

Test report No.
Page
Issued date
FCC ID

: 1 of 37 : July 21, 2021 : 2AX5HNNH-102

: 13780180H-R3

RADIO TEST REPORT

Test Report No.: 13780180H-R3

Applicant : JRC Mobility Inc.

Type of EUT : RADAR SENSOR

Model Number of EUT : NNH-102

FCC ID : 2AX5HNNH-102

Test regulation : FCC Part 95 Subpart M: 2017

Test Result : Complied (Refer to SECTION 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13780180H-R2. 13780180H-R2 is replaced with this report.

Date of test:	May 24 to 27, 2021		
Representative test engineer:	W. Wamaralei		
	Yuichiro Yamazaki		
	Engineer		
A nanoyad by	9. Takammon		
Approved by:	Tsubasa Takayama		
	Management of the Contract of		
	Leader		

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 2 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

REVISION HISTORY

Original Test Report No.: 13780180H

Revision	Test report No.	Date	Page	Contents
			revised	
(Original)	13780180Н	June 18, 2021	-	-
1	13780180H-R1	July 5, 2021	P.14	Correction of the description; From "For the values of Fs, Ts and, B, refer to Theory of Operation-Specification." To "Fs and B were used the actual measurement value, and Ts were referred to the values in the specifications."
1	13780180H-R1	July 5, 2021	P.17	- Replacement the data by adding actual measurement values of Duty factor. - Deletion of the following sentence; "Since it is the maximum duty, the correction by the duty factor of AV power was defined as zero."
2	13780180H-R2	July 20, 2021	P.17	Replacement of the Final result in Test modes data due to correction of Duty factor (Average) value.
2	13780180H-R2	July 20, 2021	P.19	 Replacement of the data due to correction of Duty factor value. Deletion of the following sentence; * This Duty Cycle is the worst case. Transmitting time does not exceed it.
2	13780180H-R2	July 20, 2021	P.20	Addition of the "Chirp time + Idle time" data
3	13780180H-R3	July 21, 2021	P.19	Correction of the calculation formula of Duty factor as follows; From Duty factor = 10 * log (Tx On time / Tx On + Off time) To Duty factor = 10 * log (Chirp time (Total) / Tx On + Off time)
3	13780180H-R3	July 21, 2021	P.20	Replacement of the data due to correction of Declared Chirp time value. Addition of asterisk to "Number of Chirp".

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13780180H-R3

 Page
 : 3 of 37

 Issued date
 : July 21, 2021

 FCC ID
 : 2AX5HNNH-102

Reference: Abbreviations (Including words undescribed in this report)

MCS A2LA The American Association for Laboratory Accreditation Modulation and Coding Scheme ACAlternating Current MR A Mutual Recognition Arrangement AFH N/A Not Applicable Adaptive Frequency Hopping Amplitude Modulation NIST National Institute of Standards and Technology AMAmp, AMP Amplifier NS No signal detect American National Standards Institute ANSI NSA Normalized Site Attenuation Ant, ANT Antenna NVLAP National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Bandwidth ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer ВТ Bluetooth PK Peak BT LE Bluetooth Low Energy PN Pseudo random Noise PRBS BW Bandwidth Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density CCK Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH Channel QP Quasi-Peak CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Bandwidth DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency DFS Dynamic Frequency Selection RMS Root Mean Square DOPSK Differential OPSK RSS Radio Standards Specifications Direct Sequence Spread Spectrum DSSS Rх Receiving EDR Enhanced Data Rate Spectrum Analyzer SA, S/A SG EIRP, e.i.r.p. Equivalent Isotropically Radiated Power Signal Generator SVSWR Site-Voltage Standing Wave Ratio **EMC** ElectroMagnetic Compatibility **EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm TxTransmitting ERP, e.r.p. Effective Radiated Power VRW Video Bandwidth European Union Vertical EUT Equipment Under Test WLAN Wireless LAN Fac. **FCC** Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum FM Frequency Modulation Freq. Frequency FSK Frequency Shift Keying **GFSK** Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System GPS Global Positioning System Horizontal Hori. ICES Interference-Causing Equipment Standard IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers

UL Japan, Inc. Ise EMC Lab.

IF

ILAC ISED

ISO

JAB

LAN

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Intermediate Frequency

Japan Accreditation Board

Local Area Network

International Laboratory Accreditation Conference

International Organization for Standardization

Laboratory Information Management System

Innovation, Science and Economic Development Canada

Test report No. Page Issued date FCC ID : 13780180H-R3 : 4 of 37 : July 21, 2021 : 2AX5HNNH-102

CONTENTS PAGE SECTION 1: Equipment under test (EUT)......5 **SECTION 2: SECTION 3:** Operation of EUT during testing......9 **SECTION 4: SECTION 5:** Radiated Spurious Emission _______10 **SECTION 6:** Frequency Stability15 APPENDIX 1: APPENDIX 2: Test instruments30 **APPENDIX 3:**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13780180H-R3

 Page
 : 5 of 37

 Issued date
 : July 21, 2021

 FCC ID
 : 2AX5HNNH-102

SECTION 1: Customer information

Company Name : JRC Mobility Inc.

Address : Advanced Technology Center J20-6F 834, Inasatomachi, Nagano-shi,

Nagano, 381-2289 Japan

Telephone Number : +81-26-214-5759 Facsimile Number : +81-26-214-5779 Contact Person : Kazutoshi Tsuda

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : RADAR SENSOR

Model Number : NNH-102

Serial Number : Refer to SECTION 4.2

Rating : DC 12 V Receipt Date : May 20, 2021

Country of Mass-production : Japan

Condition : Engineering prototype

Modification : No Modification by the test lab

2.2 Product Description

Model: NNH-102 (referred to as the EUT in this report) is a RADAR SENSOR.

General Specification

Clock frequency(ies) in the system : 600 MHz (Millimeter Wave Rader Sensor IC)

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 78.161 GHz
Bandwidth : 2.164 GHz

Modulation : Frequency modulation (FMCW)

Antenna Type : Patch Array Antenna Antenna Connector : None (Internal Antenna)

Antenna Gain : 16.9 dBi

Steerable Antenna : electronically (Digital Beam Forming)
Usage location : Unmanned Ground Vehicle mounted

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 6 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 95 Subpart M

FCC Part 95 final revised on November 2, 2017

Title : FCC 47CFR Part95 – PERSONAL RADIO SERVICES

Subpart M – The 76-81 GHz Band Radar Service

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: N/A	FCC: N/A	N/A	N/A	*1)
Occupied bandwidth	FCC: ANSI C63.26-2015 5.4 Occupied bandwidth	FCC: Section 2.1049		Complied a)	Radiated
Radiated Power Modulation characteristics	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeter-wave systems	FCC: Section 95.3367 Section 2.1046 Section 2.1047		Complied b)	Radiated
Field strength of spurious radiation	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing	FCC: Section 95.3379 (a) Section 2.1053 Section 2.1057	6.3 dB 60.715 MHz, QP, Vertical	Complied c)	Radiated
Frequency stability	FCC: ANSI C63.26-2015 5.6 Frequency stability testing	FCC: Section 95.3379 (b) Section 2.1055	See data.	Complied d)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Occupied bandwidth)
- b) Refer to APPENDIX 1 (data of Radiated Power and Modulation characteristics)
- c) Refer to APPENDIX 1 (data of Field strength of spurious radiation)
- d) Refer to APPENDIX 1 (data of Frequency Stability)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

Supplied Voltage Information

The EUT provides stable voltage constantly to RF Part regardless of input voltage. Instead of a new battery, DC power supply was used for the test.

Antenna Information

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*} In case any questions arise about test procedure, ANSI C63.26-2015 and C63.10-2013 are also referred.

Test report No. : 13780180H-R3
Page : 7 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

3.4 Uncertainty

EMI

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Ise EMC Lab.

ise Livi e Lao.			
	Conducted emission		
Frequency range	using AMN(LISN)		
	(+/-)		
0.009 MHz -	2.9 dB		
0.15 MHz	2.9 ub		
0.15 MHz -	3.4 dB		
30 MHz	3.4 ub		

	Radiated emission
Test distance	(+/-)
	9 kHz - 30 MHz
3 m	3.3 dB
10 m	3.2 dB

	Radiated emission (Below 1 GHz)			
Polarity	(3 m*) (+/-)		(10 m*) (+/-)	
1 Olarity	30 MHz - 200 MHz	200 MHz -	30 MHz -	200 MHz -
		1000 MHz	200 MHz	1000 MHz
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB
Vertical	5.0 dB	6.3 dB	4.8 dB	5.0 dB

Radiated emission (Above 1 GHz)						
(3	3 m*) (+/-)	(1 m*) (+/-)		(0.5 m*) (+/-)	(10 m*) (+/-)	
1 GHz -	6 GHz -	10 GHz -	26.5 GHz -	26.5 GHz -	1 GHz -	
6 GHz	18 GHz	26.5 GHz	40 GHz	40 GHz	18 GHz	
4.9 dB	5.2 dB	5.5 dB	5.5 dB	5.5 dB	5.2 dB	

^{*}Measurement distance

Radiated emission	Uncertainty [+/- dB]	Distance
40 GHz - 50 GHz	4.1	>= 0.5 m
50 GHz - 75 GHz	5.1	>= 0.5 m
75 GHz - 110 GHz	5.4	>= 0.5 m
110 GHz - 170 GHz	5.2	>= 3.8 cm*
170 GHz - 260 GHz	5.0	>= 2.5 cm*

^{*}under consideration about Uncertainty for testing at 1 cm distance

Radiated Emission (with Block downconverter)	Uncertainty [+/- dB]	Distance
75 GHz - 83 GHz	4.4*	>= 0.5 m

^{*} This value was used for 75 GHz - 83 GHz in this report.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 8 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 199967

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	[-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-

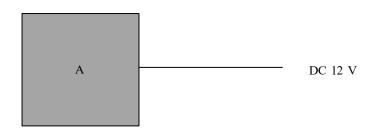
^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 9 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102


SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Mode		Test Item		
Normal operating mode		Occupied bandwidth		
		Radiated Power		
		Modulation characteristics		
		Field strength of spurious radiation		
		Frequency stability		
Power of the EUT	was set by the software as follows;			
Power settings:	10dBm			
Software:	src_ES1_SurroundMonitoring_all	Rev.035		
*This setting of software is the worst case.				
Any conditions under the normal use do not exceed the condition of setting.				

In addition, end users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	RADAR SENSOR	NNH-102	0005	JRC Mobility Inc.	EUT

List of cables used

No.	Name	Length (m)	Shi	Remarks	
			Cable	Connector	
1	DC Cable	5.1	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 10 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 30 MHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.) and horizontal polarization.

[For above 30 MHz, up to 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz, up to 40 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m (frequency range 9 kHz - 30 MHz: loop antenna was fixed height at 1.0 m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear voltage average mode).

The test was made with the detector (RBW/VBW) in the following table.

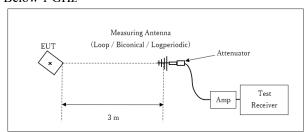
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

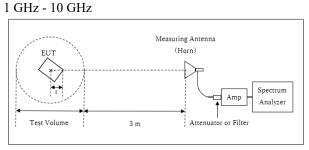
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz	
Antenna Type	Loop	Biconical	Logperiodic	Horn	

Frequency	9 kHz to 150 kHz	150 kHz to 30 MHz	30 MHz to 1 GHz	1 GHz to 40 GHz
Instrument used	Test Receiver	Test Receiver	Test Receiver	Spectrum Analyzer
Detector	CISPR QP, Average	CISPR QP, Average	CISPR QP	Average *1)
IF Bandwidth	200 Hz	9 kHz	120 kHz	RBW: 1 MHz
				VBW: 3 MHz

^{*1)} An RMS average mode was used: 1 ms or less averaging time (integration time period for each spectrum analyzer bin; spectrum analyzer sweep time / number-of-bins not exceeding one millisecond)

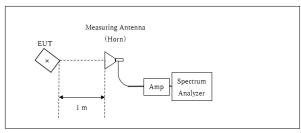

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

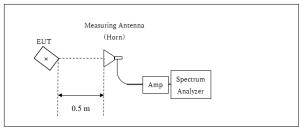

^{*}Refer to Figure 1 about Direction of the Loop Antenna.

Test report No. : 13780180H-R3
Page : 11 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

[Test setup] Below 1 GHz



× : Center of turn table


- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz - 26.5 GHz

×: Center of turn table

26.5 GHz - 40 GHz

×: Center of turn table

Test Distance: 3 m

Distance Factor: $20 \times \log (4.0 \text{ m}^*/3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 4.0 m

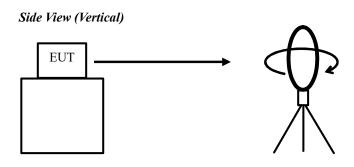
Test Volume: 2 m

(Test Volume has been calibrated based on CISPR 16-1-4.)

r = 0.0 m

* The test was performed with r = 0.0 m since that yielded the worst emission levels from the EUT.

Distance Factor: $20 \times \log (1.0 \text{ m}^* / 3.0 \text{ m}) = -9.54 \text{ dB}$ *Test Distance: 1 m


Distance Factor: $20 \times \log (0.5 \text{ m}^* / 3.0 \text{ m}) = -15.56 \text{ dB}$ *Test Distance: 0.5 m

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

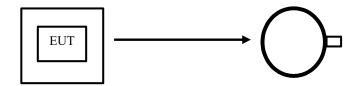
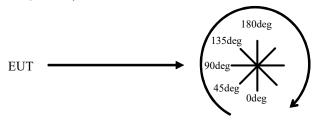

Test report No. : 13780180H-R3
Page : 12 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

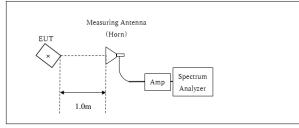
Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 13 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

[Above 40 GHz]

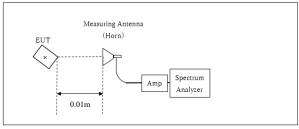
The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2013. The EUT was placed on a urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.


Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

Frequency	40 GHz to	50 GHz to	81 GHz to	110 GHz to		
	50 GHz	76 GHz	110 GHz	170 GHz	231 GHz	
Final measurement distance	1.0 m	1.0 m	1.0 m	0.01 m	0.01 m	
with 1 MHz Peak detector						

[Test setup]


40 GHz - 76 GHz, 81 GHz - 110 GHz

*Test Distance: 1.0 m

×: Center of turn table

110 GHz - 231 GHz

*Test Distance: 0.01 m

×: Center of turn table

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 14 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

[About fundamental measurement]

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are extremely narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m (The antenna aperture size of test antenna was used for this caluculation.) Lambda is the wavelength of the emission under investigation [300/f (MHz)], in m

I	Frequency	Wavelength	N	Far Field		
			EUT	Test Antenna	Maximum	Boundary
		Lambda			D	r
	[GHz]	[mm]	[m]	[m]	[m]	[m]
	78.161	3.8	0.032750	0.026162	0.032750	0.559

- The carrier level and noise levels were confirmed at each position of X, Y axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

The Peak Power results was applied to the desensitization correction factor by KDB653005 4.(c). The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B.

Desensitization factor was calculated from follow equation.

$$\alpha = \frac{1}{\sqrt{1 + \left(\frac{2In(2)}{\pi}\right)^2 \left(\frac{Fs}{Ts B^2}\right)^2}}$$

And

FMCW Desensitization factor = 20 Log (α)

Where

Fs = FMCW Sweep Width or Chirp Width

Ts = FMCW Sweep Time

B = -3dB Bandwidth of Gaussian RBW Filter

F_s	$T_{\rm s}$	В	α	FMCW Desensitization factor
[GHz	[usec]	[MHz]		[dB]
2.137	2 46.2	1.0	0.221	-13.10

Fs and B were used the actual measurement value, and Ts was referred to the values in the specifications.

Measurement range : 9 kHz - 231 GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 15 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

SECTION 6: Frequency Stability

Test Procedure

The block downconverter was placed in side of the temperature chamber's drain hole.

The power supply was set to nominal operating voltage (100 %), and the spectrum mask was measured at 20 deg. C. After that, EUT power supply was varied between 85 % and 115 % of nominal voltage and the frequency excursion of the EUT emission mask was recorded.

The EUT operating temperature was raised to 70 deg. C, and the frequency excursion of the EUT emission mask was recorded. Measurements were repeated at each 10 deg. C decrement down to -30 deg. C.

Both lower and upper frequencies of the -20dB Bandwidth were recorded.

Test data : APPENDIX

Test result : Pass

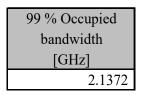
UL Japan, Inc. Ise EMC Lab.

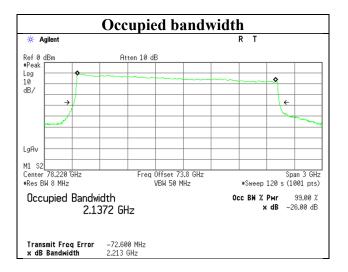
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 16 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

APPENDIX 1: Test data

Occupied bandwidth


Report No. 13780180H


Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Date May 24, 2021

Temperature / Humidity
Engineer
Mode

21 deg. C / 57 % RH
Yuichiro Yamazaki
Normal operating mode

The measurement was performed with Peak detector and Max Hold since the duty cycle was not 100 %.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 17 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Radiated Power

Report No. 13780180H

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Date May 24, 2021
Temperature / Humidity 21 deg. C / 57 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

Measured data in Test modes

Mode	Power	Freq.	Measured	Tested	Rx	Down	IF	FSL	EII	RP
			Power	Distance	Antenna	Converter	Cable			
					Gain	Gain	Loss			
		[GHz]	[dBm]	[m]	[dBi]	[dB]	[dB]	[dB]	[dBm]	[mW]
Normal	Average	78.161	-21.24	1.0	23.16	13.28	1.85	70.30	14.47	28.00
	Peak	78.161	-19.24	1.0	23.16	13.28	1.85	70.30	16.47	44.38

Calculating formula:

FSL (Free Space path Loss) = $10 * log10((4 * Pi * Tested Distance / Lambda)^2)$

EIRP = Measured Power - Rx Antenna Gain - Down Converter Gain + IF Cable Loss + FSL

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013.

Final result in Test modes

Mode	Power				EIRP			
		Spectrum	Duty	desensitization	Res	sult	Lmit	Margin
		Analyzer	Factor	Factor				
		[dBm]	[dB]	[dB]	[mW]	[mW] [dBm]		[dB]
Normal	Average	14.47	6.26	-	118.37	20.73	50	29.27
	Peak	16.47	-	13.10	906.96	29.58	55	25.42

Calculating formula:

 $EIRP\ Result = EIRP(Spectrum\ Analyzer) + Duty\ Factor + Desensitization\ Factor$

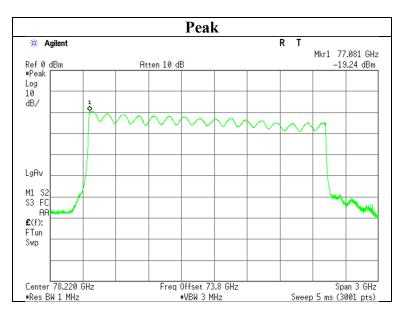
For the peak power result, it is a maximum power.

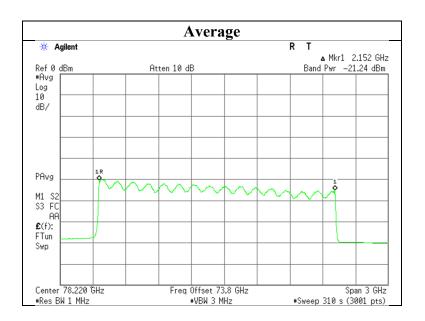
The test method referred to KDB653005.

The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 13780180H-R3
Page : 18 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102


Radiated Power

Report No. 13780180H

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Date May 24, 2021
Temperature / Humidity 21 deg. C / 57 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13780180H-R3

 Page
 : 19 of 37

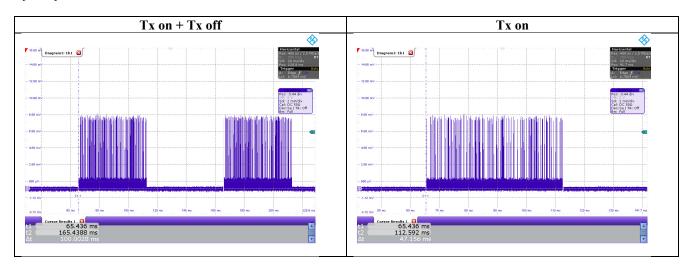
 Issued date
 : July 21, 2021

 FCC ID
 : 2AX5HNNH-102

Modulation characteristics (Reference data)

Report No. 13780180H

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber


Date May 25, 2021
Temperature / Humidity 23 deg. C / 56 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

[Duty Factor1]

	Tx On	Tx On + Off	Chirp time	Duty factor
	time	time	(Total)	
	[ms]	[ms]	[ms]	[dB]
Measured	47.156	100.003	23.654	6.261
Declared *	47.200	100.000	23.637	6.264

Duty factor = 10 * log (Chirp time (Total) / Tx On + Off time)

[Data]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

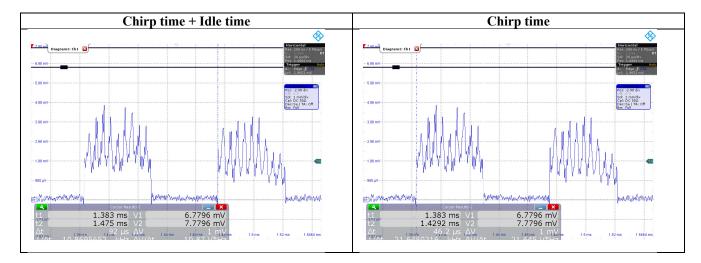
^{*} See the application document.

 Test report No.
 : 13780180H-R3

 Page
 : 20 of 37

 Issued date
 : July 21, 2021

 FCC ID
 : 2AX5HNNH-102


Modulation characteristics (Reference data)

[Chirp time + Idle time]

	Chirp	Chirp time	Number of Chirp*	Chirp time
	time	+ Idle time		(Total)
	[us]	[us]		[us]
Measured	46.200	92.000	512.000	23654.400
Declared *	46.200	92.200	512.000	23654.400

^{*} See the application document.

[Data]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 21 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Field strength of spurious radiation (below 40 GHz)

Report No. 13780180H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.1

 Date
 May 26, 2021
 May 26, 2021

 Temperature / Humidity
 23 deg. C / 58 % RH
 22 deg. C / 40 % RH

 Engineer
 Yuichiro Yamazaki
 Yuichiro Yamazaki

 (30 MHz - 40 GHz)
 (9kHz - 30 MHz)

Mode Normal operating mode

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	30.336	QP	28.0	18.3	7.1	38.7	-	14.7	40.0	25.3	
Hori.	54.475	QP	35.3	9.5	7.5	38.7	-	13.6	40.0	26.4	
Hori.	60.715	QP	38.0	7.5	7.6	38.8	-	14.4	40.0	25.6	
Hori.	68.706	QP	39.2	6.4	7.8	38.8	-	14.6	40.0	25.4	
Hori.	176.025	QP	26.8	16.0	9.0	38.9	-	12.9	43.5	30.6	
Hori.	538.433	QP	28.4	17.6	11.6	38.2	-	19.4	46.0	26.6	
Vert.	30.336	QP	40.1	18.3	7.1	38.7	-	26.8	40.0	13.2	
Vert.	54.475	QP	52.1	9.5	7.5	38.7	-	30.4	40.0	9.6	
Vert.	60.715	QP	57.3	7.5	7.6	38.8	-	33.7	40.0	6.3	
Vert.	68.706	QP	55.2	6.4	7.8	38.8	-	30.6	40.0	9.4	
Vert.	176.025	QP	42.5	16.0	9.0	38.9	-	28.6	43.5	14.9	
Vert.	538.433	QP	28.2	17.6	11.6	38.2	-	19.2	46.0	26.8	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20\log (4.0 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB26.5 GHz - 40 GHz 20log (0.5 m / 3.0 m) = -15.56 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

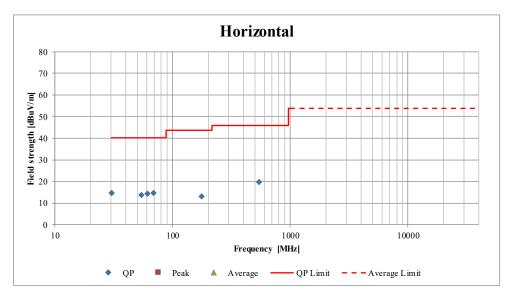
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

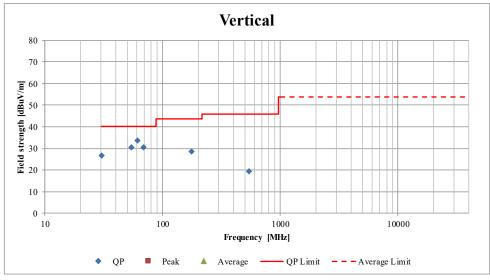
Test report No. : 13780180H-R3
Page : 22 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Field strength of spurious radiation (below 40 GHz) (Plot data, Worst case)

Report No. 13780180H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.1


 Date
 May 26, 2021
 May 26, 2021


 Temperature / Humidity
 23 deg. C / 58 % RH
 23 deg. C / 58 % RH

 Engineer
 Yuichiro Yamazaki
 Yuichiro Yamazaki

 (30 MHz - 40 GHz)
 (9kHz - 30 MHz)

Mode Normal operating mode

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 23 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Field strength of spurious radiation (above 40 GHz)

Report No. 13780180H Test place Ise EMC Lab.

Semi Anechoic Chamber No. 4

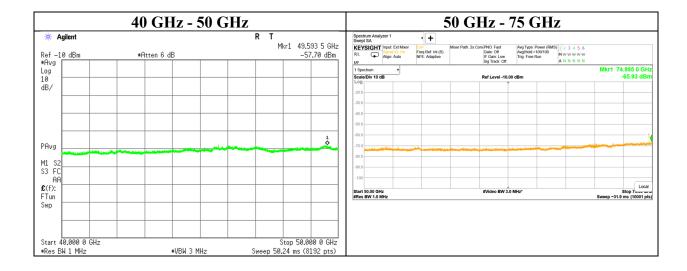
Date May 25, 2021

Temperature / Humidity
Engineer
Yuichiro Yamazaki
Mode
23 deg. C / 56 % RH
Yuichiro Yamazaki
Normal operating mode

Freq.	Reading	Rx	Filter	LNA	Mixer	IF	IF	Meas.	FSL	EI	RP	Powe	r density a	ıt 3 m	Remarks
		ant.	loss	gain	loss	amp.	cable	range				Result	Limit	Margin	
		gain				gain	loss	D							
[GHz]	[dBm]	[dBi]	[dB]	[dB]	[dB]	[dB]	[dB]	[m]	[dB]	[dBm]	[mW]	[pW/cm ²]	[pW/cm ²]	[dB]	
49.594	-57.70	22.45	0.00	31.69	0.00	0.00	9.02	1.0	66.35	-36.47	0.000226			34.78	No signal detected.
74.995	-65.93	24.50	2.11	20.41	0.00	0.00	0.00	1.0	69.94	-38.79	0.000132	0.12	600	37.11	No signal detected.
75.328	-69.14	22.96	0.00	0.00	-15.22	0.00	1.16	1.0	69.98	-36.17	0.000241	0.21	600	34.49	No signal detected.
82.340	-71.49	23.50	2.16	0.00	-12.11	0.00	2.64	1.0	70.75	-31.54	0.000701	0.62	600	29.86	No signal detected.
84.835	-51.34	23.68	2.33	31.51	0.00	0.00	0.00	1.0	71.01	-33.18	0.000480	0.42	600	31.50	No signal detected.
104.042	-46.16	24.67	0.40	30.06	0.00	0.00	0.00	1.0	72.79	-27.70	0.001699	1.50	600	26.02	No signal detected.
112.559	-90.40	22.38	0.00	17.27	61.28	0.00	0.00	0.01	33.47	-35.30	0.000295	0.26	600	33.62	No signal detected.
130.784	-91.48	22.97	0.00	20.29	53.33	0.00	0.00	0.01	34.77	-46.64	0.000022	0.02	600	44.95	No signal detected.
153.500	-86.96	23.36	0.00	17.98	58.25	0.00	0.00	0.01	36.16	-33.89	0.000409	0.36	600	32.20	No signal detected.
154.565	-92.74	23.37	0.00	17.87	57.99	0.00	0.00	0.01	36.22	-39.76	0.000106	0.09	600	38.08	No signal detected.
175.826	-90.63	22.53	0.00	0.00	59.07	0.00	0.00	0.01	37.34	-16.75	0.021137	18.7	600	15.07	No signal detected.
193.663	-90.98	22.91	0.00	0.00	56.38	0.00	0.00	0.01	38.18	-19.32	0.011683	10.3	600	17.64	No signal detected.
210.040	-92.03	23.16	0.00	0.00	57.65	0.00	0.00	0.01	38.89	-18.65	0.013639	12.1	1000	19.19	No signal detected.
229.377	-88.71	23.34	0.00	0.00	62.90	0.00	0.00	0.01	39.65	-9.50	0.112170	99.2	1000	10.04	No signal detected.

Calculation:

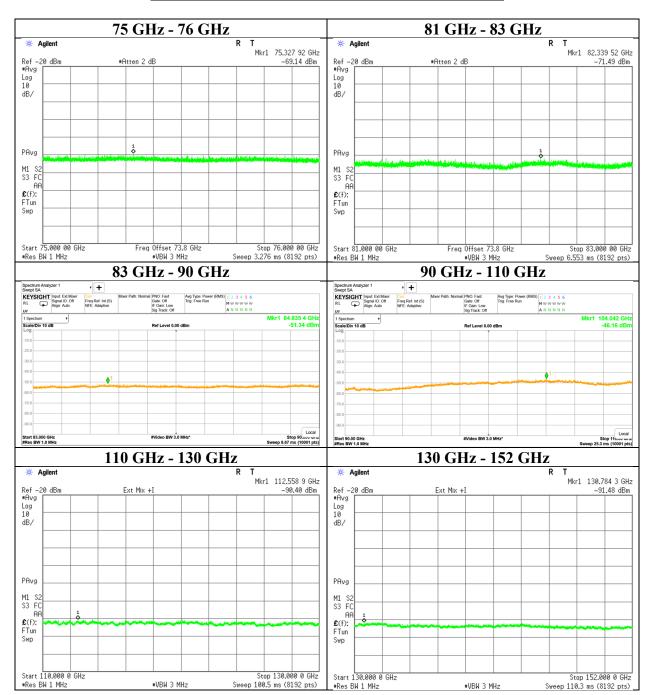
FSL (Free Space path Loss) = $10 * \log ((4 * Pi * D / \lambda)^{2})$


EIRP = Reading - Rx ant. gain + Filter loss - LNA gain + Mixer loss - IF amp. gain + IF cable loss + FSL

Power density Result at 3 m = EIRP / $(4 * Pi * 300^{2})$

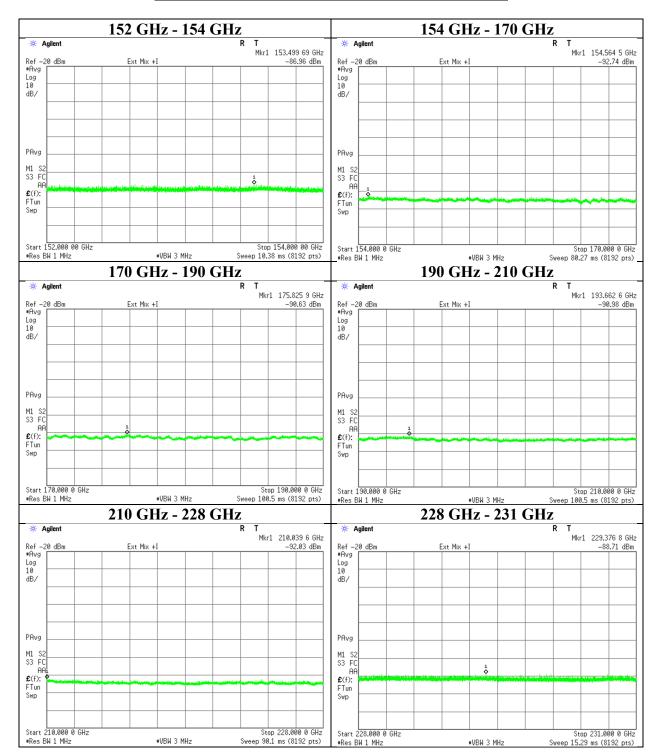
These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013.

The equipment were not used for factor 0 dB of the data sheets.


The conversion loss is automatically corrected in the mixer, so the factor of data sheet were set to 0 dB.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 24 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102


Field strength of spurious radiation (above 40 GHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 25 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Field strength of spurious radiation (above 40 GHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13780180H-R3

 Page
 : 26 of 37

 Issued date
 : July 21, 2021

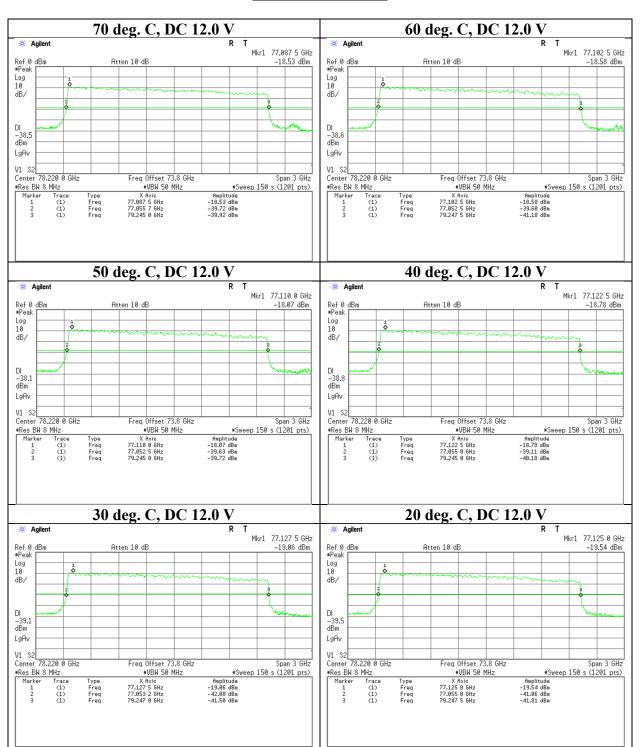
 FCC ID
 : 2AX5HNNH-102

Frequency Stability

Report No. 13780180H

Test place Ise EMC Lab. No.6 Measurement Room

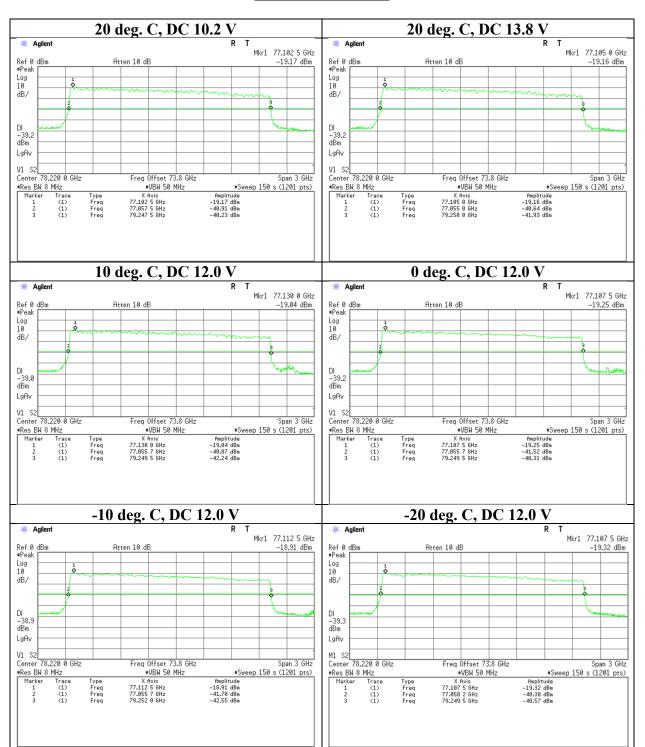
Date May 27, 2021
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode


Test Condition		Measured -20 dBc Frequency		Remarks
Temperature	Power Supply	Lower Result	Upper Result	
[deg. C]	[V]	[GHz]	[GHz]	
70	12.0	77.056	79.245	Customer requested temperature
60	12.0	77.053	79.248	Customer requested temperature
50	12.0	77.053	79.245	
40	12.0	77.055	79.245	
30	12.0	77.053	79.247	
20	12.0	77.055	79.247	
20	10.2	77.058		85 % of the minimum operating voltage, DC 12 V * 0.85
20	13.8	77.055	79.250	115 % of the maximum operating voltage, DC 12 V * 1.15
10	12.0	77.056	79.250	
0	12.0	77.056	79.250	
-10	12.0	77.056	79.252	
-20	12.0	77.058	79.250	
-30	12.0	77.058	79.250	Customer requested temperature

Fundamental emissions were contained within the frequency band 76 GHz - 81 GHz during all conditions of operation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 27 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

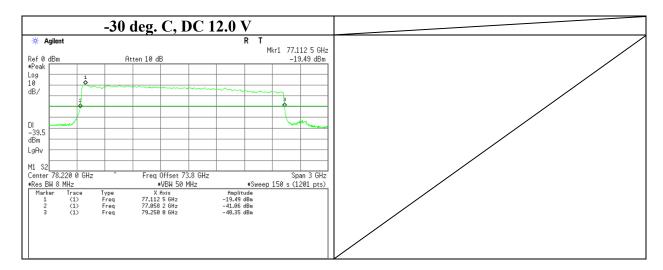

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 28 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Test report No.
 : 13780180H-R3

 Page
 : 29 of 37

 Issued date
 : July 21, 2021

 FCC ID
 : 2AX5HNNH-102

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13780180H-R3 Test report No. Page : 30 of 37 **Issued date** : July 21, 2021 : 2AX5HNNH-102 FCC ID

APPENDIX 2: Test instruments

Test Item	ipment (1 Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/15/2021	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION		51201197	01/07/2021	12
	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
	MI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
	MAEC-03- SVSWR		AC3_Semi Anechoic Chamber(SVSWR)	TDK	Chamber 3m	DA-10005	04/01/2021	24
RE	MAT-95	142314	Attenuator	Pasternack Enterprises		D/C 1504	06/17/2020	12
	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	1915	08/13/2020	12
	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/06/2020	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	-	9111B-191	08/13/2020	12
	MPA-19	141585	Pre Amplifier	MITEQ		1237616	02/18/2021	12
RE	MTR-09	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	06/03/2020	12
	MHA-20	141507	Horn Antenna 1-18GHz	Mess-Elektronik OHG		258	10/01/2020	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/03/2021	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/04/2021	12
RE	MHA-02	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/15/2020	12
RE	MHA-04	141505	Horn Antenna 26.5-40GHz	EMCO	3160-10	1140	08/03/2020	12
RE	MPA-03	141577	Microwave System Power Amplifier	Keysight Technologies Inc	83050A	MY39500610	10/19/2020	12
RE	MCC-220	151897	Microwave Cable	Huber+Suhner	SF101EA/11PC24/ 11PC24/2.5M	SN MY1726/1EA	04/12/2021	12
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/08/2020	24
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/15/2021	12
RE	MMM-03	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	08/18/2020	12
RE	MJM-25	142226	Measure	KOMELON	KMC-36	-	-	-
RE	MCC-03	141215	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W/3D-2W/ RG400u/ RFM-E421(SW)	-/01068(Switcher)	06/25/2020	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz		836553/009	12/04/2020	12
RE	MCC-219	159670	Coaxial Cable	UL Japan Inc.	-		11/17/2020	12
	MAT-08	141213	Attenuator(6dB)	Weinschel Corp		BK7971	11/13/2020	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	03/09/2021	12
	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	-	260834	02/18/2021	12
RE	MHA-31	142041	Horn Antenna	Oshima Prototype Engineering Co.	A16-187	1	09/24/2020	12
RE	MPA-25	159919	Power Amplifier	SAGE Millimeter, Inc.	SBP-4035033018-2F2 F-S1	12559-01	06/30/2020	12
RE	MHA-33	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/24/2020	12
RE	MMX-07	186076	Wave guide Harmonic Mixer	Keysight Technologies Inc	M1971V	MY56390208	05/18/2021	12
RE	MPA-23	142055	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015-151 5-N1	11599-01	03/05/2021	12
RE	MLF-01	201432	WR-15 Low Pass Filter	Oshima Prototype Engineering Co.	2020-0142-02	001	09/23/2020	12
RE	MMX-05	142050	Block Downconverter	EMC Instruments Corporation	PS-X30-W10117A	13715	03/02/2021	12
								12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13780180H-R3
Page : 31 of 37
Issued date : July 21, 2021
FCC ID : 2AX5HNNH-102

Test equipment (2/2)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MHA-35	180544	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-10-S1	17343-01	06/24/2020	12
RE	MHF-15	142042	High Pass Filter 81-110GHz	AmTechs Corporation	HPF-10-778030	201	07/14/2020	12
RE	MMX-08	186077	_	Keysight Technologies Inc	M1971W	MY56390146	05/18/2021	12
RE	MHF-29	154635	High Pass Filter 83 GHz - 110 GHz	Oshima Prototype Engineering Co.	A17-016	1	05/18/2021	12
RE	MPA-31	180607	Power Amplifier	SAGE Millimeter, Inc.	SBP-7531142515-101 0-E1	17343-01	10/26/2020	12
RE	MMX-03	142049	Harmonic Mixer	OML INC.	M06HWD	D100709-1	11/09/2020	12
RE	MHA-24	142036	Horn Antenna	Custom Microwave Inc.	HO6R	-	09/24/2020	12
RE	MHA-27	142039	Horn Antenna	Custom Microwave Inc.	HO4R	-	09/24/2020	12
RE	MMX-04	142053	Harmonic Mixer	OML INC.	M04HWD	Y100709-1	12/02/2020	12
RE	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2021	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/15/2021	12
RE	MMM-10	141545		HIOKI E.E. CORPORATION	3805	51201148	01/07/2021	12
RE	MDT-05	142529	Detector	HEROTEK, INC.	DT1840P	484823	-	_
RE	OSC-01	141962	Digital Oscilloscope	Rohde & Schwarz	RTO1004	200355	08/18/2020	12
RE	MSA-03	141884		Keysight Technologies Inc	E4448A	MY44020357	03/10/2021	12
RE	MCH-04	141429	Temperature and Humidity Chamber	Espec	PL-2KP	14015723	08/24/2020	12
RE	MOS-14	141561		CUSTOM. Inc	CTH-201	1401	01/15/2021	12
RE	MPA-29	176027	D-Band Low Noise Amplifier	SAGE Millimeter, Inc.	SBL-1141741860-060 6-EI	15235-01	03/05/2021	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item: RE: Radiated Emission test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN