

CFR 47 FCC PART 15 SUBPART C(DTS) TEST REPORT

For

Robot vacuum cleaner

MODEL NUMBER: YM-R5-W01, YM-R5-B01, YM-R5D-W01, YM-R5D-B01, CDZ-R5D-W01, CDZ-R5D-B01, JCB-R5-W01, JCB-R5-B01

REPORT NUMBER: E01A23040432F00102

ISSUE DATE: May 15, 2023

FCC ID: 2AX8T-LYDSTO008

Prepared for

Guangdong Yimu Technology Co., Ltd.
Room 201, Building 1, No.1, Dongsan Lane, Hengjiang, Fushan, Liaobu Town,
Dongguan, Guangdong, China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hitech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

TRF No.: 01-R005-3A TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E01A23040432F00102 Page 2 of 86

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	May 15, 2023	Initial Issue	DUKE

Summary of Test Results						
Test Item	Clause	Limit/Requirement	Result			
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass			
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207	Pass			
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3)	Pass			
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2)	Pass			
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e)	Pass			
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass			
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.205/15.209	Pass			
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass			

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATT	ESTATION OF TEST RESULTS	5
2. TES	T METHODOLOGY	6
3. FAC	ILITIES AND ACCREDITATION	6
4. CAL	IBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQU	IPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	CHANNEL LIST	8
5.3.	MAXIMUM AVERAGE EIRP	9
5.4.	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.7.	SUPPORT UNITS FOR SYSTEM TEST	10
5.8.	SETUP DIAGRAM	10
6. MEA	SURING EQUIPMENT AND SOFTWARE USED	11
7. ANT	ENNA PORT TEST RESULTS	12
7.1.	Conducted Output Power	12
7.2.	6dB Bandwid	13
7.3.	Power Spectral Density	14
7.4.	Conducted Band edge and spurious emission	15
7.5.	Duty Cycle	17
8. RAD	IATED TEST RESULTS	18
9. ANT	ENNA REQUIREMENT	27
10.	AC POWER LINE CONDUCTED EMISSION	28
11.	TEST DATA	31
APPEND	IX: PHOTOGRAPHS OF THE EUT	75

REPORT NO.: E01A23040432F00102

Page 5 of 86

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Guangdong Yimu Technology Co., Ltd.

Address: Room 201, Building 1, No.1, Dongsan Lane, Hengjiang, Fushan,

Liaobu Town, Dongguan, Guangdong, China

Manufacturer Information

Company Name: Guangdong Yimu Technology Co., Ltd.

Address: Room 201, Building 1, No.1, Dongsan Lane, Hengjiang, Fushan,

Liaobu Town, Dongguan, Guangdong, China

EUT Information

EUT Name: Robot vacuum cleaner

Model: YM-R5-B01

Series Model: YM-R5-W01, YM-R5D-W01, YM-R5D-B01, CDZ-R5D-W01, CDZ-

R5D-B01, JCB-R5-W01, JCB-R5-B01

Sample Received Date: April 15, 2023

Sample Status: Normal

Sample ID: A23040432 001

Date of Tested: May 15, 2023 to May 15, 2023

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C(DTS)	Pass			

Prepared By:

Checked By:

Dyson Dai

Project Engineer

Duke Liu

Project Engineer

Approved By

Tiger Xu

Laboratory Supervisor

REPORT NO.: E01A23040432F00102 Page 6 of 86

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DTS)

3. FACILITIES AND ACCREDITATION

Site Description

Name of Firm : Dong Guan Anci Electronic Technology Co., Ltd.

Site Location : 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan,

Lake Hi-tech Industrial Development Zone, Dongguan

City, evelopment Zone, Dongguan City, Guangdong Pr., China.

REPORT NO.: E01A23040432F00102 Page 7 of 86

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports	0.009 MHz ~ 0.15 MHz	2	4.00
Conducted emissions from the AC mains power ports	0.15 MHz ~ 30 MHz	2	3.62
Radiated emissions	9kHz ~ 30MHz	2	2.20
Radiated emissions	30 MHz ~ 1 GHz	2	3.16
Radiated emissions	1 GHz ~ 18 GHz	2	5.64

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E01A23040432F00102 Page 8 of 86

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Robot vacuum cleaner		
Model		YM-R5-B01		
Series Model		YM-R5D-W01, YM-R5-W01, YM-R5D-B01, CDZ-R5D-W01, CDZ-R5D-B01, JCB-R5-W01, JCB-R5-B01		
EUT Classification	n	Class B		
Internal Frequence	су	2400MHz		
Ratings		DC 19V 0.6A		
Power Supply	AC	120V/60Hz		
	Battery	16.8V		

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2412 MHz to 2462 MHz
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7
Number of Channels:	IEEE 802.11b/g/n-HT20: 11 IEEE 802.11n-HT40: 7
Maximum Peak Power:	IEEE 802.11b: 14.43 dBm IEEE 802.11g: 15.72 dBm IEEE 802.11n-HT20: 15.19dBm IEEE 802.11n-HT40: 15.49 dBm
Antenna Type:	Integral Antenna
Antenna Gain:	2.38dBi

5.2. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	4	2427	7	2442	10	2457	
2	2417	5	2432	8	2447	11	2462	
3	2422	6	2437	9	2452	1	1	

	Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452	
4	2427	6	2437	8	2447	1	1	

REPORT NO.: E01A23040432F00102 Page 9 of 86

5.3. MAXIMUM AVERAGE EIRP

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)
b	2412 ~ 2462	1-11[11]	14.43
g	2412 ~ 2462	1-11[11]	15.72
n HT20	2412 ~ 2462	1-11[11]	15.19
n HT40	2422 ~ 2452	3-9[7]	15.49

5.1. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

5.2. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare			WifiSRR	C.exe V2.1			
	Transmit		Test Channel					
Modulation Mode	Antenna Number	1	NCB: 20MHz			NCB: 40MHz		
Wiode		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	0	0	0				
802.11g	1	0	0	0				
802.11n HT20	1	0	0	0				
802.11n HT40	1				0	0	0	

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.1.

Maximum power setting referring to section 5.2.

Worst-case data rates as provided by the client were:

REPORT NO.: E01A23040432F00102 Page 10 of 86

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	FPC	2.38

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.4. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

Equipment	Manufacturer	Model No.
Automatic Dirt Disposal	Yimu	JCB-R5-B03

5.5. SETUP DIAGRAM

REPORT NO.: E01A23040432F00102 Page 11 of 86

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Spectrum Analyzer	Rohde & Schwarz	FSV40	US4024062 3	2022-10-29	2023-10-28	
RF Test Software	MWRF-test	MTS 8310	N/A	N/A	N/A	
Radio Frequency control box	MWRF-test	MW200- RFCB	MW220111 ANCI	2022-05-13	2023-05-12	
Radio Frequency control box	MWRF-test	MW200- RFCB 2#	/	2022-05-13	2023-05-12	

Test Equipment of Radiated emissions below 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	ROHDE&SCH WARZ	ESCI	100302	2022/5/13	2023/5/12
Bilog Antenna	Schwarzbeck	VULB9163	VULB9163- 1290	2022/12/12	2023/12/11
RF Cable	ZKJC	ZT06S-NJ- NJ-11M	19060398	2022/5/13	2023/5/12
RF Cable	ZKJC	ZT06S-NJ- NJ-0.5M	19060400	2022/5/13	2023/5/12
RF Cable	ZKJC	ZT06S-NJ- NJ-2.5M	19060404	2022/5/13	2023/5/12
EMI Test Receiver	ROHDE&SCH WARZ	ESPI7	100502	2022/10/8	2023/10/7
3m Semi- anechoic Chamber	Keysight	9m*6m*6m	N/A	2021/11/13	2024/11/12

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Low noise Amplifiers	A-INFO	LA1018N400 9	J101313052 4001	2022/5/13	2023/5/12
Horn antenna	A-INFO	LB-10180-SF	J203109061 2123	2022/5/15	2023/5/14
RF Cable	ZKJC	ZT26-NJ-NJ- 11M	19060401	2022/5/13	2023/5/12
RF Cable	ZKJC	ZT26-NJ-NJ- 2.5M	19060402	2022/5/13	2023/5/12
RF Cable	ZKJC	ZT26-NJ-NJ- 0.5M	19060403	2022/5/13	2023/5/12
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-10-29	2023-10-28
3m Semi- anechoic Chamber	Keysight	9m*6m*6m	N/A	2021/11/13	2024/11/12
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

REPORT NO.: E01A23040432F00102 Page 12 of 86

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	ROHDE&SCH WARZ	ESCI	101358	2022/5/13	2023/5/12
1# Shielded Room	chengyu	8m*4m*3.3m	N/A	2022/11/22	2025/11/21
LISN	ROHDE&SCH WARZ	ENV216	101413	2022/10/8	2023/10/7
Test Software	Farad	EZ-EMC (Ver.ANCI- 3A1)	N/A	N/A	N/A
RF Cable	N/A	ZT06S-NJ- NJ-2.5M	19044022	2022/05/13	2023/05/12

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5		

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E01A23040432F00102 Page 13 of 86

7.2. 6DB BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5		

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
I Freditiency Shan	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz
VBW	For 6 dB Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST ENVIRONMENT

Temperature	24℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E01A23040432F00102 Page 14 of 86

7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E01A23040432F00102 Page 15 of 86

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section Test Item Limit		
CFR 47 FCC §15.247 (d) Bandedge and bandwidth within the band that contains		at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

REPORT NO.: E01A23040432F00102 Page 16 of 86

TEST RESULTS

Please refer to section "Test Data"

REPORT NO.: E01A23040432F00102 Page 17 of 86

7.5. DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E01A23040432F00102 Page 18 of 86

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Stren (dBuV/m)	
()	(40,) 400	Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

REPORT NO.: E01A23040432F00102 Page 19 of 86

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Ahove 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

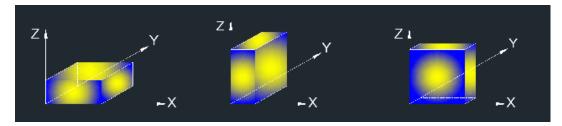
RBW	120 kHz
VBW	300 kHz
Sweep	Auto

REPORT NO.: E01A23040432F00102 Page 20 of 86

Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1G

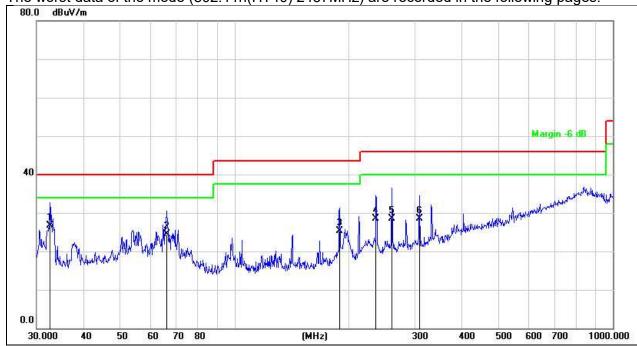

The setting of the spectrum analyser

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

REPORT NO.: E01A23040432F00102 Page 21 of 86

X axis, Y axis, Z axis positions:


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

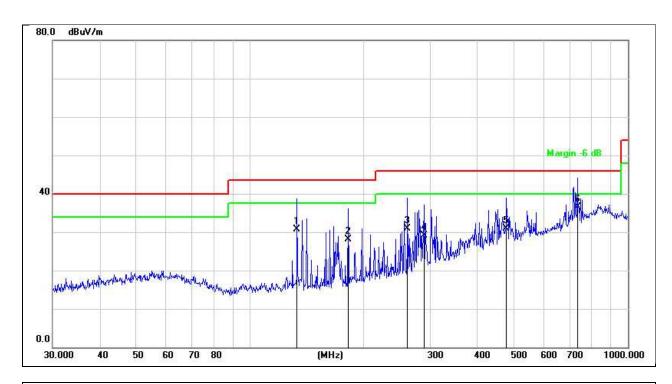
TEST ENVIRONMENT

Temperature	24℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

The worst data of the mode (802.11n(HT40) 2437MHz) are recorded in the following pages.

Site: ChamberA-2 Antenna::Vertical Temperature(C):26(C)


Limit: FCC Part 15 C 3m Radiation(QP) Humidity(%):54%

EUT: Robot vacuum cleaner Test Time: 2023-04-25
M/N.: YM-R5-B01 Power Rating: Battery 16.8V
Mode: TX2437 Test Engineer: Sunshine

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1 *	32.5198	38.56	-11.78	26.78	40.00	-13.22	QP	
2	66.2662	33.94	-9.51	24.43	40.00	-15.57	QP	
3	189.7385	36.74	-11.37	25.37	43.50	-18.13	QP	
4	236.6447	38.63	-10.21	28.42	46.00	-17.58	QP	
5	261.0583	37.33	-8.88	28.45	46.00	-17.55	QP	
6	307.8313	35.25	-6.82	28.43	46.00	-17.57	QP	

REPORT NO.: E01A23040432F00102 Page 23 of 86

Site: ChamberA-2 Antenna::Horizontal Temperature(C):26(C)

Limit: FCC Part 15 C 3m Radiation(QP) Humidity(%):54%

EUT: Robot vacuum cleaner Test Time: 2023-04-25
M/N.: YM-R5-B01 Power Rating: Battery 16.8V
Mode: TX2437 Test Engineer: Sunshine

Note:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.	Remark
1	133.1511	42.47	-11.78	30.69	43.50	-12.81	QP	
2	181.9202	39.53	-11.40	28.13	43.50	-15.37	QP	
3	261.0583	39.75	-8.88	30.87	46.00	-15.13	QP	
4	289.0021	36.62	-7.60	29.02	46.00	-16.98	QP	
5	477.1694	32.44	-1.59	30.85	46.00	-15.15	QP	
6 *	734.4913	32.17	4.24	36.41	46.00	-9.59	QP	

REPORT NO.: E01A23040432F00102 Page 24 of 86

Above 1000MHz~10th Harmonics:

All the modulation modes were tested the data of the worst mode (TX 802.11n(HT40) are recorded in the following pages and the others modulation methods do not exceed the limits. The frequency range from 1GHz to 25GHz is investigated.

Operation Mode: 802.11n(HT40) Lowest Test Date: 2023-04-25 Test Voltage: Battery 16.8V Test by: Sunshine

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4844	V	64.25	44.89	74	54	-9.75	-9.11	
7266	V	60.28	41.23	74	54	-13.72	-12.77	
9688	V	57.62	39.2	74	54	-16.38	-14.8	
12110	V	55.69	36.2	74	54	-18.31	-17.8	
14532	V	55.32	36.17	74	54	-18.68	-17.83	
16954	V	55.69	39.58	74	54	-18.31	-14.42	
4844	Н	64.09	45.21	74	54	-9.91	-8.79	
7266	Н	60.28	41.28	74	54	-13.72	-12.72	
9688	Н	57.63	38.44	74	54	-16.37	-15.56	
12110	Н	56.82	37.16	74	54	-17.18	-16.84	
14532	Н	55.32	36.48	74	54	-18.68	-17.52	
16954	Н	56.32	38.69	74	54	-17.68	-15.31	

Operation Mode: 802.11n(HT40) Middle Test Date: 2023-04-25 Test Voltage: Battery 16.8V Test by: Sunshine

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4874	V	64.2	45.16	74	54	-9.8	-8.84	
7311	V	60.25	41.25	74	54	-13.75	-12.75	
9688	V	58.36	39.65	74	54	-15.64	-14.35	
12185	V	56.14	37.45	74	54	-17.86	-16.55	
14622	V	55.62	36.85	74	54	-18.38	-17.15	
17059	V	56.23	37.55	74	54	-17.77	-16.45	
4874	Н	63.14	64.32	74	54	-10.86	10.32	
7311	Н	61.23	42.58	74	54	-12.77	-11.42	
9688	Н	59.65	41.32	74	54	-14.35	-12.68	
12185	Н	58.47	40.02	74	54	-15.53	-13.98	
14622	Н	56.2	37.26	74	54	-17.8	-16.74	
17059	Н	56.27	38.47	74	54	-17.73	-15.53	

REPORT NO.: E01A23040432F00102 Page 25 of 86

Operation Mode: 802.11n(HT40) Highest Test Date: 2023-04-25

Test Voltage: Battery 16.8V Test by: Sunshine

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4904	V	63.58	43.52	74	54	-10.42	-10.48	
7356	V	60.21	41.38	74	54	-13.79	-12.62	
9808	V	58.47	40.25	74	54	-15.53	-13.75	
12310	V	59.3	40.55	74	54	-14.7	-13.45	
14712	V	56.25	37.16	74	54	-17.75	-16.84	
17164	V	56.39	37.45	74	54	-17.61	-16.55	
4904	Н	63.52	43.69	74	54	-10.48	-10.31	
7356	Н	60.23	41.36	74	54	-13.77	-12.64	
9808	Н	59.36	40.21	74	54	-14.64	-13.79	
12310	Н	58.32	39.14	74	54	-15.68	-14.86	
14712	Н	56.74	37.26	74	54	-17.26	-16.74	
17164	Н	56.36	37.15	74	54	-17.64	-16.85	

No others harmonics emissions are higher than 20 dB below the limits of 47 CFR Part 15.247.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+Probe Factor +Cable Loss.
- (3) Data of measurement within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

REPORT NO.: E01A23040432F00102 Page 26 of 86

Band edge:

	IEEE 802.11b SISO												
Freq.	Ant. Pol.		ding BuV/m)	Correct Factor	Emis Level(d	sion BuV/m)	3m(dBuV/m		Margin(dB)				
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV			
<2400	Ι	83.41	62.85	-26.3	57.11	36.55	74	54	-16.89	-17.45			
<2400	V	83.54	64.5	-26.1	57.44	38.4	74	54	-16.56	-15.6			
>2483.5	Η	83.6	63.33	-26.3	57.3	37.03	74	54	-16.7	-16.97			
>2483.5	V	83.56	63.47	-26.1	57.46	37.37	74	54	-16.54	-16.63			

	IEEE 802.11g SISO												
Freq.	Ant. Pol.	Rea Level(d	ding BuV/m)	Correct Factor		ssion BuV/m)	3m(dBuV/m		Margin(dB)				
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV			
<2400	Η	83.21	63.15	-26.3	56.91	36.85	74	54	-17.09	-17.15			
<2400	V	82.17	63.5	-26.1	56.07	37.4	74	54	-17.93	-16.6			
>2483.5	Ι	83.05	63.41	-26.3	56.75	37.11	74	54	-17.25	-16.89			
>2483.5	V	83.12	63.55	-26.1	57.02	37.45	74	54	-16.98	-16.55			

	IEEE 802.11n(HT20) SISO											
Freq.	Ant. Pol.	Reading Level(dBuV/m)		Correct Factor	Emission Level(dBuV/m)		3m(dB		Margin(d	B)		
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV		
<2400	Н	83.25	63	-26.3	56.95	36.7	74	54	-17.05	-17.3		
<2400	V	83.11	62.96	-26.1	57.01	36.86	74	54	-16.99	-17.14		
>2483.5	Н	83.26	63.02	-26.3	56.96	36.72	74	54	-17.04	-17.28		
>2483.5	V	83.05	62.71	-26.1	56.95	36.61	74	54	-17.05	-17.39		

IEEE 802.11n(HT40) SISO										
Freq.	Ant. Pol.	Reading Level(dBuV/m)		Correct Factor	Emission Level(dBuV/m)		3m(dBuV/m		Margin(dB)	
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
<2400	Ι	83.36	64.02	-26.3	57.06	37.72	74	54	-16.94	-16.28
<2400	V	83.61	63.49	-26.1	57.51	37.39	74	54	-16.49	-16.61
>2483.5	Ι	83.47	63.26	-26.3	57.17	36.96	74	54	-16.83	-17.04
>2483.5	V	83.26	63.42	-26.1	57.16	37.32	74	54	-16.84	-16.68

REPORT NO.: E01A23040432F00102 Page 27 of 86

9. ANTENNA REQUIREMENT

REQUIREMENT

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

DESCRIPTION

Pass

REPORT NO.: E01A23040432F00102 Page 28 of 86

10. AC POWER LINE CONDUCTED EMISSION

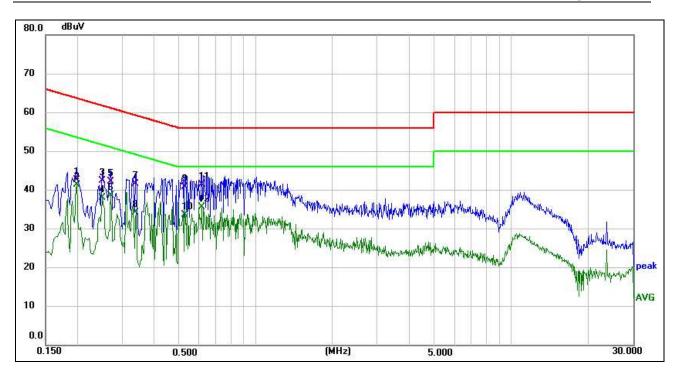
LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

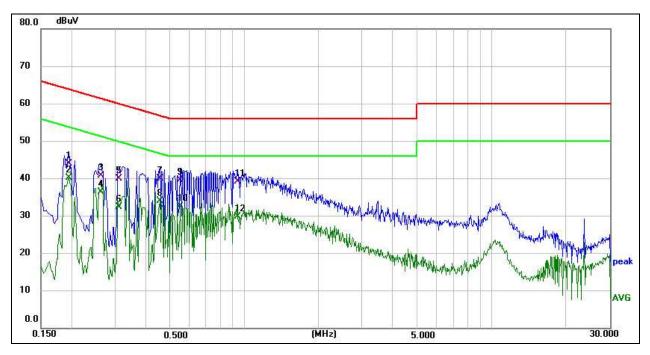

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

Temperature	23.5℃	Relative Humidity	52.6%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E01A23040432F00102 Page 29 of 86


Site:
Limit: FCC Part 15 C Conduction(QP)
EUT: robot vacuum cleaner
M/N.: YM-R5-B01
Mode: Charging+WIFI
Note:

Test Engineer: Sunshine

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1	0.1980	32.57	9.95	42.52	63.69	-21.17	QP	
2	0.1980	31.37	9.95	41.32	53.69	-12.37	AVG	
3	0.2500	32.28	10.05	42.33	61.76	-19.43	QP	
4	0.2500	27.88	10.05	37.93	51.76	-13.83	AVG	
5	0.2700	32.12	10.09	42.21	61.12	-18.91	QP	
6	0.2700	28.55	10.09	38.64	51.12	-12.48	AVG	
7	0.3379	31.30	10.24	41.54	59.25	-17.71	QP	
8	0.3379	23.93	10.24	34.17	49.25	-15.08	AVG	
9	0.5260	30.08	10.63	40.71	56.00	-15.29	QP	
10	0.5260	23.00	10.63	33.63	46.00	-12.37	AVG	
11	0.6140	30.61	10.80	41.41	56.00	-14.59	QP	
12	0.6140	24.84	10.80	35.64	46.00	-10.36	AVG	
*				1				

^{*:}Maximum data x:Over limit !:over margin

REPORT NO.: E01A23040432F00102 Page 30 of 86

Site: Phase:N Temperature(C):23.5(C) **Humidity(%):52.6%** Limit: FCC Part 15 C Conduction(QP) 2023/4/23 9:38:54 EUT: robot vacuum cleaner **Test Time:** M/N.: YM-R5-B01 **Power Rating:** AC 120V/60Hz Mode: **Charging+WIFI Test Engineer: Sunshine** Note:

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1	0.1940	33.96	9.94	43.90	63.86	-19.96	QP	
2	0.1940	30.25	9.94	40.19	53.86	-13.67	AVG	
3	0.2620	30.67	10.07	40.74	61.37	-20.63	QP	
4	0.2620	26.29	10.07	36.36	51.37	-15.01	AVG	
5	0.3100	29.82	10.18	40.00	59.97	-19.97	QP	
6	0.3100	22.19	10.18	32.37	49.97	-17.60	AVG	
7	0.4540	29.45	10.47	39.92	56.80	-16.88	QP	
8 *	0.4540	23.62	10.47	34.09	46.80	-12.71	AVG	
9	0.5500	28.92	10.67	39.59	56.00	-16.41	QP	
10	0.5500	22.04	10.67	32.71	46.00	-13.29	AVG	
11	0.9420	29.56	9.61	39.17	56.00	-16.83	QP	
12	0.9420	20.14	9.61	29.75	46.00	-16.25	AVG	

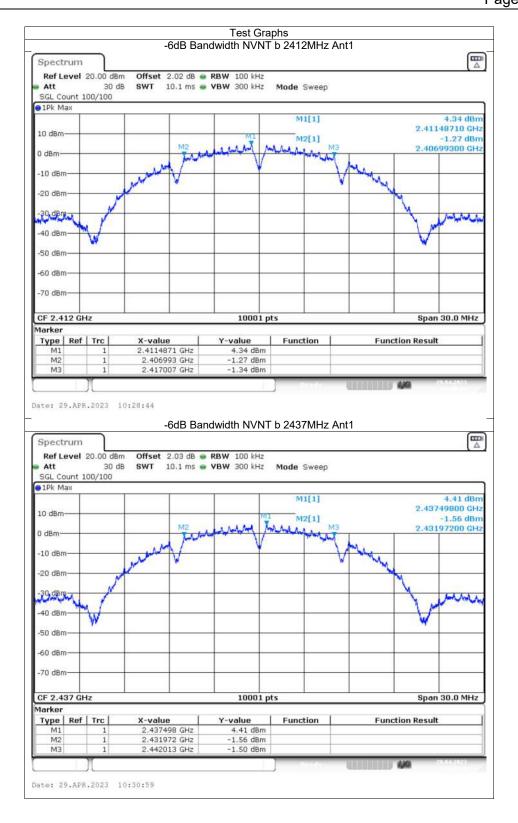
*:Maximum data x:Over limit !:over margin

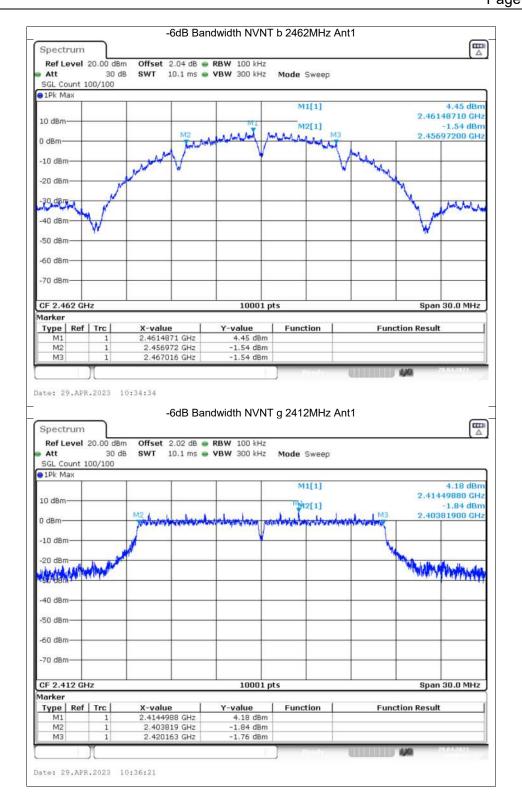
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

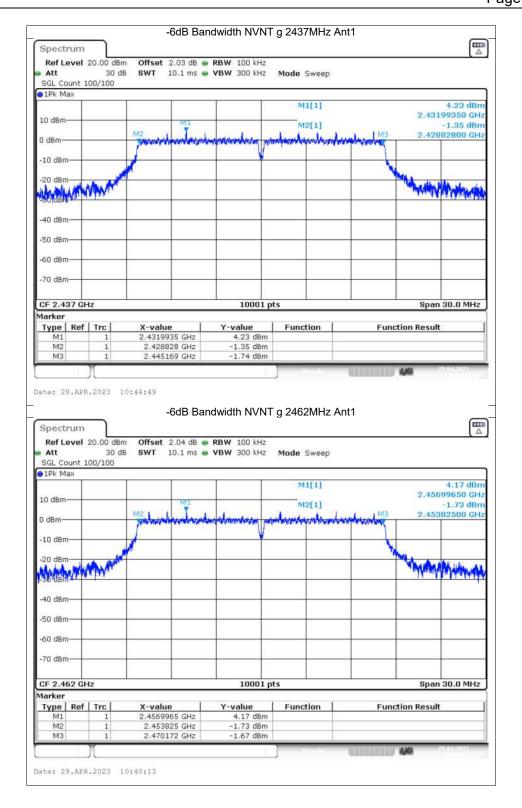
Note: All the modes have been tested, only the worst data was recorded in the report.

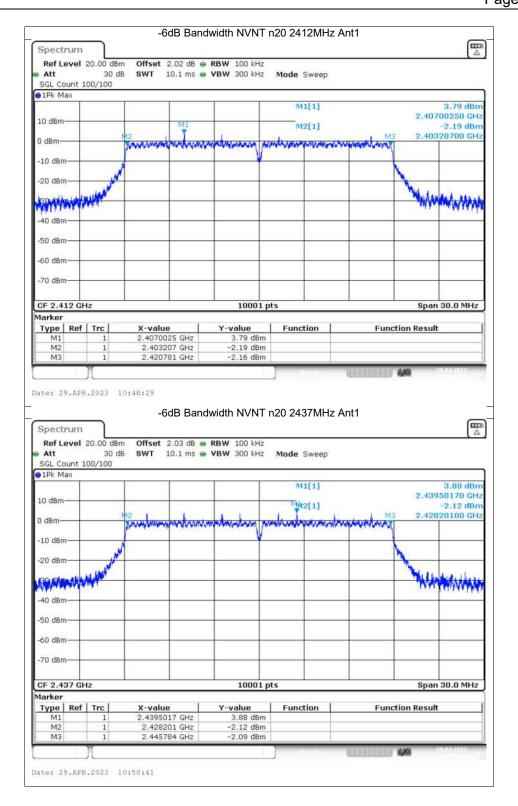
REPORT NO.: E01A23040432F00102 Page 31 of 86

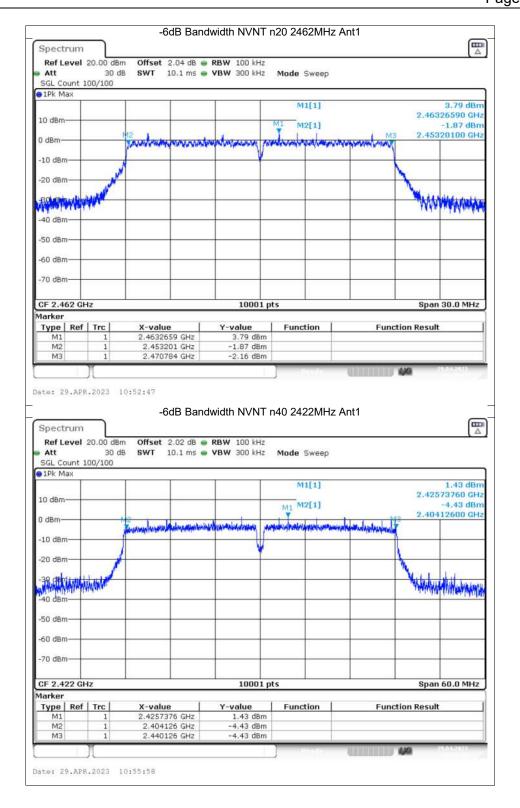
11. TEST DATA

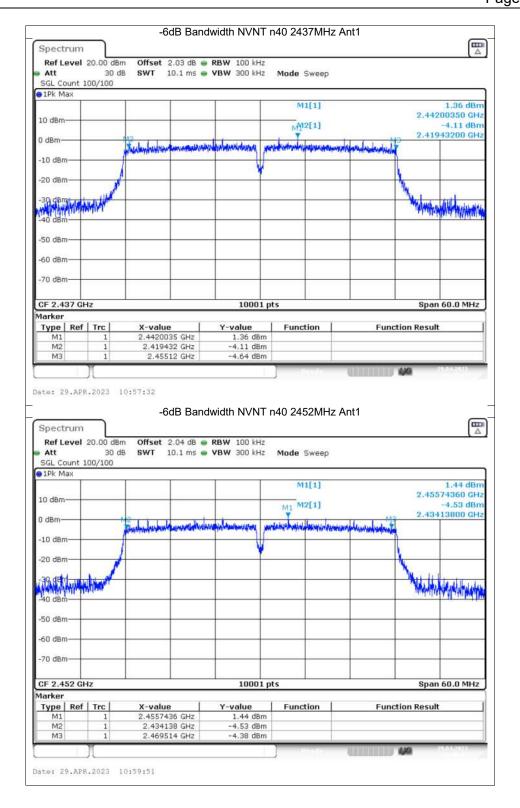

Maximum Conducted Output Power

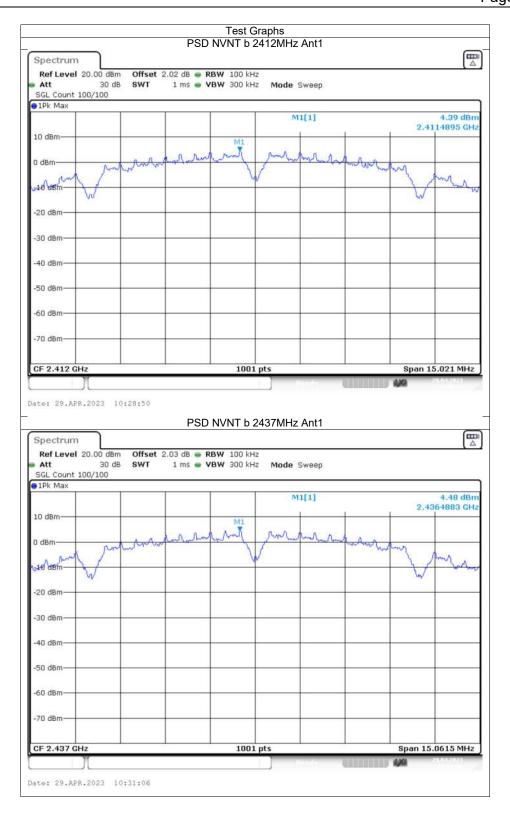

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	14.25	0	14.25	30	Pass
NVNT	b	2437	Ant1	14.45	0	14.45	30	Pass
NVNT	b	2462	Ant1	14.43	0	14.43	30	Pass
NVNT	g	2412	Ant1	15.64	0	15.64	30	Pass
NVNT	g	2437	Ant1	15.74	0	15.74	30	Pass
NVNT	g	2462	Ant1	15.72	0	15.72	30	Pass
NVNT	n20	2412	Ant1	15.1	0	15.1	30	Pass
NVNT	n20	2437	Ant1	15.19	0	15.19	30	Pass
NVNT	n20	2462	Ant1	15.13	0	15.13	30	Pass
NVNT	n40	2422	Ant1	15.45	0	15.45	30	Pass
NVNT	n40	2437	Ant1	15.49	0	15.49	30	Pass
NVNT	n40	2452	Ant1	15.44	0	15.44	30	Pass

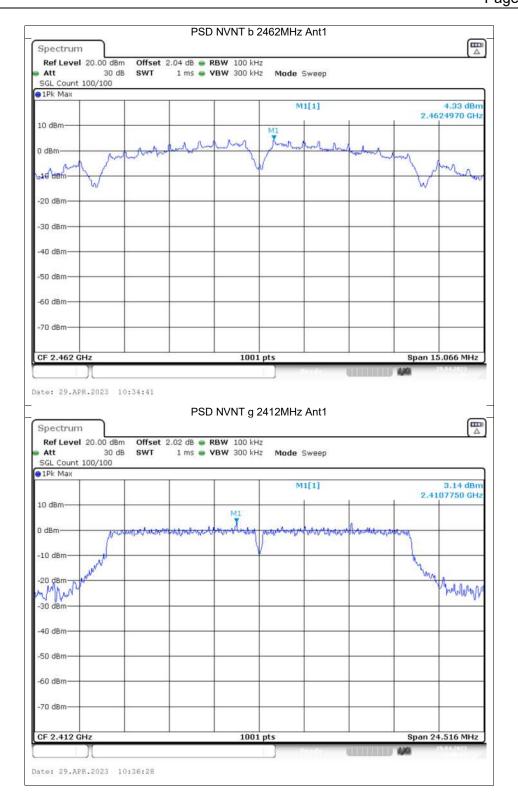

REPORT NO.: E01A23040432F00102 Page 32 of 86


-6dB Bandwidth

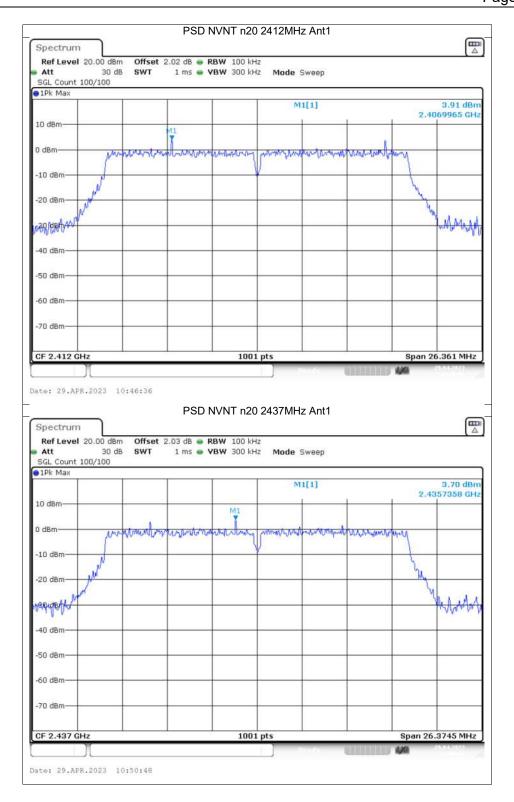

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	10.014	0.5	Pass
NVNT	b	2437	Ant1	10.041	0.5	Pass
NVNT	b	2462	Ant1	10.044	0.5	Pass
NVNT	g	2412	Ant1	16.344	0.5	Pass
NVNT	g	2437	Ant1	16.341	0.5	Pass
NVNT	g	2462	Ant1	16.347	0.5	Pass
NVNT	n20	2412	Ant1	17.574	0.5	Pass
NVNT	n20	2437	Ant1	17.583	0.5	Pass
NVNT	n20	2462	Ant1	17.583	0.5	Pass
NVNT	n40	2422	Ant1	36	0.5	Pass
NVNT	n40	2437	Ant1	35.688	0.5	Pass
NVNT	n40	2452	Ant1	35.376	0.5	Pass

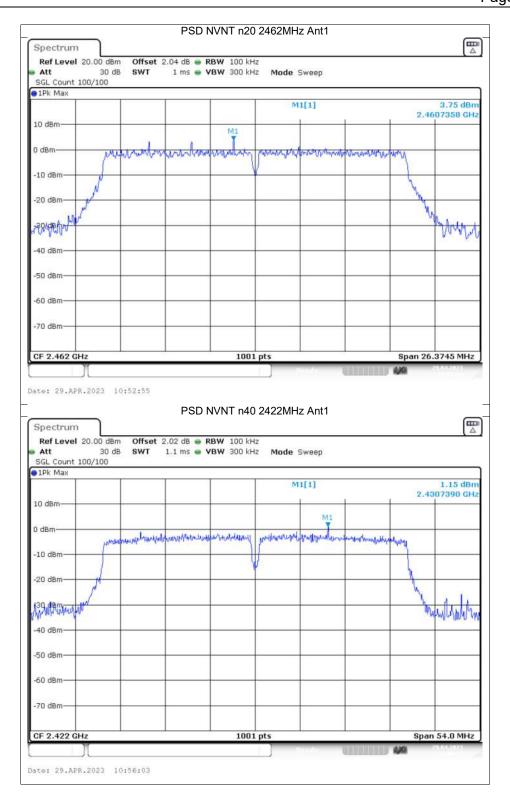


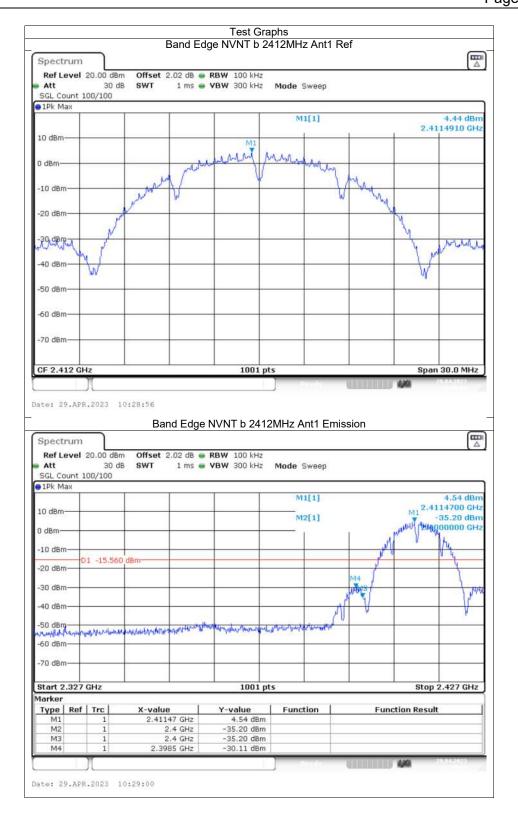


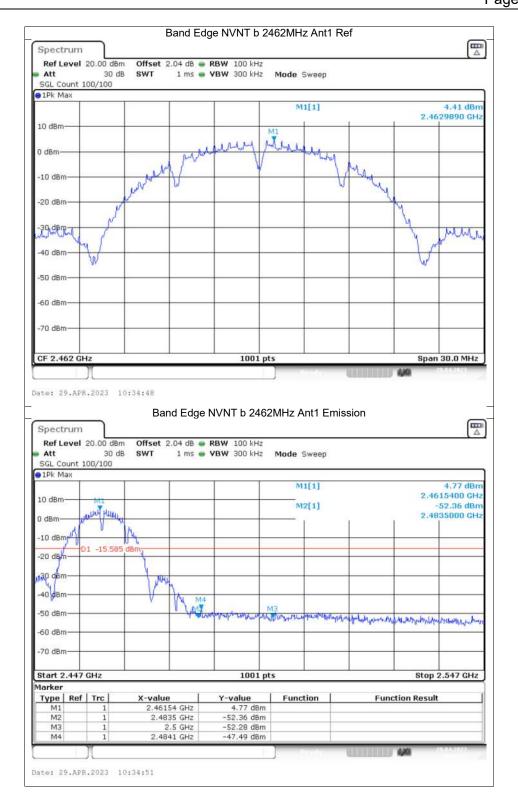


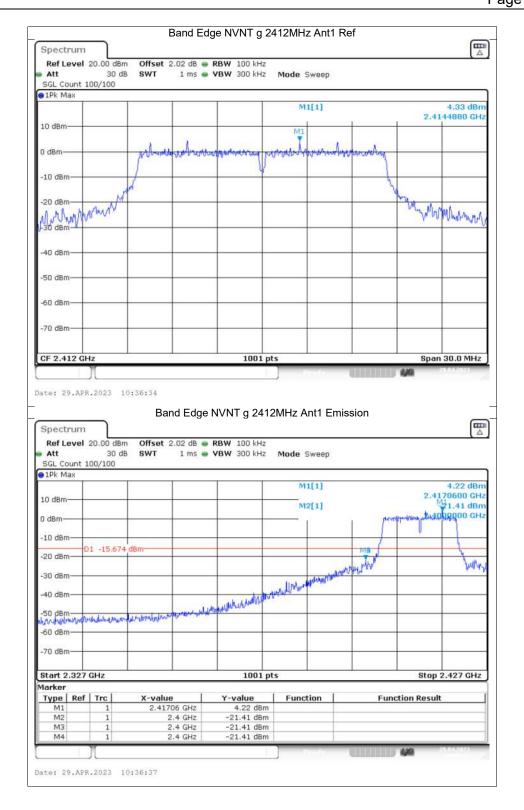
REPORT NO.: E01A23040432F00102 Page 39 of 86


Maximum Power Spectral Density Level

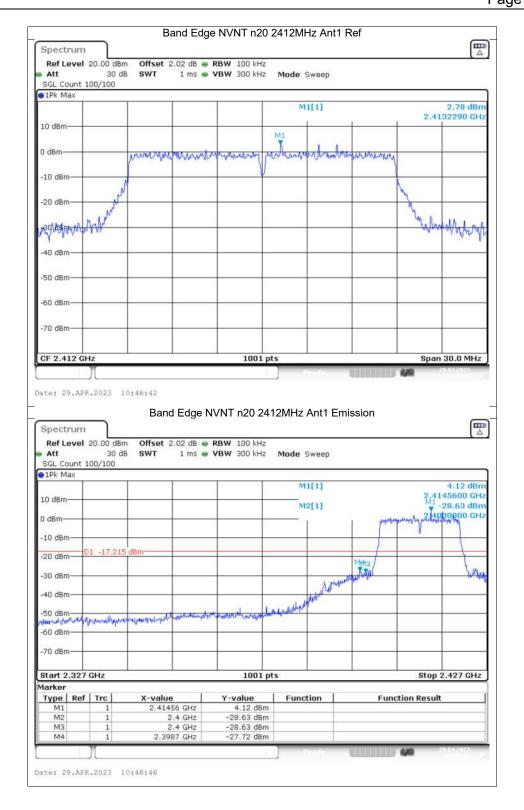

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	Ant1	4.39	0	4.39	8	Pass
NVNT	b	2437	Ant1	4.48	0	4.48	8	Pass
NVNT	b	2462	Ant1	4.33	0	4.33	8	Pass
NVNT	g	2412	Ant1	3.14	0	3.14	8	Pass
NVNT	g	2437	Ant1	4.22	0	4.22	8	Pass
NVNT	g	2462	Ant1	3.85	0	3.85	8	Pass
NVNT	n20	2412	Ant1	3.91	0	3.91	8	Pass
NVNT	n20	2437	Ant1	3.7	0	3.7	8	Pass
NVNT	n20	2462	Ant1	3.75	0	3.75	8	Pass
NVNT	n40	2422	Ant1	1.15	0	1.15	8	Pass
NVNT	n40	2437	Ant1	0.4	0	0.4	8	Pass
NVNT	n40	2452	Ant1	0.89	0	0.89	8	Pass

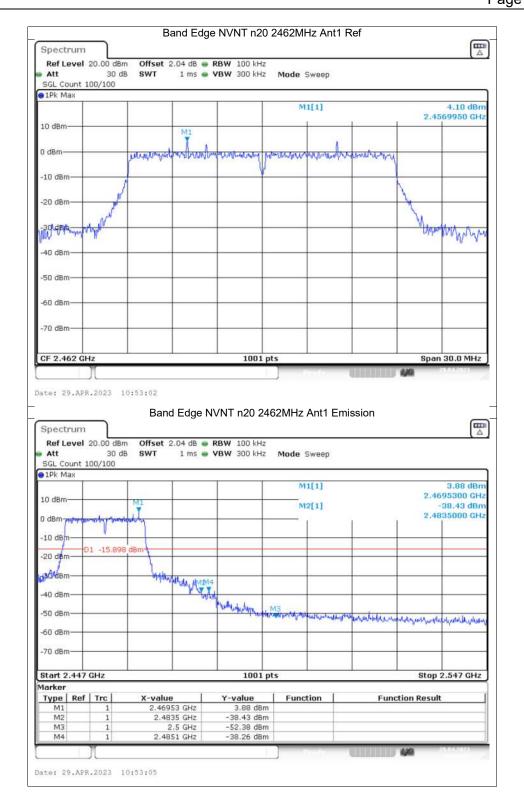


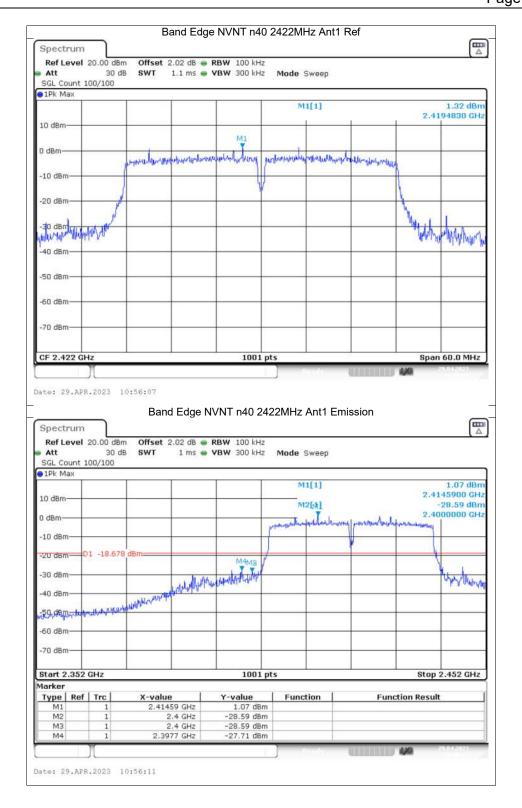

REPORT NO.: E01A23040432F00102 Page 46 of 86

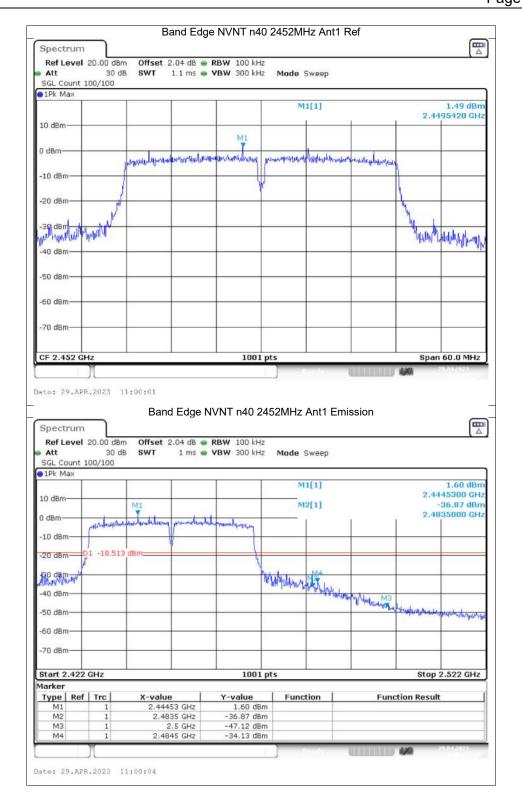

Band Edge

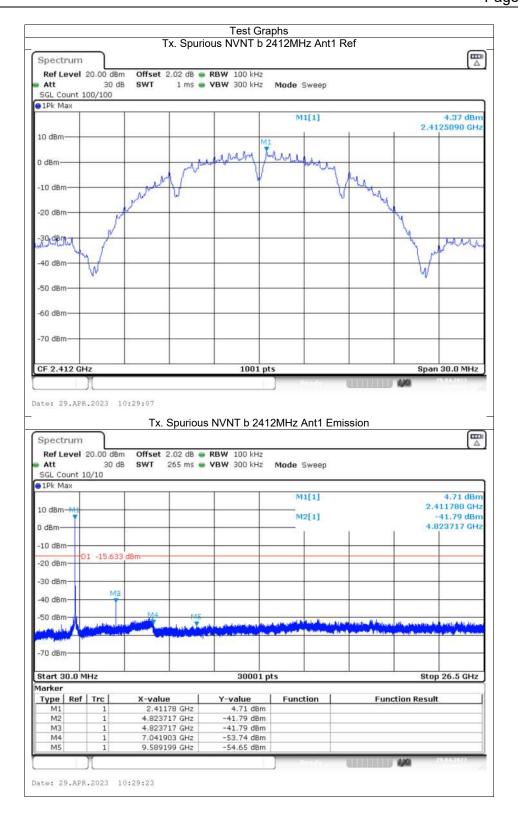
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-34.54	-20	Pass
NVNT	b	2462	Ant1	-51.89	-20	Pass
NVNT	g	2412	Ant1	-25.73	-20	Pass
NVNT	g	2462	Ant1	-32.63	-20	Pass
NVNT	n20	2412	Ant1	-30.5	-20	Pass
NVNT	n20	2462	Ant1	-42.35	-20	Pass
NVNT	n40	2422	Ant1	-29.02	-20	Pass
NVNT	n40	2452	Ant1	-35 61	-20	Pass

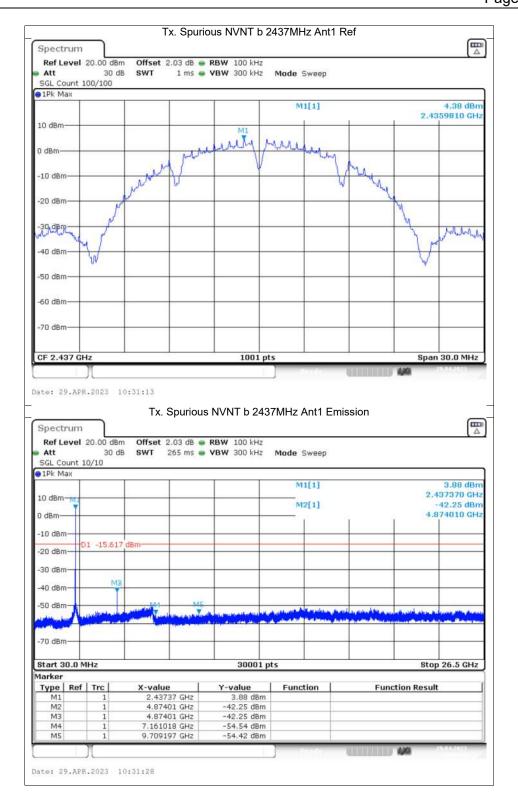

TRF No.: 01-R005-3A

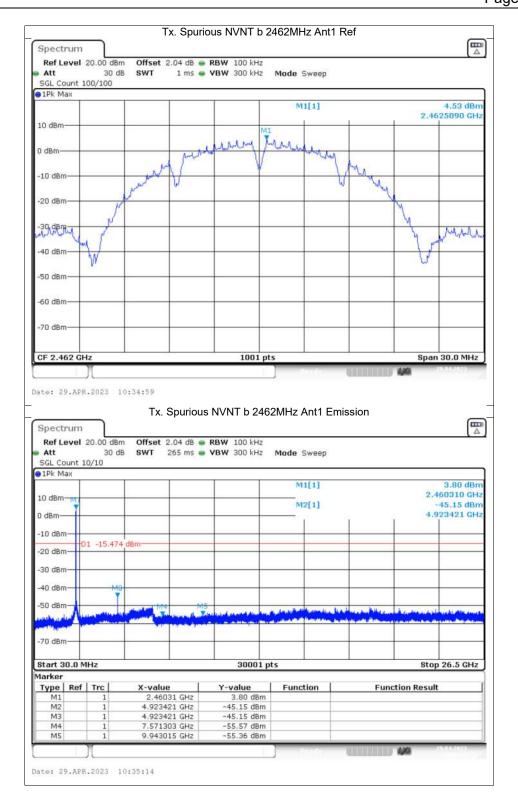


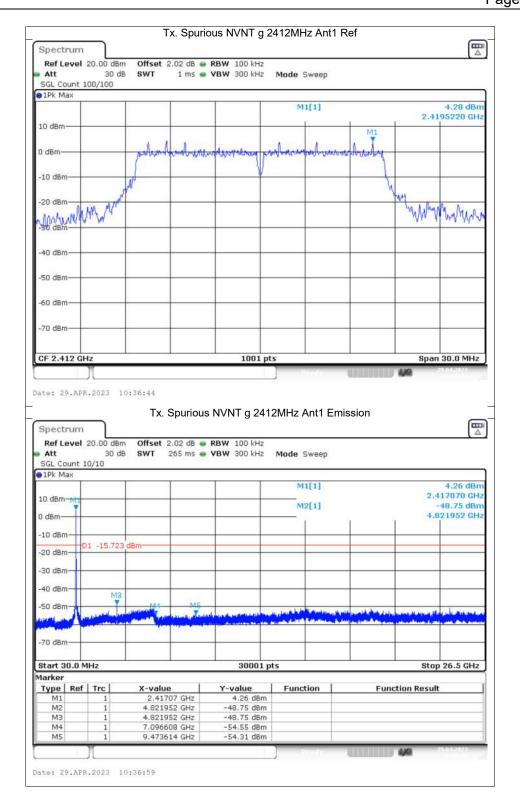


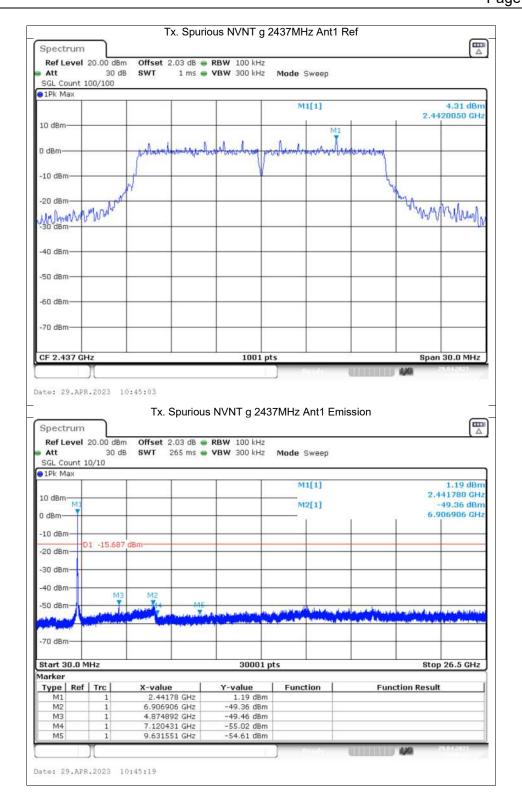


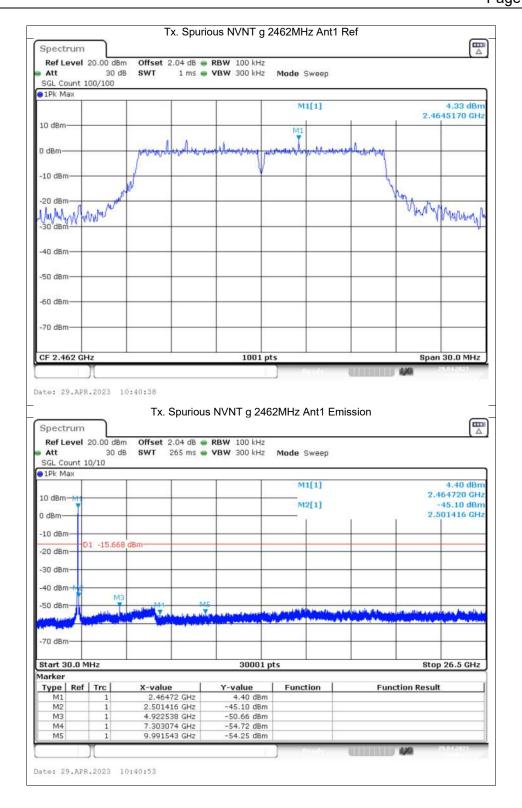


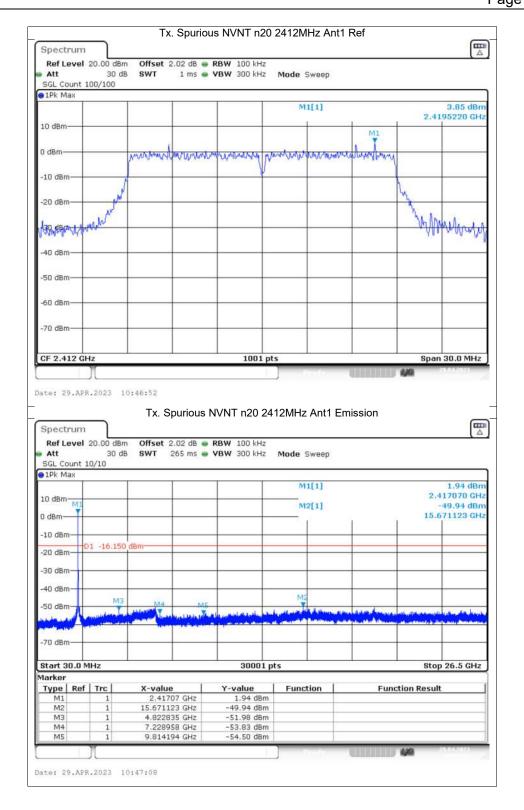

REPORT NO.: E01A23040432F00102 Page 55 of 86

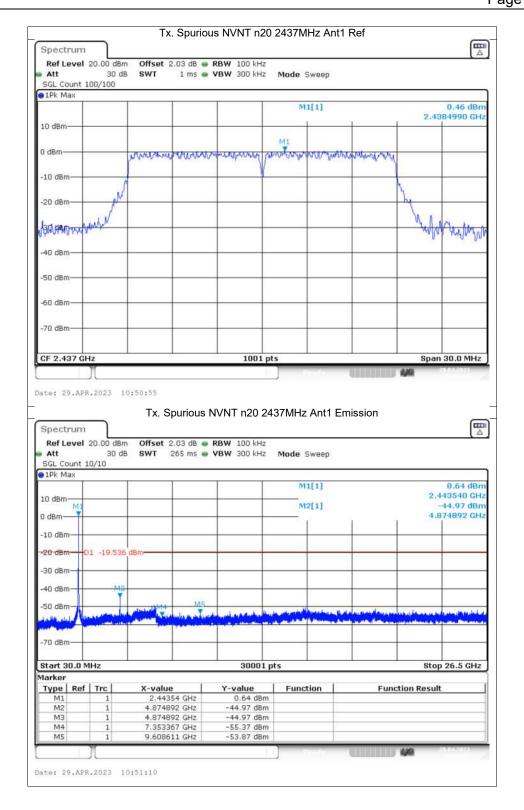

Conducted RF Spurious Emission

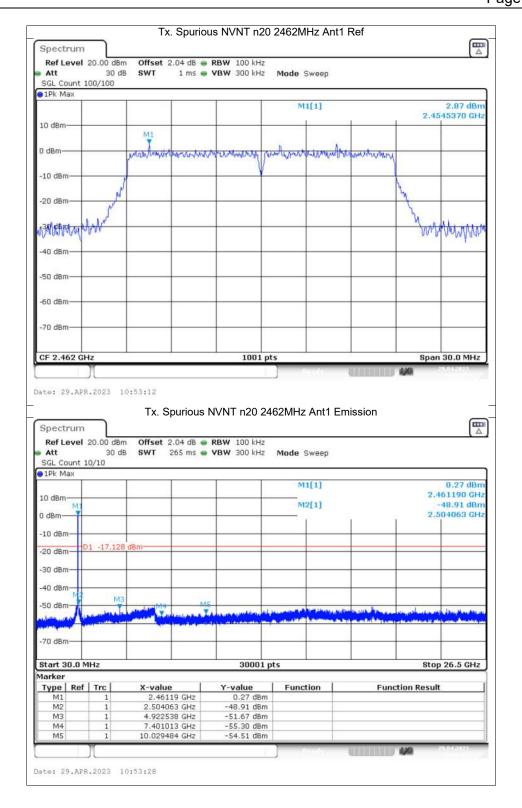

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-46.15	-20	Pass
NVNT	b	2437	Ant1	-46.62	-20	Pass
NVNT	b	2462	Ant1	-49.67	-20	Pass
NVNT	g	2412	Ant1	-53.03	-20	Pass
NVNT	g	2437	Ant1	-53.67	-20	Pass
NVNT	g	2462	Ant1	-49.43	-20	Pass
NVNT	n20	2412	Ant1	-53.78	-20	Pass
NVNT	n20	2437	Ant1	-45.42	-20	Pass
NVNT	n20	2462	Ant1	-51.77	-20	Pass
NVNT	n40	2422	Ant1	-50.21	-20	Pass
NVNT	n40	2437	Ant1	-51.09	-20	Pass
NVNT	n40	2452	Ant1	-47.9	-20	Pass

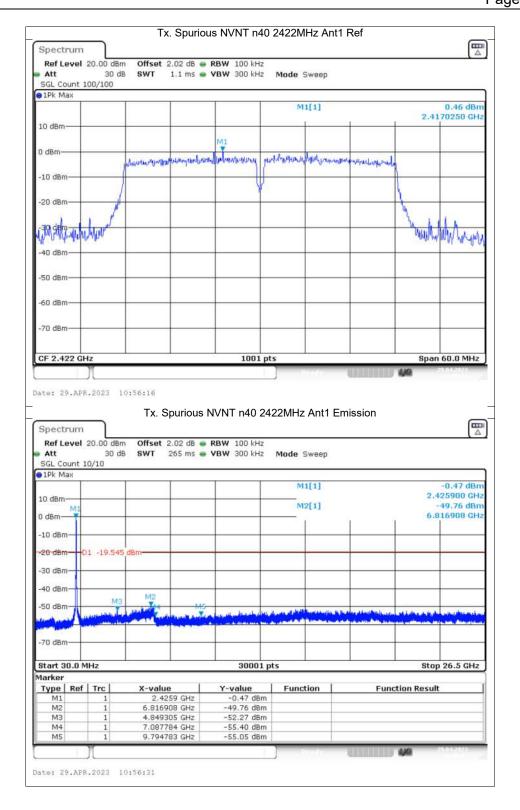

TRF No.: 01-R005-3A

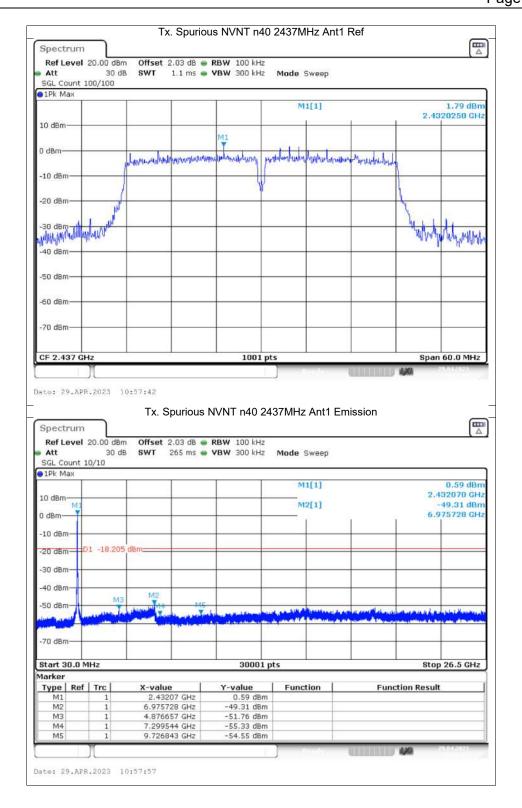


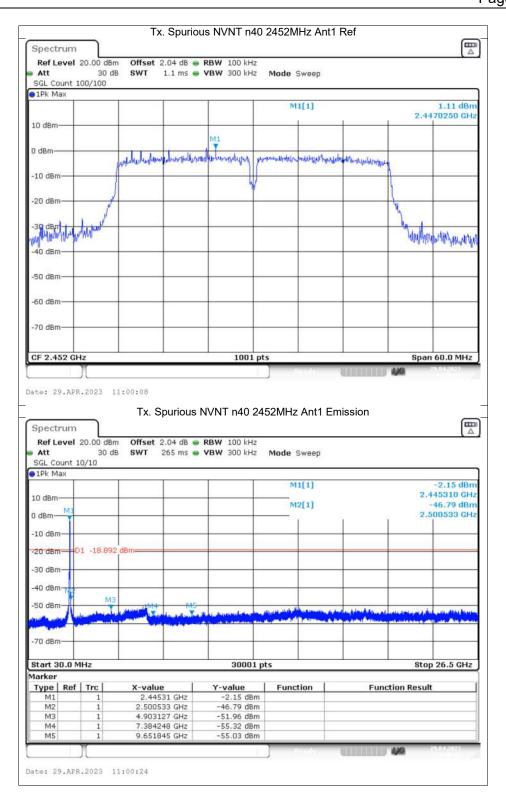




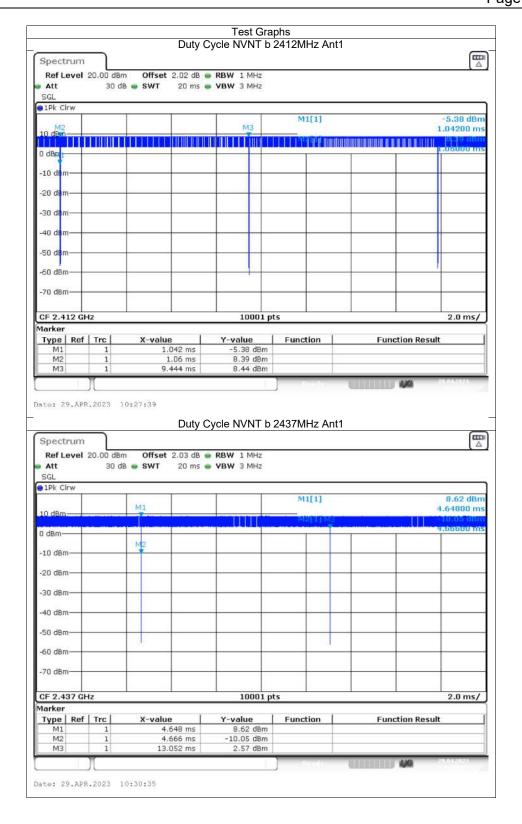


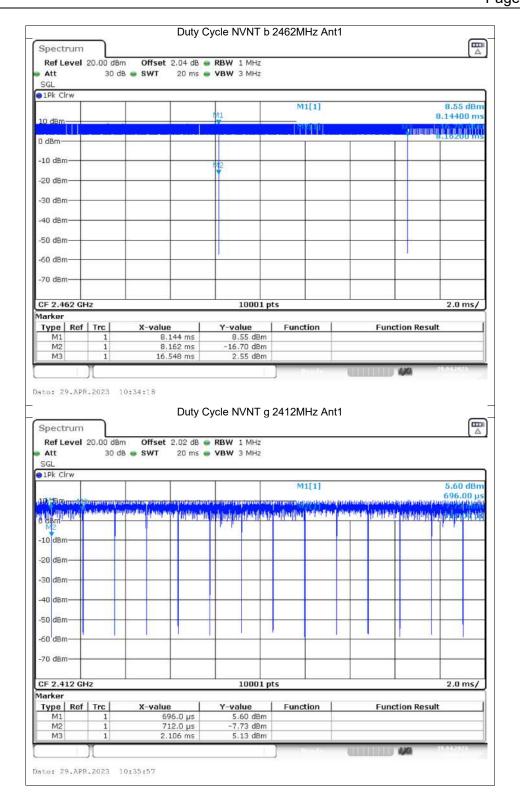


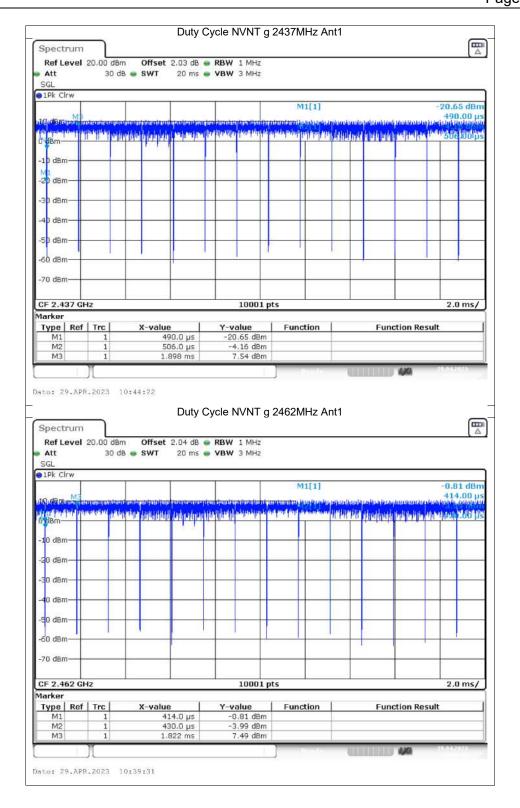


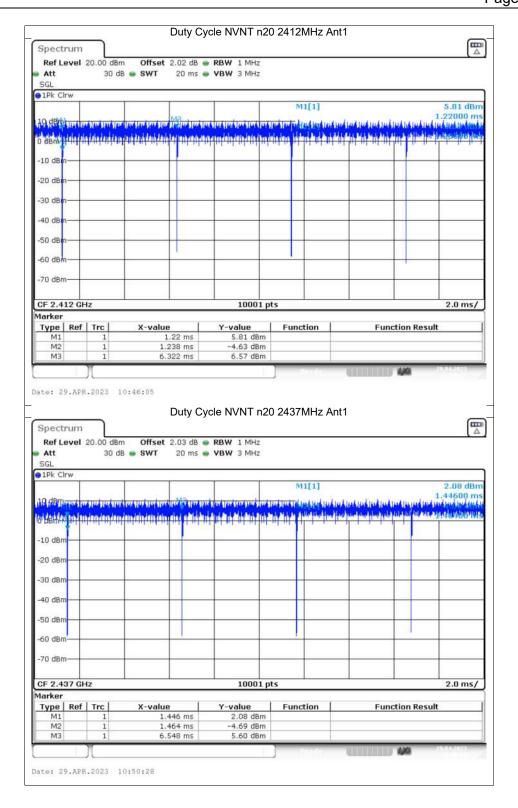


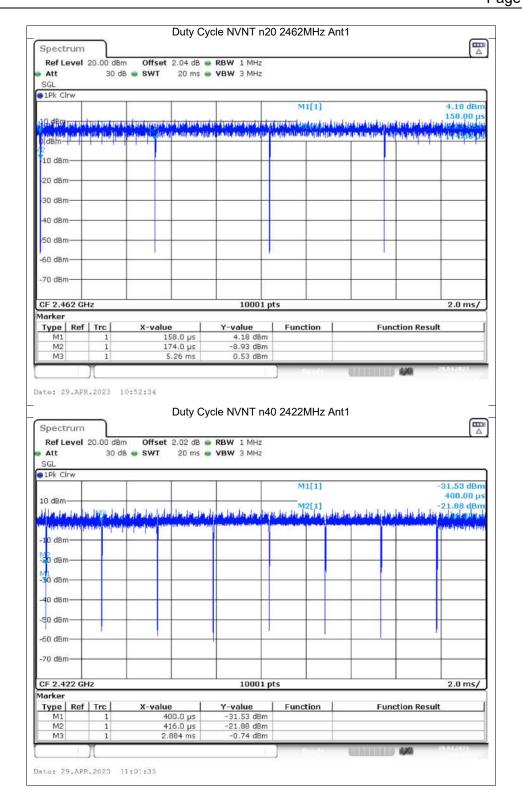
REPORT NO.: E01A23040432F00102 Page 67 of 86


Duty Cycle


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	Ant1	99.79	0	0.12
NVNT	b	2437	Ant1	99.79	0	0.12
NVNT	b	2462	Ant1	99.79	0	0.12
NVNT	g	2412	Ant1	98.87	0	0.72

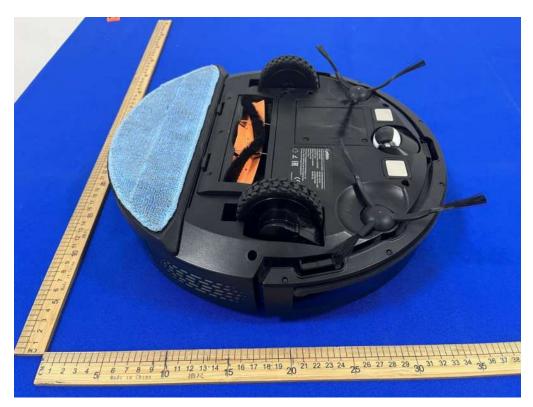

REPORT NO.: E01A23040432F00102 Page 68 of 86

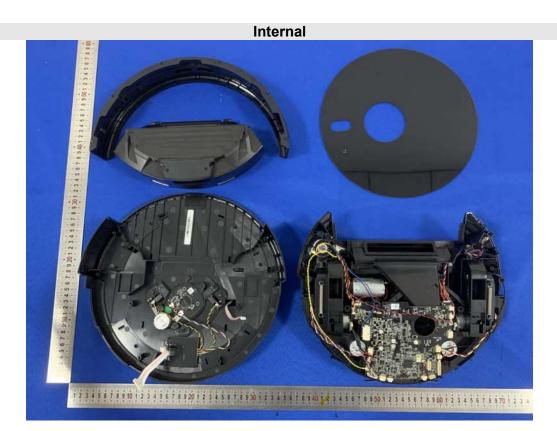

NVNT	g	2437	Ant1	98.86	0	0.72
NVNT	g	2462	Ant1	98.86	0	0.72
NVNT	n20	2412	Ant1	99.65	0	0.2
NVNT	n20	2437	Ant1	99.65	0	0.2
NVNT	n20	2462	Ant1	99.69	0	0.2
NVNT	n40	2422	Ant1	99.36	0	0.41
NVNT	n40	2437	Ant1	99.28	0	0.41
NVNT	n40	2452	Ant1	99.36	0	0.4

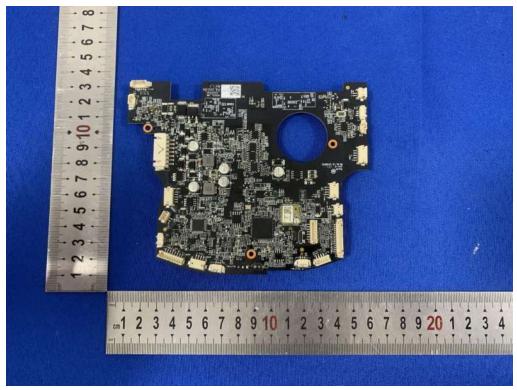

TRF No.: 01-R005-3A

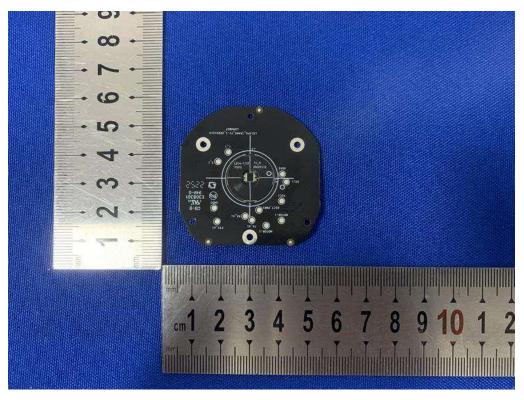


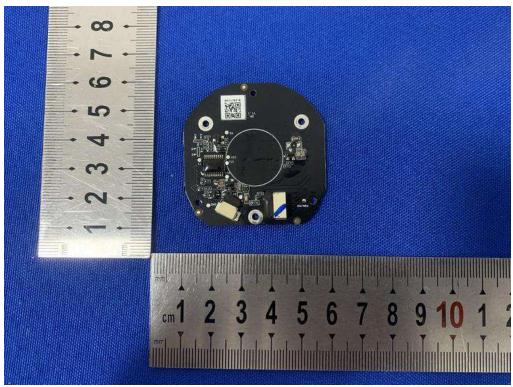
REPORT NO.: E01A23040432F00102 Page 75 of 86

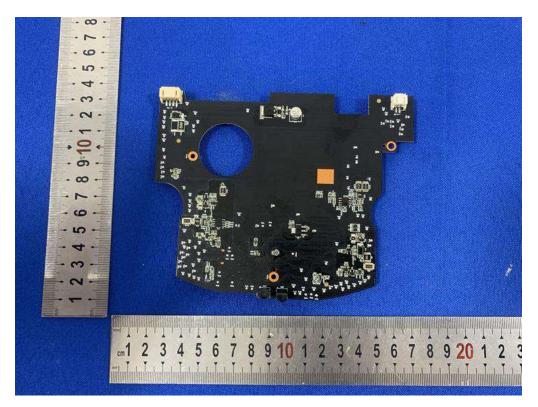

APPENDIX: PHOTOGRAPHS OF THE EUT



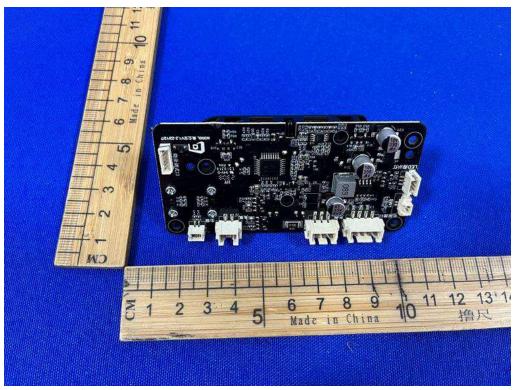


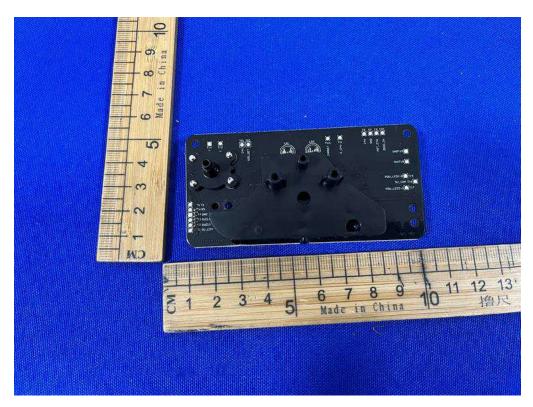


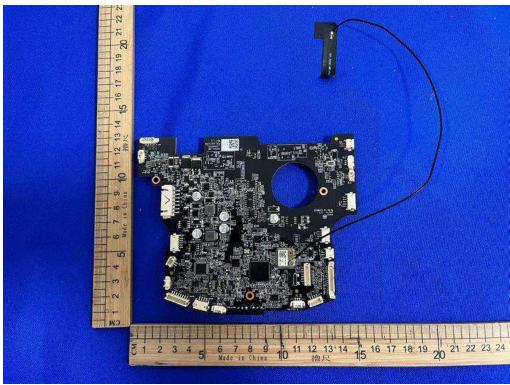


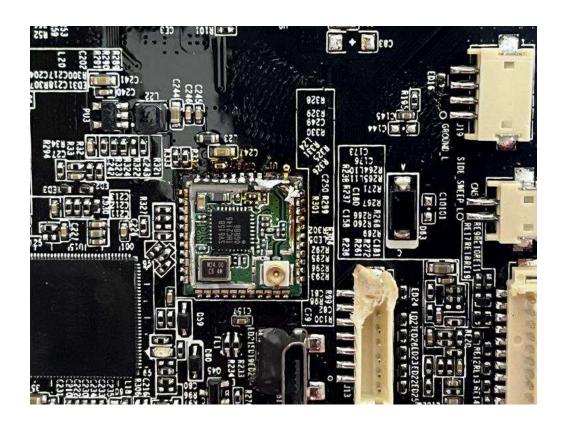












END OF REPORT