

FCC PART 15.247

TEST REPORT

For

Dongguan Jizhi Electronic Technology Co., Ltd

Building H, Fasite Industry Park, No. 89, Liyatang Industry Zone, Lincun, Tangxia Town, Dongguan, China

FCC ID: 2AXE4-GK61S

Report Type: **Product Name:**

USB+Bluetooth 2 mode Keyboard Original Report

Report Number: DG6210426-13956E-00

Report Date: 2021-08-13

Reviewed By:

Gavin Xu

RF Engineer

Ganin Xn

Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan, **Test Laboratory:**

Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
TECHNICAL SPECIFICATION	
OBJECTIVE	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
DECLARATIONS	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
SUPPORT CABLE LIST AND DETAILS.	
BLOCK DIAGRAM OF TEST SETUP	
TEST EQUIPMENT LIST	
Environmental Conditions	8
SUMMARY OF TEST RESULTS	9
1 - RF EXPOSURE	10
APPLICABLE STANDARD	
2 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Connector Construction	
3 – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
TEST SYSTEM SETUPEMI TEST RECEIVER SETUP	
TEST PROCEDURE.	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Data	
4 - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST SYSTEM SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST DATATEST DATA	
5 - CHANNEL SEPARATION TEST	22
APPLICABLE STANDARD	22
TEST PROCEDURE	
Test Data	
6 – 20 dB BANDWIDTH TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
7 - QUANTITY OF HOPPING CHANNEL TEST	
TEST PROCEDURE	
TEST DATA	
8 - TIME OF OCCUPANCY (DWELL TIME)	27

APPLICABLE STANDARD	27
TEST PROCEDURE	27
Test Data	
9 - PEAK OUTPUT POWER MEASUREMENT	29
APPLICABLE STANDARD	29
TEST PROCEDURE	
Test Data	
10 - BAND EDGES TESTING	30
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product Name:	USB+Bluetooth 2 mode Keyboard		
Test Model:	GK61S		
Mutiple Models:	GK61XS,SK61S,AK61S		
Model Difference:	Refer to the DOS letter		
Rated Input Voltage:	DC 3.7V from Battery or DC 5V from USB		
Serial Number:	DG6210426-13956E-RF-S_433		
EUT Received Date:	2021-04-27		
EUT Received Status:	Good		

Technical Specification

Operation Frequency Range (MHz):	2402-2480
Max. RF Output Power (EIRP) (dBm):	-2.34
Antenna Gain (dBi)▲:	0
Modulation Type:	GFSK

Objective

This report is prepared on behalf of **Dongguan Jizhi Electronic Technology Co., Ltd** in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB,1G~6GHz: 4.98 dB, 6G~18GHz: 5.89 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "\(\bigcap \)". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "★".

SYSTEM TEST CONFIGURATION

Description of Test Configuration

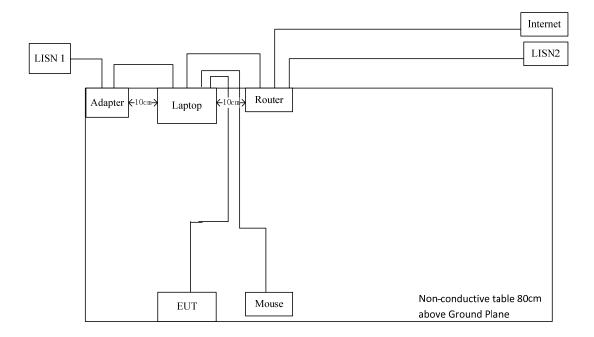
The system was configured for testing in engineering mode, which was provided by manufacturer.

EUT Exercise Software

The software "bluetool 1.4.4.9.exe" was used during test, which was provided by manufacturer. The maximum power level was configured by the software as below table.

Mode	Channel	Frequency (MHz)	Power Level Setting
	Low	2402	3
GFSK	Middle	2441	3
	High	2480	3

Equipment Modifications


Manufacturer	Description	Model	Serial Number
Lenovo	Laptop	Thinkpad E450	PF-0MRADG
Lenovo	AC Adapter	ADLX65NDC3A	45N0254
DELL	Mouse	MS116	XMG3X 570-AAIZ
TOTOLINK	Router	Т6	IP04447_1620714
DELL	Laptop	E6410	CB30920865
PHILIPS	Mouse	SPK7214	M214bq210411115
ZIONCOM	WiFi Router	MB-R210-00	/

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
Mouse Cable	Yes	No	1.5	Laptop	Mouse
Adapter Cable	Yes	Yes	2.0	Adapter	Laptop
RJ45 Cable	Yes	No	1.0	Laptop	Router
USB Cable	Yes	Yes	1.5	Laptop	EUT

Page 6 of 32

Block Diagram of Test Setup

Test Equipment List

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	AC Line Conducted emission						
R&S	LISN	ENV 216	101614	2020-09-12	2021-09-12		
R&S	EMI Test Receiver	ESCI	101121	2020-07-06	2021-07-05		
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2020-09-05	2021-09-05		
R&S	Test Software	EMC32	Version 9.10.00	N/A	N/A		
	Ra	diation Below 1GHz Test					
Sunol Sciences	Antenna	JB3	A060611-1	2020-11-10	2023-11-10		
R&S	EMI Test Receiver	ESR3	102453	2020-09-12	2021-09-12		
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2020-09-05	2021-09-05		
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2020-09-05	2021-09-05		
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2021-05-06	2022-05-05		
HP	Amplifier	8447D	2727A05902	2020-09-05	2021-09-05		
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A		
	Ra	diation Above 1GHz Test					
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12		
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2020-12-05	2023-12-04		
Agilent	Spectrum Analyzer	E4440A	SG43360054	2020-07-06	2021-07-05		
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2020-09-05	2021-09-05		
Unknown	Coaxial Cable	C-2.4J2.4J-50	C-0700-02	2020-06-27	2021-06-26		
Mini-Circuit	Amplifier	ZVA-213-S+	54201245	2020-09-05	2021-09-05		
Quinstar	Amplifier	QLW-18405536-JO	15964001001	202006-27	2021-06-26		
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A		
E-Microwave Band-stop Filters		OBSF-2400-2483.5-S	OE01601525	2020-06-16	2021-06-15		
	RF Conducted						
R&S	Spectrum Analyzer	FSV40	101591	2020-06-29	2021-06-28		
yzjingcheng	Coaxial Cable	KTRFBU-141-50	41005012	2020-09-05	2021-09-05		
E-Microwave	Blocking Control	EMDCB-00036	0E01201047	2020-07-06	2021-07-06		
Agilent	USB Wideband Power Sensor	U2021XA	MY54080014	2020-09-12	2021-09-12		

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Environmental Conditions

Test Items	Conducted Emissions	Radiated Emissions (Below 1GHz)	Radiated Emissions (Above 1GHz)	RF Conducted
Temperature:	25.5℃	26.3°C	27.4°C	24.5°C
Relative Humidity:	60%	46%	54%	60%
ATM Pressure:	100.3kPa	100.0kPa	100.5 kPa	100.4kPa
Tester:	Walker Chen	Calvin Chen	Lee Li	Rennes Guo
Test Date:	2021-05-20	2021-08-10	2021-05-15	2021-05-17

Page 8 of 32

SUMMARY OF TEST RESULTS

S/N	FCC Rules	Description of Test	Result
1	§15.247 (i) §1.1310	RF Exposure	Compliance
2	§15.203	Antenna requirement	Compliance
3	§15.207(a)	AC line conducted emissions	Compliance
4	§15.205 §15.209 §15.247(d)	Spurious emissions	Compliance
5	§15.247(a)(1)	Channel separation	Compliance
6	§15.247(a)(1)	20 dB bandwidth	Compliance
7	§15.247(a)(1)(iii)	Quantity of hopping channel test	Compliance
8	§15.247(a)(1)(iii)	Time of occupancy (dwell time)	Compliance
9	§15.247(b)(1)	Peak output power measurement	Compliance
10	§15.247(d)	Band edges	Compliance

1 - RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max conducted power including tune-up tolerance is -2 dBm (0.63 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 0.63/5*($\sqrt{2.480}$) = 0.2< 3.0

So the stand-alone SAR evaluation is not necessary.

2 - ANTENNA REQUIREMENT

Applicable Standard

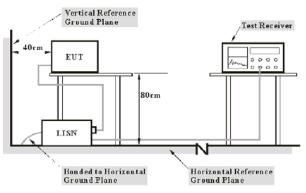
According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has one internal antennas arrangement, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Input Impedance (Ohm)	Antenna Gain /Frequency Range	
PCB	50	0 dBi/2.4~2.5GHz	


Result: Compliance.

3 - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

Corrected Amplitude & Margin Calculation

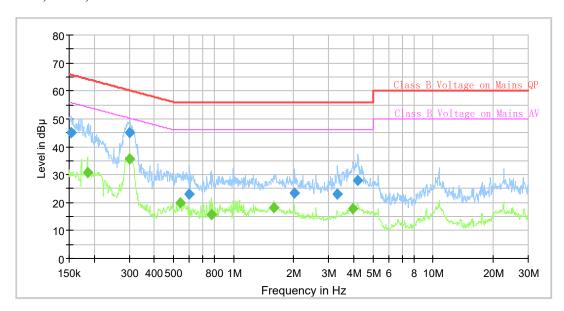
The basic equation is as follows: $V_C = V_R + A_C + VDF$; $C_f = A_C + VDF$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

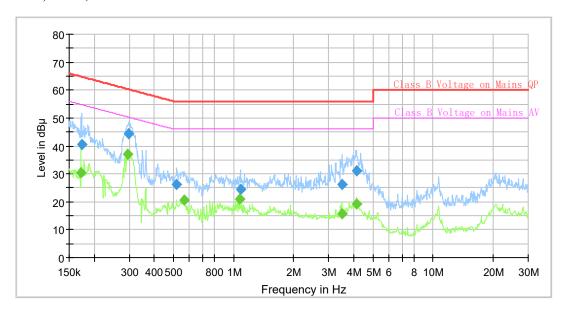
C_f: Correction Factor


The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows: Margin = Limit – Corrected Amplitude

Test Data

Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots.


AC120V, 60 Hz, Line:

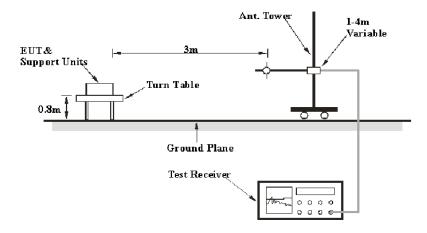
Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB µ V)	(dB u V)	(dB u V)	(dB)	(kHz)		(dB)
0.153023	45.13		65.83	20.70	9.000	L1	9.6
0.184955		30.74	54.26	23.52	9.000	L1	9.6
0.300036		35.65	50.24	14.59	9.000	L1	9.6
0.301537	45.22		60.20	14.98	9.000	L1	9.6
0.540467		19.91	46.00	26.09	9.000	L1	9.6
0.600145	23.11		56.00	32.89	9.000	L1	9.6
0.773973		15.63	46.00	30.37	9,000	L1	9.7
1.595161		18.09	46.00	27.91	9.000	L1	9.7
2.026635	23.25		56.00	32.75	9.000	L1	9.7
3.320593	23.15		56.00	32.85	9.000	L1	9.7
3.973689		17.96	46.00	28.04	9.000	L1	9.7
4.197788	27.92		56.00	28.08	9.000	L1	9.7

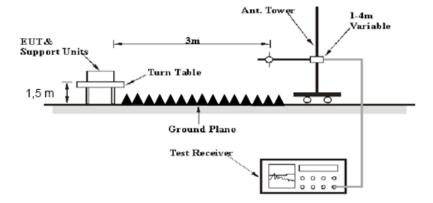
AC120V, 60 Hz, Neutral:

Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB u V)	(dB u V)	(dB u V)	(dB)	(kHz)		(dB)
0.171623		30.24	54.88	24.64	9.000	N	9.6
0.173343	40.44		64.80	24.36	9.000	N	9.6
0.294110		37.07	50.41	13.34	9.000	N	9.6
0.298544	44.54		60.28	15.74	9.000	N	9.6
0.519327	26.14		56.00	29.86	9,000	N	9.6
0.565280		20.53	46.00	25.47	9,000	N	9.6
1.070335		20.96	46.00	25.04	9.000	N	9.6
1.081065	24.31		56.00	31.69	9,000	N	9.6
3,490408		15.61	46.00	30.39	9,000	N	9.6
3.507860	26.37		56.00	29.63	9,000	N	9.6
4.135446		19.26	46.00	26.74	9.000	N	9.6
4.135446	30.99		56.00	25.01	9.000	N	9.6


4 - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205

Test System Setup

Below 1GHz:

Above 1GHz:

The radiated emission below 1GHz tests were performed in the 3meters chamber, above 1GHz tests were performed in the 3 meters chamber B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Adove I GHZ	1MHz	10 Hz	/	AV

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

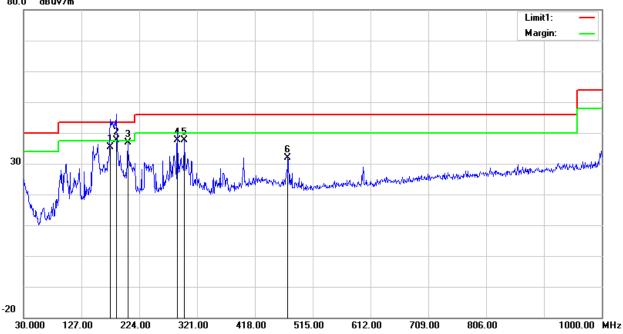
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

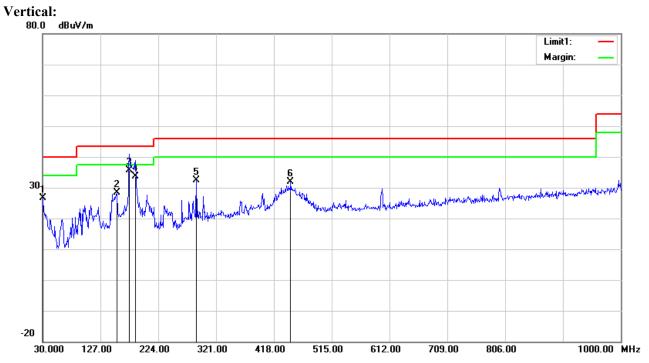
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Data


Test Mode: Transmitting

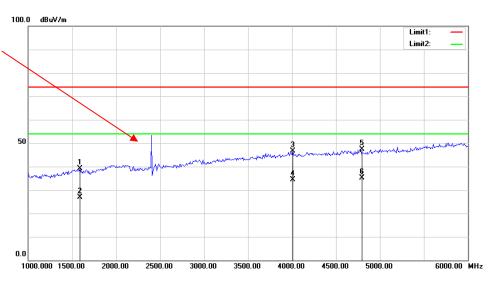
Test Result: Compliance

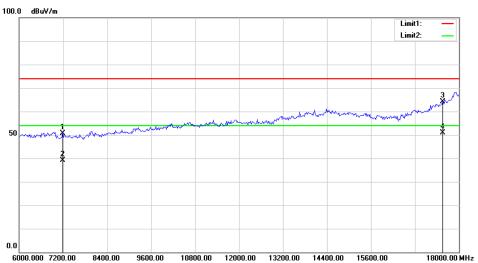

Please Refer to the following data.

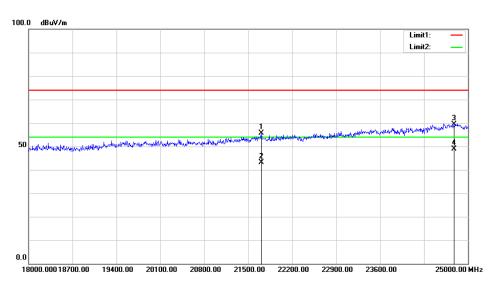
1) 30MHz-1GHz (BDR low channel was the worst)

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBµV)		(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
1	175.5000	48.70	QP	-13.24	35.46	43.50	8.04
2	185.2000	51.20	QP	-13.57	37.63	43.50	5.87
3	204.6000	49.80	peak	-12.96	36.84	43.50	6.66
4	288.0200	48.20	QP	-10.50	37.70	46.00	8.30
5	299.6600	47.92	peak	-10.37	37.55	46.00	8.45
6	473.2900	37.87	peak	-5.87	32.00	46.00	14.00

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBµV)		(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
1	30.0000	30.17	peak	-3.49	26.68	40.00	13.32
2	155.1300	40.33	peak	-11.89	28.44	43.50	15.06
3	175.5000	48.90	QP	-13.24	35.66	43.50	7.84
4	186.1700	47.30	QP	-13.56	33.74	43.50	9.76
5	288.0200	42.76	peak	-10.50	32.26	46.00	13.74
6	446.1300	38.75	peak	-6.93	31.82	46.00	14.18


2) 1GHz-25GHz

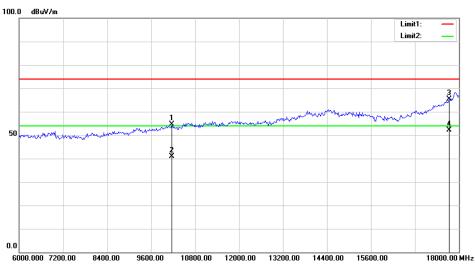

Emagnonov	Reco	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	Remark	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
	_	_	_	Low Chan	nel: 2402	MHz			
2390.00	29.72	PK	Н	28.08	1.80	0.00	59.60	74.00	14.40
2390.00	16.97	AV	Н	28.08	1.80	0.00	46.85	54.00	7.15
4804.00	36.85	PK	Н	32.91	3.17	25.60	47.33	74.00	26.67
4804.00	24.76	AV	Н	32.91	3.17	25.60	35.24	54.00	18.76
7206.00	35.86	PK	Н	35.74	4.82	25.60	50.82	74.00	23.18
7206.00	23.54	AV	Н	35.74	4.82	25.60	38.50	54.00	15.50
			l	Middle Cha	nnel: 244	l MHz			
4882.00	36.02	PK	Н	33.06	3.27	25.66	46.69	74.00	27.31
4882.00	23.93	AV	Н	33.06	3.27	25.66	34.60	54.00	19.40
7323.00	35.24	PK	Н	36.04	4.62	25.73	50.17	74.00	23.83
7323.00	23.19	AV	Н	36.04	4.62	25.73	38.12	54.00	15.88
				High Chan	nel: 2480	MHz			
2483.50	29.33	PK	Н	28.27	1.84	0.00	59.44	74.00	14.56
2483.50	17.14	AV	Н	28.27	1.84	0.00	47.25	54.00	6.75
4960.00	36.18	PK	Н	33.22	3.23	25.63	47.00	74.00	27.00
4960.00	24.09	AV	Н	33.22	3.23	25.63	34.91	54.00	19.09
7440.00	35.14	PK	Н	36.34	4.41	25.85	50.04	74.00	23.96
7440.00	23.11	AV	Н	36.34	4.41	25.85	38.01	54.00	15.99

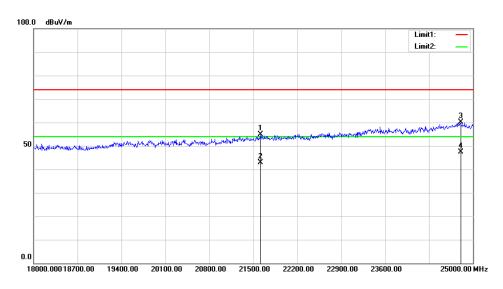

3) Worst plots (GFSK low channel was the worst)

Horizontal

Fundamental Test with Band Rejection Filter







Vertical:

Fundamental Test with Band Rejection Filter

5 - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Test Mode: Transmitting


Test Result: Compliance. Please refer to following tables and plots.

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)
222	Low	2402	1.000	0.69
BDR (GFSK)	Middle	2441	1.000	0.69
(OFSK)	High	2480	1.000	0.69

Note: Limit= $(2/3) \times 20dB$ bandwidth

BDR Mode (GFSK):

Low Channel

Date: 17.MAY.2021 11:50:47

Middle Channel

Date: 17.MAY.2021 11:52:36

High Channel

Date: 17.MAY.2021 11:53:59

6 – 20 dB BANDWIDTH TESTING

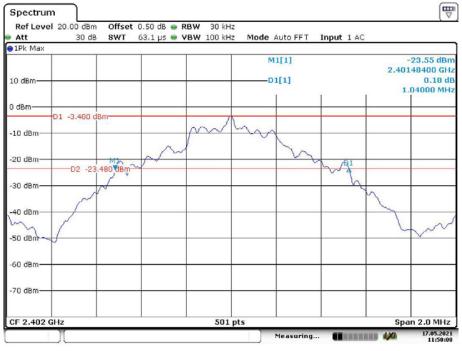
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data


Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots.

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
2221	Low	2402	1.040
BDR Mode (GFSK)	Middle	2441	1.040
(GI DIC)	High	2480	1.040

BDR Mode (GFSK):

Low Channel

Date: 17.MAY.2021 11:50:00

Middle Channel

Date: 17.MAY.2021 11:51:44

High Channel

Date: 17.MAY.2021 11:53:04

7 - QUANTITY OF HOPPING CHANNEL TEST

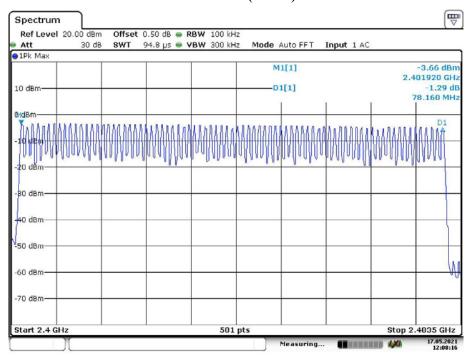
Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Data


Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots.

Test mode	Frequency Range (MHz)	Number of Hopping Channel	Limit
GFSK	2400-2483.5	79	≥15

Test Result: Compliance. Please refer to following tables and plots

BDR Mode (GFSK)

Date: 17.MAY.2021 12:08:15

8 - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; the time of single pulses was tested.

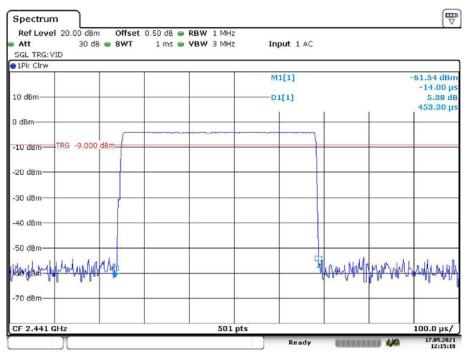
Test Data

Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots.

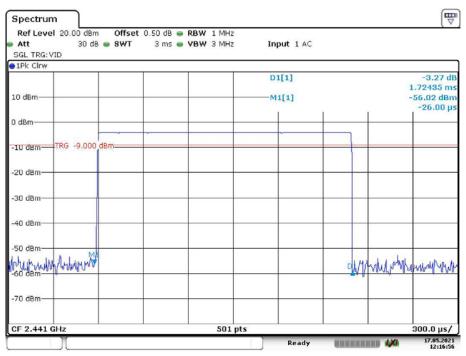
Mode	Packet type	Channel	Frequency (MHz)	Puse width (ms)	Result (s)	Limit (s)
	DH1	Middle	2441	0.453	0.145	
GFSK	DH3	Middle	2441	1.724	0.276	0.4
	DH5	Middle	2441	2.984	0.318	

Note:

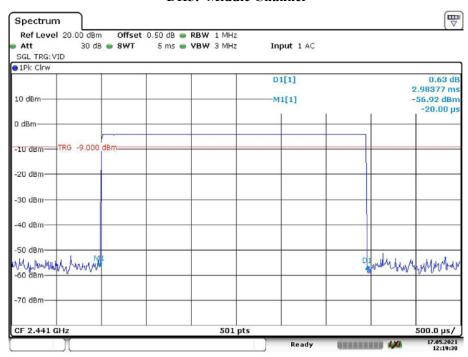

DH1:Dwell time=Pulse time (ms) \times (1600/2/79) \times 31.6 s

DH3:Dwell time=Pulse time (ms) \times (1600/4/79) \times 31.6 s

DH5:Dwell time=Pulse time (ms) \times (1600/6/79) \times 31.6 s


BDR Mode (GFSK):

DH1: Middle Channel


Date: 17.MAY.2021 12:15:18

DH3: Middle Channel

Date: 17.MAY.2021 12:16:56

DH5: Middle Channel

Date: 17.MAY.2021 12:19:30

9 - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Test Procedure

1. Place the EUT on a bench and set in transmitting mode.

- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots.

Mode	Frequency (MHz)	Peak Conducted Output power (dBm)	Limit (dBm)
DDD 14 1	2402	-2.34	21
BDR Mode (GFSK)	2441	-3.10	21
(GIBK)	2480	-3.96	21

Note: The data above was tested in conducted mode.

10 - BAND EDGES TESTING

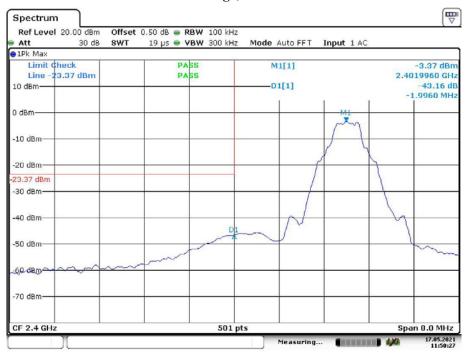
Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

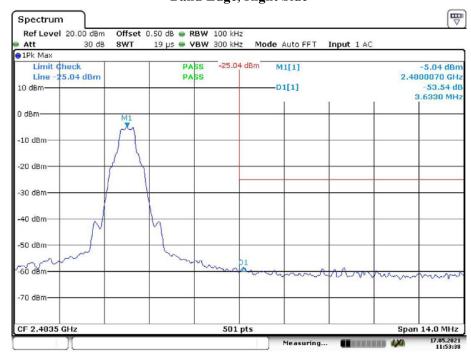
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW/ VBW of spectrum analyzer to 100/300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data


Test Mode: Transmitting

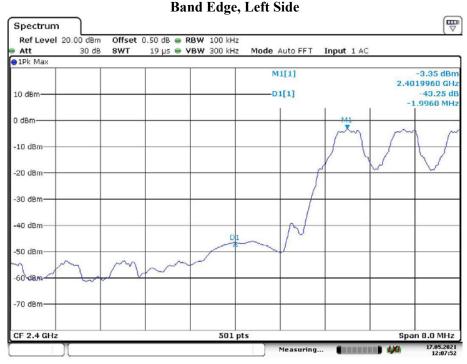
Test Result: Compliance. Please refer to following tables and plots.

Single mode:

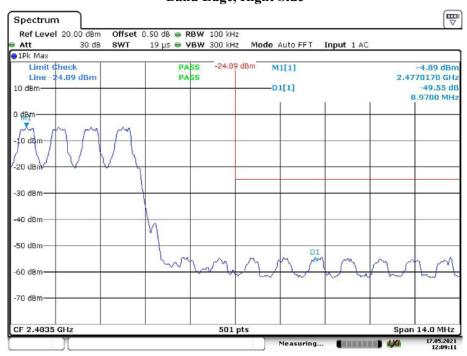

BDR Mode (GFSK):

Band Edge, Left Side

Date: 17.MAY.2021 11:50:27


Band Edge, Right Side

Date: 17.MAY.2021 11:53:38


Hopping Mode

BDR Mode (GFSK):

Date: 17.MAY.2021 12:07:52

Band Edge, Right Side

Date: 17.MAY.2021 12:09:11

***** END OF REPORT *****