


## PCTEST 7185 Oakland Mills Road, Columbia, MD 21046 USA



http://www.pctest.com



## PART 27 / RSS-199 MEASUREMENT REPORT

#### **Applicant Name:**

Telit Communications S.p.A Viale Stazione di Prosecco 5/b 34010, Trieste, Italy

### Date of Testing: 5/12 - 6/1/2021 **Test Site/Location:** PCTEST Lab. Columbia, MD, USA **Test Report Serial No.:** 1M2106040065-07.RI7

## FCC ID: IC:

Applicant Name:

# RI7LE910CXWWX 5131A-LE910CXWWX

**Telit Communications S.p.A** 

**Application Type:** Model/HVIN: Additional Model/HVIN (s): EUT Type: FCC Classification: FCC Rule Part: **ISED Specification: Test Procedure(s):** 

Certification LE910C4-WWX LE910C1-WWX Data Terminal Module PCS Licensed Transmitter (PCB) 27 RSS-199 Issue 3 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President



| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | Proud to be part of the element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                     | EUT Type:                               | Dogo 1 of 42                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                 | Data Terminal Module                    | Page 1 of 42                      |
| © 2021 PCTEST                                | •                               |                                         | V2 3/28/2021                      |



## TABLE OF CONTENTS

| 1.0 | INTF | RODUCTION                                                               | 4  |
|-----|------|-------------------------------------------------------------------------|----|
|     | 1.1  | Scope                                                                   | 4  |
|     | 1.2  | PCTEST Test Location                                                    | 4  |
|     | 1.3  | Test Facility / Accreditations                                          | 4  |
| 2.0 | PRC  | DUCT INFORMATION                                                        | 5  |
|     | 2.1  | Equipment Description                                                   | 5  |
|     | 2.2  | Device Capabilities                                                     | 5  |
|     | 2.3  | Test Configuration                                                      | 5  |
|     | 2.4  | Software and Firmware                                                   | 5  |
|     | 2.5  | EMI Suppression Device(s)/Modifications                                 | 5  |
| 3.0 | DES  | CRIPTION OF TESTS                                                       | 6  |
|     | 3.1  | Evaluation Procedure                                                    | 6  |
|     | 3.2  | BRS/EBS Frequency Block                                                 | 6  |
|     | 3.3  | Radiated Power and Radiated Spurious Emissions                          | 7  |
| 4.0 | MEA  | ASUREMENT UNCERTAINTY                                                   | 8  |
| 5.0 | TES  | T EQUIPMENT CALIBRATION DATA                                            | 9  |
| 6.0 | SAM  | IPLE CALCULATIONS                                                       | 10 |
| 7.0 | TES  | T RESULTS                                                               | 11 |
|     | 7.1  | Summary                                                                 | 11 |
|     | 7.2  | Transmitter Conducted Output Power/ Equivalent Isotropic Radiated Power | 12 |
|     | 7.3  | Occupied Bandwidth                                                      | 14 |
|     | 7.4  | Spurious and Harmonic Emissions at Antenna Terminal                     | 19 |
|     | 7.5  | Band Edge Emissions at Antenna Terminal                                 | 25 |
|     | 7.6  | Peak-Average Ratio                                                      |    |
|     | 7.7  | Radiated Spurious Emissions Measurements                                | 35 |
|     | 7.8  | Frequency Stability / Temperature Variation                             |    |
| 8.0 | CON  | NCLUSION                                                                |    |

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 2 of 42                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 2 of 42                      |
| © 2021 PCTEST                                | •               |                                         | V2 3/28/2021                      |





# PART 27 / RSS-199 MEASUREMENT REPORT

|            |           |            |                             | EIRP              |                     |                        |
|------------|-----------|------------|-----------------------------|-------------------|---------------------|------------------------|
| Mode       | Bandwidth | Modulation | Tx Frequency<br>Range [MHz] | Max. Power<br>[W] | Max. Power<br>[dBm] | Emission<br>Designator |
|            | 20 MHz    | QPSK       | 2510.0 - 2560.0             | 0.351             | 25.45               | 18M0G7D                |
|            |           | 16QAM      | 2510.0 - 2560.0             | 0.272             | 24.34               | 18M0W7D                |
|            | 15 MHz    | QPSK       | 2507.5 - 2562.5             | 0.357             | 25.53               | 13M5G7D                |
| LTE Band 7 |           | 16QAM      | 2507.5 - 2562.5             | 0.291             | 24.64               | 13M5W7D                |
|            | 10 MHz    | QPSK       | 2505.0 - 2565.0             | 0.365             | 25.62               | 8M99G7D                |
|            |           | 16QAM      | 2505.0 - 2565.0             | 0.286             | 24.56               | 9M02W7D                |
|            | 5 MHz     | QPSK       | 2502.5 - 2567.5             | 0.353             | 25.47               | 4M52G7D                |
|            |           | 16QAM      | 2502.5 - 2567.5             | 0.256             | 24.08               | 4M51W7D                |

**EUT Overview** 

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST*<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                              | EUT Type:                               | Dogo 2 of 42                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                          | Data Terminal Module                    | Page 3 of 42                      |
| © 2021 PCTEST                                |                                          | -                                       | V2 3/28/2021                      |



## **1.0 INTRODUCTION**

### 1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

## 1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

### 1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Page 4 of 42                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Fage 4 01 42                      |
| © 2021 PCTEST                                |                 |                                         | \/2 3/28/2021                     |



## 2.0 PRODUCT INFORMATION

### 2.1 Equipment Description

The Equipment Under Test (EUT) is the **Telit Communications S.p.A Data Terminal Module FCC ID: RI7LE910CXWWX / IC:5131A-LE910CXWWX**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27 & RSS-199.

This FCC and IC ID covers operations for two different versions of this module. The LE910C4-WWX is the Cat. 4 LTE version module and the LE910C1-WWX is the Cat. 1 LTE version of this module. Cat. 1 and Cat. 4 LTE only differ in the speed/throughput and have not been noted to have any impact on the RF itself. Both modules were investigated and the LE910C4-WWX was tested fully to represent both versions of the module.

Test Device Serial No.: 96014, 95001

### 2.2 Device Capabilities

This device contains the following capabilities:

GSM/GPRS/EDGE, WCDMA/HSPA, LTE

### 2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

#### 2.4 Software and Firmware

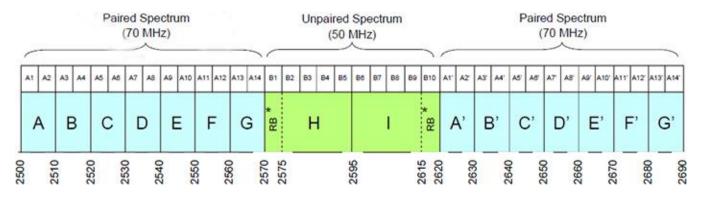
The test was conducted with firmware version M0F.503003 for LE910C4-WWX and M0F.103003 for LE910C1-WWX installed on the EUT.

### 2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                             | EUT Type:                               | Daga E of 42                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                         | Data Terminal Module                    | Page 5 of 42                      |
| © 2021 PCTEST                                |                                         |                                         | \/2.3/28/2021                     |




## 3.0 DESCRIPTION OF TESTS

### 3.1 Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure.....None

## 3.2 BRS/EBS Frequency Block



| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                             | EUT Type:                               | Dage C of 40                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                         | Data Terminal Module                    | Page 6 of 42                      |
| © 2021 PCTEST                                |                                         | -                                       | V2 3/28/2021                      |



## 3.3 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI/TIA-603-E-2016. A halfwave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

#### $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];$

where  $P_d$  is the dipole equivalent power,  $P_g$  is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to  $P_{g [dBm]}$  – cable loss [dB].

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]} =$  Measured amplitude level $_{[dBm]}$  + 107 + Cable Loss $_{[dB]}$  + Antenna Factor $_{[dB/m]}$ And  $EIRP_{[dBm]} = E_{[dB\mu V/m]}$  + 20logD - 104.8; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI/TIA-603-E-2016.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Daga Z of 42                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 7 of 42                      |
| © 2021 PCTEST                                | •               | •                                       | V2 3/28/2021                      |



## 4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                        | Expanded Uncertainty (±dB) |
|-------------------------------------|----------------------------|
| Conducted Bench Top<br>Measurements | 1.13                       |
| Radiated Disturbance (<1GHz)        | 4.98                       |
| Radiated Disturbance (>1GHz)        | 5.07                       |
| Radiated Disturbance (>18GHz)       | 5.09                       |

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dogo 9 of 42                      |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 8 of 42                      |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



## 5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

| Manufacturer          | Model      | Description                          | Cal Date                     | Cal Interval | Cal Due     | Serial Number |
|-----------------------|------------|--------------------------------------|------------------------------|--------------|-------------|---------------|
| -                     | AP1        | EMC Cable and Switch System          | 3/9/2021                     | Annual       | 3/9/2022    | AP1           |
| -                     | ETS        | EMC Cable and Switch System          | 3/4/2021                     | Annual       | 3/4/2022    | ETS           |
| -                     | LTx4       | Licensed Transmitter Cable Set       | 3/12/2021                    | Annual       | 3/12/2022   | LTx4          |
| -                     | LTx5       | LIcensed Transmitter Cable Set       | 3/3/2021                     | Annual       | 3/3/2022    | LTx5          |
| Agilent               | E5515C     | Wireless Communications Test Set     |                              | N/A          |             | GB45360985    |
| Anritsu               | MT8820C    | Radio Communication Analyzer         |                              | N/A          |             | 6201300731    |
| Anritsu               | MT8821C    | Radio Communication Analyzer         |                              | N/A          |             | 6201381794    |
| Emco                  | 3115       | Horn Antenna <mark>(</mark> 1-18GHz) | 6/18/2020                    | Biennial     | 6/18/2022   | 9704-5182     |
| Emco                  | 3116       | Horn Antenna (18 - 40GHz)            | 8/7/2018                     | Triennial    | 8/7/2021    | 9203-2178     |
| ETS Lindgren          | 3164-08    | Quad Ridge Horn Antenna              | 3/12/2020                    | Biennial     | 3/12/2022   | 128337        |
| Keysight Technologies | N9020A     | MXA Signal Analyzer                  | 9/22/2020                    | Annual       | 9/22/2021   | MY54500644    |
| Keysight Technologies | N9030A     | PXA Signal Analyzer                  | 10/16/2020                   | Annual       | 10/16/2021  | MY54490576    |
| Mini-Circuits         | SSG-4000HP | Synthesized Signal Generator         |                              | N/A          |             | 11403100002   |
| Rohde & Schwarz       | CMU200     | Base Station Simulator               | N/A                          |              | 836536/0005 |               |
| Rohde & Schwarz       | CMW500     | Radio Communication Tester           | dio Communication Tester N/A |              | 112347      |               |
| Rohde & Schwarz       | ESU26      | EMI Test Receiver (26.5GHz)          | 7/15/2020                    | Annual       | 7/15/2021   | 100342        |
| Rohde & Schwarz       | ESU40      | EMI Test Receiver (40GHz)            | 9/9/2020                     | Annual       | 9/9/2021    | 100348        |
| Rohde & Schwarz       | ESW44      | EMI Test Receiver 2Hz to 44 GHz      | 1/21/2021                    | Annual       | 1/21/2022   | 101716        |
| Sunol                 | JB5        | Bi-Log Antenna (30M - 5GHz)          | 7/27/2020                    | Biennial     | 7/27/2022   | A051107       |

#### Table 5-1. Test Equipment

#### Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 |                      |              |
|----------------------------------------------|-----------------|----------------------|--------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:            | Dage 0 of 42 |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module | Page 9 of 42 |
| © 2021 PCTEST                                | ·               |                      | V2 3/28/2021 |



## 6.0 SAMPLE CALCULATIONS

### **QPSK Modulation**

#### Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

## **QAM Modulation**

#### Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

## **Spurious Radiated Emission**

#### Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Proud to be part of the element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                               | EUT Type:                               | Dage 10 of 40                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                           | Data Terminal Module                    | Page 10 of 42                     |
| © 2021 PCTEST                                | •                                         |                                         | V2 3/28/2021                      |



## 7.0 TEST RESULTS

### 7.1 Summary

| Company Name:       | Telit Communications S.p.A     |
|---------------------|--------------------------------|
| FCC ID:             | RI7LE910CXWWX                  |
| IC:                 | 5131A-LE910CXWWX               |
| FCC Classification: | PCS Licensed Transmitter (PCB) |
| Mode(s):            | LTE BAND7                      |

| Test<br>Condition | Test Description                                                                            | FCC Part Section(s) | RSS Section(s) | Test Limit                                                                            | Test Result | Reference            |
|-------------------|---------------------------------------------------------------------------------------------|---------------------|----------------|---------------------------------------------------------------------------------------|-------------|----------------------|
|                   | Transmitter Conducted Output Power / Equivalent<br>Isotropic Radiated Power<br>(LTE BAND 7) | 2.1046, 27.50(h)(2) | RSS-199(4.4)   | < 2 Watts max. EIRP                                                                   | PASS        | Section 7.2          |
| TED               | Occupied Bandwidth                                                                          | 2.1049              | RSS-Gen(6.7)   | N/A                                                                                   | PASS        | Section 7.3          |
|                   | Conducted Band Edge / Spurious Emissions<br>(LTE Band 7)                                    | 2.1051, 27.53(m)    | RSS-199(4.5)   | Undesirable emissions must meet the<br>limits detailed in 27.53(m) & RSS-<br>199(4.5) | PASS        | Sections<br>7.4, 7.5 |
| 8                 | Peak-Average Ratio                                                                          | N/A                 | RSS-199(4.4)   | < 13 dB                                                                               | PASS        | Section 7.6          |
|                   | Frequency Stability                                                                         | 2.1055, 27.54       | RSS-199(4.3)   | Fundamental emissions stay within<br>authorized frequency block                       | PASS        | Section 7.8          |
|                   | Radiated Spurious Emissions<br>(LTE Band 7)                                                 | 2.1053, 27.53(m)    | RSS-199(4.5)   | Undesirable emissions must meet the<br>limits detailed in 27.53(m) & RSS-<br>199(4.5) | PASS        | Section 7.7          |

#### Table 7-1. Summary of Test Results

#### Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST EMC Software Tool V1.1.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST.<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                              | EUT Type:                               | Dogo 11 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                          | Data Terminal Module                    | Page 11 of 42                     |
| © 2021 PCTEST                                |                                          |                                         | V2 3/28/2021                      |



## 7.2 Transmitter Conducted Output Power/ Equivalent Isotropic Radiated Power

#### **Test Overview**

The transmitter conducted output power is a measure of the total average power contained within an allocated channel bandwidth. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### Test Procedure Used

ANSI C63.26-2015 - Section 5.2.4.2

#### **Test Settings**

All conducted powers were measured using the R&S CMW500's Channel Measurement function.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-1. Test Instrument & Measurement Setup

#### Test Notes

The Maximum Effective Isotropic Radiated Power (EIRP) is calculated by adding the declared maximum antenna gain(dBi)

EIRP = Conducted Power(dBm) + Antenna Gain(dBi)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 |                      |               |
|----------------------------------------------|-----------------|----------------------|---------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:            | Domo 10 of 10 |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module | Page 12 of 42 |
| © 2021 PCTEST                                | •               |                      | V2 3/28/2021  |



| Bandwidth | Modulation | Channel | Frequency<br>[MHz] | RB<br>Size/Offset | Conducted<br>Power [dBm] | Ant Gain<br>[dBi] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|------------|---------|--------------------|-------------------|--------------------------|-------------------|---------------|-----------------|---------------------|----------------|
|           |            | 20850   | 2510.0             | 1 / 50            | 23.11                    | 1.82              | 24.93         | 0.311           | 33.01               | -8.08          |
| Z         | QPSK       | 21100   | 2535.0             | 1 / 50            | 23.63                    | 1.82              | 25.45         | 0.351           | 33.01               | -7.56          |
| НИ        |            | 21350   | 2560.0             | 1 / 50            | 23.37                    | 1.82              | 25.19         | 0.331           | 33.01               | -7.82          |
| 20 MHz    |            | 20850   | 2510.0             | 1 / 50            | 22.36                    | 1.82              | 24.18         | 0.262           | 33.01               | -8.83          |
| 2         | 16-QAM     | 21100   | 2535.0             | 1 / 50            | 22.52                    | 1.82              | 24.34         | 0.272           | 33.01               | -8.67          |
|           |            | 21350   | 2560.0             | 1 / 50            | 22.13                    | 1.82              | 23.95         | 0.248           | 33.01               | -9.06          |
|           |            | 20825   | 2507.5             | 1 / 37            | 23.54                    | 1.82              | 25.36         | 0.344           | 33.01               | -7.65          |
| Z         | QPSK       | 21100   | 2535.0             | 1 / 37            | 23.71                    | 1.82              | 25.53         | 0.357           | 33.01               | -7.48          |
| НИ        |            | 21375   | 2562.5             | 1 / 37            | 23.33                    | 1.82              | 25.14         | 0.327           | 33.01               | -7.87          |
| 15 MHz    |            | 20825   | 2507.5             | 1 / 37            | 22.82                    | 1.82              | 24.64         | 0.291           | 33.01               | -8.37          |
| -         | 16-QAM     | 21100   | 2535.0             | 1 / 37            | 22.70                    | 1.82              | 24.52         | 0.283           | 33.01               | -8.49          |
|           |            | 21375   | 2562.5             | 1 / 37            | 22.20                    | 1.82              | 24.02         | 0.252           | 33.01               | -8.99          |
|           |            | 20800   | 2505.0             | 1 / 25            | 23.66                    | 1.82              | 25.48         | 0.353           | 33.01               | -7.53          |
| Z         | QPSK       | 21100   | 2535.0             | 1 / 25            | 23.81                    | 1.82              | 25.62         | 0.365           | 33.01               | -7.39          |
| НИ        |            | 21400   | 2565.0             | 1 / 0             | 23.12                    | 1.82              | 24.93         | 0.311           | 33.01               | -8.08          |
| 10 MHz    |            | 20800   | 2505.0             | 1 / 25            | 22.53                    | 1.82              | 24.35         | 0.272           | 33.01               | -8.66          |
| -         | 16-QAM     | 21100   | 2535.0             | 1 / 25            | 22.74                    | 1.82              | 24.56         | 0.286           | 33.01               | -8.45          |
|           |            | 21400   | 2565.0             | 1 / 0             | 22.20                    | 1.82              | 24.02         | 0.252           | 33.01               | -8.99          |
|           |            | 20775   | 2502.5             | 1 / 12            | 23.66                    | 1.82              | 25.47         | 0.353           | 33.01               | -7.54          |
| QPSK      | 21100      | 2535.0  | 1 / 12             | 23.34             | 1.82                     | 25.16             | 0.328         | 33.01           | -7.85               |                |
| H         | 2 WHZ      | 21425   | 2567.5             | 1 / 12            | 23.04                    | 1.82              | 24.85         | 0.306           | 33.01               | -8.16          |
| 2 1       |            | 20775   | 2502.5             | 1 / 12            | 22.26                    | 1.82              | 24.08         | 0.256           | 33.01               | -8.93          |
|           | 16-QAM     | 21100   | 2535.0             | 1 / 12            | 22.23                    | 1.82              | 24.05         | 0.254           | 33.01               | -8.96          |
|           |            | 21425   | 2567.5             | 1 / 12            | 22.00                    | 1.82              | 23.82         | 0.241           | 33.01               | -9.19          |

Table 7-2. EIRP Data (LTE Band 7)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 |                      |               |
|----------------------------------------------|-----------------|----------------------|---------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:            | Dogo 12 of 42 |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module | Page 13 of 42 |
| © 2021 PCTEST                                |                 |                      | V/2 3/28/2021 |



## 7.3 Occupied Bandwidth

#### **Test Overview**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

#### **Test Settings**

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW  $\geq$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
  - 1-5% of the 99% occupied bandwidth observed in Step 7.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-2. Test Instrument & Measurement Setup

#### **Test Notes**


None.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | Potest*         | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |  |  |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|--|--|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dama 14 of 42                     |  |  |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 14 of 42                     |  |  |
| © 2021 PCTEST V2 3/28/2                      |                 |                                         |                                   |  |  |



Keysight Spectrum Analyzer - Occupied BW SENSE:INT 06:40:32 PM May 17, 2021 ALIGN AUTO Center Freq: 2.535000000 GHz Trig: Free Run Avg|Hol #Atten: 36 dB Trace/Detector Radio Std: None Avg|Hold:>100/100 Radio Device: BTS #IFGain:Low Ref 40.00 dBm I0 dB/div .og **Clear Write** Average Max Hold Center 2.53500 GHz Span 50.00 MHz Res BW 470 kHz VBW 5 MHz Sweep 1 ms Min Hold Occupied Bandwidth Total Power 32.4 dBm 18.014 MHz Detector Peak -36.414 kHz Man **Transmit Freq Error** % of OBW Power 99.00 % Auto x dB Bandwidth -26.00 dB 19.67 MHz x dB STATUS MSG

Plot 7-1. Occupied Bandwidth Plot (LTE Band 7 - 20MHz QPSK - Full RB)



Plot 7-2. Occupied Bandwidth Plot (LTE Band 7 - 20MHz 16-QAM - Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Froud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                             | EUT Type:                               | Dage 15 of 12                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                         | Data Terminal Module                    | Page 15 of 42                     |
| © 2021 PCTEST                                | •                                       |                                         | V2 3/28/2021                      |

© 2021 PCTEST

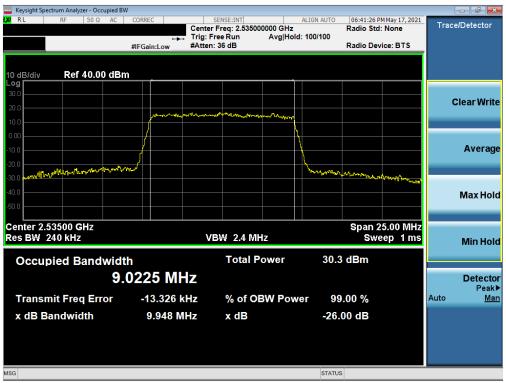


| www.www.com.com.com.com.com.com.com.com.com.com | BW                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                | _     | - d <u>×</u> |
|-------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|----------------|-------|--------------|
| <b>LX RL</b> RF 50Ω AC                          | CORREC               | SENSE:INT<br>ter Freq: 2.535000000 GH;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALIGN AUTO         | 06:41:02 P    | M May 17, 2021 | Trace | Detector     |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z<br>old: 100/100  | Radio Sta     | None           |       |              |
|                                                 |                      | en: 36 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Radio Dev     | rice: BTS      |       |              |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
| 10 dB/div Ref 40.00 dE                          | 100                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
| Log                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |               |                |       |              |
| 30.0                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
| 20.0                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                | С     | ear Write    |
| 10.0                                            | Parton Martin Martin | who we have a series of the se | -                  |               |                |       |              |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.                 |               |                |       |              |
| 0.00                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       | _            |
| -10.0                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       | Average      |
| -20.0                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
| -30.0                                           | ∾hr <sup>,</sup>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jord Will Stranger | mallinenautre | mar hand       |       |              |
| -40.0                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       | Max Hold     |
| -50.0                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                | _     | _            |
| Center 2.53500 GHz                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Span 3        | 7.50 MHz       |       |              |
| Res BW 360 kHz                                  |                      | VBW 4 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |               | ep 1 ms        |       | Min Hold     |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               | <u> </u>       |       | MIII HOIU    |
| Occupied Bandwid                                | lth                  | Total Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.1               | dBm           |                |       |              |
| 1                                               | 3.475 MHz            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       | Detector     |
|                                                 | 3.4/ 5 WINZ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       | Peak ►       |
| Transmit Freq Error                             | -27.766 kHz          | % of OBW Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wer 99             | 0.00 %        |                | Auto  | Man          |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                | _     |              |
| x dB Bandwidth                                  | 14.72 MHz            | x dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -26.               | 00 dB         |                |       |              |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
|                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |       |              |
| MSG                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATU              | 2             |                |       |              |
| inou                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS             |               |                |       |              |

Plot 7-3. Occupied Bandwidth Plot (LTE Band 7 - 15MHz QPSK - Full RB)



Plot 7-4. Occupied Bandwidth Plot (LTE Band 7 - 15MHz 16-QAM - Full RB)


| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST.<br>Proud to be part of @wkeneed | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |  |  |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|--|--|
| Test Report S/N:                             | Test Dates:                             | EUT Type:                               | Dage 16 of 12                     |  |  |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                         | Data Terminal Module                    | Page 16 of 42                     |  |  |
| © 2021 PCTEST V2 3/28/20                     |                                         |                                         |                                   |  |  |

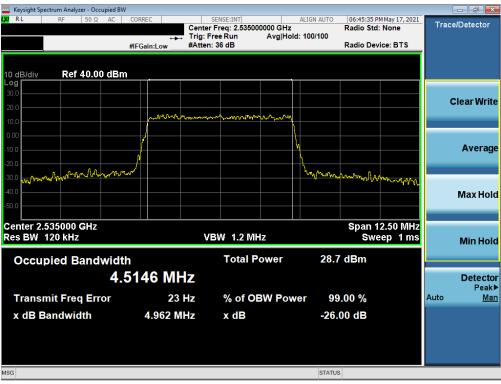
© 2021 PCTEST



| <b>LXI</b> R L RF 50 Ω AC | CORREC      | SENSE:INT<br>Center Freg: 2.53500      | ALIGN AUTO        | 06:41:20 PM May 17, 2021<br>Radio Std: None | Trace/Detector    |
|---------------------------|-------------|----------------------------------------|-------------------|---------------------------------------------|-------------------|
|                           | ↔           | Trig: Free Run<br>#Atten: 36 dB        | Avg Hold: 100/100 | Radio Device: BTS                           |                   |
|                           | #IFGain:Low | #Atten: 36 dB                          |                   | Radio Device: B13                           |                   |
|                           |             |                                        |                   |                                             |                   |
| 10 dB/div Ref 40.00 dE    | sm          |                                        |                   |                                             |                   |
| 30.0                      |             |                                        |                   |                                             | Clear Write       |
| 20.0                      |             | and an and a submar filler want work a |                   |                                             | Clear Write       |
| 10.0                      |             |                                        |                   |                                             |                   |
| 0.00                      | /           |                                        | <u>}</u>          |                                             |                   |
| -10.0                     |             |                                        |                   |                                             | Average           |
| -20.0                     | ~~~         |                                        | Werkerder         |                                             |                   |
| -30.0                     |             |                                        |                   | and the second second second                |                   |
| -40.0                     |             |                                        |                   |                                             | Max Hold          |
| -50.0                     |             |                                        |                   |                                             |                   |
| Center 2.53500 GHz        |             |                                        |                   | Span 25.00 MHz                              |                   |
| Res BW 240 kHz            |             | VBW 2.4 M                              | Ηz                | Sweep 1 ms                                  | Min Hold          |
|                           |             |                                        |                   |                                             | Wiinthold         |
| Occupied Bandwid          |             | Total P                                | ower 31.          | 0 dBm                                       |                   |
| 8                         | 3.9943 MI   | -Iz                                    |                   |                                             | Detector          |
| Transmit Freq Error       | -12.082     | (Hz % of O                             | BW Power 99       | 9.00 %                                      | Peak▶<br>Auto Man |
|                           |             |                                        |                   |                                             | man               |
| x dB Bandwidth            | 9.984 N     | lHz xdB                                | -26               | .00 dB                                      |                   |
|                           |             |                                        |                   |                                             |                   |
|                           |             |                                        |                   |                                             |                   |
|                           |             |                                        |                   |                                             |                   |
| MSG                       |             |                                        | STATU             | S                                           |                   |

Plot 7-5. Occupied Bandwidth Plot (LTE Band 7 - 10MHz QPSK - Full RB)




Plot 7-6. Occupied Bandwidth Plot (LTE Band 7 - 10MHz 16-QAM - Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 17 of 12                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 17 of 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



| Keysight Spectrum Analyzer - (              |         |                |                                             | ALIGN AUTO        |                                             |                 |
|---------------------------------------------|---------|----------------|---------------------------------------------|-------------------|---------------------------------------------|-----------------|
| RL RF 50                                    | Ω AC    | CORREC         | C SENSE:INT<br>Center Freg: 2.535000000 GHz |                   | 06:45:28 PM May 17, 2021<br>Radio Std: None | Trace/Detector  |
|                                             |         | #IFGain:Low    |                                             | Avg Hold: 100/100 | Radio Device: BTS                           |                 |
|                                             | .00 dBm | I              |                                             |                   |                                             |                 |
| og<br>0.0<br>0.0                            |         |                | 0.0640 0.0                                  |                   |                                             | Clear Writ      |
| 0.0                                         |         |                | Mahthankhann                                |                   |                                             | Averac          |
| 0.0<br>0.0<br>0.0 My Ingris March Margary M | mmm     | ~ <sup>/</sup> |                                             | harrow            | and the second                              | Averag          |
| 0.0                                         |         |                |                                             |                   |                                             | Max Ho          |
| enter 2.535000 GH<br>es BW 120 kHz          | Z       |                | VBW 1.2 M                                   | Hz                | Span 12.50 MHz<br>Sweep 1 ms                | Min Ho          |
| Occupied Ban                                | dwidt   | h              | Total I                                     | Power 29          | .8 dBm                                      |                 |
|                                             | 4.      | 5213 MH        | lz                                          |                   |                                             | Detect<br>Peak  |
| Transmit Freq E                             | rror    | -6.742 k       | Hz % of O                                   | BW Power 9        | 9.00 %                                      | Auto <u>M</u> a |
| x dB Bandwidth                              |         | 4.940 M        | Hz x dB                                     | -26               | 6.00 dB                                     |                 |
| 3                                           |         |                |                                             | STAT              | US                                          |                 |

Plot 7-7. Occupied Bandwidth Plot (LTE Band 7 - 5MHz QPSK - Full RB)



Plot 7-8. Occupied Bandwidth Plot (LTE Band 7 - 5MHz 16-QAM - Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 18 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 18 of 42                     |
| © 2021 PCTEST                                | •               | •                                       | V2 3/28/2021                      |



## 7.4 Spurious and Harmonic Emissions at Antenna Terminal

#### **Test Overview**

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10<sup>th</sup> harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### For Band 7, the minimum permissible attenuation level of any spurious emission is 55 + 10log<sub>10</sub>(P<sub>[Watts]</sub>).

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

#### Test Setup

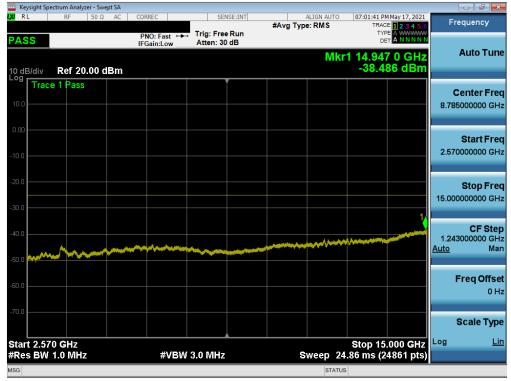
The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

#### Test Notes


Per Part 27 and RSS-199, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1MHz for measurements above 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission is attenuated at least 26 dB below the transmitter power.


| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dogo 10 of 12                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 19 of 42                     |
| © 2021 PCTEST                                | •               |                                         | V2 3/28/2021                      |



## LTE Band 7

| Keysight Spectrum Analyzer - Swept SA |         |                               |                                          |                         |                        |                         |                                 |
|---------------------------------------|---------|-------------------------------|------------------------------------------|-------------------------|------------------------|-------------------------|---------------------------------|
| 🗶 RL RF 50Ω AC                        | CORREC  | SENSE:INT                     | AL<br>#Avg Type:                         | IGN AUTO                | 07:01:25 PM M<br>TRACE | lay 17, 2021            | Frequency                       |
| PASS                                  |         | rig: Free Run<br>Atten: 30 dB |                                          |                         | TYPE<br>DET            | A WWWWWW<br>A N N N N N |                                 |
| 10 dB/div Ref 20.00 dBm               |         |                               |                                          | Mkr                     | 1 2.439<br>-46.7       | 0 GHz<br>3 dBm          | Auto Tune                       |
| Trace 1 Pass                          |         | Ĭ                             |                                          |                         |                        |                         | Center Fred                     |
| 10.0                                  |         |                               |                                          |                         |                        |                         | 1.252500000 GH:                 |
| 0.00                                  |         |                               |                                          |                         |                        |                         |                                 |
| -10.0                                 |         |                               |                                          |                         |                        |                         | Start Free<br>30.000000 MH      |
| -10.0                                 |         |                               |                                          |                         |                        |                         |                                 |
| -20.0                                 |         |                               |                                          |                         |                        |                         | Stop Free                       |
| -30.0                                 |         |                               |                                          |                         |                        |                         | 2.475000000 GH                  |
| -40.0                                 |         |                               |                                          |                         |                        |                         | CF Ste                          |
|                                       |         |                               |                                          |                         |                        | <u> </u>                | 244.500000 MH<br><u>Auto</u> Ma |
| -50.0                                 |         |                               | 1,0-1,0-1,0-1,0-1,0-1,0-1,0-1,0-1,0-1,0- | aller ( all and a least |                        |                         |                                 |
| -60.0                                 |         |                               |                                          |                         |                        |                         | Freq Offse                      |
| -70.0                                 |         |                               |                                          |                         |                        |                         |                                 |
|                                       |         |                               |                                          |                         |                        |                         | Scale Type                      |
| Start 0.030 GHz                       | #\/D\/  |                               |                                          |                         | Stop 2.4               | 10012                   | Log <u>Lir</u>                  |
| #Res BW 1.0 MHz                       | #VBW 3. | UWHZ                          | S                                        | status                  | 260 ms (41             | sal bre)                |                                 |





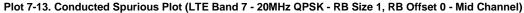
Plot 7-10. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST*         | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Page 20 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Fage 20 01 42                     |
| © 2021 PCTEST                                |                 | •                                       | V2 3/28/2021                      |



| R L                 | ectrum Analy<br>RF | 2er - Swe<br>50 Ω | AC  | CORREC         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CEN                     | ISE:INT  |                | ALIGN AU | TO 07:02       | :08 PM May 17, 2021         |             | - 7 -     |
|---------------------|--------------------|-------------------|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------------|----------|----------------|-----------------------------|-------------|-----------|
| KL                  | κ <b>Γ</b>         | 20.22             | AC  | CURREC         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEI                     | 100:1111 | #Avg Ty        |          |                | TRACE 1 2 3 4 5 6           | Fre         | quency    |
| ASS                 |                    |                   |     | PNO:<br>IFGain | Fast ↔→<br>:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trig: Free<br>Atten: 10 |          | • • •          |          |                | DET A WWWWW                 |             |           |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                | N        | lkr1 25.       | 412 0 GHz<br>6.510 dBm      |             | Auto Tun  |
| dB/div              | Ref 0.             |                   | m   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          | -491           | 5.5 IV UBIII                |             |           |
| Trac                | e 1 Pass           |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             | C           | enter Fre |
| 0.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             | 000000 GI |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             | 21.000      | 000000 01 |
| D.O                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             |           |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             | Start Fre |
| o.o                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             | 15.000      | 000000 GI |
| 5.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             |           |
| 3.0 <b></b>         |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             |           |
| 3.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                | <b>▲</b> 1                  |             | Stop Fre  |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          | and the second | and a second second         | 27.000      | 000000 GI |
| 0.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          | and the second |          |                | - <b>*</b> *                |             |           |
|                     | -                  | A Carton          | ~~~ |                | State of the state |                         |          | -              |          |                |                             |             | CF Ste    |
| 3.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             | 1.200       | 000000 G  |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             | <u>Auto</u> | M         |
| 0.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             |           |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             | F           | req Offs  |
| 0.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             | 01        |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             |           |
| 0.0                 |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             |             |           |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          |                |                             | 5           | Scale Ty  |
|                     |                    |                   |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                |          | Ct             | 27.000 00                   | Log         | L         |
| tart 15.0<br>Res BW |                    |                   |     |                | #VRM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0 MHz                 |          |                | Sween    | 30.40 m        | 27.000 GHz<br>s (24001 pts) | _           | -         |
| CO DW               | 1.0 191112         |                   |     |                | 77 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0 191112              |          |                | ameeh    | 30.40 III      | s (2400 i pis)              |             |           |

Plot 7-11. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)




Plot 7-12. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

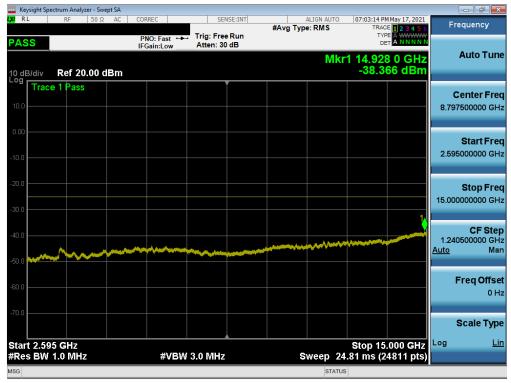
| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |  |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|--|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dege 21 of 42                     |  |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 21 of 42                     |  |
| © 2021 PCTEST                                | •               |                                         | V2 3/28/2021                      |  |



| 🔤 Keysight Sp         | ectrum Analy |         | t SA         |                                        |              |                         |                     |              |           |                  |                                       |                       |                           |
|-----------------------|--------------|---------|--------------|----------------------------------------|--------------|-------------------------|---------------------|--------------|-----------|------------------|---------------------------------------|-----------------------|---------------------------|
| XIRL                  | RF           | 50 Ω    | AC           | CORREC                                 |              | SEN                     | ISE:INT             | #Avg Typ     | ALIGN AUT |                  | 1 PM May 17, 2021<br>RACE 1 2 3 4 5 6 | Fre                   | quency                    |
| PASS                  |              |         |              | PNO: F<br>IFGain:                      | ast ↔<br>Low | Trig: Free<br>Atten: 30 |                     | "····ə · ) P |           |                  |                                       |                       |                           |
| 10 dB/div             | Ref 20       | ).00 dE | 3m           |                                        |              |                         |                     |              | М         | kr1 14.9<br>-38. | 19 5 GHz<br>100 dBm                   |                       | Auto Tune                 |
| 10.0                  | e 1 Pass     |         |              |                                        |              |                         |                     |              |           |                  |                                       |                       | enter Fred<br>000000 GH:  |
| -10.0                 |              |         |              |                                        |              |                         |                     |              |           |                  |                                       |                       | Start Free                |
| -20.0                 |              |         |              |                                        |              |                         |                     |              |           |                  |                                       |                       | Stop Free                 |
| -40.0                 | ~~           | ,,      | , <b>100</b> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~         |                         | aignt les fried for | ****         | -         | add and a second |                                       | 1.2430<br><u>Auto</u> | CF Ste<br>000000 GH<br>Ma |
| 60.0                  |              |         |              |                                        |              |                         |                     |              |           |                  |                                       | F                     | reqOffse<br>0⊦            |
| -70.0                 |              |         |              |                                        |              |                         |                     |              |           | Stop             | 15.000 GHz                            |                       | c <b>ale Typ</b>          |
| start 2.57<br>#Res BW |              | z       |              |                                        | #VBW         | 3.0 MHz                 |                     | s            | weep      | 24.86 ms         | (24861 pts)                           |                       |                           |
| ISG                   |              |         |              |                                        |              |                         |                     |              | STA       | TUS              |                                       |                       |                           |






Plot 7-14. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST.<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                              | EUT Type:                               | Page 22 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                          | Data Terminal Module                    | Page 22 01 42                     |
| © 2021 PCTEST                                |                                          |                                         | V2 3/28/2021                      |



| 🔤 Keysight Spectrum Analyzer - S   |      |                        |                         |                           |                               |                                          |                       |                             |                      |                                 |
|------------------------------------|------|------------------------|-------------------------|---------------------------|-------------------------------|------------------------------------------|-----------------------|-----------------------------|----------------------|---------------------------------|
| <b>LXI RL RF 50</b>                |      | RREC                   |                         | SE:INT                    | #Avg Typ                      | ALIGN AUTO<br>e: RMS                     | TRAC                  | May 17, 2021                | Fre                  | quency                          |
| PASS                               |      | NO: Fast ↔<br>Gain:Low | Trig: Free<br>Atten: 30 |                           |                               | Mk                                       | ₀<br><b>r1 2.49</b> 3 | <sup>ANNNNN</sup><br>30 GHz |                      | Auto Tune                       |
| 10 dB/div Ref 20.00                | dBm  |                        |                         |                           |                               |                                          | -46.0                 | 65 dBm                      |                      | _                               |
| 10.0                               |      |                        |                         |                           |                               |                                          |                       |                             |                      | <b>enter Freq</b><br>000000 GHz |
| 0.00                               |      |                        |                         |                           |                               |                                          |                       |                             |                      |                                 |
| -10.0                              |      |                        |                         |                           |                               |                                          |                       |                             |                      | Start Freq<br>000000 MHz        |
| -20.0                              |      |                        |                         |                           |                               |                                          |                       |                             |                      | Stop Freq                       |
| -30.0                              |      |                        |                         |                           |                               |                                          |                       |                             |                      | 000000 GHz                      |
| -40.0                              |      |                        |                         |                           |                               |                                          |                       | 1                           | 247.0<br><u>Auto</u> | CF Step<br>000000 MHz<br>Man    |
| -50.0                              | **** |                        |                         | ngali dengangalan terpela | a a she internet a stranger a | an a |                       |                             |                      |                                 |
| -60.0                              |      |                        |                         |                           |                               |                                          |                       |                             | F                    | r <b>eq Offset</b><br>0 Hz      |
| -70.0                              |      |                        |                         |                           |                               |                                          |                       |                             | S                    | cale Type                       |
| Start 0.030 GHz<br>#Res BW 1.0 MHz |      | #VBW                   | 3.0 MHz                 |                           | <br>!                         | Sweep 3                                  | Stop 2.<br>.293 ms (4 | .500 GHz<br>4941 pts)       | Log                  | Lin                             |
| MSG                                |      |                        |                         |                           |                               | STATUS                                   |                       |                             |                      |                                 |

Plot 7-15. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)



Plot 7-16. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |  |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|--|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dogo 22 of 42                     |  |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 23 of 42                     |  |
| © 2021 PCTEST                                | •               |                                         | V2 3/28/2021                      |  |



|                            | um Analyzer - Swe |      |                          |                         |         |         |            |                       |                   |                                         | ×                  |
|----------------------------|-------------------|------|--------------------------|-------------------------|---------|---------|------------|-----------------------|-------------------|-----------------------------------------|--------------------|
| LXI RL                     | RF 50 Ω           | AC O | ORREC                    | SEI                     | ISE:INT | #Avg Ty | ALIGN AUTO |                       | May 17, 2021      | Frequency                               |                    |
| PASS                       |                   |      | PNO: Fast ↔<br>FGain:Low | Trig: Free<br>Atten: 10 |         |         |            | TYP                   |                   |                                         |                    |
| 10 dB/div                  | Ref 0.00 dE       | 3m   |                          |                         |         |         | Mk         | r1 25.36<br>-46.4     | 3 5 GHz<br>24 dBm | Auto Tu                                 | ine                |
| -10.0 Trace 1              | Pass              |      |                          |                         |         |         |            |                       |                   | Center Fr<br>21.000000000 G             |                    |
| -20.0                      |                   |      |                          |                         |         |         |            |                       |                   | Start Fi<br>15.000000000 G              |                    |
| -40.0                      |                   |      |                          |                         |         |         |            |                       | ~~~~              | Stop Fi<br>27.000000000 G               |                    |
| -60.0                      | un m              |      |                          |                         |         |         |            |                       |                   | CF St<br>1.200000000 G<br><u>Auto</u> M |                    |
| -70.0                      |                   |      |                          |                         |         |         |            |                       |                   | Freq Off<br>0                           | <b>set</b><br>) Hz |
| -90.0                      |                   |      |                          |                         |         |         |            |                       |                   | Scale Ty                                |                    |
| Start 15.000<br>#Res BW 1. |                   |      | #VBM                     | / 3.0 MHz               |         |         | Sweep_3    | Stop 27<br>0.40 ms (2 | .000 0112         | -                                       | <u>Lin</u>         |
| MSG                        |                   |      |                          |                         |         |         | STAT       |                       |                   |                                         |                    |

Plot 7-17. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dogo 24 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 24 of 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



## 7.5 Band Edge Emissions at Antenna Terminal

#### **Test Overview**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### The minimum permissible attenuation level for Band 7 is as noted in the Test Notes on the following page.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW  $\geq$  3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

#### Test Notes


Per 27.53(m) and RSS-199 for operations in LTE Band 7, the attenuation factor shall be not less than  $40 + 10 \log$  (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge,  $43 + 10 \log$  (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth. In addition, the attenuation factor shall not be less that  $43 + 10 \log$  (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 25 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 25 of 42                     |
| © 2021 PCTEST                                | -               |                                         | V2 3/28/2021                      |



| RL                                | trum Analyzer - S                                | Ω AC                             | CORREC                           | - I                                                                                                               |                                          | SENSE:INT                                 |                                                  | ALIGN AUTO                                                            | 06:47:56.0                                     | M May 17, 2021   |                                            |
|-----------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|------------------|--------------------------------------------|
| KL                                | KF 501                                           | S2 AC                            | CORREC                           | -                                                                                                                 | Cente                                    | r Freq: 2.50000                           | 0000 GHz                                         | ALIGN AUTO                                                            | Radio Std                                      |                  | Frequency                                  |
|                                   |                                                  |                                  |                                  |                                                                                                                   |                                          | Free Run                                  | 0000 0112                                        |                                                                       | Radio Sta                                      | . None           |                                            |
| ASS                               |                                                  |                                  | IFGain                           |                                                                                                                   |                                          | n: 36 dB                                  |                                                  |                                                                       | Radio Dev                                      | vice: BTS        |                                            |
|                                   |                                                  |                                  |                                  | _                                                                                                                 |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
|                                   |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| ) dB/div                          | Ref 40.                                          | 00 dBr                           | n                                |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| pg                                |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  | Center Fre                                 |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  | 2.50000000 GH                              |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| .00                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  | 100 mg mm mg mg |                                                | <u> </u>         |                                            |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
|                                   |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       | _                                              |                  |                                            |
| D.O                               |                                                  |                                  |                                  |                                                                                                                   |                                          | -                                         |                                                  |                                                                       |                                                |                  |                                            |
|                                   |                                                  | ~                                |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                | half of the Dag  |                                            |
|                                   |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| 0.0                               |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
|                                   |                                                  |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  |                                            |
| tart 2.47                         | 5 GHz                                            |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       | Stop 2                                         | .525 GHz         | CF Ste                                     |
|                                   | 5 GHz                                            |                                  |                                  |                                                                                                                   |                                          |                                           |                                                  |                                                                       | Stop 2                                         | 2.525 GHz        | 5.000000 MH                                |
|                                   |                                                  | eq S                             | top Free                         | q R                                                                                                               | BW                                       | Frequency                                 | Am                                               | blitude                                                               | Stop 2                                         | 2.525 GHz        | CF Ste<br>5.00000 MH<br><u>Auto</u> Ma     |
| tart 2.47                         |                                                  | _                                | top Free                         |                                                                                                                   |                                          |                                           |                                                  |                                                                       |                                                |                  | 5.000000 MH                                |
| tart 2.47                         | ge   Start Fre                                   | Hz 2.                            |                                  | lz 1.0                                                                                                            | )00 MHz                                  | 2.490190000                               | GHz -39.5                                        | 53 dBm                                                                | ∆ Limit                                        | 3                | 5.000000 MH<br><u>Auto</u> Ma              |
| tart 2.47<br>pur   Rang<br>1<br>2 | ge Start Fre<br>2.4750 G<br>2.4905 G             | Hz 2.<br>Hz 2.                   | <mark>4905 G</mark> ⊦<br>4960 G⊦ | lz 1.0                                                                                                            | 000 MHz<br>000 MHz                       | 2.490190000<br>2.494130000                | GHz -39.5<br>GHz -39.3                           | 6 <mark>3 dBm</mark><br>88 dBm                                        | ∆ Limit<br>-14.53 dE<br>-26.38 dE              | 3<br>3           | 5.000000 MH<br><u>Auto</u> Ma<br>Freq Offs |
| tart 2.47                         | ge Start Fre<br>2.4750 G<br>2.4905 G<br>2.4960 G | Hz 2.<br>Hz 2.<br>Hz 2.          | 4905 GH<br>4960 GH<br>4990 GH    | lz 1.0<br>lz 1.0<br>lz 1.0                                                                                        | 000 MHz<br>000 MHz<br>000 MHz            | 2.490190000<br>2.494130000<br>2.497410000 | GHz -39.5<br>GHz -39.3<br>GHz -38.5              | 53 dBm<br>58 dBm<br>57 dBm                                            | ∆ Limit<br>-14.53 dE<br>-26.38 dE<br>-28.57 dE | 3<br>3<br>3      | 5.000000 MH<br><u>Auto</u> Ma<br>Freq Offs |
| tart 2.47<br>pur   Rang<br>1<br>2 | ge Start Fre<br>2.4750 G<br>2.4905 G             | Hz 2.<br>Hz 2.<br>Hz 2.<br>Hz 2. | <mark>4905 G</mark> ⊦<br>4960 G⊦ | Iz         1.0           Iz         1.0           Iz         1.0           Iz         1.0           Iz         36 | 000 MHz<br>000 MHz<br>000 MHz<br>0.0 kHz | 2.490190000<br>2.494130000                | GHz -39.5<br>GHz -39.3<br>GHz -38.5<br>GHz -40.1 | 3 dBm<br>8 dBm<br>7 dBm<br>9 dBm                                      | ∆ Limit<br>-14.53 dE<br>-26.38 dE              | 3<br>3<br>3<br>3 | 5.000000 MH                                |

Plot 7-18. Lower ACP Plot (LTE Band 7 - 20MHz QPSK - Full RB)



#### Plot 7-19. Upper ACP Plot (LTE Band 7 - 20MHz QPSK - Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 26 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 26 of 42                     |
| © 2021 PCTEST                                | •               |                                         | V2 3/28/2021                      |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



|                      |          | n Analyzer - Spur |      |            |           |                                        |      |                                        |                           |              |                |
|----------------------|----------|-------------------|------|------------|-----------|----------------------------------------|------|----------------------------------------|---------------------------|--------------|----------------|
| L <mark>XI</mark> RL | F        | RF 50 Ω           | AC   | CORREC     | Contr     | SENSE:INT<br>er Freg: 2.50000          | 0000 | ALIGN AUTO                             | 06:48:52 PI<br>Radio Std: | May 17, 2021 | Frequency      |
|                      |          |                   |      |            | Trig:     | Free Run                               | 0000 | 6112                                   | Raulo Stu.                | None         |                |
| PASS                 | <u> </u> |                   |      | IFGain:Low | v #Atte   | n: 36 dB                               |      |                                        | Radio Dev                 | ice: BTS     |                |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| 10 dB/               | div      | Ref 40.00         | dBm  |            |           |                                        |      |                                        |                           |              |                |
| Log 🔽                |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| 30.0                 |          |                   |      |            |           |                                        |      |                                        |                           |              | Center Fre     |
| 20.0                 |          |                   |      |            |           |                                        |      |                                        |                           |              | 2.50000000 GI  |
| 10.0                 |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| 0.00                 |          |                   |      |            |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                           |              |                |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| -10.0                |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| -20.0                |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| -30.0                |          |                   |      |            |           |                                        |      |                                        | <b> </b>                  |              |                |
| -40.0                |          |                   |      |            |           | <u>م</u>                               |      |                                        |                           |              |                |
| -50.0                |          |                   |      |            |           | <u> </u>                               |      |                                        | - 100-00-00               |              |                |
| 00.0                 |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| Start                | 2.475 (  | GHz               |      |            |           |                                        |      |                                        | Stop 2                    | .525 GHz     | CF Ste         |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              | 5.000000 Mi    |
| Spur                 | Range    | Start Freq        | l St | op Freq    | RBW       | Frequency                              |      | Amplitude                              | ∆ Limit                   |              | Auto Ma        |
| 1                    | 1        | 2.4750 GHz        |      | 905 GHz    |           | 2.490190000                            | GHz  |                                        | -13.66 dB                 |              |                |
| 2                    | 2        | 2.4905 GHz        |      | 960 GHz    |           | 2.496000000                            |      |                                        | -25.24 dB                 |              | <b>F O</b> ff_ |
| 3                    | 3        | 2.4960 GHz        |      | 990 GHz    |           | 2.498910000                            |      |                                        | -26.53 dB                 |              | Freq Offs      |
| 4                    | 4        | 2.4990 GHz        | 2.5  | 000 GHz    | 180.0 kHz | 2.500000000                            | GHz  | -39.43 dBm                             | -29.43 dB                 |              | 01             |
| 5                    | 5        | 2.5000 GHz        | 2.5  | 250 GHz    | 240.0 kHz | 2.510386473                            | GHz  | 3.575 dBm                              | -21.42 dB                 |              |                |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              |                |
| MSG                  |          |                   |      |            |           |                                        |      | STAT                                   | US                        |              |                |
|                      |          |                   |      |            |           |                                        |      |                                        |                           |              |                |





Plot 7-21. Upper ACP Plot (LTE Band 7 - 15MHz QPSK – Full RB)

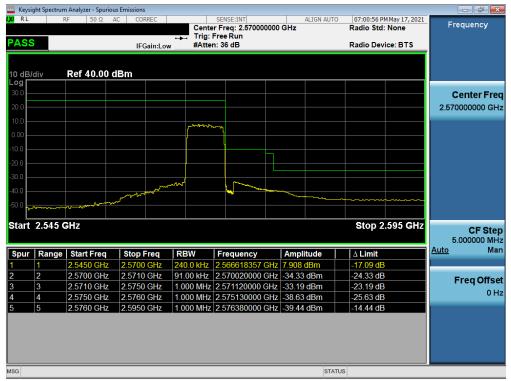
| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dogo 07 of 40                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 27 of 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  | nalyzer - Spurio                                      |                 |          |
|------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------|----------------------------------|-------------------------------------------------------|-----------------|----------|
| Frequency                                | 06:59:08 PM May 17, 2021                       | ALIGN AUTO                                                                            | SENSE:INT                                             |                                                  | ORREC                    | AC CO                            | 50 Ω                                                  | R               | RL       |
| ricquericy                               | Radio Std: None                                |                                                                                       | r Freq: 2.500000000                                   |                                                  |                          |                                  |                                                       |                 |          |
|                                          | Radio Device: BTS                              |                                                                                       | Free Run<br>n: 36 dB                                  |                                                  | EGain:Low                |                                  |                                                       |                 | ASS      |
|                                          | Radio Device. D13                              |                                                                                       | 1. 30 UD                                              | #Atter                                           | -Gain:Low                | 11-                              |                                                       |                 | <u> </u> |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 |          |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          | lBm                              | ef 40.00 (                                            | div             | ) dB/    |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          | abm                              | 0.00                                                  |                 | ogΓ      |
| Center Fr                                |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 | 0.0      |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 |          |
| 2.50000000 G                             |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 | 0.0      |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 | 0.0      |
|                                          |                                                | ን                                                                                     | mannen                                                |                                                  |                          |                                  |                                                       |                 | .00      |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 |          |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 | D.O      |
|                                          |                                                | 1                                                                                     |                                                       |                                                  |                          |                                  |                                                       |                 | 0.0      |
|                                          |                                                |                                                                                       |                                                       |                                                  | +                        |                                  |                                                       |                 | 0.0      |
|                                          |                                                | l                                                                                     | -                                                     |                                                  |                          |                                  |                                                       |                 |          |
|                                          |                                                | - <b>X</b>                                                                            |                                                       |                                                  |                          |                                  |                                                       |                 | D.O 🗕    |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 |          |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 | n n 🗖    |
|                                          |                                                |                                                                                       |                                                       |                                                  |                          |                                  |                                                       |                 | 0.0      |
|                                          | Stop 2.525 GHz                                 |                                                                                       |                                                       |                                                  |                          |                                  | z                                                     | 2.475 G         |          |
| CF St                                    | Stop 2.525 GHz                                 |                                                                                       |                                                       |                                                  |                          |                                  | Z                                                     | 2.475 G         |          |
| CF St<br>5.000000 M<br><u>Auto</u> M     |                                                |                                                                                       | Frequency                                             | RBW                                              | Freq                     | Stop                             |                                                       |                 | tart     |
| 5.000000 M                               | ∆ Limit                                        | plitude                                                                               | Frequency 2 49050000 GHz                              | RBW                                              | Freq                     |                                  | start Freq                                            | Range           |          |
| 5.000000 M<br><u>Auto</u> M              | Δ Limit<br>-15.98 dB                           | 98 dBm                                                                                | 2.490500000 GHz                                       | 1.000 MHz                                        | 5 GHz                    | 2.490                            | Start Freq<br>4750 GHz                                | Range           | tart     |
| 5.000000 M                               | Δ Limit<br>-15.98 dB<br>-23.89 dB              | 9 <mark>8 dBm</mark><br>39 dBm                                                        | 2.490500000 GHz<br>2.495615000 GHz                    | 1.000 MHz<br>1.000 MHz                           | 15 GHz<br>60 GHz         | 2.490<br>2.496                   | <b>Start Freq</b><br>4750 GHz<br>4905 GHz             | Range<br>1<br>2 | tart     |
| 5.000000 M<br><u>Auto</u> M              | Δ Limit<br>-15.98 dB<br>-23.89 dB<br>-25.63 dB | 08 dBm<br>39 dBm<br>63 dBm                                                            | 2.490500000 GHz<br>2.495615000 GHz<br>2.499000000 GHz | 1.000 MHz<br>1.000 MHz<br>1.000 MHz              | 05 GHz<br>0 GHz<br>0 GHz | 2.490<br>2.496<br>2.499          | <b>Start Freq</b><br>4750 GHz<br>4905 GHz<br>4960 GHz | Range           | tart     |
| 5.000000 M<br><u>Auto</u> M<br>Freq Offs | Δ Limit<br>-15.98 dB<br>-23.89 dB              | 08 dBm         08 dBm           39 dBm         03 dBm           63 dBm         03 dBm | 2.490500000 GHz<br>2.495615000 GHz                    | 1.000 MHz<br>1.000 MHz<br>1.000 MHz<br>180.0 kHz | 15 GHz<br>60 GHz         | 2.490<br>2.496<br>2.499<br>2.500 | <b>Start Freq</b><br>4750 GHz<br>4905 GHz             | Range 1 2 3 4   | tart     |






Plot 7-23. Upper ACP Plot (LTE Band 7 - 10MHz QPSK - Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Page 28 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 28 of 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    | Analyzer - Spurio                                           |                                        |                     |
|-----------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------------|------------------------------------|-------------------------------------------------------------|----------------------------------------|---------------------|
| Frequency                                     | 07:00:12 PM May 17, 2021<br>Radio Std: None    | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SENSE:INT                                                 |                                                  | REC                      | C COF                              | 50 Ω                                                        | RI                                     | RL                  |
|                                               | Radio Std: None                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq: 2.500000000<br>ree Run                              |                                                  |                          |                                    |                                                             |                                        |                     |
|                                               | Radio Device: BTS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 36 dB                                                   |                                                  | ain:Low                  | IEC                                |                                                             | <b>3</b>                               | ASS                 |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          | am.Low                   | 11.0                               |                                                             |                                        |                     |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        |                     |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          | IBm                                | Ref 40.00 (                                                 | div                                    | 0 dB/               |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        | og┌                 |
| Center Fr                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        | 30.0                |
| 2.500000000 G                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        | 20.0                |
| 2.50000000 G                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        | 20.0                |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    |                                                  |                          |                                    |                                                             |                                        | 10.0                |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        |                     |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | í Ì                                                       |                                                  |                          |                                    |                                                             |                                        | 0.0                 |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        | 0.0                 |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                         |                                                  |                          |                                    |                                                             |                                        | .0.0                |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        | 10.0                |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          |                                    |                                                             |                                        |                     |
|                                               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. h                                                      |                                                  |                          |                                    |                                                             |                                        |                     |
|                                               |                                                | mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                  |                                                  | -                        |                                    |                                                             |                                        | 10.0 —              |
|                                               | รี่คระสา <sub>ยในส</sub> ามารูปในประกอ         | Lanna Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b>                                                  |                                                  | ~~~~~                    | ~                                  |                                                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 10.0<br>50.0        |
|                                               | วิตรริสาว                                      | httere and the second sec                                                                                                                                                                                                                                             |                                                           |                                                  | ~~~~                     | ~                                  |                                                             | <del></del>                            |                     |
| CE St                                         | Stop 2.525 GHz                                 | honor and honor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                  |                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Hz                                                          | 2.475 G                                | io.o                |
| CF Ste                                        | Stop 2.525 GHz                                 | h-manne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                  | ~~~~                     |                                    | Hz                                                          | 2.475 G                                | 0.0                 |
| <b>CF St</b> t<br>5.000000 M<br><u>Auto</u> M |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | RBW                                              | reg                      | Stop F                             |                                                             |                                        | 0.0<br>tart         |
| 5.000000 M                                    | ∆ Limit                                        | plitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Frequency                                                 | RBW                                              |                          | Stop F                             | Start Freq                                                  | Range                                  | 0.0<br>tart         |
| 5.000000 M<br><u>Auto</u> M                   | Δ Limit<br>-12.98 dB                           | plitude 98 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency 2.493810000 GHz                                 | 1.000 MHz                                        | GHz                      | 2.4940                             | Start Freq<br>2.4750 GHz                                    | Range                                  | 0.0<br>tart<br>Spur |
| 5.000000 M                                    | Δ Limit<br>-12.98 dB<br>-23.77 dB              | plitude 98 dBm 77 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Frequency 2.493810000 GHz 2.496000000 GHz                 | 1.000 MHz<br>1.000 MHz                           | GHz<br>GHz               | 2.4940<br>2.4960                   | <b>Start Freq</b><br>2.4750 GHz<br>2.4940 GHz               | Range                                  | io.o<br>Start       |
| 5.000000 M<br><u>Auto</u> M<br>Freq Offs      | Δ Limit<br>-12.98 dB<br>-23.77 dB<br>-24.28 dB | plitude 98 dBm 77 dBm 28 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Frequency 2.493810000 GHz 2.496000000 GHz 2.498970000 GHz | 1.000 MHz<br>1.000 MHz<br>1.000 MHz              | GHz<br>GHz<br>GHz        | 2.4940<br>2.4960<br>2.4990         | <b>Start Freq</b><br>2.4750 GHz<br>2.4940 GHz<br>2.4960 GHz | Range<br>1<br>2<br>3                   | 50.0                |
| 5.000000 M<br><u>Auto</u> M                   | Δ Limit<br>-12.98 dB<br>-23.77 dB              | plitude 98 dBm 77 dBm 28 dBm 42 dBm 41 dBm 42 dBm 41 dBm 4 | Frequency 2.493810000 GHz 2.496000000 GHz                 | 1.000 MHz<br>1.000 MHz<br>1.000 MHz<br>91.00 kHz | GHz<br>GHz<br>GHz<br>GHz | 2.4940<br>2.4960                   | <b>Start Freq</b><br>2.4750 GHz<br>2.4940 GHz               | Range 1 2 3 4                          | 0.0<br>tart<br>Spur |





Plot 7-25. Upper ACP Plot (LTE Band 7 - 5MHz QPSK – Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 20 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 29 of 42                     |
| © 2021 PCTEST                                | •               |                                         | V2 3/28/2021                      |



### 7.6 Peak-Average Ratio

#### **Test Overview**

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 5.7.1

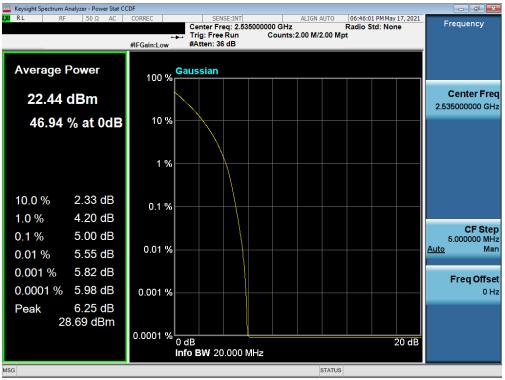
#### Test Settings

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

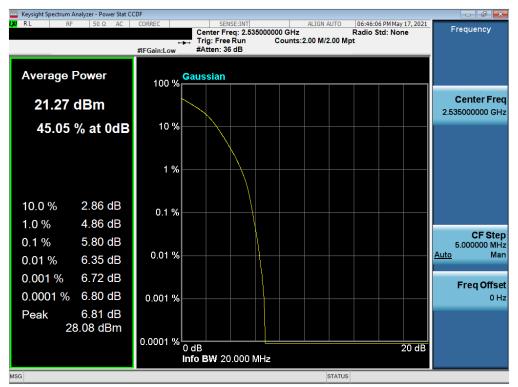
#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.




Figure 7-5. Test Instrument & Measurement Setup

#### Test Notes


None.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 20 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 30 of 42                     |
| © 2021 PCTEST                                | •               |                                         | V2 3/28/2021                      |

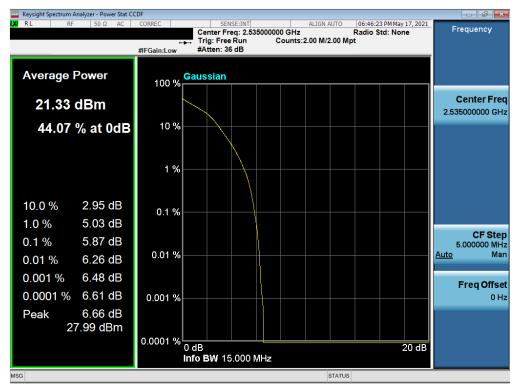




Plot 7-26. PAR Plot (LTE Band 7 - 20MHz QPSK - Full RB)



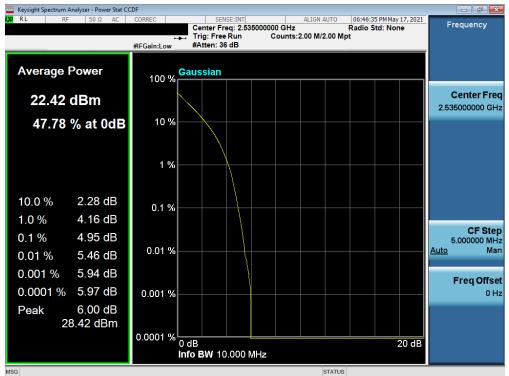
#### Plot 7-27. PAR Plot (LTE Band 7 - 20MHz 16-QAM - Full RB)


| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST*<br>Froud to be part of @webeneet | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                              | EUT Type:                               | Dogo 21 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                          | Data Terminal Module                    | Page 31 of 42                     |
| © 2021 PCTEST                                |                                          |                                         | V2 3/28/2021                      |

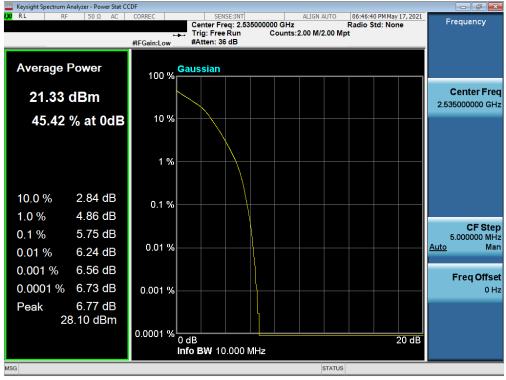
© 2021 PCTEST






Plot 7-28. PAR Plot (LTE Band 7 - 15MHz QPSK - Full RB)

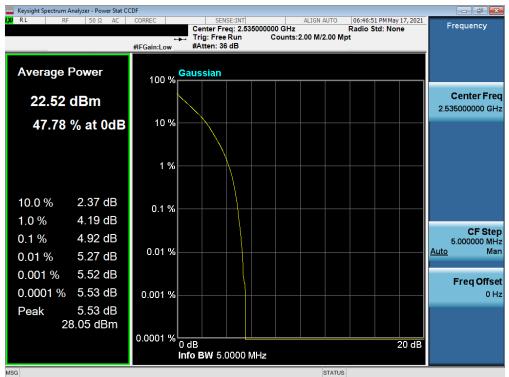



Plot 7-29. PAR Plot (LTE Band 7 - 15MHz 16-QAM - Full RB)

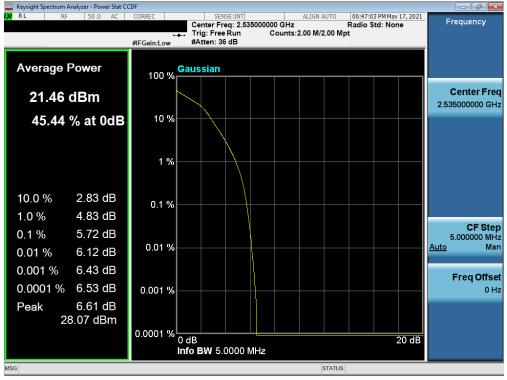
| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 32 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 32 of 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |











Plot 7-31. PAR Plot (LTE Band 7 - 10MHz 16-QAM - Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Proud to be part of the element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                               | EUT Type:                               | Dogo 22 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                           | Data Terminal Module                    | Page 33 of 42                     |
| © 2021 PCTEST                                | •                                         |                                         | V2 3/28/2021                      |









Plot 7-33. PAR Plot (LTE Band 7 - 5MHz 16-QAM - Full RB)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Daga 24 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 34 of 42                     |
| © 2021 PCTEST                                |                 | ·                                       | V2 3/28/2021                      |



## 7.7 Radiated Spurious Emissions Measurements

#### **Test Overview**

Radiated spurious emissions measurements are performed using the field strength conversion method described in KDB 971168 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

#### **Test Procedures Used**

KDB 971168 D01 v03r01 - Section 5.8

#### **Test Settings**

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dega 25 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 35 of 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



The EUT and measurement equipment were set up as shown in the diagram below.

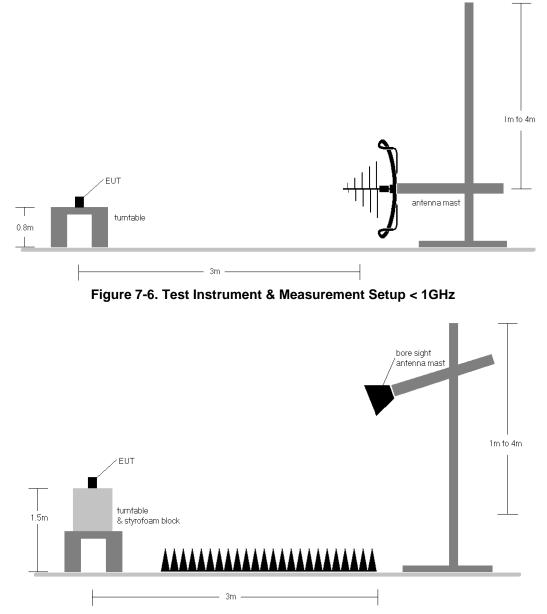
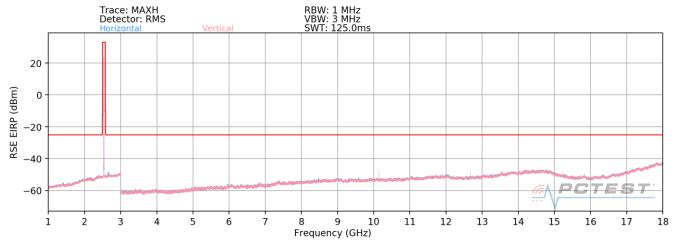



Figure 7-7. Test Instrument & Measurement Setup >1 GHz


| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST*         | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Dage 26 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 36 of 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



- Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4.
   b) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m)
   d) EIRP (dBm) = E(dBµV/m) + 20logD 104.8; where D is the measurement distance in meters.
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested while powered by an DC power source.
- 4) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 5) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 6) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manag |
|----------------------------------------------|-----------------|-----------------------------------------|---------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Daga 27 of 42                   |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 37 of 42                   |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2                       |





Plot 7-34. Radiated Spurious Plot (LTE Band 7)

| Bandwidth (MHz): | 20     |
|------------------|--------|
| Frequency (MHz): | 2510.0 |
| RB / Offset:     | 1 / 50 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5020.0          | V                  | 129                       | 284                              | -75.76                     | 4.33           | 35.57                         | -59.69                                   | -25.00         | -34.69         |
| 7530.0          | V                  | 398                       | 74                               | -78.42                     | 8.99           | 37.57                         | -57.69                                   | -25.00         | -32.69         |
| 10040.0         | V                  | 342                       | 357                              | -66.84                     | 11.47          | 51.63                         | -43.63                                   | -25.00         | -18.63         |
| 12550.0         | V                  | 396                       | 151                              | -63.95                     | 13.60          | 56.65                         | -38.61                                   | -25.00         | -13.61         |
| 15060.0         | V                  | 368                       | 109                              | -76.92                     | 15.38          | 45.46                         | -49.80                                   | -25.00         | -24.80         |
| 17570.0         | V                  | -                         | -                                | -80.76                     | 19.31          | 45.55                         | -49.70                                   | -25.00         | -24.70         |

cTable 7-3. Radiated Spurious Data (LTE Band 7 – Low Channel)

| 20     |
|--------|
| 2535.0 |
| 1 / 50 |
|        |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5070.0          | V                  | 384                       | 286                              | -74.52                     | 4.67           | 37.15                         | -58.11                                   | -25.00         | -33.11         |
| 7605.0          | V                  | 398                       | 68                               | -77.58                     | 8.80           | 38.22                         | -57.04                                   | -25.00         | -32.04         |
| 10140.0         | V                  | 384                       | 3                                | -65.08                     | 11.51          | 53.43                         | -41.83                                   | -25.00         | -16.83         |
| 12675.0         | V                  | 252                       | 170                              | -61.96                     | 13.33          | 58.37                         | -36.89                                   | -25.00         | -11.89         |
| 15210.0         | V                  | 385                       | 272                              | -77.76                     | 14.92          | 44.16                         | -51.10                                   | -25.00         | -26.10         |
| 17745.0         | V                  | -                         | -                                | -80.83                     | 21.30          | 47.47                         | -47.78                                   | -25.00         | -22.78         |

Table 7-4. Radiated Spurious Data (LTE Band 7 – Mid Channel)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Page 38 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Page 38 01 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |



| Bandwidth (MHz): | 20     |
|------------------|--------|
| Frequency (MHz): | 2560.0 |
| RB / Offset:     | 1 / 50 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5120.00         | V                  | 111                       | 23                               | -75.88                     | 4.65           | 35.77                         | -59.49                                   | -25.00         | -34.49         |
| 7680.00         | V                  | 207                       | 73                               | -75.64                     | 9.39           | 40.75                         | -54.51                                   | -25.00         | -29.51         |
| 10240.00        | V                  | 328                       | 358                              | -64.49                     | 11.79          | 54.30                         | -40.95                                   | -25.00         | -15.95         |
| 12800.00        | V                  | 334                       | 319                              | -64.82                     | 13.45          | 55.63                         | -39.63                                   | -25.00         | -14.63         |
| 15360.00        | V                  | 233                       | 116                              | -77.58                     | 13.87          | 43.29                         | -51.97                                   | -25.00         | -26.97         |
| 17920.00        | V                  | -                         | -                                | -80.85                     | 21.82          | 47.97                         | -47.29                                   | -25.00         | -22.29         |

Table 7-5. Radiated Spurious Data (LTE Band 7 - High Channel)

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                             | EUT Type:                               | Page 39 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                         | Data Terminal Module                    | Fage 39 01 42                     |
| © 2021 PCTEST                                | •                                       | ·                                       | V2 3/28/2021                      |



## 7.8 Frequency Stability / Temperature Variation

#### Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

#### Test Procedure Used

ANSI/TIA-603-E-2016

#### **Test Settings**

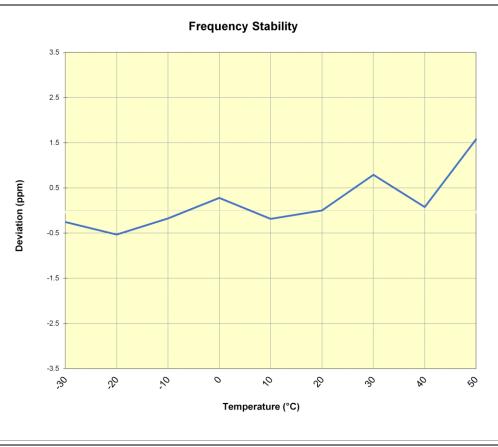
- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

#### Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

#### Test Notes

None


| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                             | EUT Type:                               | Page 40 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                         | Data Terminal Module                    | Page 40 01 42                     |
| © 2021 PCTEST                                |                                         |                                         | V2 3/28/2021                      |



## LTE Band 7

| LTE Band 7        |             |                |                   |                    |                  |  |
|-------------------|-------------|----------------|-------------------|--------------------|------------------|--|
|                   | Operating F | requency (Hz): | 2,535,000,000     |                    |                  |  |
|                   | Ref.        | Voltage (VDC): | 3.80              |                    | ]                |  |
|                   |             |                |                   |                    |                  |  |
| Voltage (%)       | Power (VDC) | Temp (°C)      | Frequency<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |  |
|                   |             | - 30           | 2,534,989,209     | -650               | -0.0000256       |  |
|                   |             | - 20           | 2,534,988,511     | -1,348             | -0.0000532       |  |
|                   |             | - 10           | 2,534,989,414     | -444               | -0.0000175       |  |
|                   |             | 0              | 2,534,990,562     | 704                | 0.0000278        |  |
| 100 %             | 3.80        | + 10           | 2,534,989,385     | -473               | -0.0000187       |  |
|                   |             | + 20 (Ref)     | 2,534,989,858     | 0                  | 0.0000000        |  |
|                   |             | + 30           | 2,534,991,861     | 2,003              | 0.0000790        |  |
|                   |             | + 40           | 2,534,990,049     | 191                | 0.0000075        |  |
|                   |             | + 50           | 2,534,993,850     | 3,992              | 0.0001575        |  |
| <mark>85 %</mark> | 3.23        | + 20           | 2,534,988,912     | -947               | -0.0000373       |  |
| 115 %             | 4.37        | + 20           | 2,534,990,342     | 483                | 0.0000191        |  |

Table 7-6. LTE Band 7 Frequency Stability Data





| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX | PCTEST<br>Proud to be part of @ element | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:                             | EUT Type:                               | Dogo 41 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021                         | Data Terminal Module                    | Page 41 of 42                     |
| © 2021 PCTEST                                |                                         | ·                                       | \/2 3/28/2021                     |



## 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Telit Communications S.p.A Data Terminal Module FCC ID: RI7LE910CXWWX / IC:5131A-LE910CXWWX** complies with all the requirements of Part 27 of the FCC rules and RSS-199 rules.

| FCC ID: RI7LE910CXWWX<br>IC:5131A-LE910CXWWX |                 | PART 27 / RSS-199 MEASUREMENT<br>REPORT | Approved by:<br>Technical Manager |
|----------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| Test Report S/N:                             | Test Dates:     | EUT Type:                               | Page 42 of 42                     |
| 1M2106040065-07.RI7                          | 5/12 - 6/1/2021 | Data Terminal Module                    | Fage 42 01 42                     |
| © 2021 PCTEST                                |                 |                                         | V2 3/28/2021                      |