

RADIO TEST REPORT FCC ID:2AX5VSOCKET-NA

Product:	Power relay
Trade Mark:	VIVX
Model No.:	Ajax Socket (9NA)
Family Model:	N/A
Report No.:	S21100400201001
Issue Date:	15 Nov. 2021

Prepared for

AJAX SYSTEMS CYPRUS HOLDINGS LTD Ifigeneias, 17, Strovolos, 2007, Nicosia, Cyprus

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

TES	T RESULT CERTIFICATION	3
SUN	IMARY OF TEST RESULTS	4
FAC	CILITIES AND ACCREDITATIONS	5
3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5
GEN	NERAL DESCRIPTION OF EUT	6
DES	SCRIPTION OF TEST MODES	8
SET	UP OF EQUIPMENT UNDER TEST	10
5.2	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	11
TES	T REQUIREMENTS	14
7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST. PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION	17 26 28 31 34 37 40 42
	SUN FAC 3.1 3.2 3.3 GEN DES SET 6.1 6.2 6.3	 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 3.3 MEASUREMENT UNCERTAINTY GENERAL DESCRIPTION OF EUT DESCRIPTION OF TEST MODES SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 6.2 SUPPORT EQUIPMENT 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS TEST REQUIREMENTS 7.1 CONDUCTED EMISSIONS TEST 7.2 RADIATED SPURIOUS EMISSION 7.3 NUMBER OF HOPPING CHANNEL 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME) 7.6 20DB BANDWIDTH TEST 7.7 PEAK OUTPUT POWER 7.8 CONDUCTED EMISSION

NTEK 北测[®]

4

Applicant's name	AJAX SYSTEMS CYPRUS HOLDINGS LTD			
Address	: Ifigeneias, 17, Strov	Ifigeneias, 17, Strovolos, 2007, Nicosia, Cyprus		
Manufacturer's Name	: "AJAX SYSTEMS N	ANUFACTURING" LIMITED LIABILITY COMPANY		
Address	: Sklyarenka, 5, Kyiv	, 04073, Ukraine		
Product description				
Product name	: Power relay			
Model and/or type reference	: Ajax Socket (9NA)			
Family Model	.: N/A			
Measurement Procedure Used:	APPLICABLE			
STANDARD/ TEST P	ROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013		Complied		
results show that the equipment applicable only to the tested sam This report shall not be reproduc	t under test (EUT) is ple identified in the re ced except in full, with ent may be altered or noted in the revision	nout the written approval of Shenzhen NTEK Testin revised by Shenzhen NTEK Testing Technology Co of the document.		
Date of Test : 08 Oct. 2021 ~ 12 Nov. 2021				
Testing Engineer	1) 11 an Init			
		Alex		

Authorized Signatory

:

(Alex Li)

NTEK 北测®

Report No.: S21100400201001

SUMMARY OF TEST RESULTS 2

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(2)	Peak Output Power	PASS		
15.247(a)(i)	Number of Hopping Frequency	PASS		
15.247(a)(i)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

Certificate #4298.01

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK 北测[®]

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Power relay	
Trade Mark	ХЛГУ	
FCC ID	2AX5VSOCKET-NA	
Model No.	Ajax Socket (9NA)	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	905 MHz~926.5MHz	
Modulation	GFSK	
Number of Channels	103 Channels	
Antenna Type	Planar monopole antenna	
Antenna Gain	-10 dBi	
Power supply	⊠AC supply: Input: 110-230 VAC, 50/60 Hz, 11A	
	Adapter supply:	
HW Version	SOC.001.MBR.000v9[9XX]; SOC.001.REL.000v9; SOC.001.PLG.000v9a; SOC.001.SOC.000v9a; SOC.001.AN9.000v0	
SW Version	5.57.0.X	
FW Version	NA	

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date	
S21100400201001	Rev.01	Initial issue of report	15 Nov. 2021	

NTEK 北测

5 DESCRIPTION OF TEST MODES

R

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report. Carrier Frequency and Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	905	36	912.65	71	919.65
2	905.85	37	912.85	72	919.85
3	906.05	38	913.05	73	920.05
4	906.25	39	913.25	74	920.25
5	906.45	40	913.45	75	920.45
6	906.65	41	913.65	76	920.65
7	906.85	42	913.85	77	920.85
8	907.05	43	914.05	78	921.05
9	907.25	44	914.25	79	921.25
10	907.45	45	914.45	80	921.45
11	907.65	46	914.65	81	921.65
12	907.85	47	914.85	82	921.85
13	908.05	48	915.05	83	922.05
14	908.25	49	915.25	84	922.25
15	908.45	50	915.45	85	922.45
16	908.65	51	915.65	86	922.65
17	908.85	52	915.85	87	922.85
18	909.05	53	916.05	88	923.05
19	909.25	54	916.25	89	923.25
20	909.45	55	916.45	90	923.45
21	909.65	56	916.65	91	923.65
22	909.85	57	916.85	92	923.85
23	910.05	58	917.05	93	924.05
24	910.25	59	917.25	94	924.25
25	910.45	60	917.45	95	924.45
26	910.65	61	917.65	96	924.65
27	910.85	62	917.85	97	924.85
28	911.05	63	918.05	98	925.05
29	911.25	64	918.25	99	925.25
30	911.45	65	918.45	100	925.45
31	911.65	66	918.65	101	925.65
32	911.85	67	918.85	102	925.85
33	912.05	68	919.05	103	926.50
34	912.25	69	919.25		
35	912.45	70	919.45		

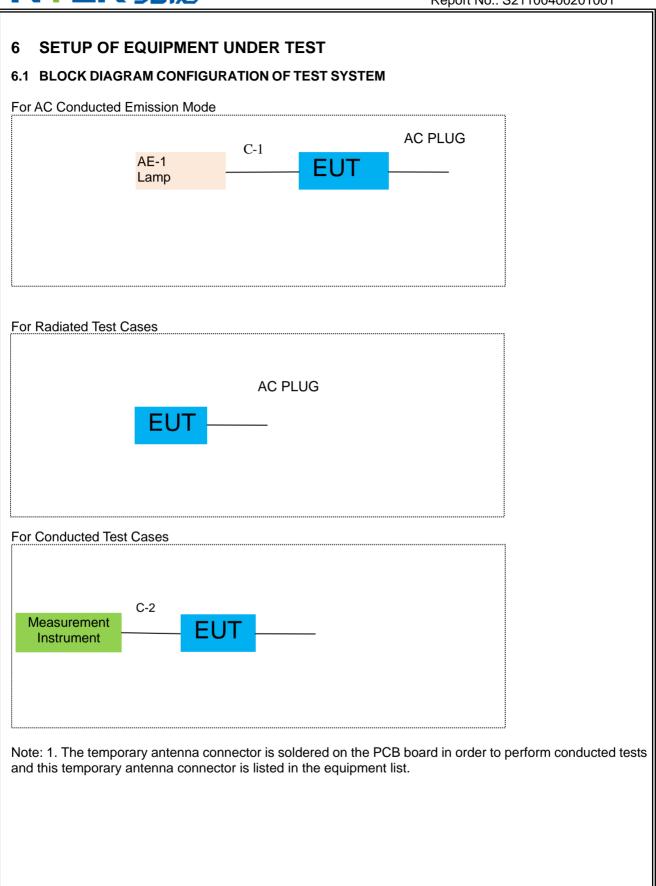
The following summary table is showing all test modes to demonstrate in compliance with the standard.

Certificate #4298.01

For AC Conducted Emission

Final Test Mode	Description
Mode 1	normal link mode

Note: AC power line Conducted Emission was tested under maximum output power.


For Radiated Test Cases	
Final Test Mode	Description
Mode 1	normal link mode
Mode 2	CH01(905MHz)
Mode 3	CH52(915.85MHz)
Mode 4	CH103(926.50MHz)

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH01(905MHz)	
Mode 3	CH52(915.85MHz)	
Mode 4	CH103(926.50MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01

NTEK 北测[®]

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Lamp	N/A	N/A	

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1m
C-2	RF Cable	NO	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

Report No.: S21100400201001

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		cot equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.04.27	2022.04.26	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.04.27	2022.04.26	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.07.13	2023.07.12	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2021.07.01	2022.06.30	1 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2021.03.29	2022.03.28	1 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

duction Test equipment

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

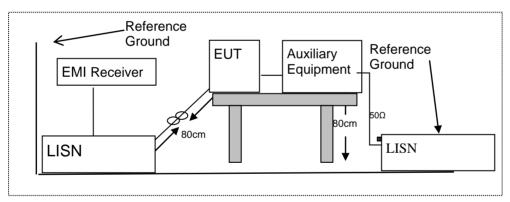
According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Certificate #4298.01

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

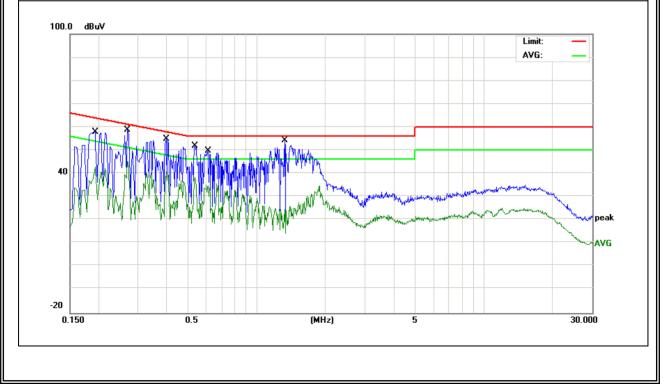
7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

NTEK 北测[®]

ilac


7.1.6 Test Results

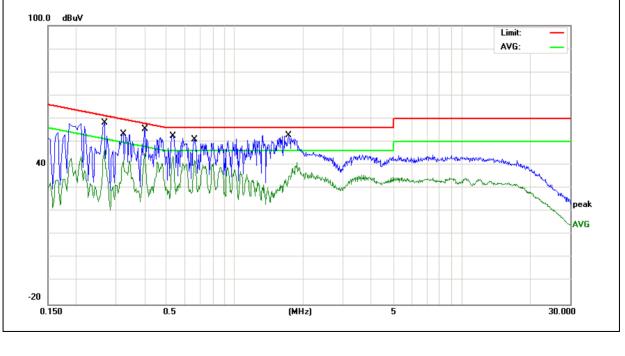
EUT:	Power relay		Mod	Model Name :		Ajax Socket (9NA)		
Temperature:	26 ℃		Relative Humidity:		54%	54%		
Pressure:	1010hPa		Pha	Phase : L		L		
Fest Voltage :	AC 120V/60H	Z	Test	Test Mode: Mode 1				
Frequency	Meter Reading	Facto	or	Emission Level	Limits	Margin	Domork	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark	
0.1940	48.18	9.64	4	57.82	63.86	-6.04	QP	
0.1940	33.13	9.64	4	42.77	53.86	-11.09	AVG	
0.2700	44.67	9.63	3	54.30	61.12	-6.82	QP	
0.2700	35.55	9.63	3	45.18	51.12	-5.94	AVG	
0.3980	45.09	9.64	4	54.73	57.89	-3.16	QP	
0.3980	31.14	9.64	4	40.78	47.89	-7.11	AVG	
0.5340	42.05	9.66	6	51.71	56.00	-4.29	QP	
0.5340	28.72	9.66	6	38.38	46.00	-7.62	AVG	
0.6099	40.04	9.69	9	49.73	56.00	-6.27	QP	
0.6099	25.35	9.69	9	35.04	46.00	-10.96	AVG	
1.3300	32.55	9.75	5	42.30	56.00	-13.70	QP	
1.3300	15.95	9.75	5	25.70	46.00	-20.30	AVG	

ACCREDITED Certificate #4298.01

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

NTEK 北测[®]



EUT:	Power relay	Model Name. :	Ajax Socket (9NA)
Temperature:	25 ℃	Relative Humidity:	51%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2660	48.57	9.65	58.22	61.24	-3.02	QP
0.2660	37.28	9.65	46.93	51.24	-4.31	AVG
0.3220	43.73	9.67	53.40	59.65	-6.25	QP
0.3220	32.12	9.67	41.79	49.65	-7.86	AVG
0.4020	45.09	9.71	54.80	57.81	-3.01	QP
0.4020	34.99	9.71	44.70	47.81	-3.11	AVG
0.5340	42.73	9.72	52.45	56.00	-3.55	QP
0.5340	33.23	9.72	42.95	46.00	-3.05	AVG
0.6660	41.41	9.66	51.07	56.00	-4.93	QP
0.6660	32.33	9.66	41.99	46.00	-4.01	AVG
1.7177	42.99	9.69	52.68	56.00	-3.32	QP
1.7177	31.31	9.69	41.00	46.00	-5.00	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

NTEK 北测

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHZ)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

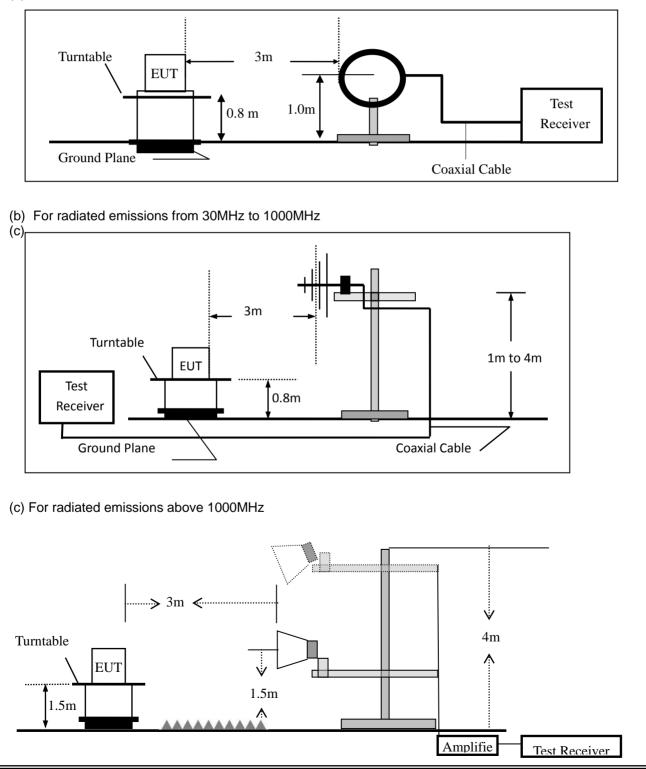
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.


7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

Version.1.2

NTEK 北测[®]

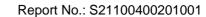
7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

ertificate #4298 01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	uring the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Above 1000	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	10 Hz						

Certificate #4298.01

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Power relay	Model No.:	Ajax Socket (9NA)
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Certificate #4298.01

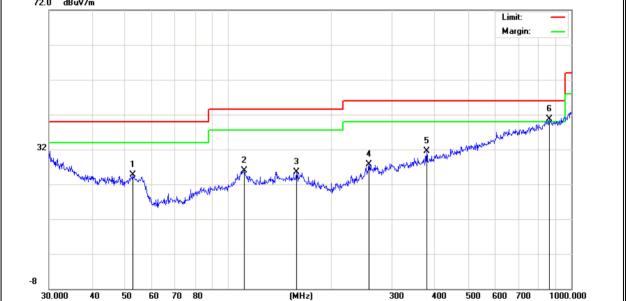
Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

All the modulation modes have been tested, and the worst result was report as below:

ACC

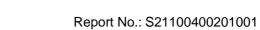
EUT:	Power relay	Model Name :	Ajax Socket (9NA)
Temperature:	23 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	AC 120V/60Hz		


REDITED Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	52.7600	10.92	13.69	24.61	40.00	-15.39	QP
V	111.3468	8.38	17.57	25.95	43.50	-17.55	QP
V	158.1123	6.94	18.56	25.50	43.50	-18.00	QP
V	256.5211	6.28	21.44	27.72	46.00	-18.28	QP
V	378.5843	7.32	24.20	31.52	46.00	-14.48	QP
V	863.0561	7.11	33.61	40.72	46.00	-5.28	QP

Remark:

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit



Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman	
Н	66.2660	7.88	12.25	20.13	40.00	-19.87	QP	
Н	140.8351	6.33	19.35	25.68	43.50	-17.82	QP	
Н	260.1444	6.64	21.72	28.36	46.00	-17.64	QP	
Н	446.4141	6.76	25.98	32.74	46.00	-13.26	QP	
Н	682.3483	7.89	30.84	38.73	46.00	-7.27	QP	
Н	903.3093	7.38	33.82	41.20	46.00	-4.80	QP	
32	What was a free of the state of	1 Xeed and March and a	2 	Sulley during the second secon	A A A A A A A A A A A A A A A A A A A	5 Martin Martin	6	
-8 30.0			(MI		300 400 500		1000.000	

ila

ACCREDITED Certificate #4298.01

EUT:		sion Above Power rela				nz) el No.:		Aiay	Socket (9			
-			<u>y</u>				4	-	,	nna)		
Temperature	-	20 ℃							48%			
Test Mode:		Mode2/Mo			Test	,	•	Aller				
All the modu	All the modulation modes have been tested, and the worst result was report as below:											
Frequency	Read Level	l loss	Antenna Factor	Prea Fact		Emission Level	Lim		Margin	Remark	Comment	
(MHz)	(dBµV	/) (dB)	dB/m	(dB	/	(dBµV/m)	(dBµ∖	,	(dB)			
Low Channel (905 MHz)(GFSK)Above 1G												
1810	85.94	4 5.21	26.5	55.3	35	62.30	74.	00	-11.70	Pk	Vertical	
1810	64.99	9 5.21	26.5	55.3	35	41.35	54.	00	-12.65	AV	Vertical	
2715	80.75	5 6.48	28.49	55.1	11	60.61	74.	00	-13.39	Pk	Vertical	
2715	68.40	6.48	28.49	55.1	11	48.26	54.	00	-5.74	AV	Vertical	
1810	84.97	7 5.21	26.5	55.3	35	61.33	74.	00	-12.67	Pk	Horizontal	
1810	65.97	7 5.21	26.5	55.3	35	42.33	54.	00	-11.67	AV	Horizontal	
2715	82.92	6.48	28.49	55.1	11	62.78	74.	00	-11.22	Pk	Horizontal	
2715	64.10	6.48	28.49	55.1	11	43.96	54.	00	-10.04	AV	Horizontal	
			Mid Char	nnel (9	15.85	5 MHz)(GFSł	<)Abo	ove 10	3			
1831.7	85.58	3 5.21	26.5	55.3	35	61.94	74.	00	-12.06	Pk	Vertical	
1831.7	68.05	5 5.21	26.5	55.3	35	44.41	54.	00	-9.59	AV	Vertical	
2747.55	85.95	5 7.10	28.49	55.1	11	66.43	74.	00	-7.57	Pk	Vertical	
2747.55	68.30	7.10	28.49	55.1	11	48.78	54.	00	-5.22	AV	Vertical	
1829.5	86.78	3 5.21	26.5	55.3	35	63.14	74.	00	-10.86	Pk	Horizontal	
1829.5	67.43	3 5.21	26.5	55.3	35	43.79	54.	00	-10.21	AV	Horizontal	
2744.25	82.38	3 7.10	28.49	55.1	11	62.86	74.	00	-11.14	Pk	Horizontal	
2744.25	68.89	7.10	28.49	55.1	11	49.37	54.	00	-4.63	AV	Horizontal	
	<u> </u>		High Cha	innel (S	926.5	5 MHz)(GFSk	K) Abo	ove 10	3		<u> </u>	
1855.5	80.76	5.21	26.5	55.3	35	57.12	74.	00	-16.88	Pk	Vertical	
1855.5	61.28	3 5.21	26.5	55.3	35	37.64	54.	00	-16.36	AV	Vertical	
2783.25	80.00	7.10	28.49	55.1	11	60.48	74.	00	-13.52	Pk	Vertical	
2783.25	61.96	5 7.10	28.49	55.1	11	42.44	54.	00	-11.56	AV	Vertical	
1855.5	84.60	5.21	35.52	55.3	35	69.98	74.	00	-4.02	Pk	Horizontal	
1855.5	61.23	3 5.21	35.52	55.3	35	46.61	54.	00	-7.39	AV	Horizontal	
2783.25	80.64	4 7.10	36.53	55.1	11	69.16	74.	00	-4.84	Pk	Horizontal	
2783.25	61.74	7.10	36.53	55.1	11	50.26	54.	00	-3.74	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious E	mission	in Restric	cted Band							
Εl	JT:	I	Power rela	ау		Model No.	Model No.: Aja:		ax Socket (9NA)		
Τe	emperature:	. 20 (Relative Humidity:		48%				
Τe	est Mode: Mode2/ Mode4				Test By:		Allen	Liu			
Α	II the modula	ation mo	des have	been teste	ed, and th	e worst res	ult was	s repo	ort as be	ow:	
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ\	V/m)	(dB)	Туре	
	1240	63.38	4.04	29.57	44.70	52.29	74	4	-21.71	Pk	Vertical
	1240	60.03	4.04	29.57	44.70	48.94	54	4	-5.06	AV	Vertical
	1240	65.06	4.04	29.57	44.70	53.97	74	4	-20.03	Pk	Horizontal
	1240	60.88	4.04	29.57	44.70	49.79	54	4	-4.21	AV	Horizontal
	1804.6	67.23	4.26	29.87	44.40	56.96	74	4	-17.04	Pk	Vertical
	1804.6	57.10	4.26	29.87	44.40	46.83	54	4	-7.17	AV	Vertical
	1804.6	65.72	4.26	29.87	44.40	55.45	74	4	-18.55	Pk	Horizontal
	1804.6	55.14	4.26	29.87	44.40	44.87	54	4	-9.13	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (i)and ANSI C63.10-2013

7.3.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Power relay	Model No.:	Ajax Socket (9	NA)
emperature:	20 ℃	Relative Humidity:	48%	
est Mode:	Mode 5(1Mbps)	Test By:	Allen Liu	
Numb	er of Hopping (Channel):		103	
Number of Ho	opping Channel Plot			
	rum Analyzer - Swept SA			
	RF 50 Ω AC SENS 926.544000000 MHz PN0: Fast ⊂ Trig: Free	E:INT ALIGN AUTO Avg Type: Log-Pwr Run Avg Hold:>100/100	01:33:04 PMNov 12, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWW	Peak Search
	IFGain:Low Atten: 40 c	IB	DET P NNNNN 2 926.544 MHz	Next Peak
10 dB/div	Ref 30.00 dBm	IVINI	14.727 dBm	
20.0	1		2	Next Pk Right
10.0				noxer k kight
-10.0				
-20.0				Next Pk Left
-40.0			· \	
-50.0 -50.0				Marker Delta
Start 902			Stop 028 00 MHz	
#Res BW		Sweep 8	Stop 928.00 MHz 3.167 ms (501 pts)	Mkr→CF
MKR MODE TH	RC SCL X Y f 905.016 MHz 15.271 dBi	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1	I f 926.544 MHz 14.727 dBi	m		Mkr→RefLvl
4 5 6				
7 8				More
9 10 11				1 of 2
<				
MSG		STATUS		

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a) (1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Certificate #4298.01

7.4.3 Measuring Instruments

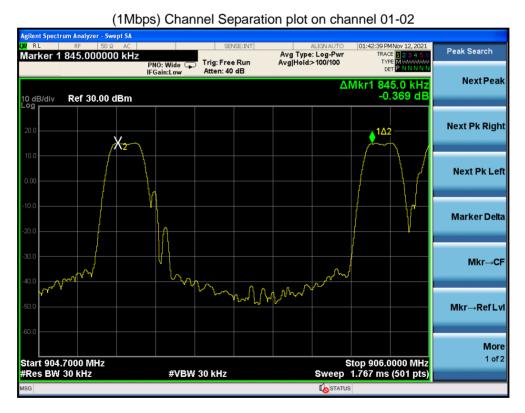
The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold



7.4.6 Test Results

EUT:	Power re	lay		Model No.: Ajax S			ocket (9NA)		
Temperature:	20 ℃	20 ℃		Relative Humidity: 489		48%	48%		
Test Mode:	Mode2/M	ode3/Mode4	4 Test By:		Allen Liu				
							1		
Modulation Mode	Channel Number	Channel Frequency (MHz)	CI Set	Measured Channel Separation (kHz)		-	_imit kHz)	Verdict	
	01-02	902.50	8	345.0	>11	6.0	20dB BW	PASS	
GFSK	52-53	3 915.00		200.0	>95	.49	20dB BW	PASS	
	102-103 926.50 6		657.0	>93	.68	20dB BW	PASS		

Test Plot



(1Mbps) Channel Separation plot on channel 52-53

(1Mbps) Channel Separation plot on channel 102-103

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(i)) and ANSI C63.10-2013

7.5.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

7.5.3 Measuring Instruments

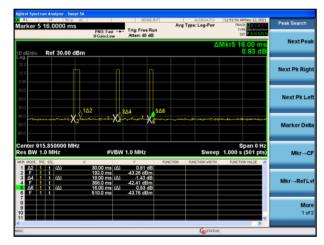
The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW< 200kHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT packet transmitting. Measure the maximum time duration of one single pulse.


7.5.6 Test Results

EUT:	Power relay	Model No.:	Ajax Socket (9NA)
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Center Frequency (MHz)	Transmit Time per Hop (ms)	The Number of Hop Within a limited time (N)	Dwell Time (s)	Limits (s)	Result
915.85	64	1	0.064	0.4	Pass

Note:

- 1. Ton=30ms+18ms+16ms=64ms
- 2. Sweep time=20s;
- 3. Dwell Time(s) = Transmit Timeper Hop× N.

Test Plot

7.5.7 Pseudorandom Frequency Hopping Sequence

Each frequency used equally on the average by each transmitter.

The channel order is determined by the Channel mapping Table, system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals

Certificate #4298.01

Pseudo-random sequence Table

Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
1	905	36	912.65	71	919.65
55	916.45	37	912.85	81	921.65
56	916.65	38	913.05	77	920.85
46	914.65	2	905.85	74	920.25
47	914.85	51	915.65	26	910.65
24	910.25	9	907.25	27	910.85
25	910.45	10	907.45	72	919.85
75	920.45	54	916.25	73	920.05
76	920.65	22	909.85	78	921.05
28	911.05	23	910.05	82	921.85
29	911.25	7	906.85	79	921.25
52	915.85	8	907.05	84	922.25
53	916.05	48	915.05	83	922.05
57	916.85	49	915.25	80	921.45
58	917.05	50	915.45	85	922.45
59	917.25	18	909.05	3	906.05
60	917.45	19	909.25	4	906.25
61	917.65	20	909.45	5	906.45
62	917.85	21	909.65	11	907.65
63	918.05	31	911.65	12	907.85
64	918.25	32	911.85	13	908.05
65	918.45	33	912.05	6	906.65
69	919.25	66	918.65	39	913.25
70	919.45	67	918.85	40	913.45
30	911.45	68	919.05	41	913.65
34	912.25	90	923.45	97	924.85
35	912.45	91	923.65	98	925.05
86	922.65	92	923.85	15	908.45
87	922.85	100	925.45	42	913.85
88	923.05	95	924.45	14	908.25
89	923.25	102	925.85	99	925.25
16	908.65	43	914.05	94	924.25
17	908.85	44	914.25	96	924.65
93	924.05	45	914.45		
101	925.65	103	926.5		

NTEK 北测

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Power relay	Model No.:	Ajax Socket (9NA)
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test Channel	Frequency	Measured Bandwidth (KHz)	Limit	Verdict				
	(MHz)		(kHz)					
	1Mbps							
1	905.00	116.0	250	PASS				
52	915.85	95.49	250	PASS				
103	926.50	93.68	250	PASS				

Test Plot

ACCREDITED Certificate #4298.01

20dB Bandwidth plot on channel 01 (1Mbps)

20dB Bandwidth plot on channel 52 (1Mbps)

20dB Bandwidth plot on channel 103 (1Mbps)

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Certificate #4298.01

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Power relay	Model No.:	Ajax Socket (9NA)
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test Channel	Frequency	Power Setting	Peak Output Power	LIMIT	Verdict			
	(MHz)		(dBm)	(dBm)				
	1Mbps							
1	905.00	Default	14.510	30	PASS			
52	915.85	Default	14.757	30	PASS			
103	926.50	Default	14.097	30	PASS			

Test Plot

Peak output Power plot on channel 01 (1Mbps)

Peak output Power plot on channel 52 (1Mbps)

Peak output Power plot on channel 103(1Mbps)

NTEK 北测[®]

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

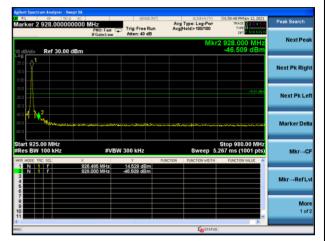
Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Power relay	Model No.:	Ajax Socket (9NA)
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu


Certificate #4298.01

Test Plot

GFSK: Band Edge-Low Channel

arker 2		DR AC DOOOOO MHz PNO: Fa IEGain:Lo	st 😱 Trig: Fre	e Run i	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	02:25:40 PMNov 12, 2021 TRACE 2 3 4 5 6 TYPE 0 N N N N N	Peak Search
10 dB/div	Ref 30.0		W BAAND	0.00	N	1kr2 902.0 MHz -47.247 dBm	NextPea
20.0							Next Pk Righ
20.0						<pre>> Control of the second s</pre>	Next Pk Let
40.0 50.0 60.0	ingh a shares the	Mar metalahan sebi kanan	an a		Norman Aslanda Aslanda Aslanda	an and a start and a start a st	Marker Delt
Start 810 #Res BW	100 kHz	#	VBW 300 KH	z	Sweep 9	Stop 910.00 MHz .600 ms (1001 pts)	Mkr→Ci
1 N 1	f	× 905.0 MH; 902.0 MH;		FUNCTIO	IN FUNCTION WIDTH	FUNCTION VALUE	
3 4 6 6	Ė						Mkr→RefLv
7 8 9							More 1 of 2
10							

GFSK: Band Edge-High Channel

GFSK: Band Edge-Low Channel (Hopping Mode)

GFSK: Band Edge-High Channel (Hopping Mode)

Marker 2	8F 50 902.00000	AC 10000 MHz PNO: Fast IFGain:Low	SENSE:INT Trig: Free Run Atten: 40 dB	AUGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:53:41 PMNov 12, 2021 TRACE 1 2 3 4 5 6 TYPE MUMMMMM DET P NNNNN	Peak Search
10 dB/div	Ref 30.00	dBm		N	1kr2 902.0 MHz -52.138 dBm	NextPea
20.0 10.0					↓	Next Pk Righ
10.0 20.0 30.0						Next Pk Le
40.0 50.0 60.0	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	the market warder warder	www.conmitted			Marker Del
Start 810 #Res BW	100 kHz	# V I	BW 300 kHz	Sweep	Stop 910.00 MHz 9.567 ms (501 pts)	Mkr→C
1 N 1 2 N 1 3 4 5	f	906.2 MHz 902.0 MHz	14,930 dBm -52,138 dBm			Mkr→RefL
6 7 8 9 10						Mor 1 of
					×	

ker 2 928.00000000	0 MHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:58:06 PMNov 12, 2021 TRACE 2 3 4 5 6	Peak Search
	PNO: Fast 🖵	Trig: Free Run Atten: 40 dB	Avg Hold>100/100	DET P NNNNN	
B/div Ref 30.00 dBm			Mk	2 928.000 MHz -45.564 dBm	NextPea
1					Next Pk Rig
				-5.40 dBn	
.2					Next Pk Le
Made and a second secon	e an	n tigde fallen og er til er border til	and a start of the		Marker Del
rt 925.00 MHz s BW 100 kHz	#VBW	300 kHz	Sweep 5	Stop 980.00 MHz .267 ms (1001 pts)	Mkr→C
NDDE TRC SCL >	925.055 MHz	14.523 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	
	928.000 MHz	-45.564 dBm			Mkr→RefL
					Мо
					10

NTEK 北测

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

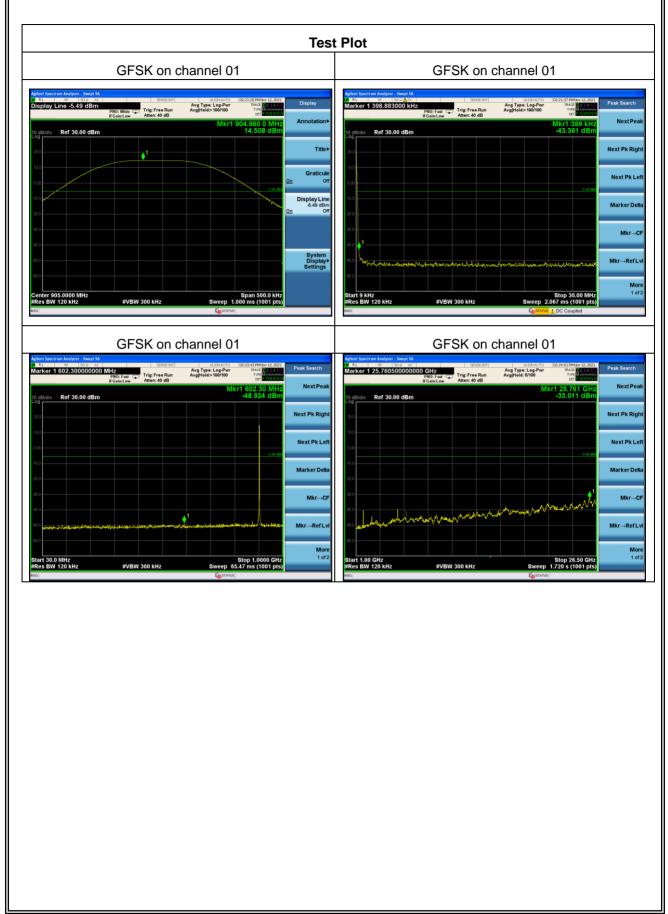
The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

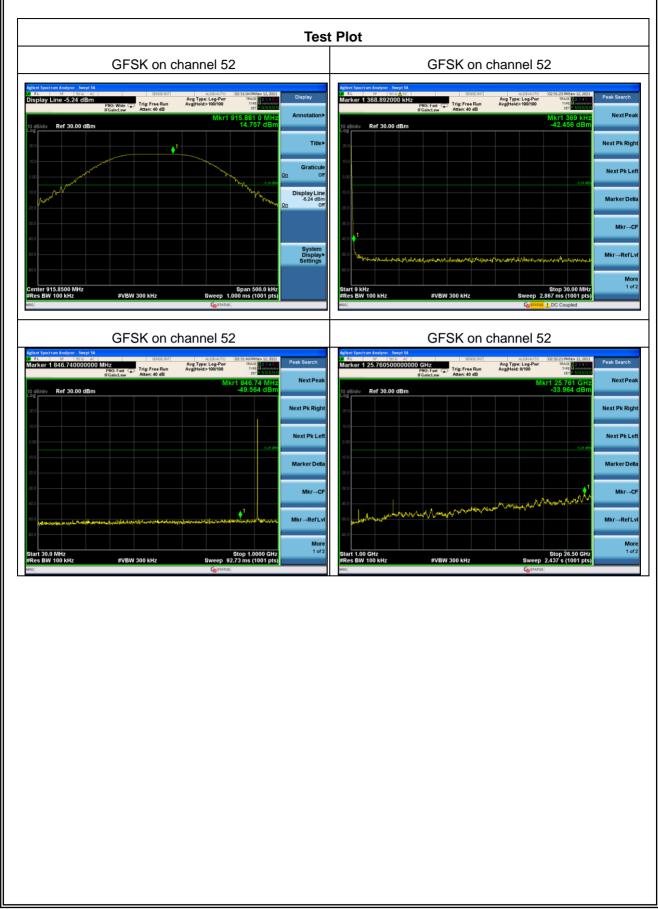
Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

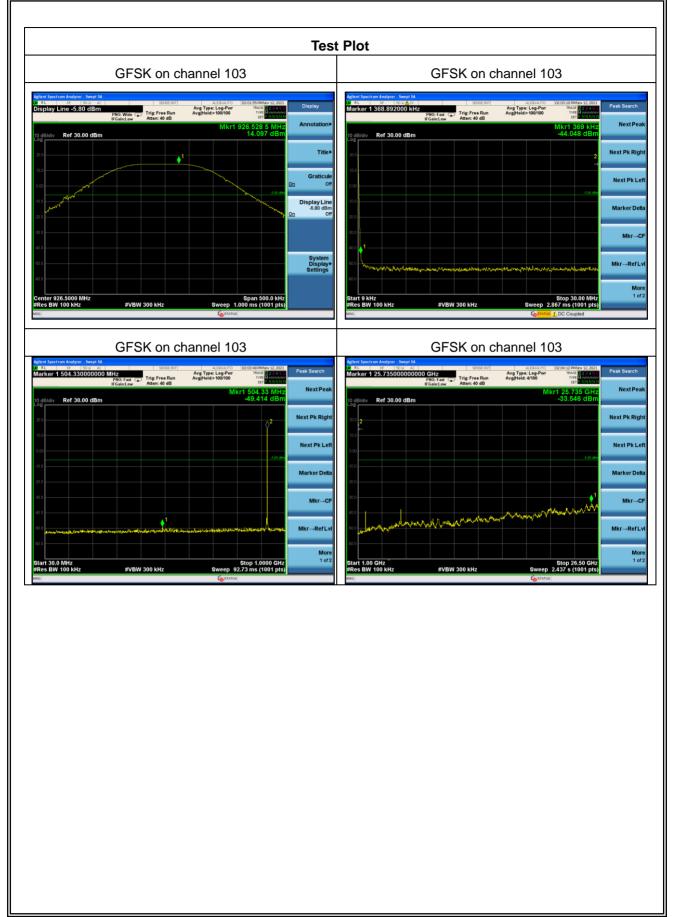
Establish an emission level by using the following procedure:


- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.


7.9.6 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.



7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.10.2 Result

The EUT has a unique antenna connector and use only the Planar monopole antenna (Gain:-10dBi). It comply with the standard of 15.203 requirement.

END OF REPORT