, Manager

The test was supervised by:

Eun-Hwan Jung, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION 3
2. INFORMATION ABOUT TEST ITEM 4
3. TEST REPORT 5
3.1 SUMMARY OF TESTS 5
3.2 TECHNICAL CHARACTERISTICS TEST 6
3.2.1 Radiated Emission 6
3.2.2 Frequency Tolerance 11
3.2.3 20dB Bandwidth 12
3.2.4 AC Conducted Emissions 14
APPENDIX
APPENDIX TEST EQUIPMENT USED FOR TESTS 15

1. General information

1-1 Test Performed

Company name	$:$ LTA Co., Ltd.	
Address	$:$	243, Jubug-ri, Yangji-Myeon,Youngin-Si, Kyunggi-Do, Korea. 17159
Web site	$: \underline{\text { http://www.lalab.com }}$	
E-mail	$: \underline{\text { chahn@ltalab.com }}$	
Telephone	$:+82-31-323-6008$	
Facsimile	$+82-31-323-6010$	

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	$200723-0$	$2021-09-30$	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	$2021-04-11$	FCC CAB
VCCI	JAPAN	C-4948,	$2023-09-10$	VCCI registration
VCCI	JAPAN	T-2416,	$2023-09-10$	VCCI registration
VCCI	JAPAN	R-4483(10 m),	$2023-08-15$	VCCI registration
VCCI	JAPAN	G-847	$2021-12-13$	VCCI registration
IC	CANADA	$5799 A-1$	$2021-06-16$	IC filing
KOLAS	KOREA	NO.551	$2021-08-20$	KOLAS accredited

2. Information about test item

2-1 Client \& Manufacturer

Client Company name : EPIC SYSTEMS CO., LTD.

Address
Technology Development Center RM. 406, Gyeonggi Technopark, 705, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, Republic Of Korea

Tel / Fax : + 82-070-4741-1025 / + 82-031-481-8116
Manufacturer EPIC SYSTEMS CO., LTD.

Address
Technology Development Center RM. 406, Gyeonggi Technopark, 705, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, Republic Of Korea

Tel / Fax + 82-070-4741-1025 / + 82-031-481-8116

2-2 Equipment Under Test (EUT)	
Model name	$:$ Triplex 3way
Serial number	$:$ Identical prototype
Date of receipt	$:$ Sep 23, 2020
EUT condition	$:$ Pre-production, not damaged
Antenna type	$:$ 13.56 MHz
Frequency Range	$:$ FSK
Type of Modulation	$:$ DC 6 V

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz) BLE		13.56	

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
-	-	-	-

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Test Condition	Status (note 1)
15.209 $15.225(a)(\mathrm{b})(\mathrm{c})(\mathrm{d})$	Radiated Emission		C
$15.225(\mathrm{e})$	Frequency Tolerance	Radiated	C
$15.215(\mathrm{c})$	20dB Bandwidth		C
15.207	AC Conducted Emissions		N/A
15.203	Antenna requirement		C

N/A : This product is battery-enabled and excludes the test.

The above equipment was tested by LTA Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.
The tests were performed according to the method of measurements prescribed in KDB No. 558074.

\rightarrow Antenna Requirement

EPIC SYSTEMS CO., LTD. FCC ID: 2AXFW-Triplex 3way unit complies with the requirement of §15.203.
The antenna type is FPCB Antenna

3.2 Technical Characteristics Test

3.2.1 Radiated Spurious Emissions

Procedure:

Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013.
The EUT is a placed on as turn table. For emissions testing at or below 1 GHz , the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz , the table height shall be 1.5 m . The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3 dB illumination BW of the measurement antenna.

```
The spectrum analyzer is set to:
Center frequency \(=\) the worst channel
Frequency Range \(=9 \mathrm{kHz} \sim 10^{\text {th }}\) harmonic.
RBW \(=120 \mathrm{kHz}(30 \mathrm{MHz} \sim 1 \mathrm{GHz}) \quad\) VBW \(\geq\) RBW
    \(=1 \mathrm{MHz} \quad\left(1 \mathrm{GHz} \sim 10^{\text {th }}\right.\) harmonic \()\)
Trace \(=\max\) hold \(\quad\) Detector function \(=\) peak
Sweep = auto
```

below 30 MHz

below $1 \mathrm{GHz}(30 \mathrm{MHz}$ to 1 GHz$)$

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30MHz.
- The test results for the worst of the various operating modes are presented in accordance with 6.3.4 of ANSI C63.10.
- Checked with a red circle is the fundamental frequency.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3 m
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})(@ \mathbf{3 0 0} \mathbf{~ m})$
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})(@ \mathbf{3 0} \mathbf{~ m})$
$1.705 \sim 30$	$30(@ \mathbf{3 0} \mathbf{~ m})$
$30 \sim 88$	$100^{* *}$
$88 \sim 216$	$150^{* *}$
$216 \sim 960$	$200^{* *}$
Above 960	500

** Except as provided in 15.209 (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, $76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Radiated Emissions

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

No.	Freq	Reading	C.F	Result QP	Limit	Margin	Height	Angle	Polarity
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	cm	deg	

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

No.	Freq MHz	Reading $\mathrm{dB} \mu \mathrm{V}$	C.F dB	$\begin{array}{r} \text { Result } \\ Q P \\ \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{array}$	Limit $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Height	Angle deg	Polarity
1.	176.23	42.93	-17.90	25.63	43.52	18.49	322	360	horizontal
2.	637.34	35.17	-7.97	27.26	46.02	18.82	106	81	horizontal
3.	888.69	40.46	-4.56	35.96	46.02	18.12	408	192	horizontal

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

No.	Freq	Reading	C.F	Result	Limit	Margin	Height	Angle	Polarity
	QP								
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	cm	deg	

1.	176.23	46.87	-17.96	28.97	43.52	14.55	100	245 vertical
2.	420.43	45.22	-12.86	32.42	46.02	13.60	106	312 vertical
3. 888.09	37.72	-4.50	33.22	46.02	12.80	406	287 vertical	

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.2 Frequency Tolerance

Procedure:

According to FCC section 15.225 , the devices operating in the $13.553 \sim 13.567 \mathrm{MHz}$ shall maintain the carrier frequency within 0.01% of the operating frequency over the temperature variation of
$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ using an environmental chamber. The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied

Measurement Data : Complies

BLE Mode

VOLTAGE (\%)	Test Conditions		Fre. Dev. (Hz)	Deviation (\%)	Verdict
	$\begin{aligned} & \hline \text { Power } \\ & \text { (VDC) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$			
100	6	-20	281	0.00207	PASS
100		-10	302	0.00223	
100		0	284	0.00209	
100		50	310	0.00229	
85	5.1	20	277	0.00204	
115	6.9	50	290	0.00214	

- See next pages for actual measured spectrum plots.

Minimum Standard:

$$
\pm 0.01 \%
$$

Measurement Setup

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT was measured by transmitter mode continuously.

3.2.3 20 dB Bandwidth

Procedure:

According to FCC section 15.215 (c), the 20dB bandwidth should be contained within the frequency band designated in the rule section under which the EUT is operated, it was measured with a spectrum analyzer connected the EUT while the EUT is operating in transmission mode.

The spectrum analyzer is set to:
Center frequency = the highest, middle and the lowest channels

```
RBW = 1 kHz
VBW = 3 X RBW Sweep = auto
Trace = max hold
Detector function \(=\) peak
```


Measurement Data : Complies

BLE Mode

Frequency (MHz)	Test Results	
	Measured Bandwidth (kHz)	Result
13.56	4.338	Complies

[^0]
Minimum Standard:

```
20 dB Bandwidth \leq 14 kHz
```


Measurement Setup

Date: 3.JAN.2003 21:24:41

3.2.4 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz . The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: N/A

Class B

Frequency Range	quasi-peak	Average
$0.15 \sim 0.5$	66 to 56^{*}	56 to $46 *$
$0.5 \sim 5$	56	46
$5 \sim 30$	60	50

* Decreases with the logarithm of the frequency

TEST EQUIPMENT USED FOR TESTS

	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Next Cal. Date
1	\square	Signal Analyzer ($9 \mathrm{kHz} \sim 30 \mathrm{GHz}$)	FSV30	100757	R\&S	1 year	2021-09-07
2	\square	Signal Generator ($\sim 3.2 \mathrm{GHz}$)	8648C	3623A02597	HP	1 year	2021-03-16
3		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2021-03-16
4		Attenuator (3 dB)	8491A	37822	HP	1 year	2021-09-07
5		Attenuator (10 dB)	8491A	63196	HP	1 year	2021-09-07
6	\square	EMI Test Receiver ($\sim 7 \mathrm{GHz}$)	ESCI7	100722	R\&S	1 year	2021-09-07
7		RF Amplifier ($\sim 1.3 \mathrm{GHz}$)	8447D OPT 010	2944A07684	HP	1 year	2021-09-07
8		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	HP	1 year	2021-03-16
9	\square	Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2022-09-10
10		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2020-03-18
11		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2020-03-18
12	\square	TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2021-03-20
13		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2021-03-16
14		Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
15	\square	DC Power Supply	6674A	3637A01657	Agilent	-	-
17	\square	Power Meter	EPM-441A	GB32481702	HP	1 year	2021-03-16
18	\square	Power Sensor	8481A	3318 A94972	HP	1 year	2021-09-07
19		Audio Analyzer	8903B	3729A18901	HP	1 year	2021-09-07
20		Moduleation Analyzer	8901B	3749A05878	HP	1 year	2020-09-07
21		TEMP \& HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2021-09-07
22		Stop Watch	HS-3	812Q08R	CASIO	2 year	2022-03-18
23		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2021-03-16
24		Two-Lime V-Network	ESH3-Z5	893045/017	R\&S	1 year	2021-03-16
25		UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R\&S	1 year	2021-03-16
26		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2021-03-16
27		Highpass Filter	WHKX3.0/18G-10ss	118	Wainwright Instruments	1 year	2021-03-16
28		OSP120 BASE UNIT	OSP120	101230	R\&S	1 year	2021-03-16
29		Signal Generator(100 kHz $\sim 40 \mathrm{GHz}$)	SMB100A03	177621	R\&S	1 year	2021-03-16
30		Signal Analyzer ($10 \mathrm{~Hz} \sim 40 \mathrm{GHz}$)	FSV40	101367	R\&S	1 year	2021-02-26
31	\square	Active Loop Antenna	FMZB 1519	1519-031	SCHWARZBECK	2 year	2021-09-07

[^0]: - See next pages for actual measured spectrum plots.

