TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRTFCC2009-0295(1)				
2. Customer				
Name : DASAN Networks, Inc.				
 Address (FCC) : DASAN Tower, 49, Daewangpangyo-ro644Beon-gil, Bundang-gu, Seongnam-si, South Korea 13493 Address (IC) : DASAN Tower, 49, Daewangpangyo-ro644Beon-gil, Bundang-gu Seongnam-si/Gyeonggi-do 13493 Korea (Republic Of) 				
3. Use of Report : FCC & IC Certification				
 4. Product Name / Model Name : Vehicle Control Terminal / TMS3.0 (300611-01930) FCC ID : 2AXDMTMS30DUALTYPEB IC : 26419-TMS30TYPEB 				
5. FCC Regulation(s): Part 2, 22, 24, 27 IC Standard(s): RSS-132 Issue 3, 133 Issue 6, 139 Issue 3 Test Method Used : KDB971168 D01v03, ANSI/TIA-603-E-2016, ANSI C63.26-2015				
6. Date of Test : 2020.07.16 ~ 2020.09.22				
7. Location of Test : 🛛 Permanent Testing Lab 🛛 On Site Testing				
8. Testing Environment : Refer to appended test report.				
9. Test Result : Refer to attached test result.				
The results shown in this test report refer only to the sample(s) tested unless otherwise stated.				
Affirmation Tested by Reviewed by				
Name : JaeHyeok Bang				
2020.10.22.				
DT&C Co., Ltd.				
Unconnected with KS Q ISO / IEC 17025 and KOLAS accreditation.				
If this report is required to confirmation of authenticity, please contact to report@dtnc.net				

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2009-0295	Sep. 23, 2020	Initial issue	JaeHyeok Bang	JaeJin Lee
DRTFCC2009-0295(1)	Oct. 22, 2020	Update the FCC ID	JaeHyeok Bang	JaeJin Lee

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
2.1 EUT DESCRIPTION	5
2.2 TESTING ENVIRONMENT	5
2.3 MEASURING INSTRUMENT CALIBRATION	5
2.4 MEASUREMENT UNCERTAINTY	5
2.5 TEST FACILITY	
3. DESCRIPTION OF TESTS	6
3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)	6
3.2 PEAK TO AVERAGE RATIO	
3.3 OCCUPIED BANDWIDTH (99 % Bandwidth)1	0
3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL 1	1
3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL	2
3.6 RADIATED SPURIOUS EMISSIONS 1	3
3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
4. LIST OF TEST EQUIPMENT1	
5. SUMMARY OF TEST RESULTS 10	
6. EMISSION DESIGNATOR AND SAMPLE CALCULATION 18	
7. TEST DATA 19	9
7. TEST DATA	9 9
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2	9 9 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2	9 20 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2	9 20 20 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2	9 9 20 20 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2	9 9 20 20 20 20 21
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2	9 9 20 20 20 20 21 22
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2	9 9 20 20 20 20 21 22 24
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2	9 9 20 20 20 21 22 24 29
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2	9 9 20 20 20 21 22 24 29 29
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 3	9 9 20 20 20 20 21 22 4 29 29 1
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 3 8.1 PEAK TO AVERAGE RATIO 3	9 9 20 20 20 21 22 4 29 29 1 31
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 3 8.1 PEAK TO AVERAGE RATIO 3 8.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 3	9 9 20 20 20 20 21 22 4 29 29 1 31 35 35 35 35 35 35 35 35 35 35
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 3 8.1 PEAK TO AVERAGE RATIO 3	9 9 20 20 20 20 21 22 24 29 29 1 35 33 35 35 35 35 35 35 35 35

1. GENERAL INFORMATION

Applicant Name	:	DASAN Networks, Inc.
Address(FCC)	:	DASAN Tower, 49, Daewangpangyo-ro644Beon-gil, Bundang-gu, Seongnam-si, South Korea 13493
Address(IC)	:	DASAN Tower, 49, Daewangpangyo-ro644Beon-gil, Bundang-gu Seongnam-si/Gyeonggi-do 13493 Korea (Republic Of)
FCC ID	:	2AXDMTMS30DUALTYPEB
IC	:	26419-TMS30TYPEB
FCC Classification	:	PCS Licensed Transmitter (PCB)
ЕИТ Туре	:	Vehicle Control Terminal
Model Name	:	TMS3.0 (300611-01930)
Add Model Name	:	NA
Hardware Version	:	A1
Software Version	:	V3.01.002
Serial Number	:	NA
Supplying power	:	DC 12 V, 24 V
Antenna Information	:	PCB Antenna
r		

Mada	Mode Tx Frequency (MHz)	Emission	ERP (Max	. Power)	EIRP (Max. Power)	
wode		Designator ^{Note}	dBm	w	dBm	w
GPRS850	824.2 ~ 848.8	247KGXW	32.51	1.782	34.66	2.924
EDGE850	824.2 ~ 848.8	245KG7W	25.45	0.351	27.60	0.575
WCDMA850	826.4 ~ 846.6	4M13F9W	22.57	0.181	24.72	0.296
WCDMA1700	1 712.4 ~ 1 752.6	4M14F9W	-	-	24.52	0.283
GPRS1900	1 850.2 ~ 1 909.8	248KGXW	-	-	32.63	1.832
EDGE1900	1 850.2 ~ 1 909.8	248KG7W	-	-	32.23	1.671
WCDMA1900	1 852.4 ~ 1 907.6	4M15F9W	-	-	28.90	0.776

Note: For GSM/EDGE 850 and WCMA 850/1700/1900, emission designator was reported based on the original report of certified module. For GSM/EDGE 1900, emission designator was reported based on the new test result.

2. INTRODUCTION

2.1 EUT DESCRIPTION

This EUT contains the following capabilities:

850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSUPA, Multi-band LTE and IRIDIUM Satellite communication.

2.2 TESTING ENVIRONMENT

Ambient Condition	
Temperature	+21 °C ~ +25 °C
 Relative Humidity 	42 % ~ 45 %

2.3 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.4 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

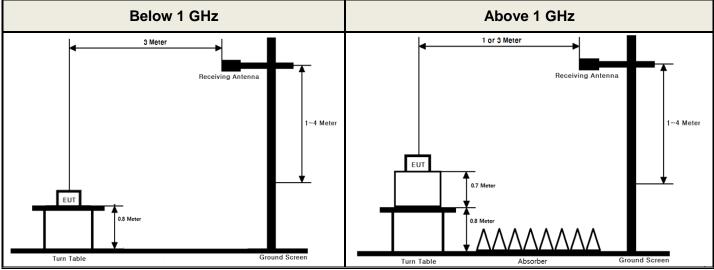
Parameter	Measurement uncertainty
Radiated Disturbance (Below 1 GHz)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.1 dB (The confidence level is about 95 %, $k = 2$)
Radiated Disturbance (Above 18 GHz)	5.3 dB (The confidence level is about 95 %, $k = 2$)

2.5 TEST FACILITY

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034


- ISED #: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 m or 1.5 m above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.17
- KDB971168 D01v03 Section 5.2.2
- ANSI 63.26-2015 Section 5.2.4.4.1

Test setting

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1 % to 5 % of the OBW.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - 1) Set = auto-couple, or

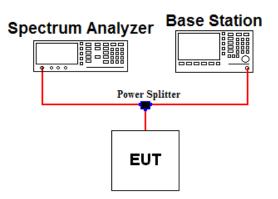
2) Set \geq [10 \times (number of points in sweep) \times (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter.

- 6. Detector = power averaging (rms).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-power transmissions).
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

The receiver antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.


The ERP/EIRP is calculated using the following formula:

ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn antenna and an isotropic antenna are taken into consideration.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

- KDB971168 D01v03 Section 5.7.2
- ANSI C63.26-2015 Section 5.2.3.4

A peak to average ratio measurement is performed at the conducted port of the EUT.

The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The present of time the signal spends at or above the level defines the probability for that particular power level.

Test setting

The spectrum Analyzer's CCDF measurement function is enabled.

- 1. Set resolution/measurement bandwidth \geq OBW or specified reference bandwidth.
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve.
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to the greater of $[10 \times (number of points in sweep) \times (transmission symbol period)]$ or 1 ms.
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
 - 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.
- 5. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

Alternate Procedure

- KDB971168 D01v03 - Section 5.7.3

- ANSI C63.26-2015 – Section 5.2.6

Use one of the measurement procedures of the peak power and record as P_{Pk} .

Use one of the measurement procedures of the average power and record as $\mathsf{P}_{\mathsf{Avg.}}$

Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm or dBW) - P_{Avg} (dBm or dBW).

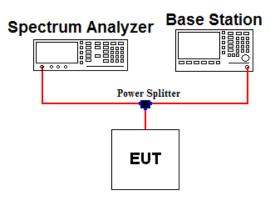
Where,

PAPR peak-to-average power ratio, in dB

PPk measured peak power or peak PSD level, in dBm or dBW

PAvg measured average power or average PSD level, in dBm or dBW

- Peak Power Measurement


- 1. Set the RBW ≥ OBW
- 2. Set VBW ≥ 3 x RBW
- 3. Set span ≥ 2 x RBW
- 4. Sweep time \geq 10 x (number of points in sweep) x (transmission symbol period).
- 5. Detector = peak
- 6. Trace mode = max hold
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1 % to 5 % of the OBW.
- 3. Set VBW ≥ 3 × RBW.
- 4. Set number of measurement points in sweep \geq 2 \times span / RBW..
- 5. Sweep time = 1) auto-couple, or
 - 2) set ≥ [10 x (number of points in sweep) x (transmission period)] for single sweep (automationcompatible (measurement. Transmission period is the on and off time of the transmitter.
- 6. Detector = power averaging (RMS).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable Triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each Sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-Power transmissions)
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.3 OCCUPIED BANDWIDTH (99 % Bandwidth)

Test set-up

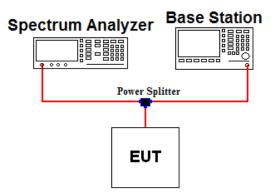
Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
1 852.4	8.64	-	-
1 880.0	8.69	-	-
1 907.6	8.72	-	-

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Test Procedure

- KDB971168 D01v03 Section 4.3
- ANSI C63.26-2015 Section 5.4.4


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

Test setting

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 % ~ 5 % of the expected OBW & VBW \ge 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 % ~ 5 % of the 99 % occupied bandwidth observed in step 6.

3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
10 000	11.56	20 000	15.03
-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

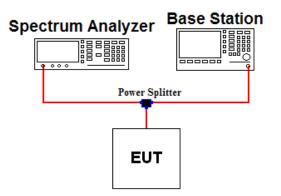
Test Procedure

- KDB971168 D01v03 - Section 6

- ANSI C63.26-2015 - Section 5.7

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths. The spectrum is scanned from 9 kHz up to a frequency including its 10th harmonic.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.


Test setting

- 1. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize

Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24, 27

3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency Range(MHz)	Offset Value (dB)	Frequency Range(MHz)	Offset Value (dB)
1 845 – 1 849	8.64	-	-
1 849 – 1 851	8.64	-	-
1 909 – 1 911	8.74	-	-
1 911 – 1 915	8.74	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

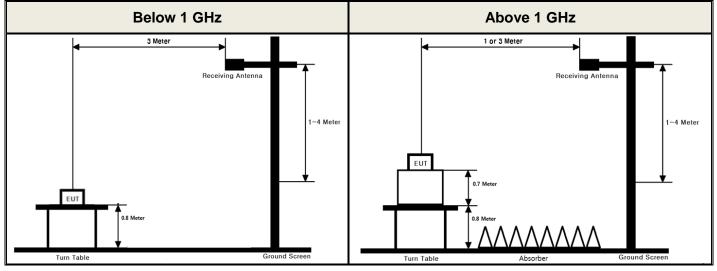
Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7

All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all modulations.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.

Test setting


- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1 % of the emission
- 4. VBW ≥ 3 X RBW
- 5. Detector = RMS & Trace mode = Max hold
- 6. Sweep time = Auto couple or 1 s for band edge
- 7. Number of sweep point ≥ 2 X span / RBW
- 8. The trace was allowed to stabilize

Note 1: In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of **at least one percent** of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.6 RADIATED SPURIOUS EMISSIONS

Test Set-up

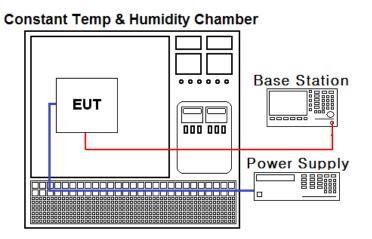
These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 m or 1.5 m above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.12
- KDB971168 D01v03 Section 5.8
- ANSI C63.26-2015 Section 5.5

Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW \ge 3 X RBW
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize


The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated spurious emission measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated spurious emission measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

- ANSI/TIA-603-E-2016
- KDB971168 D01v03 Section 9

The frequency stability of the transmitter is measured by:

a.) Temperature:

The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24, 27. The frequency stability of the transmitter shall be maintained within $\pm 0.000\ 25\$ % ($\pm 2.5\$ ppm) of the center frequency for Part 22.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature. (20 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C.
 A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	20/06/24	21/06/24	US47360812
Spectrum Analyzer	Agilent Technologies	N9020A	20/02/26	21/02/26	MY46471251
DC power supply	SM techno	SDP30-5D	20/06/24	21/06/24	305DNF079
DC power supply	SM techno	SDP30-5D	20/06/24	21/06/24	305DMG304
Power Splitter	ANRITSU	K241B	19/12/16	20/12/16	016681
Temp & Humi	SJ Science	SJ-TH-S50	20/06/23	21/06/23	U5542113
Multimeter	FLUKE	17B+	19/12/16	20/12/16	36390701WS
Radio Communication Analyzer	Agilent Technologies	E5515E	20/06/24	21/06/24	MY52113012
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-2
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-1
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Loop Antenna	ETS-Lindgren	6502	19/09/18	21/09/18	00226186
Bilog Antenna	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
Dipole Antenna	A.H.Systems Inc.	FCC-4	19/03/26	21/03/26	710A
Dipole Antenna	Schwarzbeck	UHA9105	20/04/10	22/04/10	2262
HORN ANT	ETS	3117	20/04/24	21/04/24	00140394
HORN ANT	ETS	3117	20/03/26	21/03/26	00152145
HORN ANT	A.H.Systems	SAS-574	20/06/24	21/06/24	154
HORN ANT	A.H.Systems	SAS-574	20/06/24	21/06/24	155
Amplifier	EMPOWER	BBS3Q7ELU	20/06/24	21/06/24	1020
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
PreAmplifier	Agilent	8449B	20/06/24	21/06/24	3008A02108
High-pass filter	Wainwright	WHKX12-935-1000- 15000-40SS	20/06/24	21/06/24	7
High-pass filter	Wainwright	WHKX12-2580-3000- 18000-80SS	20/06/24	21/06/24	3
High-pass filter	Wainwright	WHNX8.5/26.5G-6SS	20/06/24	21/06/24	1
Cable	DTNC	Cable	20/01/13	21/01/13	M-01
Cable	DTNC	Cable	20/01/13	21/01/13	M-04
Cable	Junkosha	MWX315	20/01/13	21/01/13	M-05
Cable	Junkosha	MWX221	20/01/13	21/01/13	M-06
Cable	Radiall	Cable	20/01/16	21/01/16	RF-65
Cable	Radiall	Cable	20/01/16	21/01/16	RF-84

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

5. SUMMARY OF TEST RESULTS

- GSM850, WCMDA850/1700/1900

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	-	Conducted Output Power	NA Note 2
22.913(a) 24.232(c) 27.50(d.4)	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	NA Note 2
2.1051 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Band Edge Emissions at Antenna Terminal Spurious Emissions at Antenna Terminal	NA Note 2
24.232(d) 27.50(d.5)	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Peak to Average Ratio	NA Note 2
2.1053 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Radiated Spurious and Harmonic Emissions	С
2.1055 22.355 24.235 27.54	RSS-132 [5.3] RSS-133 [6.3] RSS-139 [6.4]	Frequency Stability	NA Note 2

Note 2: For conducted test items, please refer to the test report of the granted module.

(FCC ID : XMR201903EG25G, IC: 10224A-201903EG25G)

Note 3: The radiated test items were performed at DC 12 V and DC 24 V. And the worst case data are reported.

- GSM1900

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	-	Conducted Output Power	с
24.232(c)	RSS-133 [6.4]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	С
24.238(a)	RSS-133 [6.5]	Band Edge Emissions at Antenna Terminal Spurious Emissions at Antenna Terminal	С
24.232(d)	RSS-133 [6.4]	Peak to Average Ratio	с
2.1053 24.238(a)	RSS-133 [6.5]	Radiated Spurious and Harmonic Emissions	С
2.1055 24.235	RSS-133 [6.3]	Frequency Stability	С
	• • • •	NT=Not Tested NA=Not Applicable ormed at DC 12 V and DC 24 V. And the worst case data are	e reported.

6. EMISSION DESIGNATOR AND SAMPLE CALCULATION

A. Emission Designator

GPRS1900 Emission Designator

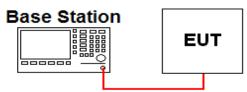
Emission Designator = **248KGXW** GSM OBW = 248.36 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE1900 Emission Designator

Emission Designator = **248KG7W** EDGE OBW = 247.59 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation 7 = Cases not otherwise covered W = Combination (Audio/Data)

B. For substitution method


- 1) The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1 GHz respectively above ground.
- 2) The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3) During the test, the turn table is rotated until the maximum signal is found.
- 4) Record the field strength meter's level. (ex. Spectrum reading level is -8.5 dBm)
- 5) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 6) Increase the signal generator output till the field strength meter's level is equal to the item (4). (ex. Signal generator level is -18.04 dBm)
- 7) The gain of the cable and amplifier between the signal generator and terminals of substituted antenna is 46.92 dB at test frequency.
- 8) Record the level at substituted antenna terminal. (ex. 28.88dBm)
- 9) The result is calculated as below;

EIRP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBi) ERP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBd) Where, TX Antenna Gain (dBd) = TX Antenna Gain (dBi) - 2.15 dB

7. TEST DATA

7.1 Conducted OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

The output power was measured using the Agilent E5515E

• GPRS/EDGE 1900

		Maximum Burst-Averaged Output Power(dBm)									
Band	Channel	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot		
	512	26.81	26.57	26.29	25.92	26.13	25.54	24.08	22.87		
PCS (DC 12V)	661	27.27	27.01	26.64	26.32	26.80	25.85	24.57	23.23		
(-)	810	27.46	27.18	26.87	26.45	27.01	26.08	24.66	23.42		
	512	26.69	26.51	26.25	25.91	26.27	25.38	24.15	22.76		
PCS (DC 24V)	661	27.23	26.88	26.57	26.29	26.69	25.80	24.52	23.39		
()	810	27.42	27.20	26.84	26.51	26.88	26.20	24.78	23.42		

7.2 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.3 OCCUPIED BANDWIDTH (99 % Bandwidth)

Mode	Channel	Frequency(MHz)	Test Result (kHz)
	512	1850.2	244.23
GPRS1900(DC 12V)	661	1880.0	245.19
	810	1909.8	248.36
	512	1850.2	242.23
EDGE1900(DC 12V)	661	1880.0	245.35
	810	1909.8	244.90
	512	1850.2	241.59
GPRS1900(DC 24V)	661	1880.0	240.63
	810	1909.8	240.96
	512	1850.2	244.17
EDGE1900(DC 24V)	661	1880.0	243.78
	810	1909.8	247.59

7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Band Edge are shown in Clause 8.4

7.6 EFFECTIVE RADIATED POWER

- Test Notes

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

- GPRS/EDGE 850 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
GPRS850	128	824.2	Н	33.14	-0.63	32.51	1.782	-
GPRS850	190	836.6	Н	32.31	-0.74	31.57	1.435	-
GPRS850	251	848.8	Н	30.13	-0.85	29.28	0.847	-
EDGE850	128	824.2	Н	26.08	-0.63	25.45	0.351	-

- GPRS/EDGE 850 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
GPRS850	128	824.2	Н	33.08	-0.63	32.45	1.758	-
EDGE850	128	824.2	Н	26.03	-0.63	25.40	0.347	-

- WCDMA 850 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
WCDMA850	4 132	826.4	Н	23.22	-0.65	22.57	0.181	-
WCDMA850	4 183	836.6	Н	20.90	-0.74	20.16	0.104	-
WCDMA850	4 233	846.6	Н	20.21	-0.83	19.38	0.087	-

- WCDMA 850 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
WCDMA850	4 132	826.4	Н	23.15	-0.65	22.50	0.178	-

7.7 EQUIVALENT ISOTROPIC RADIATED POWER

- Test Notes

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

- WCDMA1700 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1700	1 312	1 712.4	V	14.81	5.25	20.06	0.101	-
WCDMA1700	1 412	1 732.4	V	16.65	5.33	21.98	0.158	-
WCDMA1700	1 513	1 752.6	V	17.99	5.37	23.36	0.217	-

- WCDMA1700 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1700	1 513	1 752.6	V	19.15	5.37	24.52	0.283	-

- GPRS/EDGE 1900 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
GPRS1900	512	1 850.2	V	24.45	4.90	29.35	0.861	-
GPRS1900	661	1 880.0	V	27.21	4.60	31.81	1.517	-
GPRS1900	810	1 909.8	V	28.19	4.44	32.63	1.832	-
EDGE1900	810	1 909.8	V	27.71	4.44	32.15	1.641	-

- GPRS/EDGE 1900 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
GPRS1900	810	1 909.8	V	28.03	4.44	32.47	1.766	-
EDGE1900	810	1 909.8	V	27.79	4.44	32.23	1.671	-

- WCDMA1900 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1900	9 262	1 852.4	V	20.57	4.88	25.45	0.351	-
WCDMA1900	9 400	1 880.0	V	22.51	4.60	27.11	0.514	-
WCDMA1900	9 538	1 907.6	V	24.17	4.43	28.60	0.724	-

- WCDMA1900 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1900	9 538	1 907.6	V	24.47	4.43	28.90	0.776	-

7.8 RADIATED SPURIOUS EMISSIONS

- Test Notes

- This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.
- 2. Limit Calculation = 43 + 10 log₁₀(P[Watts])
- 3. The frequency spectrum is examined from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. No other spurious and harmonic emissions were reported greater than listed emissions.

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note.
128	824.2	1 648.72	V	-53.72	4.16	-49.56	-13.00	36.56	-
(1.782 W)	024.2	2 473.03	V	-51.95	3.59	-48.36	-13.00	35.36	-
190	836.6	1 673.05	V	-50.62	3.64	-46.98	-13.00	33.98	-
(1.435 W)	030.0	2509.10	V	-52.56	3.79	-48.77	-13.00	35.77	-
251	848.8	1 697.69	V	-51.21	3.10	-48.11	-13.00	35.11	-
(0.847 W)	040.0	2 548.71	V	-51.42	3.94	-47.48	-13.00	34.48	-

- GPRS850 data (DC 12 V)

- GPRS850 data (DC 24 V)

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note.
128	824.2	1 648.54	V	-51.93	4.16	-47.77	-13.00	34.77	-
(1.758 W)	024.2	2 471.60	V	-53.25	3.58	-49.67	-13.00	36.67	-

- WCDMA850 data (DC 12 V)

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		1 651.03	V	-51.59	4.13	-47.46	-13.00	34.46	-
4 132	906.4	2 489.18	V	-50.00	3.69	-46.31	-13.00	33.31	-
(0.181 W)	826.4	3 305.23	V	-52.64	5.27	-47.37	-13.00	34.37	-
		4 126.06	V	-51.21	6.80	-44.41	-13.00	31.41	-
		1 675.06	V	-52.72	3.60	-49.12	-13.00	36.12	-
4 183	836.6	2 510.72	V	-51.92	3.79	-48.13	-13.00	35.13	-
(0.104 W)	030.0	3 351.15	V	-52.29	5.45	-46.84	-13.00	33.84	-
		4 187.91	V	-50.96	7.00	-43.96	-13.00	30.96	-
		1 694.88	V	-51.93	3.16	-48.77	-13.00	35.77	-
4 233	846.6	2 548.16	V	-52.96	3.94	-49.02	-13.00	36.02	-
(0.087 W)	040.0	3 390.35	V	-52.02	5.53	-46.49	-13.00	33.49	-
		4 228.19	V	-52.24	6.99	-45.25	-13.00	32.25	-

- WCDMA850 data (DC 24 V)

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		1 651.46	V	-52.66	4.12	-48.54	-13.00	35.54	-
4 132	826.4	2 473.46	V	-52.09	3.59	-48.50	-13.00	35.50	-
(0.178 W)	020.4	3 304.42	V	-53.01	5.27	-47.74	-13.00	34.74	-
		4 129.76	V	-52.64	6.81	-45.83	-13.00	32.83	-

- WCDMA1700 data (DC 12 V)

			-/						
Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 423.92	V	-53.71	7.75	-45.96	-13.00	32.96	-
1 312 (0.101 W)	1 712.4	5 140.11	Н	-49.89	10.30	-39.59	-13.00	26.59	-
		6 845.75	V	-41.83	11.30	-30.53	-13.00	17.53	-
		3 461.14	V	-53.57	7.82	-45.75	-13.00	32.75	-
1 412 (0.158 W)	1 732.4	5 198.06	Н	-49.84	10.40	-39.44	-13.00	26.44	-
(01.00 11)		6 933.64	V	-42.49	11.37	-31.12	-13.00	18.12	-
		3 505.84	V	-54.61	7.92	-46.69	-13.00	33.69	-
1 513 (0.283 W)	1 752.6	5 254.48	Н	-51.42	10.31	-41.11	-13.00	28.11	-
(0.200 11)		7 006.27	V	-43.98	11.51	-32.47	-13.00	19.47	-

- WCDMA1700 data (DC 24 V)

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 501.38	V	-54.66	7.91	-46.75	-13.00	33.75	-
1 513 (0.283 W)	1 752.6	5 261.05	Н	-52.48	10.32	-42.16	-13.00	29.16	-
(0.200)		7 005.30	V	-44.72	11.51	-33.21	-13.00	20.21	-

- GPRS1900 data (DC 12 V)

						-	-	-	-
Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 694.12	V	-54.35	8.30	-46.05	-13.00	33.05	-
512 (0.861 W)	1 850.2	5 545.59	V	-52.73	10.50	-42.23	-13.00	29.23	-
(0.001.11)		7 400.66	V	-49.36	12.00	-37.36	-13.00	24.36	-
		3 761.97	V	-53.37	8.42	-44.95	-13.00	31.95	-
661 (1.517 W)	1 880.0	5 639.25	V	-51.69	10.72	-40.97	-13.00	27.97	-
(7 519.52	V	-49.82	12.14	-37.68	-13.00	24.68	-
		3 827.95	V	-53.93	8.50	-45.43	-13.00	32.43	-
810 (1.832 W)	1 909.8	5 737.20	V	-51.88	10.60	-41.28	-13.00	28.28	-
(7 639.08	V	-49.89	12.20	-37.69	-13.00	24.69	-

- GPRS1900 data (DC 24 V)

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 818.58	V	-53.14	8.50	-44.64	-13.00	31.64	-
810 (1.766 W)	1 909.8	5 729.19	V	-51.55	10.60	-40.95	-13.00	27.95	-
(7 639.00	V	-49.66	12.20	-37.46	-13.00	24.46	-

- WCDMA1900 data (DC 12 V)

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 714.36	V	-54.21	8.33	-45.88	-13.00	32.88	-
9 262	1 852.4	5 554.24	V	-50.11	10.53	-39.58	-13.00	26.58	-
(0.351 W)	1 002.4	7 413.60	V	-36.81	12.00	-24.81	-13.00	11.81	-
		9 259.63	V	-46.19	13.20	-32.99	-13.00	19.99	-
		3 760.39	V	-53.40	8.42	-44.98	-13.00	31.98	-
9 400	1 880.0	5 642.94	V	-48.69	10.71	-37.98	-13.00	24.98	-
(0.514 W)	1 000.0	7 515.96	V	-38.31	12.13	-26.18	-13.00	13.18	-
		9 402.13	V	-46.59	13.20	-33.39	-13.00	20.39	-
		3 809.48	V	-53.75	8.50	-45.25	-13.00	32.25	-
9 538	1 907.6	5 720.28	V	-48.03	10.60	-37.43	-13.00	24.43	-
(0.776 W)	1 907.0	7 626.42	V	-37.91	12.20	-25.71	-13.00	12.71	-
		9 542.75	V	-46.41	13.30	-33.11	-13.00	20.11	-

- WCDMA1900 data (DC 24 V)

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 816.67	V	-53.67	8.50	-45.17	-13.00	32.17	-
9 538	1 907.6	5 725.60	V	-49.02	10.60	-38.42	-13.00	25.42	-
(0.776 W)	1 907.0	7 625.88	V	-36.87	12.20	-24.67	-13.00	11.67	-
		9 543.94	V	-47.06	13.30	-33.76	-13.00	20.76	-

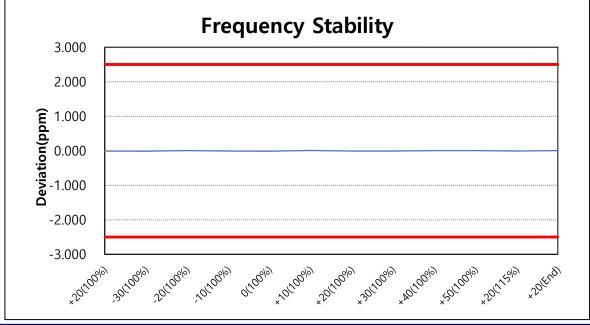
7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

- Test Notes.

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

7.9.1 FREQUENCY STABILITY (GPRS1900)

OPERATING FREQUENCY CHANNEL REFERENCE VOLTAGE LIMIT(FCC) <u>1,880,000,000</u>Hz <u>661(Mid)</u>


: <u>661(Mid)</u> : 12 V DC

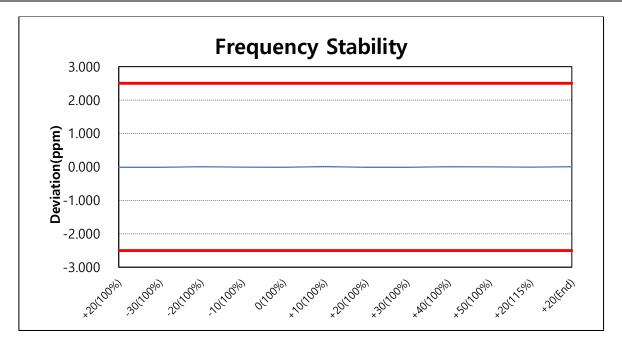
: <u>The</u>

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

LIMIT(IC) : <u>± 0.00025 % or 2.5</u> ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation	
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100 %	12.0	+20(Ref)	1,879,999,989	-0.006	-0.000 000 59
100 %		-30	1,880,000,003	+0.002	+0.000 000 16
100 %		-20	1,880,000,007	+0.004	+0.000 000 37
100 %		-10	1,879,999,997	-0.002	-0.000 000 16
100 %		0	1,880,000,006	+0.003	+0.000 000 32
100 %		+10	1,880,000,013	+0.007	+0.000 000 69
100 %		+20	1,879,999,989	-0.006	-0.000 000 59
100 %		+30	1,879,999,999	-0.001	-0.000 000 05
100 %		+40	1,880,000,009	+0.005	+0.000 000 48
100 %		+50	1,879,999,997	-0.002	-0.000 000 16
115 %	13.8	+20	1,880,000,004	+0.002	+0.000 000 21
85 %	10.2	+20	1,879,999,988	-0.006	-0.000 000 64

IC : 26419-TMS30TYPEB

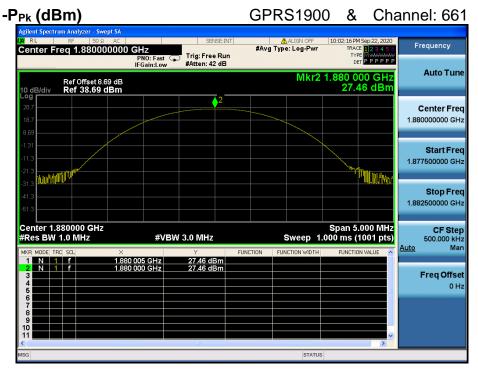

OPERATING FREQUENCY	:	
---------------------	---	--

- CHANNEL : <u>66</u>
- REFERENCE VOLTAGE :
- LIMIT(FCC) :
- <u>1,880,000,000</u>Hz <u>661(Mid)</u> <u>12</u> V DC The formulation stability shall be a

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

LIMIT(IC) :		± 0.00025 % or	2.5	_ppm
-------------	--	--------------------	-----	------

VOLTAGE	POWER	TEMP	FREQ	Deviation	
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100 %	24.0	+20(Ref)	1,880,000,007	+0.004	+0.000 000 37
100 %		-30	1,879,999,998	-0.001	-0.000 000 11
100 %		-20	1,879,999,988	-0.006	-0.000 000 64
100 %		-10	1,880,000,003	+0.002	+0.000 000 16
100 %		0	1,880,000,009	+0.005	+0.000 000 48
100 %		+10	1,879,999,998	-0.001	-0.000 000 11
100 %		+20	1,880,000,007	+0.004	+0.000 000 37
100 %		+30	1,880,000,003	+0.002	+0.000 000 16
100 %		+40	1,880,000,006	+0.003	+0.000 000 32
100 %		+50	1,879,999,991	-0.005	-0.000 000 48
115 %	27.6	+20	1,879,999,989	-0.006	-0.000 000 59
85 %	20.4	+20	1,880,000,006	+0.003	+0.000 000 32

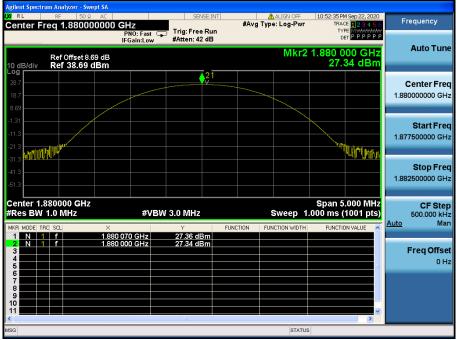


8. TEST PLOTS

🛈 Dt&C

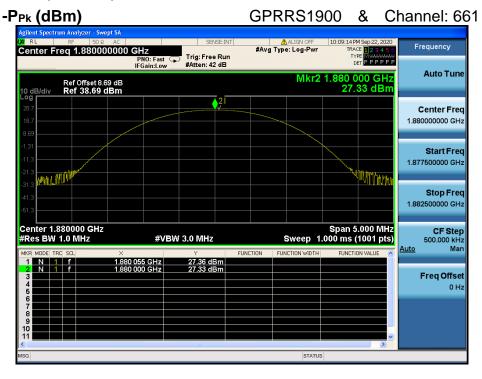
8.1 PEAK TO AVERAGE RATIO

GPRS1900 data (DC 12 V)



PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.46 dBm - 27.15 dBm = 0.31 dB

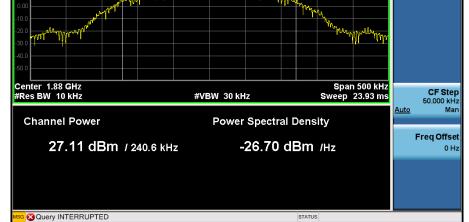
EDGE1900 & Channel: 661


-PAvg (dBm) EDGE1900 & Channel: 661

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.36 dBm - 27.10 dBm = 0.26 dB

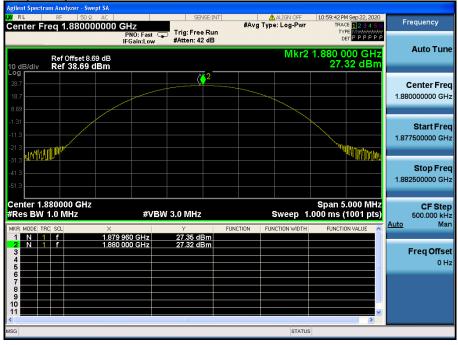
GPRS1900 data (DC 24 V)

Dt&C



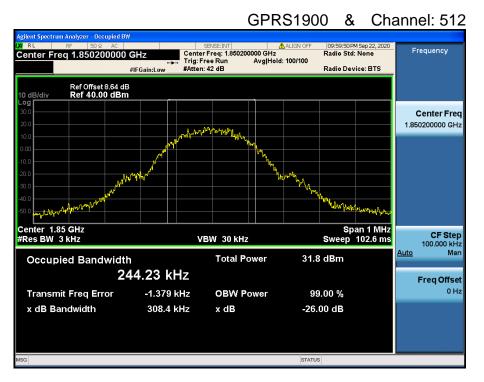
GPRS1900

&


Channel: 661

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.36 dBm - 27.11 dBm = 0.25 dB

EDGE1900 & Channel: 661

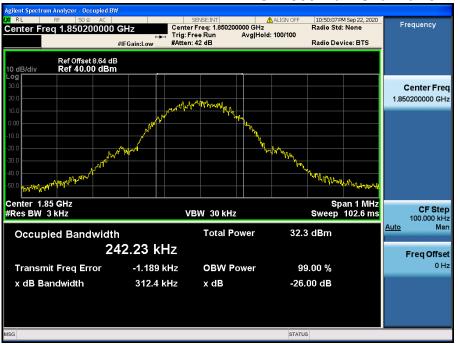


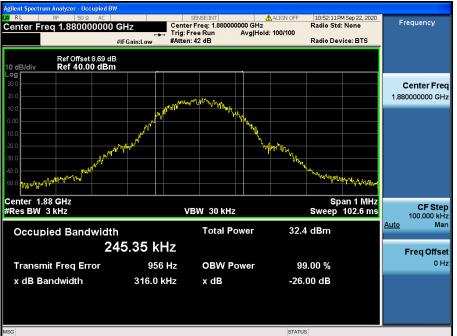


PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.35 dBm - 27.21 dBm = 0.14 dB

8.2 OCCUPIED BANDWIDTH (99 % Bandwidth)

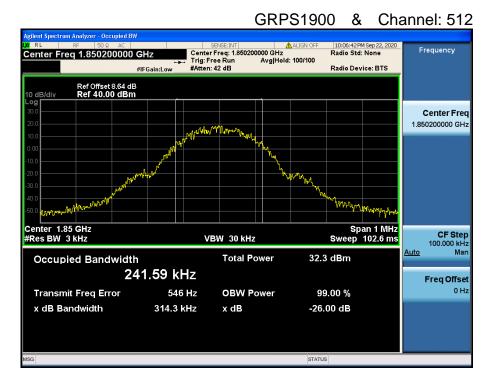
GPRS1900 data (DC 12 V)



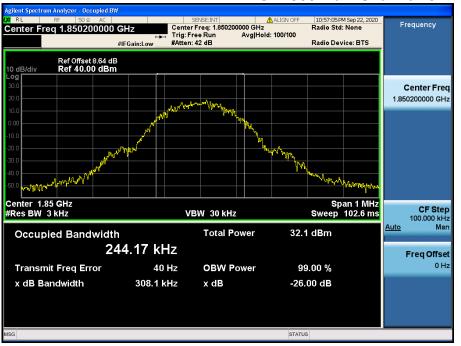


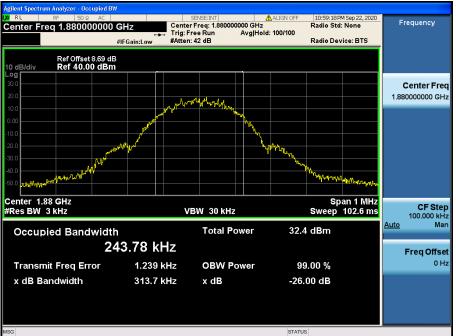
GPRS1900 & Channel: 661

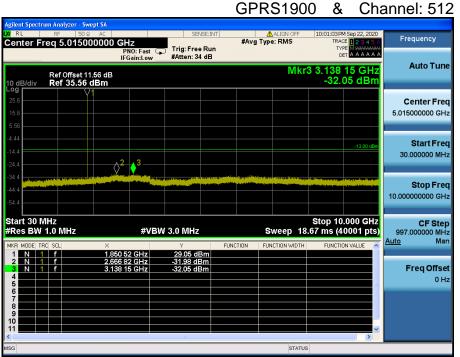
GRPS1900 & Channel: 810

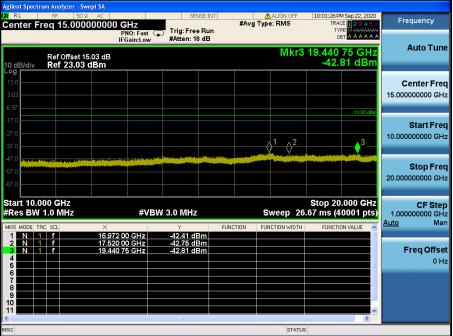




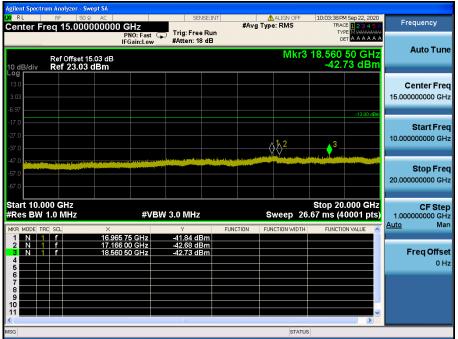

GPRS1900 data (DC 24 V)

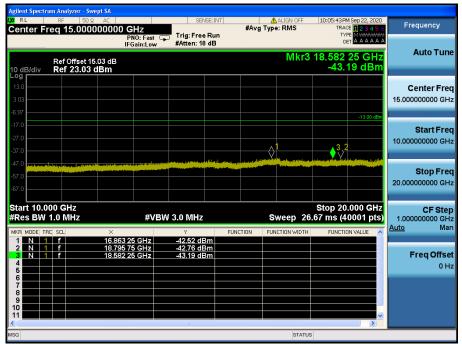

Dt&C

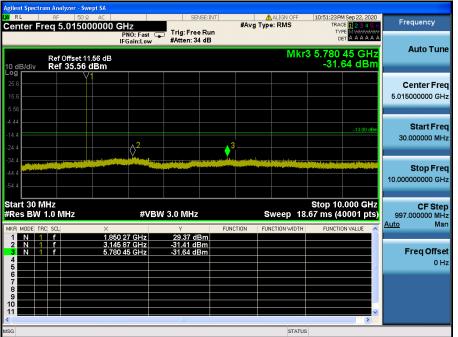


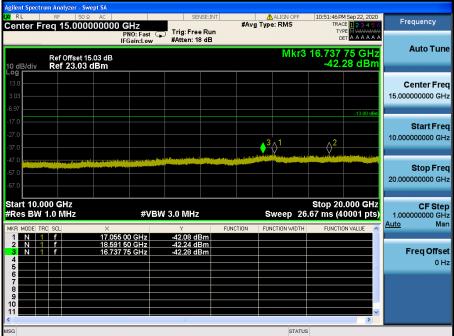


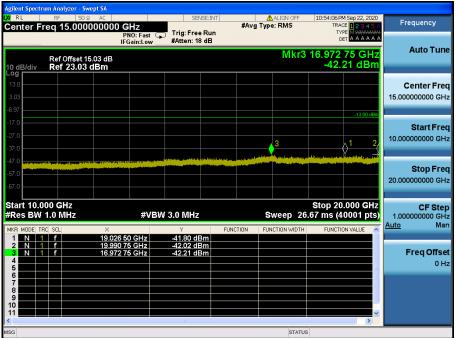
8.3 SPURIOUS EMISSIONS AT ANTENNA TERMINAL

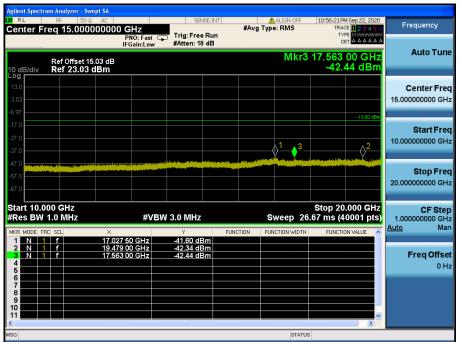

GPRS1900 data (DC 12 V)


GRPS1900 & Channel: 512

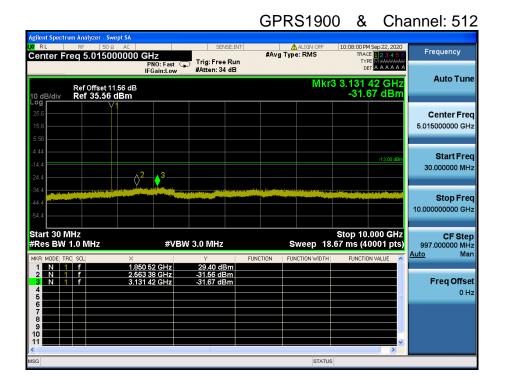


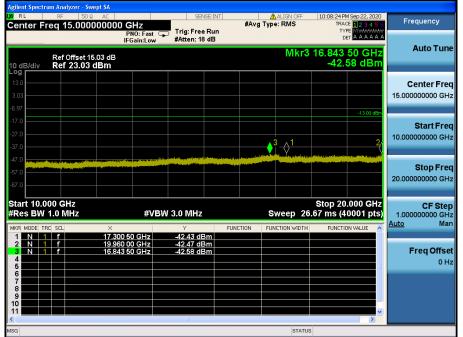

							0100	<u> </u>		
Agilent Spect	rum Analyzer -	Swept SA								
RL	RF 5	OΩ AC		SENS	E:INT	4	ALIGN OFF		Sep 22, 2020	_
Center F	rea 5.015	000000 GH	z			#Avg Typ	e: RMS	TRAC	123456	Frequency
		PI	NO: Fast (Trig: Free				TYP	E M WWWWWW	
		IFO	Gain:Low	#Atten: 34	dB			DE		
	Ref Offset	44.50.10					Mkr	3 2.792	19 GHz	Auto Tu
10 dB/div	Ref 35.5								′0 dBm	
	Kel JJ.J									
25.6		Ť.								Center F
15.6										5.015000000
5.56										
4 44										
-4.44									-13.00 dBm	Start F
-14.4										30.000000 N
-24.4		<u>^2</u> 3								
-34.4	CONTRACTOR OF STREET, S	C. C		and take madels das success			and the second se	Street and the second second	Notification and July	Stop F
-44.4									and the second second second	
-54.4										10.00000000 0
34.4										
Start 30 I	VILI-7							Stop 10.	000 CH2	
	1.0 MHz		#VB	W 3.0 MHz			ween 10	.67 ms (4)	1001 nte	CF St 997.000000 M
FILES DW	1.0 19112		# V D	W 3.0 MITZ			weep to	.or iiis (40		Auto M
MKR MODE T		×		Y	FUNC	TION FUI	NCTION WIDTH	FUNCTIO	N VALUE	Auto
1 N '	1 f	1.880 1	8 GHz	29.82 dB	m					
2 N /		2.644 3 2.792 1		-31.56 dB -31.70 dB						Freq Off
4	<u>+ • + </u>	2.132	5 9 12	-51.70 uB						
5									=	C
6					_					
8					_					
9										
10										
11									~	
£				ш					>	
ISG							STATUS	3		

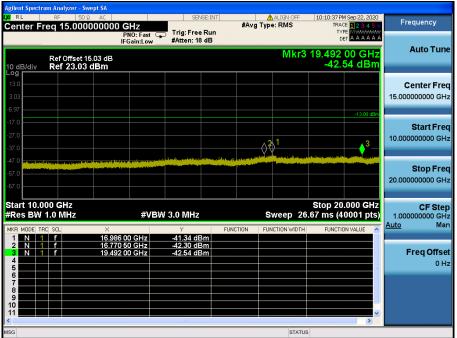

							<u> </u>	1.0100	<u> </u>	011	
ilent Spectr	um Analyze	r - Swep	ot SA								
RL	RF	50 Ω	AC		SEI	NSE:INT		\Lambda ALIGN OFF	10:05:20 PM	Sep 22, 2020	-
enter F	rea 5.0'	15000	0000 G	Hz			#Avg	Type: RMS	TRAC	E 123456	Frequency
				PNO: Fast	🖵 Trig: Fre				TYP	E MWWWWW T A A A A A A	
				Gain:Low	#Atten: 3	1 dB			DE		
								Mkr	3 2.673	79 GHz	Auto Tui
dB/div	Ref Offs Ref 35									8 dBm	
g r	Reija	u									
5.6		Ť									Center Fr
.6											5.015000000 G
56											
44										-13.00 dBm	Start Fr
.4										-13.00 ubni	30.000000 M
.4			• 3	A 2							30.000000 W
			- • • • • • • • • • • • • • • • • • • •	$\Box \Diamond$							
4	and the set of the set			A DESCRIPTION OF THE OWNER OF THE	and the second second second	and an all states and	and an		a and the second se	A DESCRIPTION OF TAXABLE PARTY.	
4		الأخاصي والم			and the second secon		فتتتلقص كث		المحافظ الأكر	and a staff of the state of the	Stop Fr
											10.00000000 G
.4											
art 30 M										000 GHz	CF Ste
les BW	1.0 MHz	z		#VE	W 3.0 MHz			Sweep 18	.67 ms (4	0001 pts)	997.000000 M
R MODE T	RC SCL		X		Y	FU	NCTION	FUNCTION WIDTH	FUNCTIO	N VALUE	Auto M
N 1	f		1.910	09 GHz	30.11 di	Bm					
N 1	f		3.146	87 GHz	-31.59 di	Bm					
<u>8 N 1</u>	f		2.673	79 GHz	-31.98 dl	Bm					Freq Offs
											0
										~	
					111					>	
1								STATU			
								STATUS	·		



		1000 0	
gilent Spectrum Analyzer - Swept SA			
RL RF 50Ω AC SET	NSE:INT	IGN OFF 10:53:44 PM Se	
Center Freq 5.015000000 GHz	#Avg Type: R	RMS TRACE	23456 Frequency
PNO: Fast 😱 Trig: Free		TYPE	
IFGain:Low #Atten: 34	4 90		Auto Tum
Ref Offset 11.56 dB		Mkr3 2.673 5	GHZ
0 dB/div Ref 35.56 dBm		-32.15	dBm
-og			
25.6			Center Fre
15.6			5.015000000 GH
5.56			
4.44			12 on days
14.4			-13.00 dBm 30.000000 MH
24.4 3 2			50.000000 Will
	The second s	an a	Stop Fre
44.4			
54.4			10.00000000 GH
tart 30 MHz		Stop 10.0	00 GHz CF Ste
Res BW 1.0 MHz #VBW 3.0 MHz	Swe	ep 18.67 ms (400	01 pts) 997.000000 MH
KRI MODE TRC SCL X Y	FUNCTION FUNCTION	ON WIDTH FUNCTION \	Auto Ma
1 N 1 f 1.880 18 GHz 29.80 dl		ON WIDTH FONCTION V	ALCE
2 N 1 f 3.023 74 GHz -31.47 dE	3m		
3 N 1 f 2.673 55 GHz -32.15 dB	3m		FreqOffse
4			0 H
6			
7			
8			
10			
11			✓
SG		STATUS	

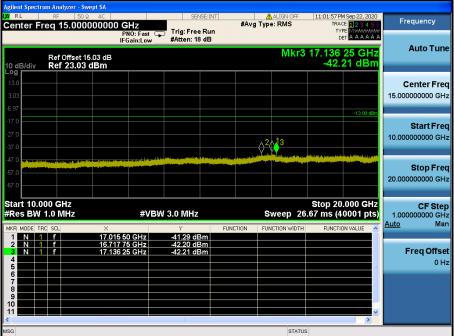



		LDOLIGU		
gilent Spectrum Analyzer	- Swept SA			
	50 Ω AC SENSE:IN		10:55:58 PM Sep 22, 2020	Frequency
enter Freq 5.01	5000000 GHz RNO: Fact Trig: Free Run	#Avg Type: RMS	TRACE 123456	Frequency
	PNO: Fast 🕞 Trig: Free Run IFGain:Low #Atten: 34 dB		DET A A A A A A	
		MLr2	2.671 30 GHz	Auto Tun
	t 11.56 dB	IVIKIS	-31.33 dBm	
0 dB/div Ref 35.	56 dBm		-51.55 UBIII	
25.6	¥p			Center Fre
15.6				5.015000000 GH
5.56				
4.44				Start Fre
14.4			-13.00 dBm	
24.4	▲3 <u>∧</u> 2			30.000000 MH
34.4	And the second se		an we have been addressed and an addressed at	Stop Fre
44.4				10.000000000 GH
54.4				10.00000000 GF
tart 30 MHz			Stop 10.000 GHz	CF Ste
Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 18.6	7 ms (40001 pts)	997.000000 MH
IKR MODE TRC SCL	X Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
1 N 1 f	1.910 09 GHz 30.00 dBm 3.290 69 GHz -31.03 dBm			
2 N 1 f	2.671 30 GHz -31.33 dBm			Freq Offse
4				0 F
5			==	
7				
8				
10				
11			~	
56				
		STATUS		

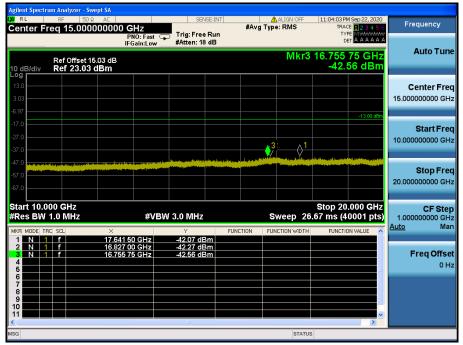


GPRS1900 data (DC 24 V)

					0 0 0	
Agilent Spectrum Ana	lyzer - Swept SA					
RL RF	50Ω AC		SENSE:INT	🔥 ALIGN OFF	10:10:14 PM Sep 22, 20	
Center Freq 5	.015000000 GH	lz		#Avg Type: RMS	TRACE 234	5 6 Frequency
	PI		ree Run : 34 dB			AA
	IFC	Gain:Low #Accen	1. 54 GD			Auto Tur
Ref	Offset 11.56 dB			Mkr	3 2.658 84 GI	
10 dB/div Ref	35.56 dBm				-31.85 dB	m
-og	Υ <u>1</u>					
25.6						Center Free
15.6						5.015000000 GH
5.56						
4.44						
4.44					-13.00 c	Start Free
14.4						30.000000 MH
24.4	3 -	<u> ∧</u> 2				
34.4				المعادية والمعادية		
The condition of the second						Stop Fre
44.4						10.00000000 GH
54.4						
start 30 MHz					Stop 10.000 GI	
Res BW 1.0 N	/IHZ	#VBW 3.0 M	HZ	Sweep 18	.67 ms (40001 p	
KR MODE TRC SCL	×	Y	FUNCTIO	ON FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
1 N 1 f	1.880 1	8 GHz 29.83	dBm			
2 N 1 f 3 N 1 f	<u>3.281 2</u> 2.658 8	2 GHz -31.47 4 GHz -31.85	dBm			Freq Offse
4	2.000 0	-01.00	- GBIII			0 H
5						
6						
8						
9						
10						v
					>	
SG				STATU	S	

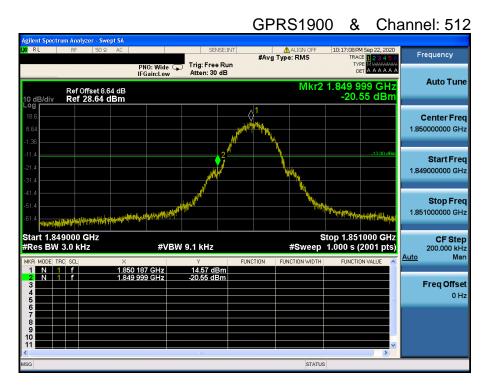

glent Spectrum Analyzer - Swept SA RL RF 50.0, AC SENSE:INT ▲ALIGN O Center Freq 5.015000000 GHz PN0: Fast C Trig: Free Run	0FF 10:13:17 PM Sep 22, 2020
enter Freq 5.015000000 GHz #Avg Type: RMS PNO: Fast Trig: Free Run	¥FF 10:13:17 PM Sep 22, 2020
PNO: Fast 🕠 Trig: Free Run	
PNO: Fast 🗔 Trig: Free Run	TRACE 123456 Frequency
IFGain:Low #Atten: 34 dB	
	Auto Tur
Ref Offset 11.56 dB V 0 dB/div Ref 35.56 dBm	-32.08 dBm
5.6	Contor Err
	Center Fre
5.6	5.01500000 GH
56	
44	12 00 dBe Start Fre
4.4	-13.00 dBm 30.000000 MH
44 43 2	30.00000 MF
4.4 3 1 2	
	All serves and have a low to path you have any
	Stop Fre
	10.00000000 GH
4.4	
tart 30 MHz	Stop 10.000 GHz CF Ste
Res BW 1.0 MHz #VBW 3.0 MHz Sweep	18.67 ms (40001 pts) 997.000000 MH
KRIMODELTRCI SCLI X I Y FUNCTION FUNCTION W	TOTH FUNCTION VALUE ALLO Ma
1 N 1 f 1.910 09 GHz 30.19 dBm	
2 N 1 f 2.971 65 GHz -31.20 dBm	
3 N 1 f 2.720 90 GHz -32.08 dBm	Freq Offs
4	01

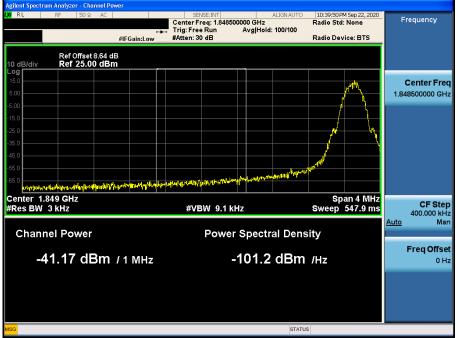
LXI RL	um Analyzer - Swept SA RF 50 Ω AC req 15.00000000	PNO: Fast C	SENSE:	#Avş ın	ALIGN OFF J Type: RMS	10:13:40 PM S TRACE TYPE	iep 22, 2020 1 2 3 4 5 6 M W W W W A A A A A A A A A A A A A A A	Frequency
10 dB/div	Ref Offset 15.03 dE Ref 23.03 dBm	IFGain:Low	#Atten: 18 dE	j	Mkr3	17.019 2		Auto Tune
Log 13.0 3.03 -6.97								Center Freq 15.000000000 GHz
-17.0 -27.0 -37.0					³ 2		-13.00 dBm	Start Freq 10.000000000 GHz
-47.0 -57.0 -67.0								Stop Freq 20.000000000 GHz
Start 10.0 #Res BW	1.0 MHz		W 3.0 MHz	FUNCTION	Sweep 26 FUNCTION WIDTH	Stop 20.0 .67 ms (40) FUNCTION	001 pts)	CF Step 1.000000000 GHz <u>Auto</u> Man
2 N 1 3 N 1 4 5	f 17.9	297 75 GHz 350 00 GHz 019 25 GHz	-42.50 dBm -42.65 dBm -42.67 dBm					Freq Offset 0 Hz
6 7 8 9 10								
< MSG			Ш		STATUS	•		

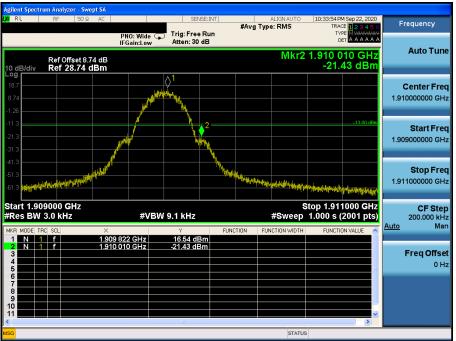


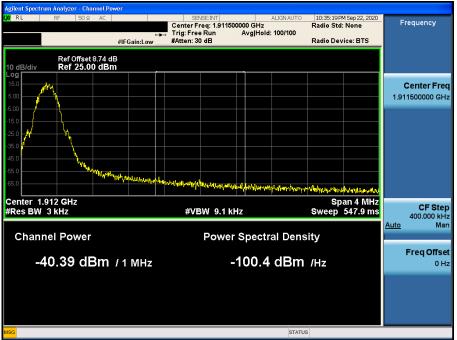
igilent Spectr	um Analyzer - S	wept SA								
RL	RF 50	Ω AC		SENS	E:INT		ALIGN OFF		1 Sep 22, 2020	-
enter F	reg 15.000	0000000	GHz			#Avg 1	ype: RMS	TRAC	E 123456	Frequency
		F	PNO: Fast 🔾	Trig: Free				TYP		
		IF	Gain:Low	#Atten: 18	dB			Di		
							Mkr3	19.456	25 GHz	Auto Tur
	Ref Offset							-12 '	27 dBm	
l0 dB/div	Ref 23.03	s aBm							er abm	
13.0										
13.0										Center Fre
3.03										15.00000000 GH
6.97										
									-13.00 dBm	
17.0										Start Fre
27.0										10.000000000 GH
							1		<u>∧</u> 3 2∧	10.00000000 GF
37.0							- <u>Y</u>			
47.0	in the second second	and a state state of a state	and the second second	the second second birds and b	and the state of the		South States of States			
57.0			and the second		(Market States)					Stop Fre
										20.000000000 GH
67.0										
start 10.0									.000 GHz	CF Ste
Res BW	1.0 MHz		#VB	W 3.0 MHz			Sweep 26	.67 ms (4	0001 pts)	1.00000000 GH
KR MODE TH		×		Y	FUNC	TION	FUNCTION WIDTH	FUNCTIO		Auto Ma
AKH MUDE TH	AL SUL	17.083 7	75 CHz	-41.17 dB		TION	FUNCTION WIDTH	FUNCTIO		
2 N 1	f	19.963 (-41.85 dB	m					
3 N 1	f	19.456		-42.27 dB	m					Freq Offs
4										. 01
5									=	
6										
8										
9										
10										
11									~	
				100					>	
SG							STATUS	6		

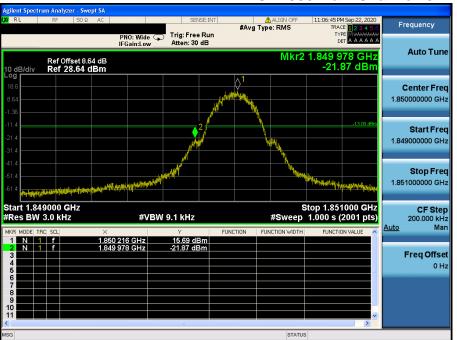
								υu		annei. 00
Agilent Spectrum A	nalyzer - Swe	pt SA								
(IRL R		AC		SENS	E:INT		\Lambda ALIGN OFF	11:01:34 PM :		Frequency
Center Freq	5.01500	0000 GH	z	Trig: Free		#Avg 1	Type: RMS	TRACE	123456	
		P	NO:Fast ⊂ Gain:Low	#Atten: 34				DET	M WWWW	
			Janneon				B.41.			Auto Tun
	of Offset 11						IVIKI	3 3.279 7		
10 dB/div Re	ef 35.56 c	iBm	_					-51.7	2 dBm	
25.6	¥	1								
										Center Free
15.6										5.015000000 GH
5.56										
4.44										
									-13.00 dBm	Start Fre
-14.4										30.000000 MH
24.4			A <mark>2</mark> 3 —							
34.4		A STREET, STREE	Difference	the start way to a shirt of the	and and sending the					
44.4	and the second second	And the second second	Children		and an and the	No.			and a start of the second	Stop Free
										10.00000000 GH
54.4										
Start 30 MHz								Stop 10.0	JUU GHZ	CF Step
Res BW 1.0	WHZ		#VB	N 3.0 MHz			Sweep 18	.67 ms (40	uu1 pts)	997.000000 MH
KR MODE TRC SC	CL	×		Y	FUNC	TION	FUNCTION WIDTH	FUNCTION	VALUE	Auto Ma
1 N 1 f		1.880 1		29.82 dB						
2 N 1 f 3 N 1 f		3.163 0 3.279 7	7 GHZ	-31.35 dB -31.72 dB	m					Freq Offse
4		5.2131	2 9 1 2							0 H
5									=	
6										
8										
9										
10									~	
									>	
sg							STATUS			
~							STATUS			

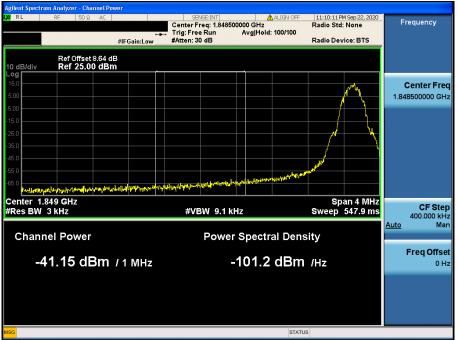

								U U		
jilent Spectr	um Analyzer -	Swept SA								
RL	RF 5	iOΩ AC		SEN	SE:INT		🛕 ALIGN OFF	11:03:40 PM 9		E
enter F	req 5.01	5000000 G			_	#Avg	Type: RMS	TRACE	123456	Frequency
			PNO: Fast 🕞 FGain:Low	Trig: Free #Atten: 34				DET	AAAAAA	
			-Gain:Low	#Atten: 04	40					Auto Tur
	Ref Offse	t 11 56 dB					Mkr	3 3,167 5		Autoru
dB/div	Ref 35.5							-31.9	5 dBm	
^{yg}		_X 1								
5.6										Center Fre
i.6				<u>ا محمد ال</u>						5.015000000 GI
56										
44				<u>کست ا</u> ر					-13.00 dBm	Start Fre
.4		_					_		-13.00 dBm	30.000000 MI
1.4			2 3	<u>ا محمد ال</u>						00.000000 Mil
		- H								
1.4 athenth			No. of Concession, Name	and sectors and her says from the sector		مراجع می این کرد. محالی مرکز کرد ای	and the second	and a far and place of the	and down in statement	Stop Fre
1.4										10.00000000 GI
1.4				<u>ا المحمد ال</u>						10.00000000 Gi
art 30 M	/Hz							Stop 10.0	00 GHz	CF Ste
tes BW	1.0 MHz		#VBV	N 3.0 MHz			Sweep 18			997.000000 MI
R MODE TI	ani smil	×		Y	FLIN	ICTION	FUNCTION WIDTH	FUNCTION	VALUE	Auto M
N 1	f		09 GHz	30.03 dE		CHOIL	Tonenon within	Tonenon	TALOL	
2 N 1	f	2.801	41 GHz	-31.34 dE	m					
3 N 1	f	3.167	56 GHz	-31.95 dE	m					Freq Offs
									-	01
			و الحد							
									~	
									>	
3							STATUS			

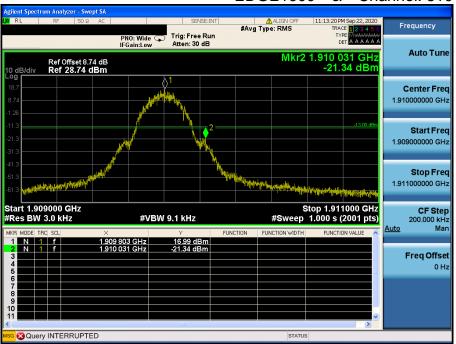


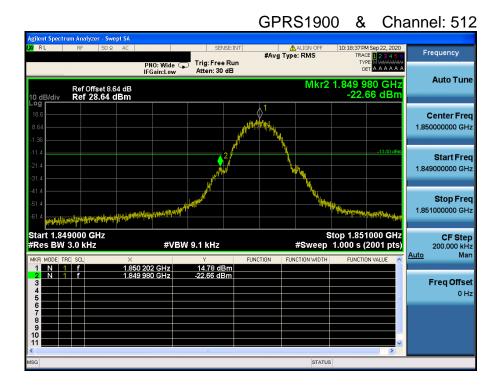

8.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

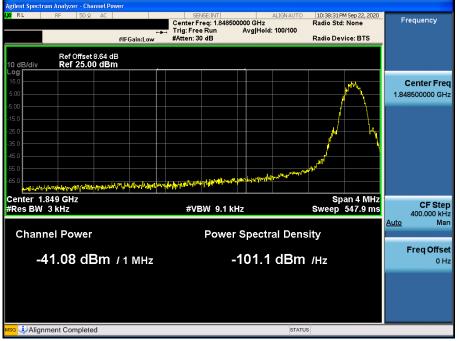

GPRS1900 data (DC 12 V)

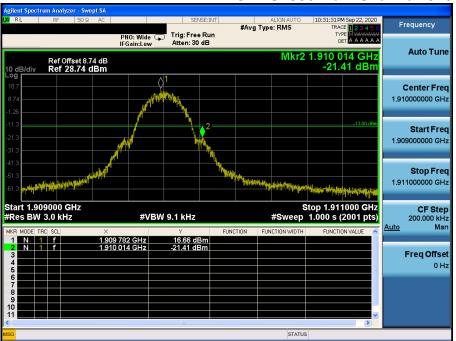


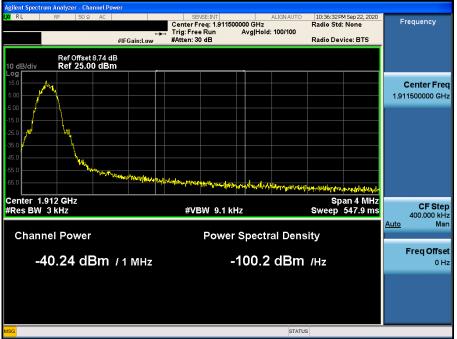

GPRS1900 & Channel: 512

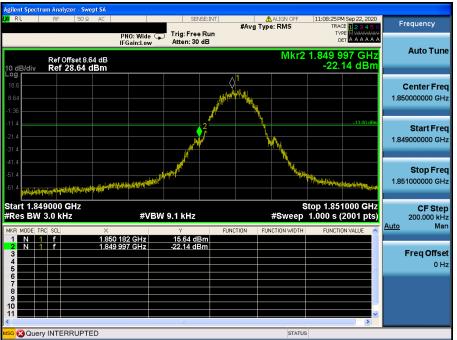











GPRS1900 data (DC 24 V)

