TEST REPORT

	DT&C Co., Ltd.			
Dt&C	42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664			
1. Report No : DRTFCC2108-007	9			
2. Customer				
Name (FCC) : DASAN Networks, Inc.	/ Name (IC) : DASAN Networks, Inc.			
• Address (FCC) : DASAN Tower, 49, D South Korea 13493	aewangpangyo-ro644Beon-gil, Bundang-gu Seongnam-si			
Address (IC) : DASAN Tower, 49, D Gyeonggi-do 13493	baewangpangyo-ro644Beon-gil, Bundang-gu Seongnam-si/ Korea (Republic Of)			
3. Use of Report : FCC & IC Certification	n			
4. Product Name / Model Name : Vehic FCC ID : 2AXDMTMS30CELLTYPE/ IC : 26419-TMS30TYPEA	le Control Terminal / TMS3.0 (300611-01929) A			
5. FCC Regulation(s): Part 22, 24, 27 IC Standard(s): RSS-132 Issue 3, 13 Test Method Used : KDB971168 D01	3 Issue 6, 139 Issue 3 v03, ANSI/TIA-603-E-2016, ANSI C63.26-2015			
6. Date of Test : 2021.06.21 ~ 2021.07.	30			
7. Location of Test : 🔀 Permanent Tes	sting Lab 🔲 On Site Testing			
8. Testing Environment : See appended	d test report.			
9. Test Result : Refer to attached test re	esult.			
	er only to the sample(s) tested unless otherwise stated.			
This test report is not related to KOLAS	accreditation.			
Affirmation Tested by	Reviewed by			
Name : JaeHyeok Bang	Name : JaeJin Lee (Signature)			
	2021 09 04			
	2021.08.04.			
DT&C Co., Ltd.				

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2108-0079	Aug. 04, 2021	Initial issue	JaeHyeok Bang	JaeJin Lee

Table of Contents

1. GENERAL INFORMATION	
2. INTRODUCTION	5
2.1 EUT DESCRIPTION	5
2.2 TESTING ENVIRONMENT	-
2.3 MEASURING INSTRUMENT CALIBRATION	5
2.4 MEASUREMENT UNCERTAINTY	5
2.5 TEST FACILITY	
3. DESCRIPTION OF TESTS	
3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)	
3.2 PEAK TO AVERAGE RATIO	
3.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 1	0
3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL 1	11
3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 1	2
3.6 RADIATED SPURIOUS EMISSIONS 1	
3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
4. LIST OF TEST EQUIPMENT	
5. SUMMARY OF TEST RESULTS 10	
A = EMICOUONI DECIONIATOD AND OAMDIE OAI OUII ATIONI A	
6. EMISSION DESIGNATOR AND SAMPLE CALCULATION 18 7. TEST DATA	
	9
7. TEST DATA 19	9 9
7. TEST DATA	9 19 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2	9 19 20 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2	9 19 20 20 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2	9 19 20 20 20 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2	9 19 20 20 20 20 20
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2	9 19 20 20 20 20 21 22
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2	9 19 20 20 20 21 22 21 22
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2	9 19 20 20 20 21 22 24 28
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 3	9 19 20 20 20 21 22 24 28 28 0
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 30 8.1 PEAK TO AVERAGE RATIO 30	9 19 20 20 20 21 22 24 28 28 0 30
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 3	9 19 20 20 20 21 22 24 28 28 0 30
7. TEST DATA 19 7.1 Conducted OUTPUT POWER 1 7.2 PEAK TO AVERAGE RATIO 2 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) 2 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL 2 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 2 7.6 EFFECTIVE RADIATED POWER 2 7.7 EQUIVALENT ISOTROPIC RADIATED POWER 2 7.8 RADIATED SPURIOUS EMISSIONS 2 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 2 7.9.1 FREQUENCY STABILITY (GPRS1900) 2 8. TEST PLOTS 30 8.1 PEAK TO AVERAGE RATIO 30	9 19 20 20 20 21 22 24 28 28 0 30 34

1. GENERAL INFORMATION

FCC Classification	PCS Licensed Transmitter (PCB)
FCC ID	2AXDMTMS30CELLTYPEA
IC	26419-TMS30TYPEA
Product Name	Vehicle Control Terminal
Model Name	TMS3.0 (300611-01929)
Add Model Name	-
FVIN(Firmware Version Identification Number)	2
EUT Serial Number	Undesignated
Supplying power	DC 12 V,24 V
Antenna Information	Antenna Type: Chip Antenna Gain: 1.84 dBi (Band 850), 2.50 dBi (Band 1700), 2.98 dBi (Band 1900)

Mode	Tx Frequency	Emission Designator ^{Note}			EIRP (Max. Power)	
Wode	(MHz)		dBm	w	dBm	w
GPRS850	824.2 ~ 848.8	-	29.57	0.906	31.72	1.486
EDGE850	824.2 ~ 848.8	-	21.20	0.132	23.35	0.216
WCDMA850	826.4 ~ 846.6	-	17.78	0.060	19.93	0.098
WCDMA1700	1 712.4 ~ 1 752.6	-	-	-	25.13	0.326
GPRS1900	1 850.2 ~ 1 909.8	248KGXW	-	-	31.43	1.390
EDGE1900	1 850.2 ~ 1 909.8	244KG7W	-	-	29.66	0.925
WCDMA1900	1 852.4 ~ 1 907.6	-	-	-	25.68	0.370

Note: This device uses the certified module.(FCC ID : XMR201903EG25G) Please refer to the certified module report for GSM/EDGE 850 and WCDMA 850/1700/1900 emission designator.

For GSM/EDGE 1900, emission designator was reported based on the new test result.

2. INTRODUCTION

2.1 EUT DESCRIPTION

This EUT contains the following capabilities: 850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSUPA, Multi-band LTE. **Operation test setup for EUT**

- The call simulator was used to control the transmit parameters during test.

And power control setting of simulator is set to "ALL up bits" to get the maximum power for EUT.

2.2 TESTING ENVIRONMENT

Ambient Condition		
 Temperature 	+20 °C ~ +23 °C	
 Relative Humidity 	43 % ~ 46 %	

2.3 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.4 MEASUREMENT UNCERTAINTY

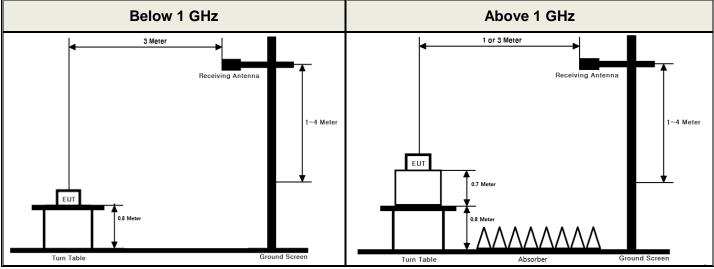
The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Radiated Disturbance (Below 1 GHz)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, $k = 2$)
Radiated Disturbance (Above 18 GHz)	5.3 dB (The confidence level is about 95 %, $k = 2$)

2.5 TEST FACILITY

FAX

DT&C Co., Lt	d.	
		conducted measurement facility used to collect the radiated data are located at the n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.
		with the requirements of § 2.948 according to ANSI C63.4-2014.
- FCC & IC N	IRA De	esignation No. : KR0034
- ISED #: 574	40A	
www.dtnc.net		
Telephone	:	+ 82-31-321-2664


+ 82-31-321-1664

:

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 m or 1.5 m above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.17
- KDB971168 D01v03 Section 5.2.2
- ANSI 63.26-2015 Section 5.2.4.4.1

Test setting

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1 % to 5 % of the OBW.
- 3. Set VBW \ge 3 x RBW.
- 4. Set number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - 1) Set = auto-couple, or

2) Set \geq [10 \times (number of points in sweep) \times (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter.

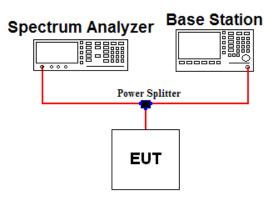
- 6. Detector = power averaging (rms).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-power transmissions).
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be

averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

The receiver antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.


The ERP/EIRP is calculated using the following formula:

ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn antenna and an isotropic antenna are taken into consideration.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

- KDB971168 D01v03 Section 5.7.2
- ANSI C63.26-2015 Section 5.2.3.4

A peak to average ratio measurement is performed at the conducted port of the EUT.

The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The present of time the signal spends at or above the level defines the probability for that particular power level.

Test setting

The spectrum Analyzer's CCDF measurement function is enabled.

- 1. Set resolution/measurement bandwidth \geq OBW or specified reference bandwidth.
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve.
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to the greater of $[10 \times (number of points in sweep) \times (transmission symbol period)]$ or 1 ms.
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
 - 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.
- 5. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

Alternate Procedure

- KDB971168 D01v03 - Section 5.7.3

- ANSI C63.26-2015 – Section 5.2.6

Use one of the measurement procedures of the peak power and record as $\mathsf{P}_{\mathsf{Pk}}.$

Use one of the measurement procedures of the average power and record as $\mathsf{P}_{\mathsf{Avg}}$

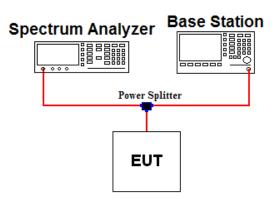
Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm or dBW) - P_{Avg} (dBm or dBW).

Where,

PAPR peak-to-average power ratio, in dB PPk measured peak power or peak PSD level, in dBm or dBW PAvg measured average power or average PSD level, in dBm or dBW

- Peak Power Measurement


- 1. Set the RBW ≥ OBW
- 2. Set VBW ≥ 3 x RBW
- 3. Set span ≥ 2 x RBW
- 4. Sweep time \ge 10 x (number of points in sweep) x (transmission symbol period).
- 5. Detector = peak
- 6. Trace mode = max hold
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1 % to 5 % of the OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep \geq 2 \times span / RBW..
- 5. Sweep time = 1) auto-couple, or
 - 2) set ≥ [10 x (number of points in sweep) x (transmission period)] for single sweep (automationcompatible (measurement. Transmission period is the on and off time of the transmitter.
- 6. Detector = power averaging (RMS).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable Triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each Sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-Power transmissions)
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.3 OCCUPIED BANDWIDTH (99 % Bandwidth)

Test set-up

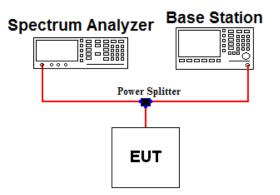
Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
1 850.2	7.16	-	-
1 880.0	7.19	-	-
1 909.8	7.19	-	-

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Test Procedure

- KDB971168 D01v03 Section 4.3
- ANSI C63.26-2015 Section 5.4.4


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

Test setting

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 % ~ 5 % of the expected OBW & VBW \ge 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 % ~ 5 % of the 99 % occupied bandwidth observed in step 6.

3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
10 000	7.74	20 000	8.93
-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths. The spectrum is scanned from 9 kHz up to a frequency including its 10th harmonic.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.

Test setting

- 1. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize

Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24, 27

3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency Range(MHz)	Offset Value (dB)	Frequency Range(MHz)	Offset Value (dB)
1 845 – 1 849	7.18	-	-
1 849 – 1 851	7.18	-	-
1 909 – 1 911	7.20	-	-
1 911 – 1 915	7.20	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

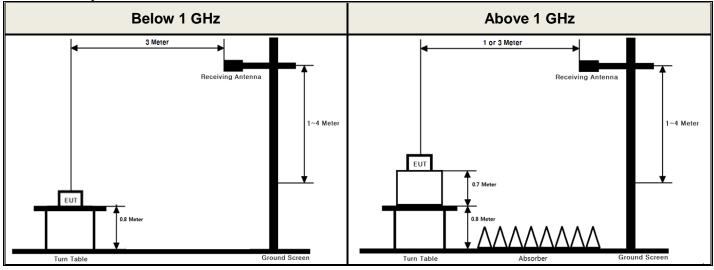
Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7

All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all modulations.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.

Test setting


- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1 % of the emission
- 4. VBW ≥ 3 X RBW
- 5. Detector = RMS & Trace mode = Max hold
- 6. Sweep time = Auto couple or 1 s for band edge
- 7. Number of sweep point ≥ 2 X span / RBW
- 8. The trace was allowed to stabilize

Note 1: In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of **at least one percent** of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.6 RADIATED SPURIOUS EMISSIONS

Test Set-up

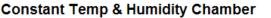
These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 m or 1.5 m above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

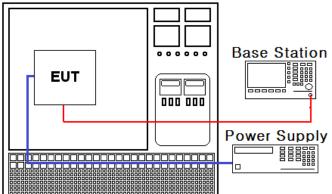
Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.12
- KDB971168 D01v03 Section 5.8
- ANSI C63.26-2015 Section 5.5

Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW \ge 3 X RBW
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize


The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.


For radiated spurious emission measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated spurious emission measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

- ANSI/TIA-603-E-2016

- KDB971168 D01v03 - Section 9

The frequency stability of the transmitter is measured by:

a.) Temperature:

The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24, 27. The frequency stability of the transmitter shall be maintained within $\pm 0.000\ 25\$ % ($\pm 2.5\$ ppm) of the center frequency for Part 22.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature. (20 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C.
 A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Report No.: DRTFCC2108-0079

FCC ID: 2AXDMTMS30CELLTYPEA

IC: 26419-TMS30TYPEA

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	21/06/24	22/06/24	US47360812
DC power supply	SM techno	SDP30-5D	21/06/24	22/06/24	305DMG305
Multimeter	FLUKE	17B+	20/12/16	21/12/16	36390701WS
Radio Communication Analyzer	Agilent Technologies	E5515C	20/12/16	21/12/16	GB43461134
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-2
Signal Generator	Rohde Schwarz	SMBV100A	20/12/16	21/12/16	255571
Signal Generator	ANRITSU	MG3695C	20/12/16	21/12/16	173501
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
Bilog Antenna	Schwarzbeck	VULB 9160	20/12/16	21/12/16	9160-3362
Dipole Antenna	A.H.Systems Inc.	FCC-4	20/12/16	22/12/16	710A
Dipole Antenna	Schwarzbeck	UHA9105	20/04/10	22/04/10	2262
HORN ANT	ETS	3117	20/12/16	21/12/16	00140394
HORN ANT	ETS	3117	21/06/24	22/06/24	00143278
HORN ANT	A.H.Systems	SAS-574	21/06/24	22/06/24	154
HORN ANT	A.H.Systems	SAS-574	21/06/24	22/06/24	155
Amplifier	EMPOWER	BBS3Q7ELU	21/06/24	22/06/24	1020
PreAmplifier	H.P	8447D	20/12/16	21/12/16	2944A07774
PreAmplifier	Agilent	8449B	21/06/24	22/06/24	3008A02108
High-pass filter	Wainwright	WHKX12-935-1000- 15000-40SS	21/06/24	22/06/24	7
High-pass filter	Wainwright	WHKX10-2838-3300- 18000-60SS	21/06/24	22/06/24	2
High-pass filter	Wainwright	WHNX8.5/26.5G-6SS	21/06/24	22/06/24	1
Cable	RADIALL	TESTPRO3	21/01/05	22/01/05	RFC-03
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-02
Cable	JUNFLON	MWX241/B	21/01/08	22/01/08	M-03
Cable	JUNFLON	MWX221	21/01/08	22/01/08	M-04
Cable	JUNFLON	MWX221	21/01/08	22/01/08	M-05
Cable	DTNC	Cable	21/01/08	22/01/08	M-06
Cable	JUNFLON	J12J101757-00	21/01/08	22/01/08	M-07
Cable	HUBER+SUHNER	SUCOFLEX104	21/01/08	22/01/08	M-08
Cable	HUBER+SUHNER	SUCOFLEX106	21/01/08	22/01/08	M-09

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

5. SUMMARY OF TEST RESULTS

GSM850, WCMDA850/1700/1900 -

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	-	Conducted Output Power	NT Note2
22.913(a) 24.232(c) 27.50(d.4)	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	NT Note2
2.1051 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Band Edge Emissions at Antenna Terminal Spurious Emissions at Antenna Terminal	NT Note2
24.232(d) 27.50(d.5)	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Peak to Average Ratio	NT Note2
2.1053 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Radiated Spurious and Harmonic Emissions	С
2.1055 22.355 24.235 27.54	RSS-132 [5.3] RSS-133 [6.3] RSS-139 [6.4]	Frequency Stability	NT Note2

Note 2: For conducted test items, please refer to the test report of the granted module. (FCC ID : XMR201903EG25G, IC: 10224A-201903EG25G)

Note 3: The radiated test items were performed at DC 12 V and DC 24 V. And the worst case data are reported.

IC : 26419-TMS30TYPEA

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	-	Conducted Output Power	с
24.232(c)	RSS-133 [6.4]	Effective Radiated Power Equivalent Isotropic Radiated Power	с
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	с
24.238(a)	RSS-133 [6.5]	Band Edge Emissions at Antenna Terminal Spurious Emissions at Antenna Terminal	С
24.232(d)	RSS-133 [6.4]	Peak to Average Ratio	с
2.1053 24.238(a)	RSS-133 [6.5]	Radiated Spurious and Harmonic Emissions	с
2.1055 24.235	RSS-133 [6.3]	Frequency Stability	С
Note 1: C= Compl Note 2: The radia		NT=Not Tested NA=Not Applicable ormed at DC 12 V and DC 24 V. And the worst case data are	e reported.

6. EMISSION DESIGNATOR AND SAMPLE CALCULATION

A. Emission Designator

GPRS1900 Emission Designator

Emission Designator = **248KGXW** GSM OBW = 247.99 kHz

(Measured at the 99.75 % power bandwidth)

G = Phase Modulation

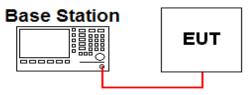
X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE1900 Emission Designator

Emission Designator = **244KG7W** EDGE OBW = 244.28 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation 7 = Cases not otherwise covered W = Combination (Audio/Data)

B. For substitution method


- 1) The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1 GHz respectively above ground.
- 2) The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3) During the test, the turn table is rotated until the maximum signal is found.
- 4) Record the field strength meter's level. (ex. Spectrum reading level is -8.5 dBm)
- 5) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 6) Increase the signal generator output till the field strength meter's level is equal to the item (4).
- (ex. Signal generator level is -18.04 dBm)7) The gain of the cable and amplifier between the signal generator and terminals of substituted antenna is 46.92 dB at test frequency.
- 8) Record the level at substituted antenna terminal. (ex. 28.88dBm)
- 9) The result is calculated as below;

EIRP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBi) ERP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBd) Where, TX Antenna Gain (dBd) = TX Antenna Gain (dBi) - 2.15 dB

7. TEST DATA 7.1 Conducted OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

The output power was measured using the Agilent E5515E

		Maximum Burst-Averaged Output Power(dBm)								
Band	Channel	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot	
	512	26.82	26.56	25.87	24.52	25.31	24.61	23.45	21.85	
PCS (DC 24V)	661	27.41	27.09	25.98	24.98	25.63	25.18	23.58	22.36	
()	810	27.59	27.23	26.49	25.03	25.93	25.28	23.56	22.46	
	512	26.85	26.62	25.97	24.48	25.44	24.79	23.36	21.93	
PCS (DC 12V)	661	27.46	27.12	25.96	25.02	25.91	25.14	23.85	22.10	
	810	27.76	27.45	26.61	25.22	26.21	25.38	24.11	22.31	

• GPRS/EDGE 1900

7.2 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.3 OCCUPIED BANDWIDTH (99 % Bandwidth)

Mode	Channel	Frequency(MHz)	Test Result (kHz)
	512	1850.2	245.13
GPRS1900(DC 24V)	661	1880.0	244.67
	810	1909.8	244.64
	512	1850.2	241.20
EDGE1900(DC 24V)	661	1880.0	244.28
	810	1909.8	243.23
	512	1850.2	247.99
GPRS1900(DC 12V)	661	1880.0	247.21
	810	1909.8	245.74
	512	1850.2	241.38
EDGE1900(DC 12V)	661	1880.0	243.20
	810	1909.8	243.99

7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Band Edge are shown in Clause 8.4

7.6 EFFECTIVE RADIATED POWER

- Test Notes

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

- GPRS/EDGE 850 data(DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
GPRS850	128	824.2	Н	29.32	-0.76	28.56	0.718	-
GPRS850	190	836.6	Н	30.42	-0.85	29.57	0.906	-
EGPRS850	190	836.6	Н	22.05	-0.85	21.20	0.132	-
GPRS850	251	848.8	Н	28.41	-0.95	27.46	0.557	

GPRS/EDGE 850 data(DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
GPRS850	190	836.6	Н	29.64	-0.85	28.79	0.757	-
GPRS850	190	836.6	Н	21.88	-0.85	21.03	0.127	-

- WCDMA850 data(DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
WCDMA850	4 132	826.4	Н	18.48	-0.77	17.71	0.059	-
WCDMA850	4 183	836.6	н	18.63	-0.85	17.78	0.060	-
WCDMA850	4 233	846.6	Н	17.15	-0.93	16.22	0.042	-

WCDMA850 data(DC 24 V)

1	Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
WC	DMA850	4 183	836.6	Н	18.57	-0.85	17.72	0.059	-

7.7 EQUIVALENT ISOTROPIC RADIATED POWER

- Test Notes

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

- WCDMA1700 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1700	1 312	1 712.4	V	16.65	6.57	23.22	0.210	-
WCDMA1700	1 412	1 732.4	V	18.04	6.31	24.35	0.272	-
WCDMA1700	1 513	1 752.6	V	19.07	6.06	25.13	0.326	-

- WCDMA1700 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1700	1 513	1 752.6	V	19.04	6.06	25.10	0.324	-

- GPRS/EDGE 1900 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
GPRS1900	512	1 850.2	V	25.70	5.35	31.05	1.274	-
GPRS1900	661	1 880.0	V	25.02	5.20	30.22	1.052	-
GPRS1900	810	1 909.8	V	26.35	5.08	31.43	1.390	-
EGPRS1900	810	1 909.8	V	24.58	5.08	29.66	0.925	-

- GPRS/EDGE 1900 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
GPRS1900	810	1 909.8	V	26.32	5.08	31.40	1.380	-
EGPRS1900	810	1 909.8	V	24.59	5.08	29.67	0.927	-

- WCDMA1900 data (DC 24 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1900	9 262	1 852.4	V	20.34	5.34	25.68	0.370	-
WCDMA1900	9 400	1 880.0	V	20.09	5.20	25.29	0.338	-
WCDMA1900	9 538	1 907.6	V	19.90	5.08	24.98	0.315	-

- WCDMA1900 data (DC 12 V)

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1900	9 262	1 852.4	V	20.30	5.34	25.64	0.366	-

7.8 RADIATED SPURIOUS EMISSIONS

- Test Notes

- This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.
- 2. Limit Calculation = 43 + 10 log₁₀(P[Watts])
- 3. The frequency spectrum is examined from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. No other spurious and harmonic emissions were reported greater than listed emissions.

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note.
		1 648.58	V	-48.22	4.51	-43.71	-13.00	30.71	-
128	824.2	2 472.81	Н	-35.30	4.14	-31.16	-13.00	18.16	-
		4 121.41	Н	-44.26	7.67	-36.59	-13.00	23.59	
		1 637.18	V	-43.34	4.40	-38.94	-13.00	25.94	-
190	836.6	2 509.94	Н	-33.71	4.14	-29.57	-13.00	16.57	-
		4 182.60	Н	-45.43	7.73	-37.70	-13.00	24.70	
		1 697.36	V	-43.80	4.58	-39.22	-13.00	26.22	-
251	848.8	2 546.30	Н	-41.14	4.19	-36.95	-13.00	23.95	-
		4 243.96	Н	-45.35	7.83	-37.52	-13.00	24.52	

- GPRS850 data (DC 24 V)

- GPRS850 data (DC 12 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note.
		1 673.36	V	-43.80	4.58	-39.22	-13.00	26.22	-
190	836.6	2 510.03	Н	-41.14	4.19	-36.95	-13.00	23.95	-
		4 182.69	Н	-45.35	7.83	-37.52	-13.00	24.52	

- WCDMA850 data (DC 24 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		1 654.76	Н	-54.52	4.53	-49.99	-13.00	36.99	-
4 132	826.4	2 473.44	V	-53.94	4.14	-49.80	-13.00	36.80	-
		3 310.22	Н	-53.52	6.09	-47.43	-13.00	34.43	-
		1 674.99	Н	-50.69	4.55	-46.14	-13.00	33.14	-
4 183	836.6	2 500.85	V	-55.18	4.13	-51.05	-13.00	38.05	-
		3 342.16	Н	-53.83	6.23	-47.60	-13.00	34.60	-
		1 695.59	Н	-54.00	4.57	-49.43	-13.00	36.43	-
4 233	846.6	2 540.23	V	-55.21	4.19	-51.02	-13.00	38.02	-
		3 391.00	Н	-54.41	6.38	-48.03	-13.00	35.03	-

- WCDMA850 data (DC 12 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		1 675.11	Н	-53.16	4.55	-48.61	-13.00	35.61	-
4 183	836.6	2 513.49	V	-54.77	4.15	-50.62	-13.00	37.62	-
		3 342.19	Н	-52.81	6.23	-46.58	-13.00	33.58	-

- WCDMA1700 data (DC 24 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 426.58	V	-52.04	8.67	-43.37	-13.00	30.37	-
1 312	1 712.4	5 134.39	V	-53.86	10.76	-43.10	-13.00	30.10	-
1 312	1712.4	6 853.46	Н	-51.94	11.94	-40.00	-13.00	27.00	-
		8 567.22	V	-53.52	13.54	-39.98	-13.00	26.98	-
		3 467.06	V	-52.54	8.79	-43.75	-13.00	30.75	-
1 412	1 732.4	5 200.40	V	-53.12	10.94	-42.18	-13.00	29.18	-
1412	1752.4	6 933.84	Н	-49.93	12.14	-37.79	-13.00	24.79	-
		8 656.12	V	-52.16	13.67	-38.49	-13.00	25.49	-
		3 503.36	V	-53.69	8.80	-44.89	-13.00	31.89	-
1 513	1 750 6	5 259.35	V	-56.17	10.92	-45.25	-13.00	32.25	-
1010	1 752.6	7 014.47	Н	-51.33	12.21	-39.12	-13.00	26.12	-
		8 762.15	V	-55.04	13.75	-41.29	-13.00	28.29	-

- WCDMA1700 data (DC 12 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 503.42	V	-53.86	8.80	-45.06	-13.00	32.06	-
1 510	1 750 6	5 250.94	V	-56.99	10.92	-46.07	-13.00	33.07	-
1 513	1 752.6	7 006.44	Н	-50.84	12.21	-38.63	-13.00	25.63	-
		8 761.90	V	-54.64	13.75	-40.89	-13.00	27.89	-

- GPRS1900 data (DC 24 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 700.35	Н	-46.72	8.88	-37.84	-13.00	24.84	-
512	1 850.2	5 551.10	Н	-53.60	10.91	-42.69	-13.00	29.69	-
		7 400.50	Н	-56.28	12.30	-43.98	-13.00	30.98	-
		3 760.07	Н	-45.14	8.92	-36.22	-13.00	23.22	-
661	1 880.0	5 639.84	Н	-53.13	11.06	-42.07	-13.00	29.07	-
		7 520.06	Н	-53.95	12.54	-41.41	-13.00	28.41	-
		3 819.74	Н	-43.20	9.10	-34.10	-13.00	21.10	-
810	1 909.8	5 729.45	Н	-52.12	11.24	-40.88	-13.00	27.88	-
		7 638.91	Н	-54.12	12.66	-41.46	-13.00	28.46	-

- GPRS1900 data (DC 12 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 819.78	Н	-42.80	9.10	-33.70	-13.00	20.70	-
810	1 909.8	5 729.49	Н	-52.82	11.24	-41.58	-13.00	28.58	-
		7 639.07	Н	-53.28	12.66	-40.62	-13.00	27.62	-

- WCDMA1900 data (DC 24 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 708.07	V	-55.62	8.88	-46.74	-13.00	33.74	-
9 262	1 852.4	5 559.69	Н	-55.03	10.94	-44.09	-13.00	31.09	-
9 202	1 002.4	7 413.70	V	-46.36	12.34	-34.02	-13.00	21.02	-
		9 267.30	V	-52.03	13.76	-38.27	-13.00	25.27	-
		3 761.06	V	-55.19	8.93	-46.26	-13.00	33.26	-
0.400	1 990 0	5 636.57	Н	-53.87	11.07	-42.80	-13.00	29.80	-
9 400	1 880.0	7 515.90	V	-50.07	12.54	-37.53	-13.00	24.53	-
		9 395.24	V	-51.49	13.79	-37.70	-13.00	24.70	-
		3 805.64	V	-54.60	9.04	-45.56	-13.00	32.56	-
0.529	10076	5 725.80	Н	-53.67	11.23	-42.44	-13.00	29.44	-
9 538	1 907.6	7 628.90	V	-55.72	12.63	-43.09	-13.00	30.09	-
		9 543.12	V	-51.12	13.73	-37.39	-13.00	24.39	-

- WCDMA1900 data (DC 12 V)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
9 262		3 701.65	V	-55.72	8.88	-46.84	-13.00	33.84	-
	1 852.4	5 559.84	Н	-53.02	10.94	-42.08	-13.00	29.08	-
	1 002.4	7 413.68	V	-46.71	12.34	-34.37	-13.00	21.37	
		9 267.13	V	-52.59	13.76	-38.83	-13.00	25.83	-

7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

- Test Notes.

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

7.9.1 FREQUENCY STABILITY (GPRS1900)

OPERATING FREQUENCY : CHANNEL : REFERENCE VOLTAGE : LIMIT(FCC) :

1,880,000,000 Hz 661(Mid)

24 V DC

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block

		DIOCK.		
LIMIT(IC)	:	\pm 0.00025 % or	2.5	ppm

VOLTAGE	POWER (V DC)	TEMP	FREQ	Deviation		
(%)		(°C)	(Hz)	(ppm)	(%)	
100 %		+20(Ref)	1,880,000,016	0.009	0.000 000 85	
100 %		-30	1,879,999,998	-0.001	-0.000 000 11	
100 %		-20	1,880,000,009	0.005	0.000 000 48	
100 %	24.0	-10	1,879,999,998	-0.001	-0.000 000 11	
100 %		0	1,879,999,993	-0.004	-0.000 000 37	
100 %		+10	1,880,000,003	0.002	0.000 000 16	
100 %		+20	1,880,000,016	0.009	0.000 000 85	
100 %		+30	1,880,000,011	0.006	0.000 00 059	
100 %		+40	1,879,999,999	-0.001	-0.000 000 05	
100 %		+50	1,880,000,006	0.003	0.000 000 32	
115 %	27.6	+20	1,880,000,011	0.006	0.000 000 59	
85 %	20.4	+20	1,879,999,998	-0.001	-0.000 000 11	

IC : 26419-TMS30TYPEA

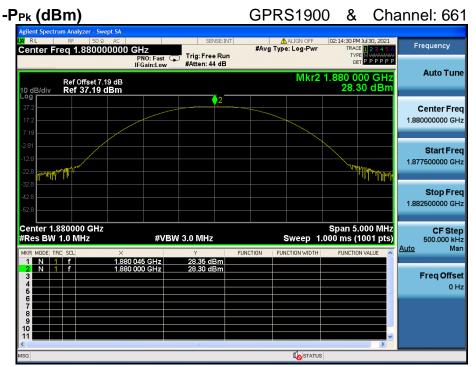
OPERATING FREQUENCY	:

- CHANNEL : <u>661(</u>
- REFERENCE VOLTAGE :
- LIMIT(FCC) :
- : <u>661(Mid)</u> : <u>12</u>VDC
- IAGE : <u>12</u>V

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

LIMIT(IC)	:	± 0.00025 % or	25	ppm
	•	± 0.00025 /6 01	2.5	_ppm

<u>1,880,000,000</u>Hz


VOLTAGE	POWER (V DC)	TEMP (℃)	FREQ	Deviation		
(%)			(Hz)	(ppm)	(%)	
100 %		+20(Ref)	1,879,999,999	-0.001	-0.000 000 05	
100 %		-30	1,880,000,011	0.006	0.000 000 59	
100 %		-20	1,879,999,997	-0.002	-0.000 000 16	
100 %	12.0	-10	1,879,999,988	-0.006	-0.000 000 64	
100 %		0	1,880,000,006	0.003	0.000 000 32	
100 %		+10	1,879,999,996	-0.002	-0.000 000 21	
100 %		+20	1,879,999,999	-0.001	-0.000 000 05	
100 %		+30	1,879,999,991	-0.005	-0.000 000 48	
100 %		+40	1,880,000,002	0.001	0.000 000 11	
100 %		+50	1,880,000,018	0.010	0.000 000 96	
115 %	13.8	+20	1,879,999,999	-0.001	-0.000 000 05	
85 %	10.2	+20	1,880,000,006	0.003	0.000 000 32	

8. TEST PLOTS

🛈 Dt&C

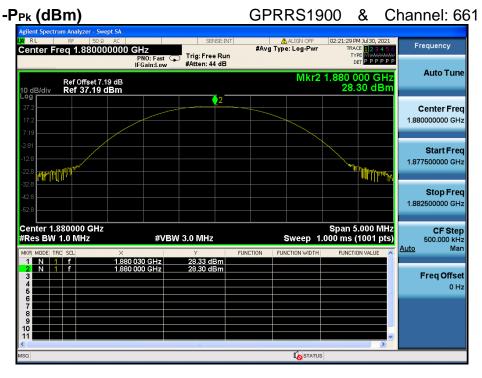
8.1 PEAK TO AVERAGE RATIO

GPRS1900 data (DC 24 V)

-PAvg (dBm) GPRS1900 Channel: 661 & Channel P SENSE:INT ALIGN OFF Center Freq: 1.88000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 44 dB 02:15:07 PM Jul 30, 2021 Radio Std: None Frequency Center Freq 1.880000000 GHz Radio Device: BTS #IFGain:Low Ref 40.00 dBm **Center Freq** 1.880000000 GHz M Center 1.88 GHz #Res BW 10 kHz Span 500 kHz Sweep 6.2 ms CF Step 50.000 kHz Man #VBW 30 kHz Auto **Power Spectral Density Channel Power** Freq Offset -25.97 dBm /Hz 27.91 dBm / 244.7 kHz 0 Hz **STATUS** PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 28.35 dBm - 27.91 dBm = 0.44 dB

-P<u>Pk (dBm</u>)

EDGE1900 & Channel: 661



-PAvg (dBm) EDGE1900 & Channel: 661

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.55 dBm - 24.10 dBm = 3.45 dB

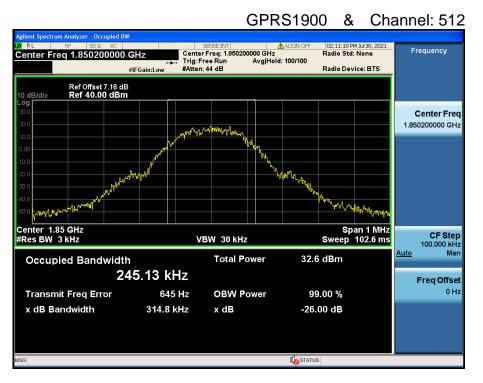
GPRS1900 data (DC 12 V)

-PAvg (dBm)

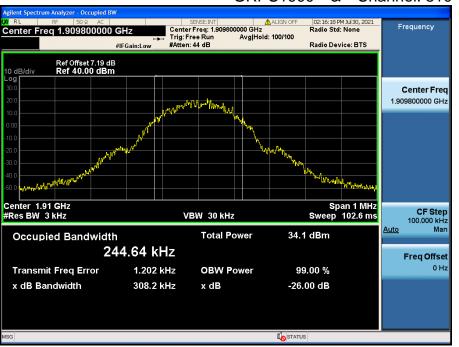
GPRS1900 & Channel: 661

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 28.33 dBm - 27.95 dBm = 0.38 dB

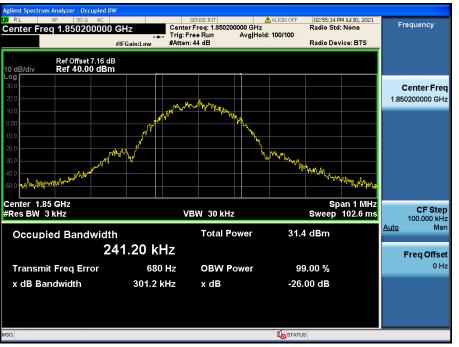
EDGE1900 & Channel: 661


-P_{Avg} (dBm) EDGE1900 & Channel: 661

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.46 dBm - 24.08 dBm = 3.38 dB


8.2 OCCUPIED BANDWIDTH (99 % Bandwidth)

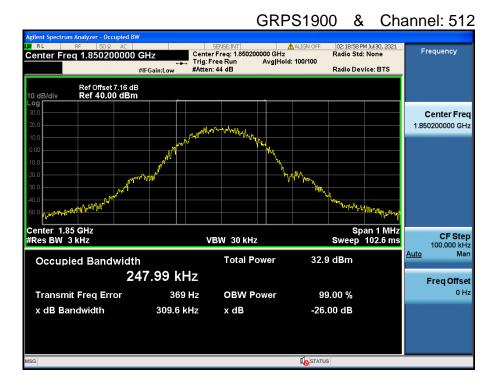
GPRS1900 data (DC 24 V)

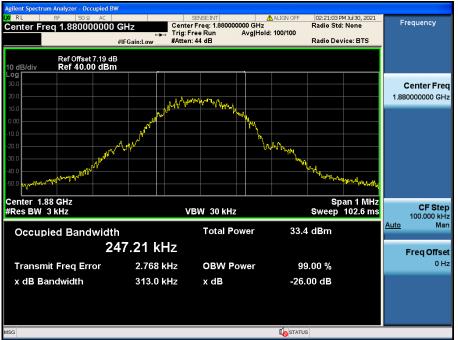


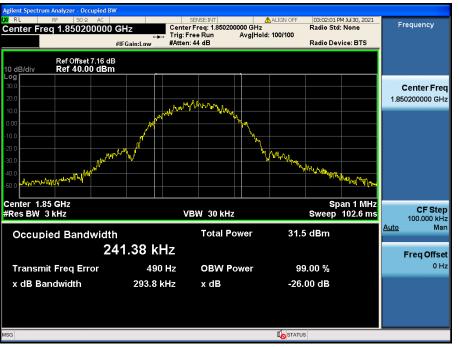
GPRS1900 & Channel: 661

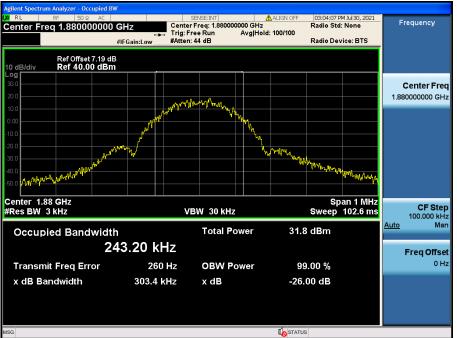
GRPS1900 & Channel: 810

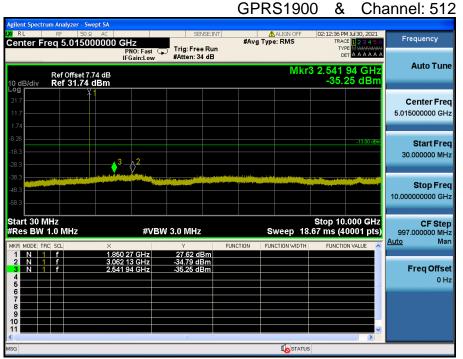
EDGE1900 & Channel: 512


EDGE1900 & Channel: 661

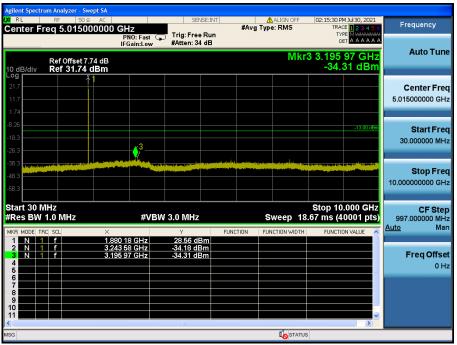



GPRS1900 data (DC 12 V)


🛈 Dt&C

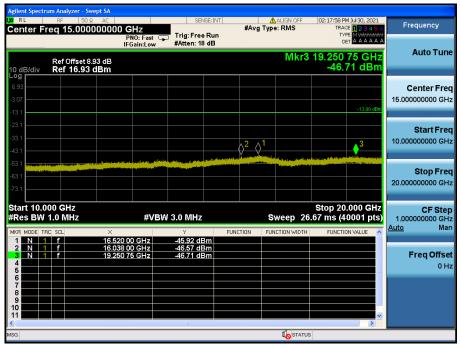


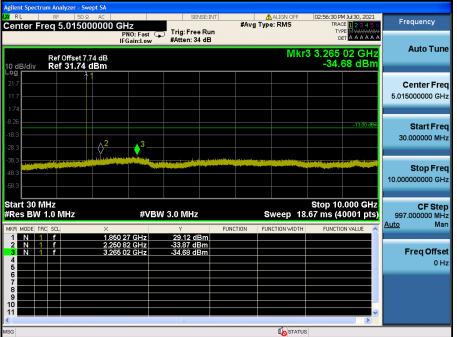


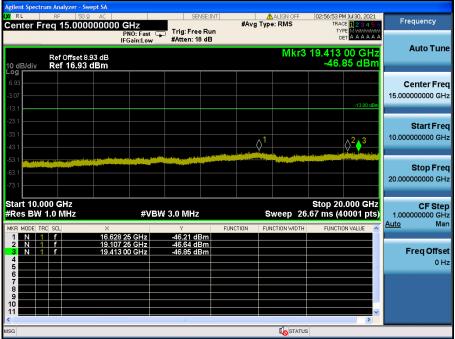


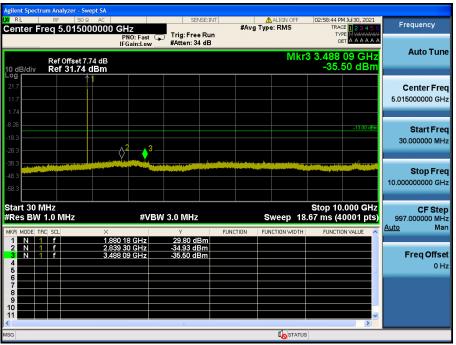


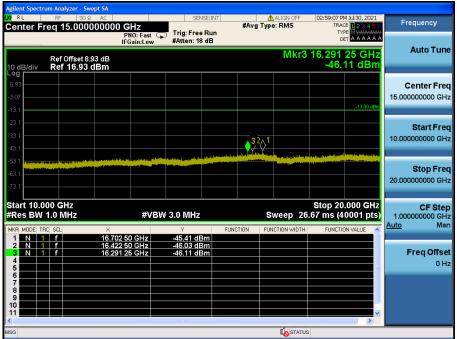
GPRS1900 data (DC 24 V)

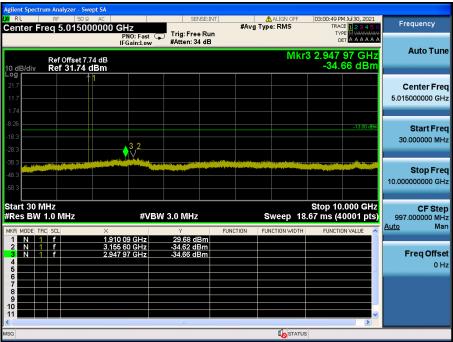


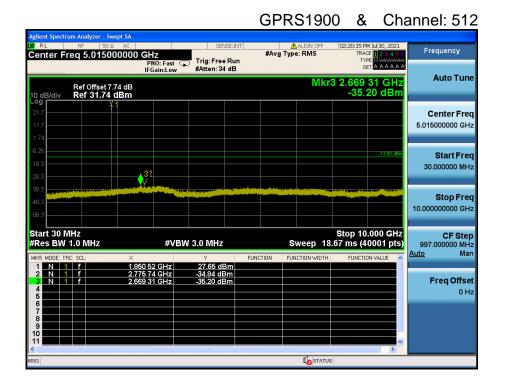


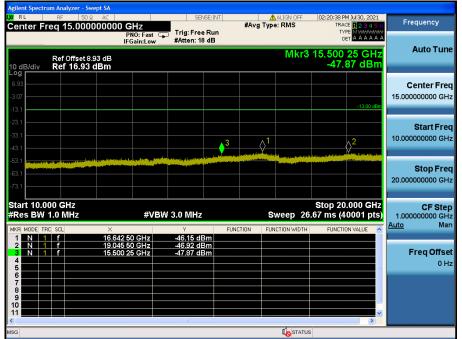


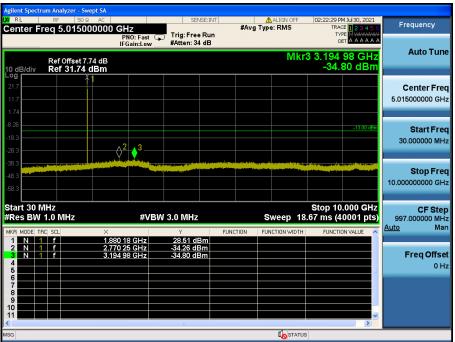


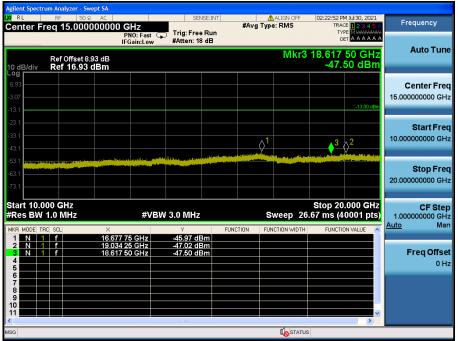


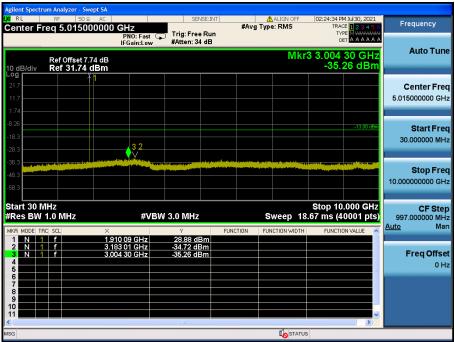


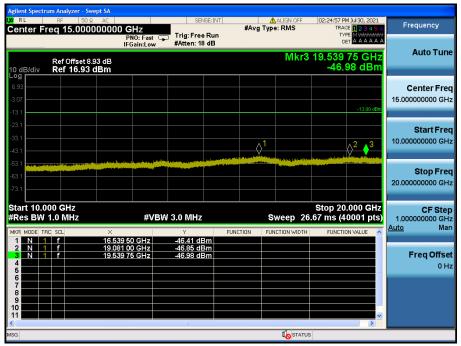




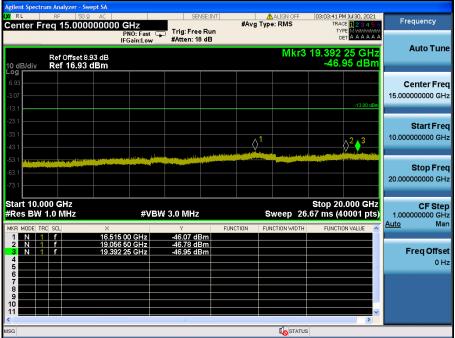


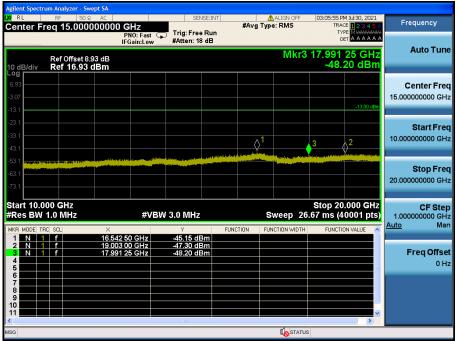


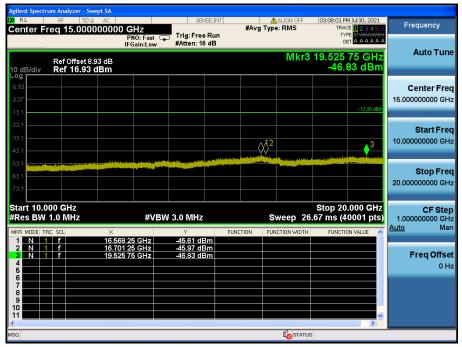

GPRS1900 data (DC 12 V)

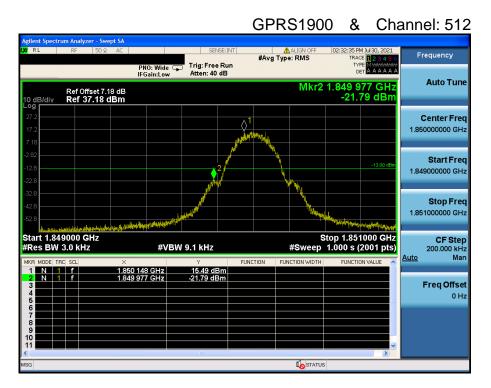


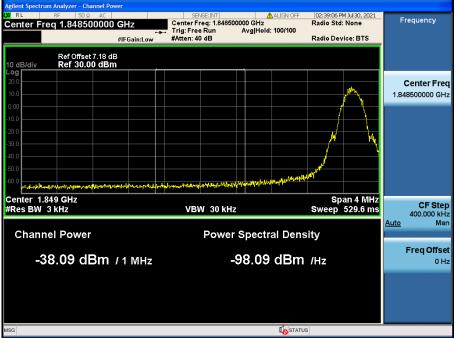


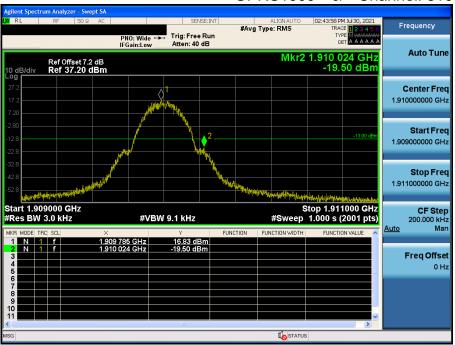


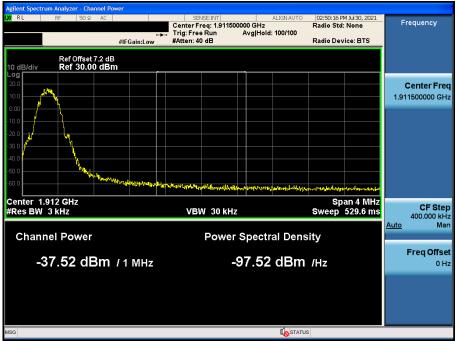


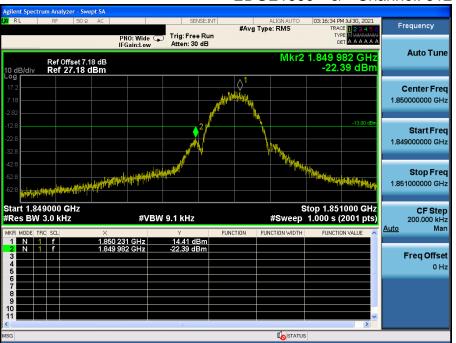


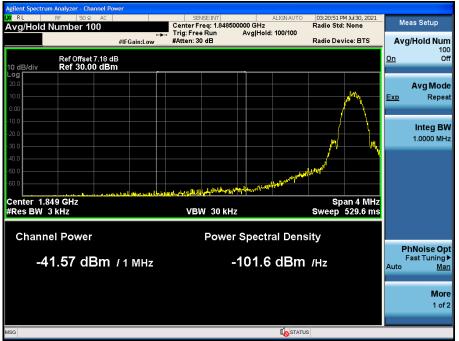

								u u		
gilent Spectr	um Analyzer -	Swept SA								
RL		io Ω AC		SENS	E:INT		ALIGN OFF	03:07:38 PM .		Frequency
enter F	req 5.015	6000000	GHz	Trig: Free I	-	#Avg Typ	e: RMS	TRACE	123456 M WWWWW	Frequency
			PNO: Fast C IFGain:Low	Atten: 34				DET	A A A A A A	
			II GUIILEON				Miler	2 2 24 2 0		Auto Tur
	Ref Offset						IVIKI	3 3.313 8	7 dBm	
) dB/div og r	Ref 31.7	'4 dBm						-04.0	/ авш	
1.7		<u> </u>								Center Fre
										5.015000000 G
1.7										5.015000000 Gi
.74										
26									-13.00 dBm	Start Fro
3.3										30.000000 MI
3.3			<u>^2</u> 3							30.00000 141
			Y.Y.							
State	and the local sector for the local sector of t					a contra alla concentra a		and the second section of the	and the second se	Stop Fre
3.3										10.000000000 G
3.3										10.000000000000
art 30 N Res BW	/IHZ 1.0 MHz		#VB	W 3.0 MHz		s	weep 18	Stop 10.0 67 ms (40.	000 GHZ 001 pts)	CF Ste 997.000000 MI
R MODE TI	aci acui	×		Y	FUNC		NCTION WIDTH	FUNCTION		Auto M
			0 09 GHz	30.00 dBi		HUN FUI	NCTION WIDTH	FUNCTION	VALUE	
2 N 1		3.056	5 39 GHz	-34.45 dBr	n					Off-
3 N 1		3.31	3 87 GHz	-34.87 dBr	n					Freq Offs
									=	01
5										
в 💶 🖬										
1									~	
				III					>	
3							I STATUS			



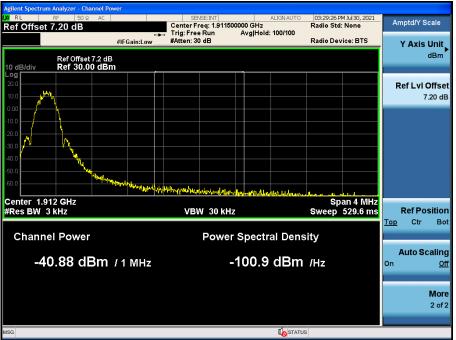

8.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

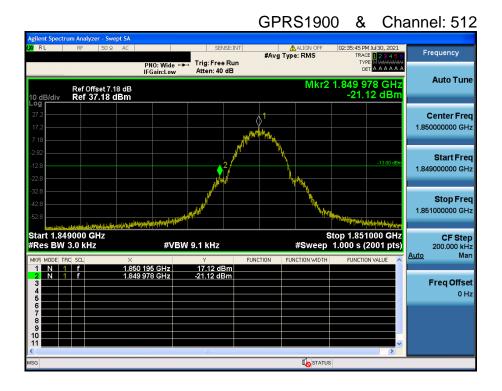

GPRS1900 data (DC 24 V)

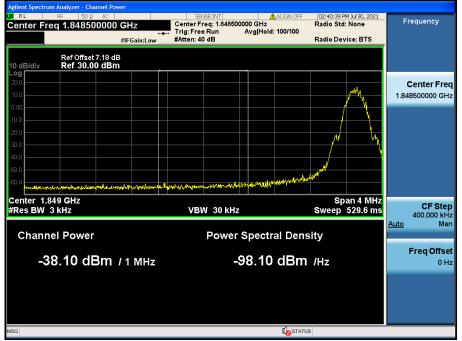


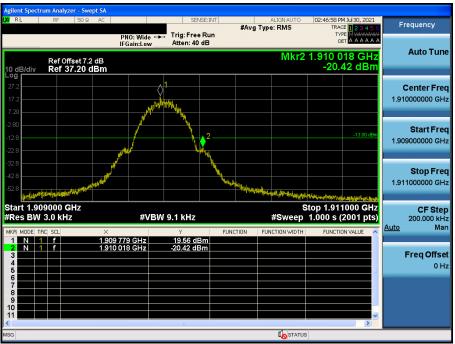

GPRS1900 & Channel: 512

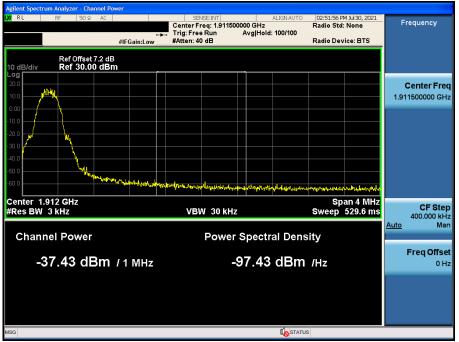












GPRS1900 data (DC 12 V)

