

RF Exposure Report (FCC)

Report No.: WIR128169-FCC-Track-RF Exposure

Test Model: FBO-2001

Received Date: September 20, 2023

Test Date: September 20, 2023– September 26, 2023

Issued Date: October 09, 2023

Applicant: Trackonomy Systems

Address: 214 Devcon Dr, San Jose, CA 95112

Issued By: Eurofins Electrical and Electronic Testing NA, Inc.

Lab Address: 3162 Belick St. Santa Clara CA, 95054

1. Certificate of Conformity

Product: Multifunctional IoT Platform Sensor

Brand: Trackonomy Systems

E&E

Test Model: FBO-2001

FCC ID: 2AXA8-FBO-2001

Series Model: N/A

Sample Status: Engineering Sample

Applicant: Trackonomy Systems

Test Date: September 22, 2023 – September 26, 2023

Standard: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE C95.1-1992

Richard Dollente

Richard Dollente Test Engineer, Wireless Laboratory

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made.

Gary Chou

Wireless Engineering Manager, Wireless Laboratory

Revision	Report Date	Reason for Revision
Ø	October 09, 2023	Initial Issue.

Report: WIR128169-FCC-Track-RF Exposure

© 2023, Eurofins Electrical and Electronic Testing NA, Inc.

Page 2 of 5

2. RF Exposure

According to ANSI/IEEE C95.1-1992, the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in §1.1310.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)
	Limits For Gene	ral Population / Uncor	ntrolled Exposure	
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = Frequency in MHz; *Plane-wave equivalent power density

E&E

2.1 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.2 Antenna Gain

- 2 Cellular:
- 3 Antenna Manufacturer/ Model:
- 4 TAOGLAS/ FXP14.24.0100B:
- 5 Antenna Type: PCB
- 6 Antenna Gain:
- 7 850 MHz: 2 dBi
- 8 900 MHz: 1.5 dBi
- 9 1700 MHz: 3 dBi
- 10 1800 MHz: 2.5 dBi
- 11 1900 MHz: 2 dBi
- 12 2100 MHz: 2.5 dBi
- 13
- 14 Bluetooth:
- 15 Antenna Manufacturer/ Model:
- 16 Molex/ 146180300
- 17 Antenna Type: PCB Antenna
- 18 Antenna Gain: 3 dBi

2.1 Calculation Result worst case of Maximum Conducted Power

E&E

Type/ Band	Frequency Band (MHz)	Max Power (tune up) (dBm)	Max Power (tune up) (mW)	Antenna Gain (dBi)	Distance (cm)	I Ionelt\/	Limit (mW/cm²)
Bluetooth LE	2402-2480	2.7	1.8621	3	20	0.000740	1
LTE Cate-M/ NB-IOT	B2/4/5/12/13/17/25/26/66	24	251.1886	3	20	0.099759	0.467

The maximum calculations of above situations are less than the limit. The SAR evaluation is not required.

Note:

 Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

3. This device contains

TYPE	Model No.	FCC ID	Note
-	-	-	-

4. Conclusion

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Worse case

Total MPE Percentage for Bluetooth LE = 0.000740< 1 LTE CAT-M/ NB-IOT = 0.213616702<1

Therefore, the maximum calculations of above situations are less than the "1" limit. The SAR evaluation is not required.

Report: WIR128169-FCC-Track-RF Exposure

© 2023, Eurofins Electrical and Electronic Testing NA, Inc.

Page 5 of 5