Project No.: BTF230721R01301-4 Page 1 of 32

FCC TEST REPORT FCC ID:2AXCX-VERTS0722

Report Number...... BTF230721R01301-4

Date of issue: Aug. 01, 2023

Test Result: PASS

Testing Laboratory.....: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

Applicant's name: Shenzhen Foxwell Technology Co., Ltd

5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan Address District, Shenzhen 518106 · China

Manufacturer's name: Shenzhen Foxwell Technology Co., Ltd

5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan

District, Shenzhen 518106 · China

Test specification:

Standard..... FCC CFR Title 47 Part 15 Subpart C Section 15.231 ANSI C63.10:2013

Test procedure.....: : /

Non-standard test method: N/A

Test Report Form No.: TRF-EL-111_V0

Test Report Form(s) Originator: BTF Testing

Master TRF: Dated: 2022-02-21

This device described above has been tested by BTF, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BTF, this document may be altered or revised by BTF, personal only, and shall be noted in the revision of the document.

Product name: Premium Diagnostic & TPMS Scanner

Trademark: N/A

Model/Type reference: TS5000

TS7000

Project No.: BTF230721R01301-4 Page 2 of 32

Testing procedure and testing location:	
Testing Laboratory: Address:	BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Tested by (name + signature):	Elma. Yang elma.yang
Reviewer (name + signature):	
Approved (name + signature):	Ryan.CJ * A TA T

Table of Contents	Page
1. VERSION	5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	9
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
4. EMC EMISSION TEST	13
4.1 CONDUCTED EMISSION MEASUREMENT	13
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	14 14
4.1.4 TEST SETUP	14
4.1.5 EUT OPERATING CONDITIONS	14
4.1.6 TEST RESULTS	14
4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS	17 17
4.2.2 TEST PROCEDURE	18
4.2.3 TEST SETUP	19
4.2.4 EUT OPERATING CONDITIONS	20
4.2.5 TEST RESULTS 5.1 APPLIED PROCEDURES / LIMIT	20 25
5.2 TEST PROCEDURE	25
5.3 DEVIATION FROM STANDARD	25
5.4 TEST SETUP	25 25
5.5 EUT OPERATION CONDITIONS 5.6 TEST RESULTS	25 26
6. CALCULATION OF AVERAGE FACTOR	27
7. DWELL TIME	29
7.1 APPLICABLE STANDARD	29
7.2 TEST PROCEDURE	29
7.5 EUT OPERATION CONDITIONS	29
7.6 TEST RESULTS	30

Project No.: BTF230721R01301-4

Page 4 of 32

Table of Contents	Page
8. ANTENNA REQUIREMENT	31
9. TEST SETUP PHOTO	32
10. EUT CONSTRUCTIONAL DETAILS	32

Project No.: BTF230721R01301-4 Page 5 of 32

1. VERSION

Report No.	Version	Description	Approved
BTF230721R01301-4	Rev.01	Initial issue of report	Aug. 01, 2023

Project No.: BTF230721R01301-4 Page 6 of 32

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.231) , Subpart C					
Standard Section	Judgment	Remark			
15.207	Conducted Emission	PASS			
15.209,15.231b Fundamental &Radiated Spurious Emission Measurement		PASS			
15.231c	Occupy Bandwidth	PASS			
15.231a	Dwell time	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Project No.: BTF230721R01301-4 Page 7 of 32

2.1 TEST FACILITY

BTF Testing Lab (Shenzhen) Co., Ltd.

Add.: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang

Street, Bao'an District, Shenzhen, China

FCC Registration Number: 518915 Designation Number: CN1330 Company Number: 27844 CAB Identifier: CN0135

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 · providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB
5	Conducted disturbance	U=3.2dB
6	RF Band Edge	U=1.68dB
7	RF power conducted	U=1.86dB
8	RF conducted Spurious Emission	U=2.2dB
9	RF Occupied Bandwidth	U=1.8dB
10	RF Power Spectral Density	U=1.75dB
11	humidity uncertainty	U=5.3%
12	Temperature uncertainty	U=0.59°C

Project No.: BTF230721R01301-4 Page 8 of 32

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Premium Diagnostic & TPMS Scanner	
Trade Name	N/A	
Model Name	TS5000	
Serial Model	TS7000	
Model Difference	All models have the same circuit and RF module, only the appearance color are different	
Hardware version	H1.0	
Software version	S1.0	
Operation Frequency:	315MHz	
Modulation Type:	ООК	
Antenna Type:	Spring Antenna	
Antenna Gain:	0.2 dBi	
Ratings	Input: DC 5V	
	Battery: DC 3.7V	
Battery:	3.7V 5000mAh 18.5Wh	
SWITCHING POWER SUPPLY	Model:PSY0502000 INPUT:AC 100-240V 50/60Hz 0.6A Max OUTPUT:DC 5V 2.0A	

Project No.: BTF230721R01301-4

Page 9 of 32

3.2 DESCRIPTION OF TEST MODES

For All Emission			
Test Mode Description			
Transmitting mode	Keep the EUT in continuously transmitting mode		
Charging mode	Keep the EUT in Charging mode.		

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Conducted Emission

A-1	EUT

RE Spurious Emissions

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	E-1 Premium Diagnostic & N/A TPMS Scanner		TS5000	N/A	EUT
A-1	Adapter	N/A	PSY0502000	N/A	Auxiliary

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength_a</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Project No.: BTF230721R01301-4 Page 10 of 32

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Occupied Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in restricted frequency bands (below 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Project No.: BTF230721R01301-4 Page 12 of 32

Emissions in restricted frequency bands (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Project No.: BTF230721R01301-4 Page 13 of 32

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS

(Frequency Range 150KHz-30MHz)

EDEOUL NOV (MH-)	Limit (Standard	
FREQU NCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

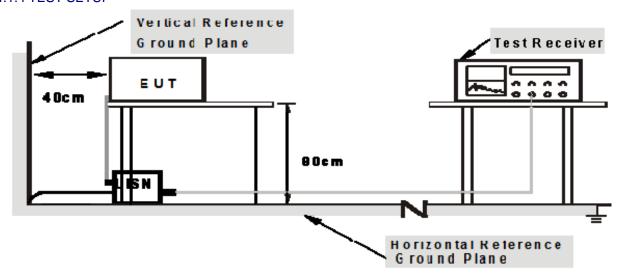
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

Project No.: BTF230721R01301-4 Page 14 of 32


4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

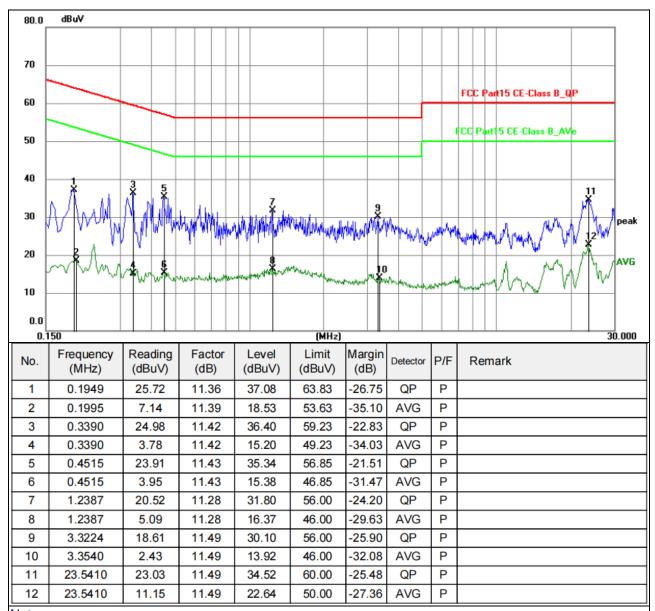
4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

Note: 1.Support units were connected to second LISM.

2.B oth of LISMs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

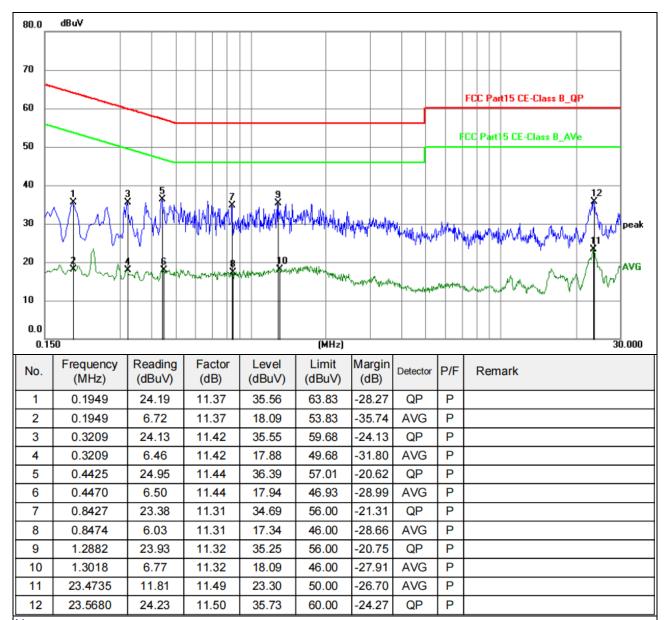

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS

Project No.: BTF230721R01301-4 Page 15 of 32

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		



Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Project No.: BTF230721R01301-4 Page 16 of 32

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz		

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Project No.: BTF230721R01301-4 Page 17 of 32

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

4.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.231(b) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

EDEOLIENCY (MHz)	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Project No.: BTF230721R01301-4 Page 18 of 32

FUNDAMENTAL AND HARMONICS EMISSION LIMITS

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

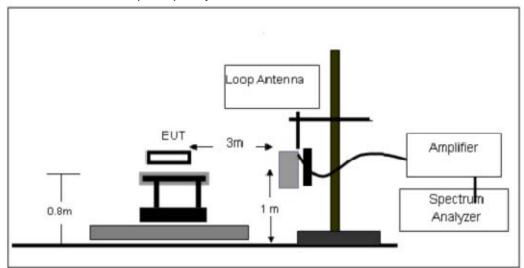
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW setting	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

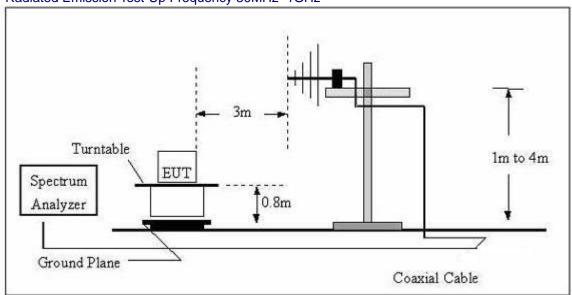
4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Project No.: BTF230721R01301-4 Page 19 of 32

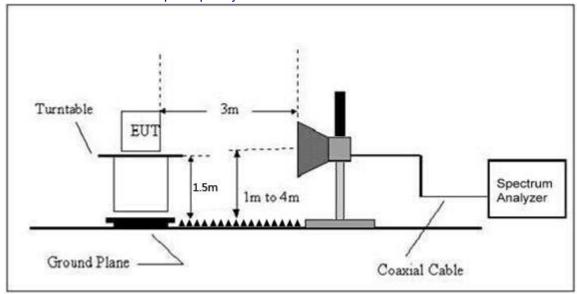

- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case was X axis and the emissions were reported

4.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Project No.: BTF230721R01301-4 Page 20 of 32

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.5 TEST RESULTS

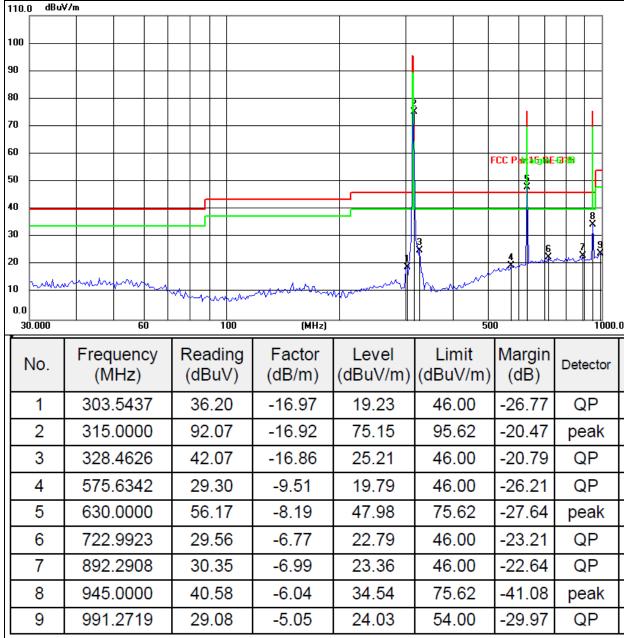
Radiated Spurious Emission (Below 9KHz - 30MHz)

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 kPa	Polarization :	
Test Voltage :	DC 3.7V		
Test Mode :	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

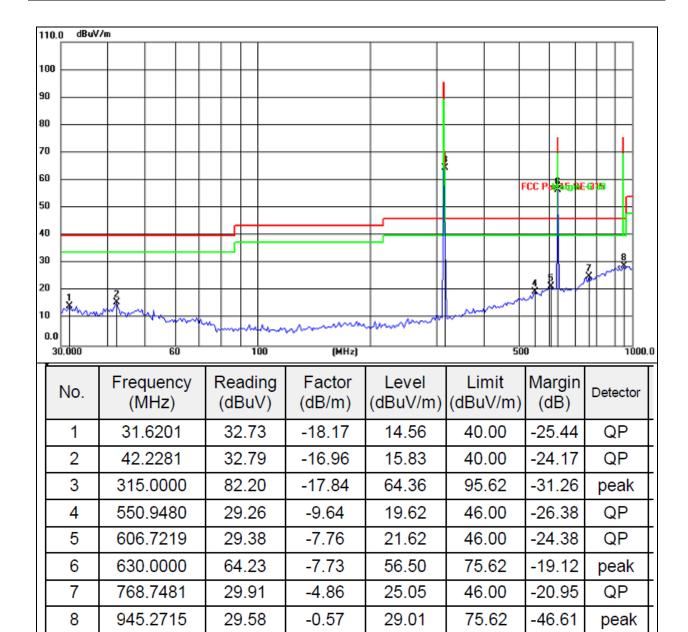

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Project No.: BTF230721R01301-4 Page 21 of 32

Radiated Spurious Emission (Between 30MHz - 1GHz)

Temperature :	26 ℃	Relative Humidity:	54%		
Pressure :	101 kPa	Polarization :	Horizontal		
Test Voltage :	DC 3V				
Test Mode :	TX Mode 1: 315MHz				



Remarks

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: BTF230721R01301-4 Page 22 of 32

Temperature :	26 ℃	Relative Humidity:	54%		
Pressure :	101 kPa	Polarization :	Vertical		
Test Voltage :	DC 3V				
Test Mode :	TX Mode 1: 315MHz				

Remarks:

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: BTF230721R01301-4

Page 23 of 32

For average Emission For Mode 1: 315MHz

F=====================================	Peak	Duty	Average			
Frequency	Level	cycle	Level	Limit	Margin	Polarization
MHz	dBuV/m	factor	dBuV/m	AV		
315	75.15	-13.47	61.68	75.62	-13.94	Horizontal
630	47.98	-13.47	34.51	55.62	-21.11	Horizontal
945	34.54	-13.47	21.07	55.62	-34.55	Horizontal

Notes: 1. Average emission Level = Peak Level + Duty cycle factor

2.Duty cycle level please see clause 6.

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	Average Level dBuV/m	Limit AV	Margin	Polarization
315	64.36	-13.47	50.89	75.62	-24.73	Vertical
630	56.50	-13.47	43.03	55.62	-12.59	Vertical
945	29.01	-13.47	15.54	55.62	-40.08	Vertical

Notes: 1. Average emission Level = Peak Level + Duty cycle factor

2. Duty cycle level please see clause 6.

Project No.: BTF230721R01301-4 Page 24 of 32

Radiated Spurious Emission (1 GHz to 10^{th} harmonics) For Mode 1: 315 MHz

Frequency	Peak	Duty	Average	Liı	mit	Margii	n dB	
MHz	Level dBuV/m	cycle factor	Level dBuV/m	PK	AV	PK	AV	Polarization
1260.25	43.82	-13.47	30.35	75.62	55.62	-31.80	-25.27	Vertical
1575.33	41.62	-13.47	28.15	74.00	54.00	-32.38	-25.85	Vertical
1890.55	40.47	-13.47	27.00	74.00	54.00	-33.53	-27.00	Vertical
2205.41	40.38	-13.47	26.91	74.00	54.00	-33.62	-27.09	Vertical
2520.35	40.66	-13.47	27.19	75.62	55.62	-34.96	-28.43	Vertical
2835.21	37.45	-13.47	23.98	74.00	54.00	-36.55	-30.02	Vertical
1260.25	46.14	-13.47	32.67	75.62	55.62	-29.48	-22.95	Horizontal
1575.33	45.33	-13.47	31.86	74.00	54.00	-28.67	-22.14	Horizontal
1890.55	45.82	-13.47	32.35	74.00	54.00	-28.18	-21.65	Horizontal
2205.41	44.78	-13.47	31.31	74.00	54.00	-29.22	-22.69	Horizontal
2520.35	43.23	-13.47	29.76	75.62	55.62	-32.39	-25.86	Horizontal
2835.21	40.22	-13.47	26.75	74.00	54.00	-33.78	-27.25	Horizontal

Notes: 1.Average emission Level = Peak Level + Duty cycle factor

2.Duty cycle level please see clause 6.

Project No.: BTF230721R01301-4 Page 25 of 32

5. BANDWIDTH TEST

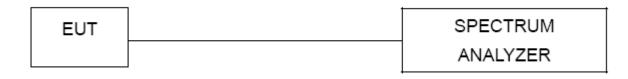
5.1 APPLIED PROCEDURES / LIMIT

According to FCC 15.231(c) requirement:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz to 900 MHz. Those devices operating above 900 MHz, the emission spurious shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

B.W (20dBc) Limit = 0.25% * f(MHz) = 0.25% * 315MHz = 0.7875MHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	1.5*OBW ~ 5*OBW
RB	1%-5%OBW
VB	3 RBW,
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

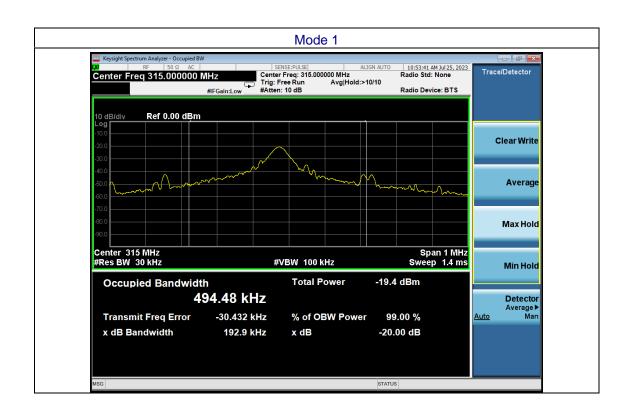

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 2*OBW ~5*OBW, VBW≥3 RBW, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP


5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: BTF230721R01301-4 Page 26 of 32

5.6 TEST RESULTS

Eroguenov	20dB Bandwidth	Limit	Result	
Frequency	(kHz)	(MHz)	Result	
315MHz	192.9	0.25%*315=0.7875	PASS	

Project No.: BTF230721R01301-4 Page 27 of 32

6. CALCULATION OF AVERAGE FACTOR

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 1MHz resolution bandwidth.

Averaging factor in dB =20log (duty cycle)

Mode 1: 315MHz:

The duration of one cycle =76.80ms

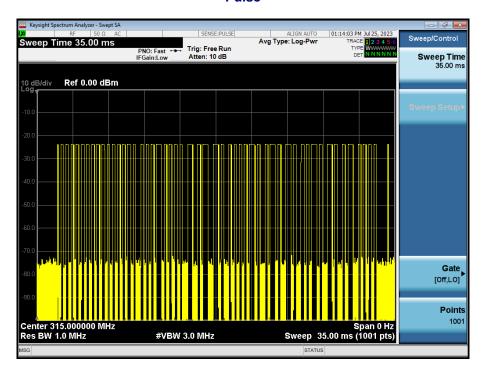
The duty cycle is simply the on-time divided the duration of one cycle

Duty Cycle = $(0.504\text{ms}^*10+0.255\text{ms}^*44)/76.80\text{ms}$

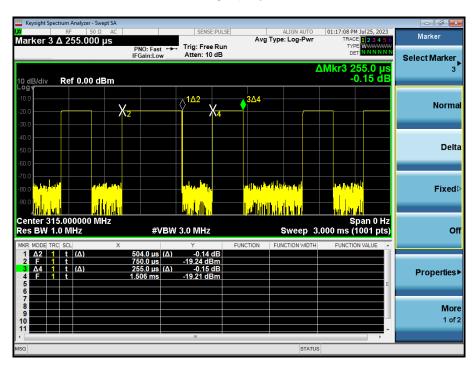

=16.26ms / 76.80ms

=0.212ms

Therefore, the averaging factor is found by $20\log 0.212 = -13.47dB$


Test plot as follows:

Note: During the 100ms, the amount of pulse and on-time of pulse are the same for every pulse train.



Cycle

Pulse

On-time

Project No.: BTF230721R01301-4 Page 29 of 32

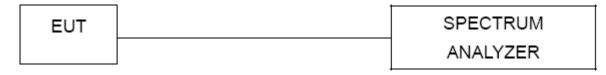
7. DWELL TIME

7.1 APPLICABLE STANDARD

According to FCC 15.231(a) requirement:

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

7.2 TEST PROCEDURE


Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

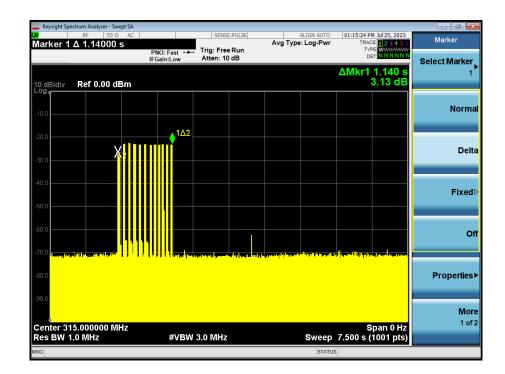
- 1.Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 2.Set RBW to 1 MHz and VBW of spectrum analyzer to 3 MHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 3.Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 4. Repeat above procedures until all measured frequencies were complete.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: BTF230721R01301-4 Page 30 of 32

7.6 TEST RESULTS

Test Mode	Frequency	Dwell time (second)	Limit (second)	Result
Mode 1	315MHz	1.140s	<5s	Pass

Test plot as follows:

Project No.: BTF230721R01301-4 Page 31 of 32

8. ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Spring Antenna, the best case gain of the antenna is 0.2 dBi, reference to the appendix II for details

Project No.: BTF230721R01301-4 Page 32 of 32

9. TEST SETUP PHOTO

Reference to the appendix I for details.

10. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

**** END OF REPORT ****