

Y Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202307-0144-10

Page: 1 of 41

Radio Test Report

FCC ID: 2AXEK-X88

Change II

Report No. : TBR-C-202307-0144-10

Applicant : SHENZHEN GENERAL TECHNOLOGY CO., LTD

Equipment Under Test (EUT)

EUT Name : Smart Battery Camera

Model No. : X88

X80, X81, X82, X83, X84, X85, X86, X87, X89, X90, X91, X92,

Series Model No. : X93, X94, X95, X96, X97, X98, X99, GS-XXX

(X Means letters and numbers)

Brand Name : ----

Sample ID : 202307-0144-3-1# & 202307-0144-3-2#

Receipt Date : 2023-07-27

Test Date : 2023-07-27 to 2023-08-10

Issue Date : 2023-08-16

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Seven Wu

Engineer Supervisor :

Ivan Su

Engineer Manager

Ray

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	7
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST SOFTWARE	11
4.	TEST EQUIPMENT	12
5.	CONDUCTED EMISSION TEST	13
	5.1 Test Standard and Limit	13
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	14
	5.5 EUT Operating Mode	14
	5.6 Test Data	14
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	15
	6.1 Test Standard and Limit	15
	6.2 Test Setup	17
	6.3 Test Procedure	18
	6.4 Deviation From Test Standard	19
	6.5 EUT Operating Mode	19
	6.6 Test Data	19
7.	RESTRICTED BANDS REQUIREMENT	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	23
	7.5 EUT Operating Mode	23

Report No.: TBR-C-202307-0144-10 Page: 3 of 41

	7.6 Test Data	23
8.	BANDWIDTH TEST	24
	8.1 Test Standard and Limit	24
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	25
	8.5 EUT Operating Mode	25
	8.6 Test Data	25
9.	PEAK OUTPUT POWER	26
	9.1 Test Standard and Limit	26
	9.2 Test Setup	26
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	26
	9.5 EUT Operating Mode	26
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY	27
	10.1 Test Standard and Limit	27
	10.2 Test Setup	27
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	27
	10.5 Antenna Connected Construction	27
	10.6 Test Data	27
11.	ANTENNA REQUIREMENT	28
	11.1 Test Standard and Limit	28
	11.2 Deviation From Test Standard	28
	11.3 Antenna Connected Construction	
	11.4 Test Data	28
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT BUNWANTED EMISSIONS DATA	

Report No.: TBR-C-202307-0144-10 Page: 4 of 41

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202211-0028-30	Rev.01	Initial issue of report	2022-12-05
TBR-C-202307-0144-10	Rev.02	Change the battery and power port of product 2#	2023-08-16
133		TO THE REAL PROPERTY.	33
1000	Chine		4000
313		THE PARTY OF THE P	
4037	anne		4000
4000		TO THE PARTY OF TH	400
(10)	Mr.	THE COURSE OF TH	037
4000	a W	and the same of th	400
Will be will	000		33
4000	(Ann		MODE
B13 400			

Report No.: TBR-C-202307-0144-10 Page: 5 of 41

1. General Information about EUT

1.1 Client Information

Applicant : SHENZHEN GENERAL TECHNOLOGY CO., LTD			
		Floor 1-3, Building A, Floor 1-4, Building B, No. 11 Xiantian Road, Xinsheng Community, Longgang Sub-District, Longgang District, Shenzhen, China	
Manufacturer : SHENZHEN GENERAL TECHNOLOGY		SHENZHEN GENERAL TECHNOLOGY CO., LTD	
Address	W.	Floor 1-3, Building A, Floor 1-4, Building B, No. 11 Xiantian Road, Xinsheng Community, Longgang Sub-District, Longgang District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

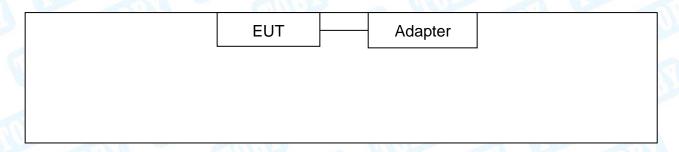
EUT Name	lame : Smart Battery Camera				
Models No.		X88, X80, X81, X82, X83, X84, X85, X86, X87, X89, X90, X91, X X93, X94, X95, X96, X97, X98, X99, GS-XXX (X Means letters and numbers) All PCB boards and circuit diagrams are the same, the only differ is the model name			
Model Different					
	E	Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz		
	3	Number of Channel:	802.11b/g/n(HT20):11 channels		
		Antenna Gain:	2.55dBi FPC Antenna		
Product Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n:OFDM(BPSK,QPSK,16QAM,64Q AM)		
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Rating		Input: DC 5V, 1.5A DC 3.7V by 5200mAh Rechargeable Li-ion battery*			
Software Version	•	0.7.10			
Hardware Version	7	CQ121C_C01_V3			

Page: 6 of 41

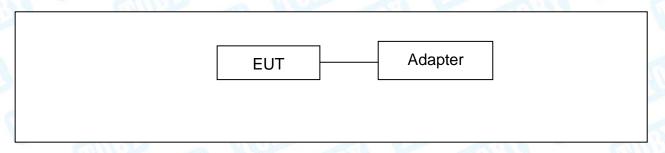
Remark:

(1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.


Report No.: TBR-C-202307-0144-10 Page: 7 of 41

(4) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2412	05	2432	09	2452		
02	2417	06	2437	10	2457		
03	2422	07	2442	11	2462		
04	2427	08	2447				
Note: CH 01~CH 11 for 802.11b/g/n(HT20)							

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

Equipment Information							
Name Model FCC ID/VOC Manufacturer Us							
Adapter			HUAWEI	V			
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
Cable		(B) (UR17	accessory			

Page: 8 of 41

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test					
Final Test Mode Description					
Mode 1	Charging with TX b Mode Channel 01				
Fo	For Radiated and RF Conducted Test				
Final Test Mode Description					
Mode 2	TX Mode b Mode Channel 01				
Mode 3	TX Mode b Mode Channel 01/06/11				
Mode 4 TX Mode g Mode Channel 01/06/11					
Mode 5 TX Mode n(HT20) Mode Channel 01/06/11					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK 802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 41

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software: SecureCRT						
Test Mode: Continuously transmitting						
Mode	Data Rate	Channel	Parameters			
	CCK/ 1Mbps	01	default			
802.11b	CCK/ 1Mbps	06	default			
0.07	CCK/ 1Mbps	11	default			
	OFDM/ 6Mbps	01	default			
802.11g	OFDM/ 6Mbps	06	default			
	OFDM/ 6Mbps	11	default			
	MCS 0	01	default			
302.11n(HT20)	MCS 0	06	default			
	MCS 0	11	default			

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$	
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB	
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB	
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB	

Page: 10 of 41

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202307-0144-10 Page: 11 of 41

2. Test Summary

Standard Section	T 4 H			_
FCC	Test Item	Test Sample(s)	Judgment	Remarl
FCC 15.207(a)	Conducted Emission	202307-0144-3-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202307-0144-3-1#	PASS	N/A
FCC 15.203	Antenna Requirement	202307-0144-3-2#	1	N/A
FCC 15.247(a)(2)	6dB Bandwidth	202307-0144-3-2#	1	N/A
	99% Occupied bandwidth	202307-0144-3-2#		N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P	202307-0144-3-2#	1	N/A
FCC 15.247(e)	Power Spectral Density	202307-0144-3-2#	1	N/A
FCC 15.247(d)	Band Edge Measurements	202307-0144-3-2#		N/A
FCC 15.207(a)	Conducted Unwanted Emissions	202307-0144-3-2#	1	N/A
FCC 15.247(d)	Emissions in Restricted Bands	202307-0144-3-2#	1	N/A
	On Time and Duty Cycle	202307-0144-3-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	TS+	Tonsced	3.0.0.4
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202307-0144-10 Page: 12 of 41

4. Test Equipment

Conducted Emissi	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
Radiation Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducte	d Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Sep.01.2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 20, 2023	Jun. 19, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 20, 2023	Jun. 19, 2024

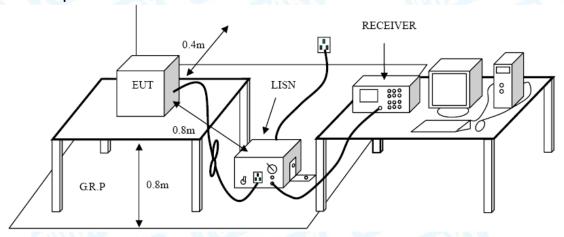
Page: 13 of 41

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Eroguanav	Maximum RF Line	Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ■LISN at least 80 cm from nearest part of EUT chassis.

Page: 14 of 41

● The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 15 of 41

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

Genera	I field strength limits at frequenc	ies Below 30MHz
Frequency	Field Strength	Measurement Distance
(MHz) 0.009~0.490	(microvolt/meter)** 2400/F(KHz)	(meters) 300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field s	strength limits at frequenc	ies above 30 MHz
Frequency	Field strength	Measurement Distance
(MHz)	(µV/m at 3 m)	(meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

ngth limits at frequencies A	bove 1000MHz
Distance of 3r	n (dBuV/m)
Peak	Average
74	54

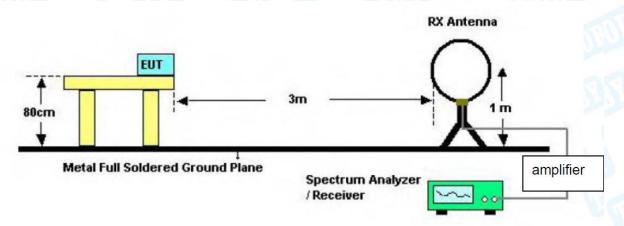
Note:

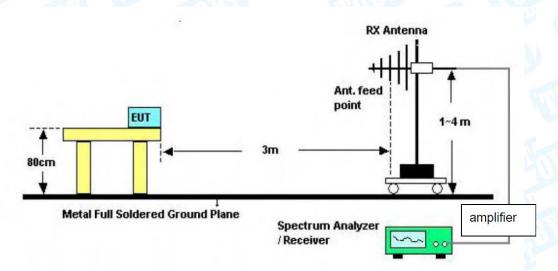
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the

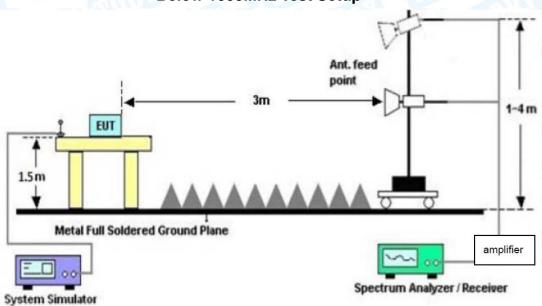
Page: 16 of 41

transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



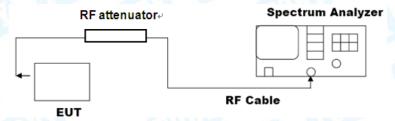

Page: 17 of 41

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 18 of 41

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- ●The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- ●Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 19 of 41

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

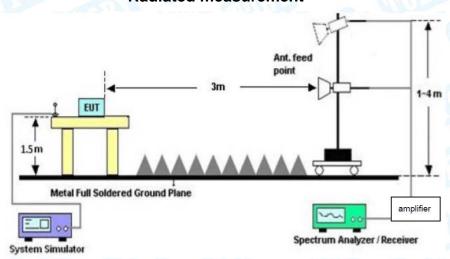
Page: 20 of 41

7. Restricted Bands Requirement

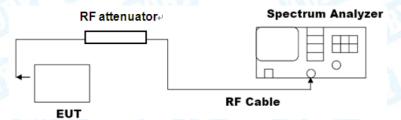
7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance N	leters(at 3m)
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)
2310 ~2390	-21.20	-41.20
2483.5 ~2500	-21.20	-41.20


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 21 of 41

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

Page: 22 of 41

EIRP is the equivalent isotropically radiated power in dBm *d* is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

Page: 23 of 41

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

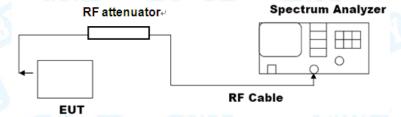
7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Page: 24 of 41

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth	>=500 KHz	2400~2483.5
(DTS bandwidth)	>=500 KHZ	2400~2463.5
99% occupied bandwidth		2400~2483.5

8.2 Test Setup

8.3 Test Procedure

--- DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

Page: 25 of 41

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
- 8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

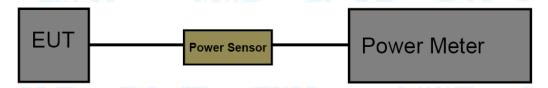
Please refer to the description of test mode.

8.6 Test Data

Page: 26 of 41

9. Peak Output Power

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	not exceed 1 W or 30dBm	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

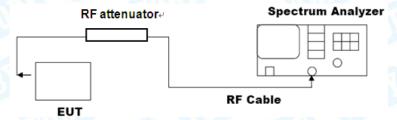
Please refer to the description of test mode.

9.6 Test Data

Page: 27 of 41

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Page: 28 of 41

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

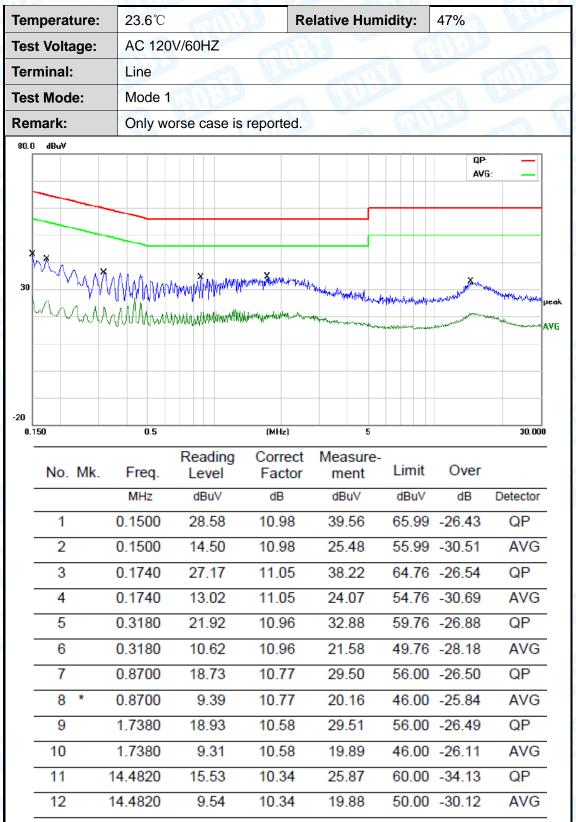
No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.55dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a FPC Antenna. It complies with the standard requirement.


Antenna Type	
⊠Permanent attached antenna	1
Unique connector antenna	
☐Professional installation antenna	les

Page: 29 of 41

Attachment A-- Conducted Emission Test Data

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202307-0144-10 Page: 30 of 41

Ę	Ten	npera	ature:		23.6°	\mathbb{C}				Relat	ive Hu	ımidit	ty:	47%	5	1	M
	Tes	t Vol	Itage:		AC 12	20V/60)HZ	33							1		33.2
	Ter	mina	al:		Neutr	al		-						M. P.	9		A.
	Tes	t Mo	de:		Mode	1		A	List				(Ball				
	Rer	nark	:		Only	worse	case	is repo	rted.	B.					19		
	80.0	0 dBu	uV											- Ot			ı
	I												1	QF AV	P: VG:		
	I	_											$\perp \!\!\! \perp$		\perp		
	I																
	;	\ *_*_															
1	30	∇V	$\mathbb{M}^{\mathbb{N}}$	ΛM		Analikinah)	Mankapala	ghyddigyd Army	Manhana			shirely	an francisco	Jun May	www.	^{h-} Ykyko/Ailleh-ill	
	- !		1. N. N	/ " Mhh	ייאן נווי ליון! [א א [A AMAMAMA	thinh.	سيال بار		Mary Mary	UNIVERSITY OF THE BOOK	in in the second	Andrew		, M	Voyacadani	peak
Ę	Į		4401	_ኒ ሌለስ	HIMAA	MAMARA	MMpq/Mn	den artifreja Farind	Majer HAME OF	Vigoporganikansk		Andropology	e-gyreedyle:	Afternation	manger	the manager	AVG
	1												\dagger				
	1												+				
	-20												\dagger				
		.150			0.5			(MH	lz)		5					30.000	0
1	_					Read	ding	Corr	rect	Mea	sure-						_
	Į	No.	Mk.	F	req.	Lev		Fac			ent	Lim	it	Ove	r		
				N	ИНZ	dBu	uV	dB		dB	u∨	dBu	V	dB	D	Detecto	or
		1		0.1	500	28.	32	10.9	98	39.	.30	65.9	99	-26.69	9	QP	_
		2		0.1	500	14.	15	10.9	98	25.	.13	55.9	99	-30.86	6	AVC	3
		3		0.1	740	27.	02	11.0)5	38.	.07	64.7	76	-26.69	9	QP	_
		4		0.1	740	12.	74	11.0)5	23.	.79	54.7	76	-30.97	7	AVC	3
		5		0.4	1060	23.	17	10.8	39	34.	.06	57.7	73	-23.6	7	QP	_
		6		0.4	1060	12.	44	10.8	39	23.	.33	47.7	73	-24.40	0	AVC	<u>G</u>
		7		0.4	620	22.	73	10.9	91	33.	.64	56.6	36	-23.02	2	QP	_
Ì		8	*	0.4	620	12.	84	10.9	91	23.	.75	46.6	36	-22.9°	1	AVC	G
	_	9		1.7	340	19.		10.5		29.	.80	56.0	00	-26.20	0	QP	
	_	10			340		83	10.5			.42			-26.58		AVC	
Ì	_	11			2580	15.		10.2			.58			-34.42		QP	
1		•				-							-		_	~.	

Remark:

11 12

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

8.70

10.26

12.2580

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

AVG

50.00 -31.04

18.96

Page: 31 of 41

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Ten	npera	ature:	24.3°	2			Relative H	umidity:	45%	
Tes	t Vol	tage:	AC 12	20V/60H	łΖ				MI	1750
Ant	. Pol		Horize	ontal			1.3			
Tes	t Mo	de:	Mode	2	1	Miles		Alle		16
Rer	mark		Only	worse ca	ase i	is reported.	Wille		THUE	
80.0	dBu	V/m								
70										
60 50								(RF)FCC 15 Margin -6 d	iC 3M Radiatio	in
40										
30	L .					.				6 X
20					, ,	Å.,,	LulyA	5 Mary Mary Mary Mary Mary Mary Mary Mary	maryan registantes printes	MANAMANAMORA
10	*	VIV	typhogalyydding	Agreed to the following to be the first		Mundanilya	A Share Market Andrew		and the state of t	N _{AA} AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
10 0 -10	, , , , , , , , , , , , , , , , , , ,	VIANA,	Marked John Mary	Maria Januari Janah	w.J.W	Mundandun	A Programme Andrews Programme	**************************************	garagery experience	Municipal Deal
10 0 -10 -20	0.000	V MAN	en na	Maria Maria		(MHz)		5 ************************************	garagina sa	
10 0 -10 -20 30	0.000 No.	Frequ (MI	enn	Readi (dBu)	ing		Level		Margin	
10 0 -10 -20 30		Frequ	ency Hz)	Readi	ing V)	rmH₂i Factor	Level	Limit	Margin	1000.00
10 0 -10 -20 30	No.	Frequ (MI	iency Hz) 814	Readi (dBu\	ing V)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.00
10 0 -10 -20 30	No.	Frequ (MF	lency Hz) 814 022	Readi (dBu\	ing V) 2	Factor (dB/m)	Level (dBuV/m) 25.41	Limit (dBuV/m) 40.00	Margin (dB) -14.59	Detector
10 0 -10 -20 30	No. 1 2 *	Frequ (MF 36.3 42.3	sn nn lency Hz) 814 022 588	Readi (dBu\ 48.3 49.1	ing V) 2 9	Factor (dB/m) -22.91 -22.83	Level (dBuV/m) 25.41 26.36	Limit (dBuV/m) 40.00 40.00	Margin (dB) -14.59 -13.64	Detector peak peak
2	No. 1 2 *	Frequ (MF 36.3 42.3 63.7	sn nn lency Hz) 814 022 588 2655	Readi (dBu\ 48.3 49.1 39.7	ing V) 2 9 6 4	Factor (dB/m) -22.91 -22.83 -23.94	Level (dBuV/m) 25.41 26.36 15.82	Limit (dBuV/m) 40.00 40.00 40.00	Margin (dB) -14.59 -13.64 -24.18	Detector peak peak peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) =Limit QPK(dBµV/m)-QuasiPeak (dBµV/m)

Report No.: TBR-C-202307-0144-10 Page: 32 of 41

Tempera	ature:	24.3°	24.3°C Relative Humidity:				nidity:	45%	
Test Vol	tage:	AC 12	20V/60	HZ	333		No.		Alle
Ant. Pol		Vertic	Vertical						
Test Mo	de:	Mode 2					AT BE		
Remark		Only worse case is reported.							
80.0 dB	uV/m								
70									
60							(RF)FCC 150	3M Radiation	
50							Margin -6 dB		
40									
30	2				5				5
									Language Distance
ن ا	i X	3 4			Ň			a market market withy	HARACAN .
20		3 4 X	امر. امر		Å	. m.k.ws	war yak hapak kan kara ka	Harry Halland State Control of	HARLANDON I
ند. ا		3 4		War and Market	* Commonweal	Magney bearing from my	ygnwyrdh ynghetranicadaeth	general the way a trail the	Hell-Markey .
20		3 A		halland and the state of the st	* Commence of the commence of	adhatean do a san Park was	yan makin kalendari k	na maddida mar da airthig	with NAVV
10	Ž, Ž		~1	San James Mark	* Commonweal	ethalyment or his a top the way	vogeni, seles september seles seles	_a sternes the transfer of the second	***************************************
20 10 0 -10	, Š	***		Maria Mad	A COMPANIED	all with war in the house	ygan, steeld worked modern gande	named the control of the state	
10		20 00		halana p ^h Mad	(MHz)	all the second by my		anne de forme de de de la constante de la cons	1000.00
20 10 0 -10 -20 30.000	V 4m	en en	Read						1000.00
20 10 0 -10 -20	Frequ	r#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ding	(MHz)	Level	00	Margin (dB)	
20 10 0 -10 -20 30.000	Freque (M	en en	Read	ding uV)	rmH≥1 Factor	Level	Limit	Margin	1000.00
20 10 0 -10 -20 30.000 No.	Frequency (M	se en uency Hz)	Read (dBu	ding uV) 18	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.00
20 10 0 -10 -20 30.000 No.	Frequency (M 36.1 42.0	uency Hz)	Read (dBu	ding uV) 18	Factor (dB/m)	Level (dBuV/m) 25.27	Limit (dBuV/m) 40.00	Margin (dB) -14.73	Detector peak
20 10 0 -10 -20 30.000 No.	Frequency (M 36.1 42.0 55.2	uency Hz) 1272	Read (dBt 48.	ding uV) 18 54	Factor (dB/m) -22.91 -22.84	Level (dBuV/m) 25.27 27.70	Limit (dBuV/m) 40.00 40.00	Margin (dB) -14.73 -12.30	Detector peak peak
20 10 0 -10 -20 30.000 No.	Freque (M 36.1 42.0 55.2 65.3	uency Hz) 1272 0066 2207	Read (dBt 48.1 50.1 44.1	ding uV) 18 54 31	Factor (dB/m) -22.91 -22.84 -23.11	Level (dBuV/m) 25.27 27.70 21.20	Limit (dBuV/m) 40.00 40.00 40.00	Margin (dB) -14.73 -12.30 -18.80	Detector peak peak peak

*:Maximum data

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) =Limit QPK(dBµV/m)-QuasiPeak (dBµV/m)

x:Over limit !:over margin

Page: 33 of 41

Above 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal	William Control	The same
Test Mode:	TX B Mode 2412MHz		THU .

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11251.000	45.18	-1.61	43.57	74.00	-30.43	peak
2	13240.000	43.72	-0.20	43.52	74.00	-30.48	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz	THU .	TO VI

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	13240.000	43.22	-0.20	43.02	74.00	-30.98	peak
2	14362.000	41.37	0.73	42.10	74.00	-31.90	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 34 of 41

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal	(13)	1000
Test Mode:	TX B Mode 2437MHz		60037

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10919.500	44.21	-1.79	42.42	74.00	-31.58	peak
2 *	14387.500	42.44	0.91	43.35	74.00	-30.65	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		CONT.
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2437MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11302.000	44.56	-1.15	43.41	74.00	-30.59	peak
2 *	13903.000	42.53	1.01	43.54	74.00	-30.46	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 35 of 41

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX B Mode 2462MHz		CONTRACTOR OF THE PARTY OF THE

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10919.500	45.12	-1.79	43.33	74.00	-30.67	peak
2	14438.500	41.98	0.86	42.84	74.00	-31.16	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		MUDI
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2462MHz		YOU

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	12526.000	43.19	-0.67	42.52	74.00	-31.48	peak
2	13928.500	41.42	0.85	42.27	74.00	-31.73	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 36 of 41

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX G Mode 2412MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10945.000	44.38	-1.80	42.58	74.00	-31.42	peak
2	13316.500	42.60	-0.14	42.46	74.00	-31.54	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V	WILLIAM -	TU
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2412MHz		0.00

-

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10792.000	44.80	-2.31	42.49	74.00	-31.51	peak
2 *	13265.500	44.19	-0.20	43.99	74.00	-30.01	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 37 of 41

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2437MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11480.500	43.64	-1.01	42.63	74.00	-31.37	peak
2 *	13546.000	43.77	0.02	43.79	74.00	-30.21	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V	WILLIAM STATE	
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2437MHz		000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10486.000	46.30	-3.58	42.72	74.00	-31.28	peak
2 *	13546.000	43.21	0.02	43.23	74.00	-30.77	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 38 of 41

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		000
Test Mode:	TX G Mode 2462MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	12959.500	42.31	-0.64	41.67	74.00	-32.33	peak
2 *	14566.000	41.58	0.79	42.37	74.00	-31.63	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V	WILLIAM STATE	MANAGE
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2462MHz	TO US	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10945.000	44.17	-1.80	42.37	74.00	-31.63	peak
2 *	13112.500	42.96	-0.17	42.79	74.00	-31.21	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 39 of 41

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		77
Ant. Pol.	Horizontal		11:32
Test Mode:	TX n(HT20) Mod	e 2412MHz	CEMPS

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	11276.500	43.87	-1.37	42.50	74.00	-31.50	peak
2 *	13928.500	42.22	0.85	43.07	74.00	-30.93	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX n(HT20) Mode 2412Mi	Hz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10486.000	45.78	-3.58	42.20	74.00	-31.80	peak
2 *	13214.500	44.00	-0.20	43.80	74.00	-30.20	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 40 of 41

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		000
Test Mode:	TX n(HT20) Mode 2437	MHz	(1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10817.500	45.40	-2.17	43.23	74.00	-30.77	peak
2	14260.000	42.66	0.29	42.95	74.00	-31.05	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX n(HT20) Mode 2437Ml	НZ	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	12143.500	43.50	-0.73	42.77	74.00	-31.23	peak
2	13495.000	42.31	0.11	42.42	74.00	-31.58	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 41 of 41

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal		1000		
Test Mode:	TX n(HT20) Mode 2462N	ИНz	60037		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	12016.000	42.60	-0.77	41.83	74.00	-32.17	peak
2 *	14336.500	42.62	0.55	43.17	74.00	-30.83	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		THURSDAY
Ant. Pol.	Vertical	of the	TO THE
Test Mode:	TX n(HT20) Mod	le 2462MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10843.000	45.24	-2.04	43.20	74.00	-30.80	peak
2 *	13265.500	44.55	-0.20	44.35	74.00	-29.65	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----

