

RF Test Report

For

Applicant Name: Shenzhen DOOGEE Hengtong Technology CO., LTD

Address:

B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.

22, Longhua New District, Shenzhen, China

EUT Name: Tablet
Brand Name: DOOGEE
Model Number: T20Mini

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF230725R01005 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2AX4YT20MINI

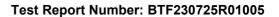
Test Date: 2023-07-10 to 2023-07-24

Date of Issue: 2023-07-24

Prepared By: Elma Kang

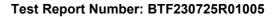
elma.yang / Project Engineer

Date: 2023-07-24


Approved By:

D 01/51014

Ryan.CJ / EMC Manager


Date: 2023-07-24

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

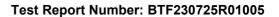

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-07-24	Original	
R_V0	2023-07-24	Original	
Note: Once the I	revision has been made, then pre	vious versions reports are invalid.	

Table of Contents

1	INTR	RODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2	PRO	DDUCT INFORMATION	6
	2.1	Application Information	6
	2.2	Manufacturer Information	
	2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3	SUM	MMARY OF TEST RESULTS	8
	3.1	Test Standards	8
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	
4	TES	T CONFIGURATION	9
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	15
5	EVA	LUATION RESULTS (EVALUATION)	16
	5.1	Antenna requirement	16
		5.1.1 Conclusion:	16
6	RAD	DIO SPECTRUM MATTER TEST RESULTS (RF)	17
	6.1	Conducted Emission at AC power line	
	0	6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2	Duty Cycle	20
		6.2.1 E.U.T. Operation:	20
		6.2.2 Test Data:	20
	6.3	Maximum conducted output power	21
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Data:	
	6.4	Power spectral density	23
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram: 6.6.3 Test Data: 6.6.3	
	6.7	Undesirable emission limits (below 1GHz)	
	0.7	6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	
	6.8	Undesirable emission limits (above 1GHz)	47

	6.8.1 6.8.2	E.U.T. Operation:	48 49
7		P PHOTOS	
8	EUT CONST	RUCTIONAL DETAILS (EUT PHOTOS)	58
		· · · · · · · · · · · · · · · · · · ·	

Introduction

Identification of Testing Laboratory

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

		•
Company Name:		BTF Testing Lab (Shenzhen) Co., Ltd.
		F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number: +86-0755-23		+86-0755-23146130
Fax Number: FCC Registration Number:		+86-0755-23146130
		518915
	Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	Shenzhen DOOGEE Hengtong Technology CO., LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China

2.2 Manufacturer Information

Company Name:	Shenzhen DOOGEE Hengtong Technology CO., LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China

2.3 Factory Information

Company Name:		Shenzhen DOOGEE Hengtong Technology CO., LTD
		B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Tablet
Test Model Number: T20Mini	
Series Model Number:	T20Mini, T20Mini Pro, T20Mini Pro Max, T20Mini Plus, T20Mini Ultra, T20Mini E, T20Mini S, T20Mini SE, T20Mini Kid, N80, N80Pro
Diff: There is no difference except the name of the model	

2.5 Technical Information

Power Supply:	DC 3.8V from battery or DC 5V from adapter
Power Adapter:	Model: DGCDQ-BC023-02 Input:100-240V,50/60Hz 0.35A Max Output:5.0V 2.0A 10.0W
Operation Frequency:	802.11a/n(HT20) /ac 20: U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac 40: U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac 80: U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz;
Number of Channels:	802.11a/n(HT20)/ac 20: U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac 40: U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac 80: U-NII Band 1: 1, U-NII Band 3: 1.
Modulation Type:	IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)
Antenna Type:	PIFA Antenna
Antenna Gain#:	0.91dBi

Note:

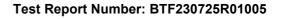
#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


3.2 Uncertainty of Test

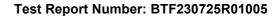
Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4)	Pass

47 CFR Part 15.407(b)(10)

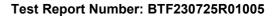

Test Configuration 4

Test Equipment List

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23			

Duty Cycle								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	1			
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

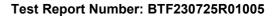
Maximum conducted output power								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	1			
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			



Power spectral density								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	/			
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Emission bandwidth and occupied bandwidth									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	1	1	1				
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23				
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23				
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23				

Channel Availability Check Time									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	1	V1.00	1	1	1				
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23				
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23				

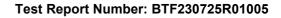


WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Statistical Performance Check								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	1	1	/			
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

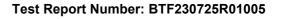
Channel Move Time, Channel Closing Transmission Time									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	1	1	1				
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23				
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23				
Adjustable Direct Current Regulated	Dongguan Tongmen	etm-6050c	20211026123	2022-11-24	2023-11-23				



Power Supply	Electronic Technology Co., LTD				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	1	V1.00	1	1	/				
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23				
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23				
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23				

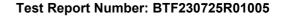
DFS Detection Thresholds								
Equipment	Manufacturer Model No		Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	1			
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			


Band edge emissions (Radiated)									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23				
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23				

RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	1	1
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission limits (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21			
EZ_EMC	Frad	FA-03A2 RE+	1	1	1			
POSITIONAL CONTROLLER	SKEI		1	1	/			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27			

Undesirable emission limits (above 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21			
EZ_EMC	Frad	FA-03A2 RE+	1	1	1			
POSITIONAL CONTROLLER	SKEI		1	1	1			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27			



4.2 Test Auxiliary Equipment

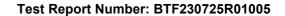
The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM3	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

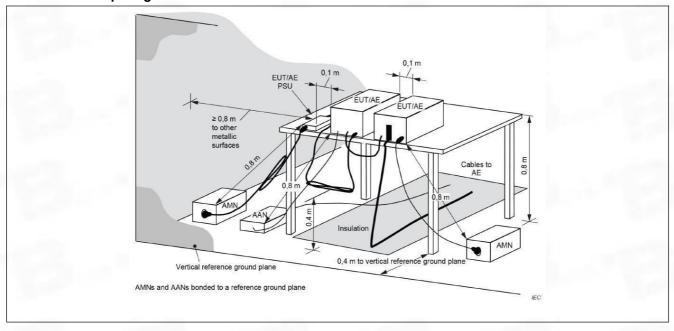

Test Requirement:

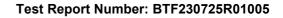
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna is internal antenna. The best case gain of the antenna is 2.38dBi for 5.15~5.25GHz, 5.725~5.85GHz

6 Radio Spectrum Matter Test Results (RF)

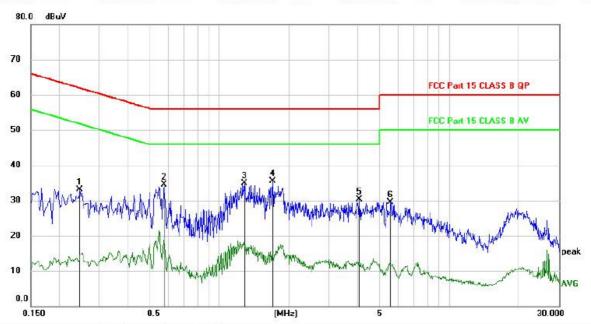

Conducted Emission at AC power line


Test Requirement:	47 CFR Part 15.207(a)		9.77				
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
Test Limit:	Frequency of emission (MHz) 0.15-0.5	Conducted limit (dl Quasi-peak 66 to 56*	Average 56 to 46*				
	0.5-5 5-30 *Decreases with the logarithm of t	56 60 he frequency.	46 50				

6.1.1 E.U.T. Operation:

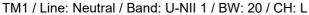
Operating Environment:					
Temperature:	25.5 °C				
Humidity:	50.6 %				
Atmospheric Pressure:	1010 mbar				

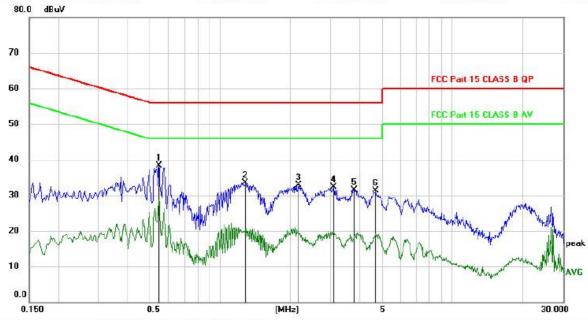
6.1.2 Test Setup Diagram:



6.1.3 Test Data:

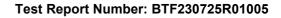
TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.2460	23.22	9.83	33.05	61.89	-28.84	peak		
2	0.5730	24.77	9.83	34.60	56.00	-21.40	peak		
3	1.2870	25.10	9.82	34.92	56.00	-21.08	peak		
4 *	1.7010	25.73	9.78	35.51	56.00	-20.49	peak		
5	4.0529	20.36	9.85	30.21	56.00	-25.79	peak		
6	5.5560	19.63	9.91	29.54	60.00	-30.46	peak		


(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin



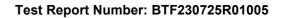
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.5460	28.47	9.83	38.30	56.00	-17.70	peak		
2		1.2870	23.71	9.82	33.53	56.00	-22.47	peak		
3		2.1840	23.04	9.77	32.81	56.00	-23.19	peak		
4		3.0870	22.51	9.81	32.32	56.00	-23.68	peak		
5		3.7830	21.73	9.84	31.57	56.00	-24.43	peak		
6		4.6950	21.33	9.88	31.21	56.00	-24.79	peak		

Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin

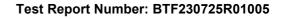
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

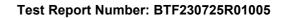
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:


Please Refer to Appendix for Details.

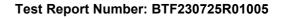
6.3 Maximum conducted output power

6.3 Waximum cond	ucted output power
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so
	that narrowband signals are not lost between frequency bins.) e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal
	using the instrument's band power measurement function, with band limits set equal to the
	EBW or OBW band edges. If the instrument does not have a band power function, then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%
	OBW of the spectrum.

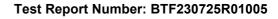
6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar


6.3.2 Test Data:

Please Refer to Appendix for Details.

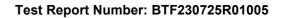
6.4 Power spectra	l density
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter


following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable:		conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
of continuous transmission or are corrected upward for duty cycle.	Procedure:	instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a). 2) Set VBW >= [3 × RBW]. 3) Care shall be taken such that the measurements are performed during a period
6.4.1 F.I.T. Operation:		of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.4.2 Test Data:


Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

6.5 Emission ban	dwidth and occupied bandwidth	
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.	
rest requirement.	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)	
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2	
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.	
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.	
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat	
	measurement as needed until the RBW/EBW ratio is approximately 1%.	
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times	
	the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of	
	the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the	
Procedure:	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the	
	maximum input mixer level for linear operation. In general, the peak of the spectral envelope	
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.	
	d) Step a) through step c) might require iteration to adjust within the specified range.	
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode	
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.	
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.	
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are	
	recovered and directly summed in linear power terms. The recovered amplitude data points,	
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the	

total is reached;

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

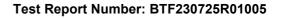
the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

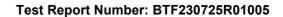
6 dB emission bandwidth:


- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

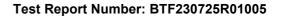
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

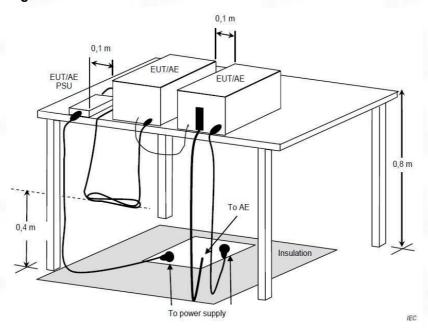
6.6 Band edge en	nissions (Radiated)					
	47 CFR Part 15.407(b)					
Test Requirement:	47 CFR Part 15.407(b)(2)					
rest Requirement.	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(4)				
	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(10)				
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
		ing in the 5.15-5.25 Gh nall not exceed an e.i.r.				
		For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.				
	For transmitters operat	ting solely in the 5.725-	5.850 GHz band	l:		
	All emissions shall be lor below the band edge, a linearly to a level of 15 from 5 MHz above or be	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27				
	dBm/MHz at the band	edge.				
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4		
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025 12.57675-12.57725 13.36-13.41	240-285 322-335.4	3345.8-3358 3600-4400	36.43-36.5 (²)		
	¹ Until February 1, 1999	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.				
	² Above 38.6	² Above 38.6				
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.					
	Except as provided els	ewhere in this subpart,	the emissions fi	rom an intentional		
		,				


radiator shall not exceed the field strength levels specified in the following table:		
Frequency (MHz)	Field strength	Measurement
	(microvolts/meter)	distance
		(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3
Above 1GHz:		

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

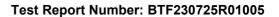
6.6.1 E.U.T. Operation:

Procedure:

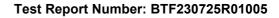

Operating Environment:	
Temperature:	25.5 °C

Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

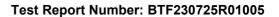
6.6.2 Test Setup Diagram:



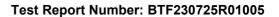
6.6.3 Test Data:


Band1

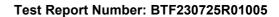
Mode:		802	.11a	Frequency:		5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	86.49	-32.23	54.26	68.20	-13.94	PK
V	5150.00	86.55	-32.42	54.13	68.20	-14.07	PK
Mo	ode:	802	.11a	Frequ	iency:	5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	75.95	-32.23	43.73	54.00	-10.27	AV
V	5150.00	75.46	-32.42	43.04	54.00	-10.96	AV
Мо	ode:	802.11a		Frequ	iency:	5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detecto
FOI.		(ubuv)		(/ / / /			
H	5350.00	86.06	-33.22	52.83	68.20	-15.37	PK
	5350.00 5350.00		-33.22 -32.37	+ \	68.20 68.20	-15.37 -15.76	PK PK
H V	5350.00	86.06 84.81	-32.37	52.83 52.44	68.20	-15.76	PK
H V		86.06 84.81 802		52.83 52.44 Frequ		-15.76	
H V	5350.00	86.06 84.81	-32.37	52.83 52.44	68.20	-15.76	PK)MHz
H V Mo	5350.00 ode: Frequency	86.06 84.81 802 Reading Level	-32.37 -11a Factor	52.83 52.44 Frequence Measure Level	68.20 lency:	-15.76 5240 Over	PK



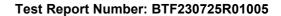
Mode:		802.11r	n(HT20)	Frequency:		5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	85.59	-30.70	54.89	68.20	-13.31	PK
V	5150.00	86.98	-31.96	55.02	68.20	-13.18	PK
Mo	ode:	802.11r	n(HT20)	Frequ	iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	75.34	-30.70	44.64	54.00	-9.36	AV
V	5150.00	76.07	-31.96	44.11	54.00	-9.89	AV
Mo	ode:	802.11r	n(HT20)	Frequ	iency:	5240)MHz
Antenna Pol.	Frequency (MHz)	802.11r Reading Level (dBuV)	Factor (dB/m)	Frequ Measure Level (dBuV/m)	Limit (dBuV/m)	5240 Over limit(dB)	
Antenna	Frequency	Reading Level	Factor	Measure Level	Limit	Over	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Antenna Pol. H	Frequency (MHz) 5350.00	Reading Level (dBuV) 87.48	Factor (dB/m) -33.47	Measure Level (dBuV/m) 54.01	Limit (dBuV/m) 68.20	Over limit(dB)	Detector PK
Antenna Pol. H V	Frequency (MHz) 5350.00	Reading Level (dBuV) 87.48	Factor (dB/m) -33.47 -30.31	Measure Level (dBuV/m) 54.01 55.01	Limit (dBuV/m) 68.20	Over limit(dB) -14.19 -13.19	Detector PK
Antenna Pol. H V	Frequency (MHz) 5350.00 5350.00	Reading Level (dBuV) 87.48 85.33	Factor (dB/m) -33.47 -30.31	Measure Level (dBuV/m) 54.01 55.01	Limit (dBuV/m) 68.20 68.20	Over limit(dB) -14.19 -13.19	Detector PK PK
Antenna Pol. H V Mo	Frequency (MHz) 5350.00 5350.00 ode: Frequency	Reading Level (dBuV) 87.48 85.33 802.11r Reading Level	Factor (dB/m) -33.47 -30.31 n(HT20) Factor	Measure Level (dBuV/m) 54.01 55.01 Frequ Measure Level	Limit (dBuV/m) 68.20 68.20 ency:	Over limit(dB) -14.19 -13.19 5240 Over	PK PK PMHz



Mode:		802.11a	c(HT20)	Frequ	uency:	5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	84.43	-34.25	50.18	68.20	-18.02	PK
V	5150.00	85.23	-32.75	52.47	68.20	-15.73	PK
N	lode:	802.11a	c(HT20)	Frequ	uency:	5180	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	75.18	-34.25	40.92	54.00	-13.08	AV
V	5150.00	74.50	-32.75	41.75	54.00	-12.25	AV
N	lode:	802.11ac(HT20)		Frequency:		5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	85.26	-30.69	54.57	68.20	-13.63	PK
V	5350.00	87.58	-32.33	55.24	68.20	-12.96	PK
N	lode:	802.11ac(HT20)		Frequency:		5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	74.37	-30.69	43.67	54.00	-10.33	AV
	5350.00	73.84	-32.33	41.51	54.00	-12.49	AV

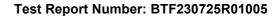


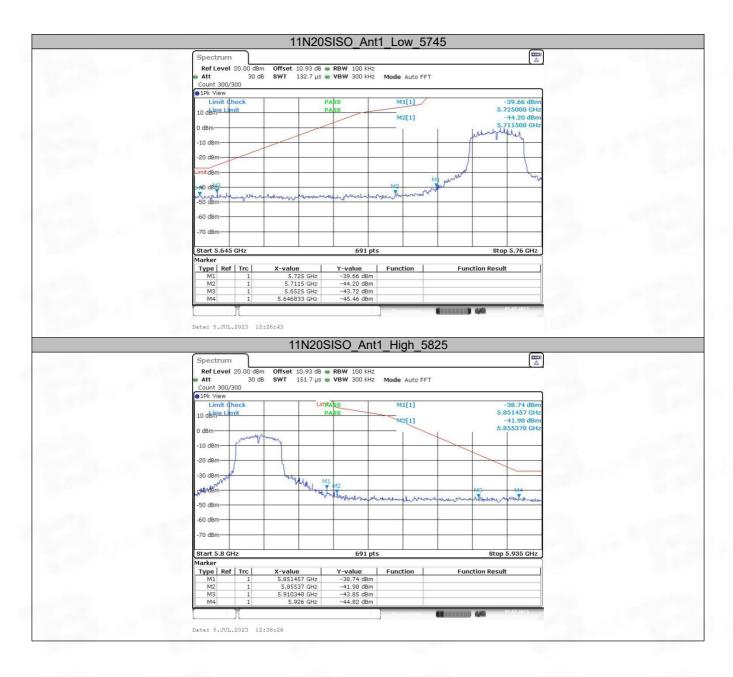
Mode:		802.11n	(HT40)	Frequ	iency:	5190MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	84.49	-33.38	51.11	68.20	-17.09	PK
V	5150.00	88.17	-33.71	54.46	68.20	-13.74	PK
M	ode:	802.11r	ı(HT40)	Frequency:		5190MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	76.81	-33.38	43.43	54.00	-10.57	AV
V	5150.00	73.79	-33.71	40.08	54.00	-13.92	AV
M	ode:	802.11n(HT40)		Frequency:		5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	84.26	-31.87	52.39	68.20	-15.81	PK
V	5350.00	86.86	-31.60	55.25	68.20	-12.95	PK
Mode:		802.11n(HT40)		Frequency:		5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	77.18	-31.87	45.31	54.00	-8.69	AV
V	5350.00	72.39	-31.60	40.78	54.00	-13.22	AV

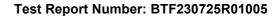


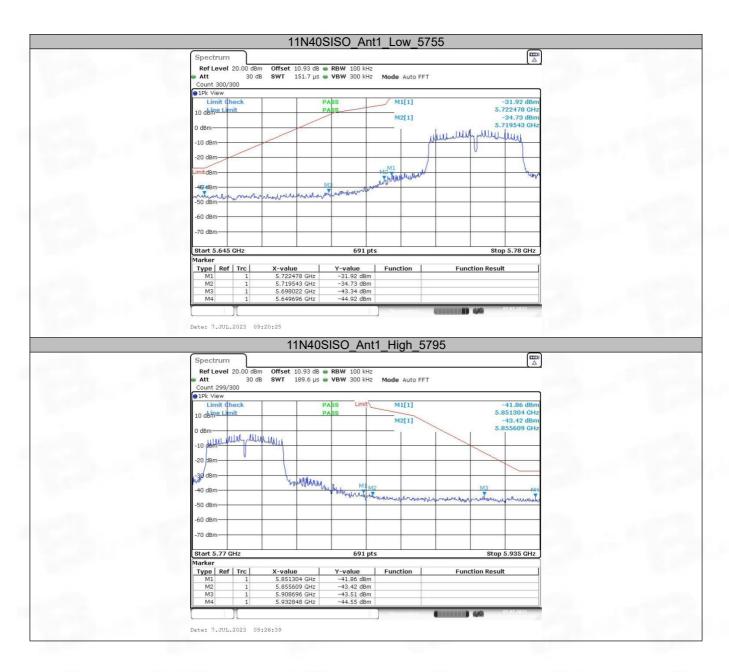
Mode:		802.11a	c(HT40)	Frequ	iency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	85.46	-30.45	55.01	68.20	-13.19	PK
V	5150.00	87.45	-31.49	55.96	68.20	-12.24	PK
M	ode:	802.11a	c(HT40)	Frequ	iency:	5190	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	75.35	-30.45	44.90	54.00	-9.10	AV
V	5150.00	74.96	-31.49	43.47	54.00	-10.53	AV
M	ode:	802.11ac(HT40)		Frequ	iency:	5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	84.33	-34.02	50.30	68.20	-17.90	PK
V	5350.00	88.05	-32.47	55.58	68.20	-12.62	PK
Mode:		802.11ac(HT40)		Frequency:		5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	73.64	-34.02	39.62	54.00	-14.38	AV
V	5350.00	76.03	-32.47	43.56	54.00	-10.44	AV

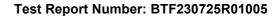


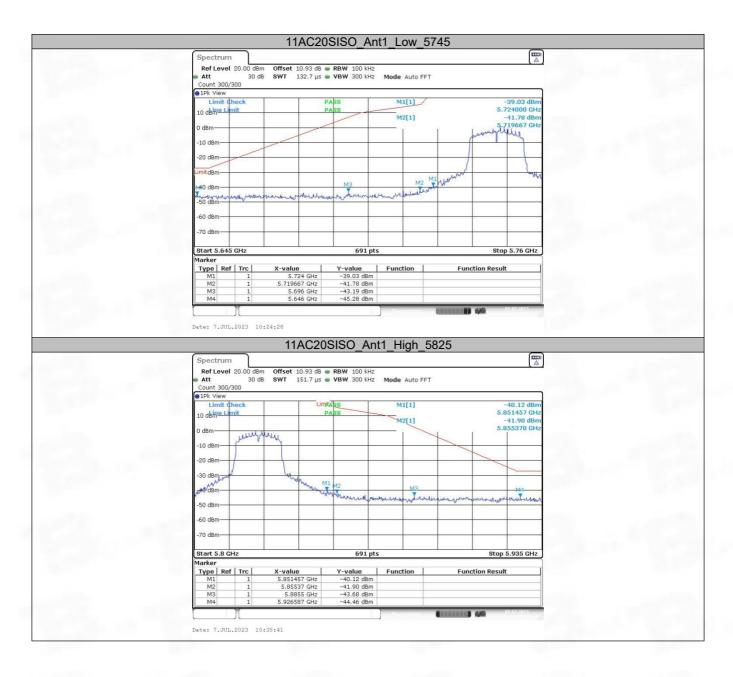

Mode:		802.11a	c(HT80)	Frequ	iency:	5210	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	88.00	-31.63	56.37	68.20	-11.83	PK
V	5150.00	85.77	-32.83	52.93	68.20	-15.27	PK
M	ode:	802.11a	c(HT80)	Frequ	iency:	5210)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	75.55	-31.63	43.92	54.00	-10.08	AV
V	5150.00	73.02	-32.83	40.19	54.00	-13.81	AV
М	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
H_	5350.00	86.91	-32.69	54.22	68.20	-13.98	PK
V	5350.00	86.54	-31.17	55.37	68.20	-12.83	PK
N	ode:	902.110	o(UT90)	Frogu	Ionova	F240)MHz
Antenna Pol.	Frequency (MHz)	802.11a Reading Level (dBuV)	Factor	Measure Level (dBuV/m)	Limit	Over limit(dB)	Detector
	5050.00	77.35	-32.69	44.66	54.00	-9.34	AV
Н	5350.00	1 11.00	02.00	1			, Av

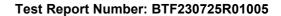


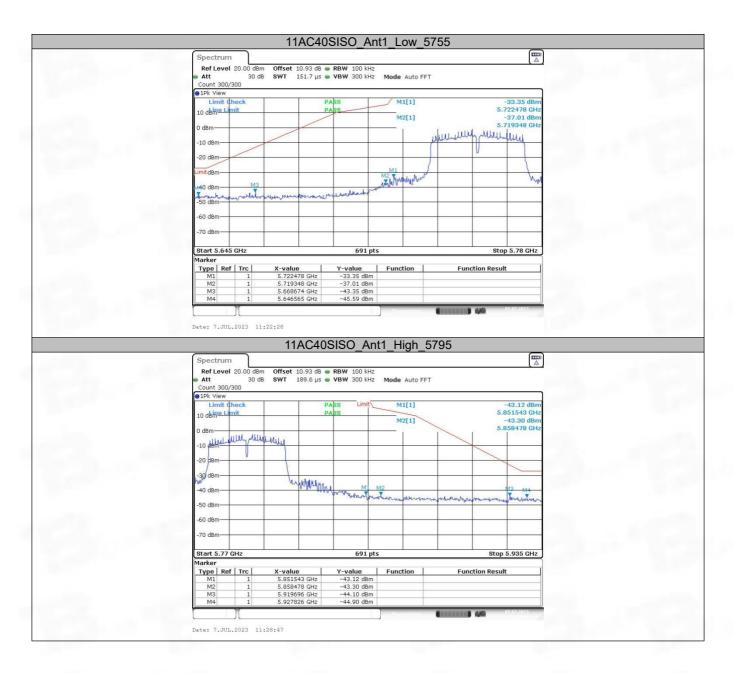

Band4

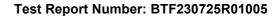


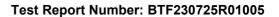


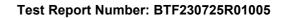






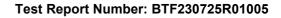






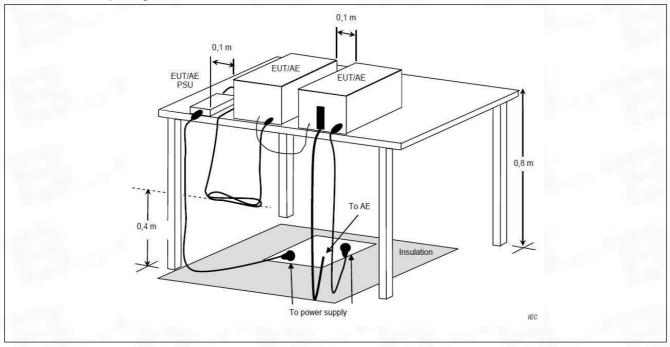
6.7 Undesirable emission limits (below 1GHz)

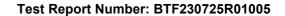
Test Requirement:	47 CFR Part 15.407(b)(9	,						
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6							
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.							
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength Measurement							
Test Limit:		(microvolts/meter)	distance (meters)					
	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)	300 30					
	1.705-30.0 30-88	30 100 **	30 3					
	88-216 216-960	150 ** 200 **	3 3					
	Above 960	500	3					
Procedure:	above the ground at a 3 degrees to determine the b. The EUT was set 3 or which was mounted on to. The antenna height is determine the maximum polarizations of the antend. For each suspected of the antenna was tuned to for below 30MHz, the antenna was turned from 0 degree. The test-receiver syst Bandwidth with Maximum f. If the emission level of specified, then testing correported. Otherwise the re-tested one by one us data sheet. g. Test the EUT in the load. The radiation measur Transmitting mode, and i. Repeat above proceduremark: 1. Level= Read Level+ (2. Scan from 9kHz to 30 points marked on above testing, so only above premissions from the radiationed not be reported. 3. The disturbance below	EUT was placed on the top of meter semi-anechoic chamber position of the highest radiate 10 meters away from the interest to the top of a variable-height and varied from one meter to four a value of the field strength. Both are set to make the measurements are set to make the measurements are set to make the measurements are to 4 meters and 10 meters of	er. The table was rotated 360 tion. Inference-receiving antenna, tenna tower. In meters above the ground to oth horizontal and vertical urement. In the do its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be odB margin would be cified and then reported in a neel, the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. In the Highest channel. It is the worst case. It is the worst case.					



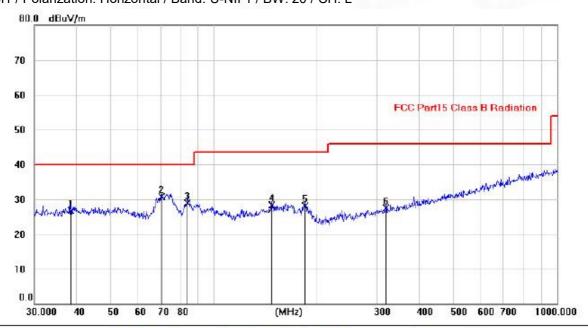
Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

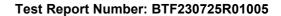

6.7.1 E.U.T. Operation:


Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

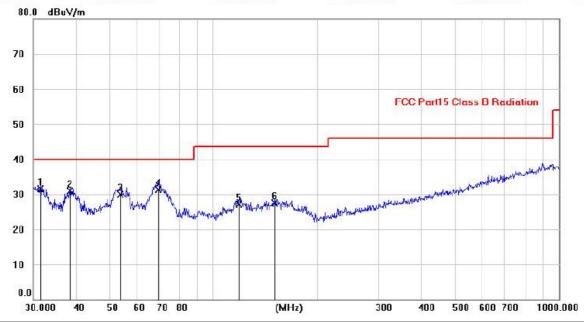
6.7.2 Test Setup Diagram:



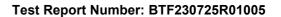
6.7.3 Test Data:


Note: All the mode have been tested, and only the worst case mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.3964	12.53	14.26	26.79	40.00	-13.21	QP			
2	*	70.3365	19.46	11.27	30.73	40.00	-9.27	QP			
3		84.1100	18.93	9.96	28.89	40.00	-11.11	QP			
4		147.4036	13.59	14.81	28.40	43.50	-15.10	QP			
5		184.5707	16.07	12.06	28.13	43.50	-15.37	QP			
6	,	318.2585	12.85	14.57	27.42	46.00	-18.58	QP			

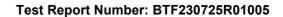

Note:1. *: Maximum data; x: Over limit; !: over margin.

Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.



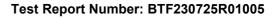
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	31.5925	17.88	13.64	31.52	40.00	-8.48	QP			
2		38.3462	16.58	14.25	30.83	40.00	-9.17	QP			
3		53.7167	16.28	13.69	29.97	40.00	-10.03	QP			
4		69.2050	20.00	11.37	31.37	40.00	-8.63	QP			
5		118.1862	14.29	12.77	27.06	43.50	-16.44	QP			
6	100	150.1423	12.44	14.99	27.43	43.50	-16.07	QP			

Note:1. *: Maximum data; x: Over limit; !: over margin.


^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

6.8 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b) 47 CFR Part 15.407(b) 47 CFR Part 15.407(b) 47 CFR Part 15.407(b)	(2) (4)		2-7				
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6							
	5.15-5.35 GHz band sh For transmitters operat	ing in the 5.15-5.25 Gh nall not exceed an e.i.r. ting in the 5.25-5.35 Gh nall not exceed an e.i.r.	p. of −27 dBm/M Iz band: All emis	IHz. ssions outside of the				
	All emissions shall be I or below the band edge	e increasing linearly to and from 25 MHz above .6 dBm/MHz at 5 MHz a below the band edge inc	dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below t	MHz or more above 25 MHz above or and edge increasing the band edge, and				
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505 2.1735-2.1905 4.125-4.128	16.69475-16.69525 16.80425-16.80475 25.5-25.67	608-614 960-1240 1300-1427	5.35-5.46 7.25-7.75 8.025-8.5				
	4.17725-4.17775 4.20725-4.20775	37.5-38.25 73-74.6	1435-1626.5 1645.5-1646. 5	9.0-9.2 9.3-9.5				
	6.215-6.218 6.26775-6.26825	74.8-75.2 108-121.94	1660-1710 1718.8-1722. 2	10.6-12.7 13.25-13.4				
Test Limit:	6.31175-6.31225 8.291-8.294 8.362-8.366	123-138 149.9-150.05 156.52475-156.525 25	2200-2300 2310-2390 2483.5-2500	14.47-14.5 15.35-16.2 17.7-21.4				
	8.37625-8.38675 8.41425-8.41475	156.7-156.9 162.0125-167.17	2690-2900 3260-3267	22.01-23.12 23.6-24.0				
	12.29-12.293 12.51975-12.52025 12.57675-12.57725 13.36-13.41	167.72-173.2 240-285 322-335.4	3332-3339 3345.8-3358 3600-4400	31.2-31.8 36.43-36.5 (²)				
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6							
	The field strength of en exceed the limits show MHz, compliance with measurement instrume 1000 MHz, compliance based on the average 15.35apply to these me	n in § 15.209. At frequenthe limits in § 15.209sh entation employing a Cl with the emission limit value of the measured	encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha	or less than 1000 ated using a detector. Above all be demonstrated				
	Except as provided els radiator shall not excee Frequency (MHz)	ewhere in this subpart, ed the field strength lev Field strength	els specified in t					


		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Procedure:	above the ground at a degrees to determine to b. The EUT was set 3 was mounted on the to c. The antenna height determine the maximular polarizations of the and d. For each suspected the antenna was tuned of below 30MHz, the alwas turned from 0 degle. The test-receiver sy Bandwidth with Maxim f. If the emission level specified, then testing reported. Otherwise the re-tested one by one win a data sheet. g. Test the EUT in the h. The radiation measurent the eut of below the EUT in the h. The radiation measurent the eut of below th	e EUT was placed on the top of 3 meter fully-anechoic chamber the position of the highest radial meters away from the interference of a variable-height antennation is varied from one meter to four movalue of the field strength. But tenna are set to make the meast emission, the EUT was arranged to heights from 1 meter to 4 montenna was tuned to heights 1 movers to 360 degrees to find the stem was set to Peak Detect Fulum Hold Mode. To the EUT in peak mode was 1 could be stopped and the peak elemissions that did not have 10 string peak or average method as lowest channel, the middle charturements are performed in X, Y, do found the X axis positioning we dures until all frequencies meast and the could be stopped and the charturements are the highest emission points had been displayed. The diator which are attenuated more chion, for frequencies above 1GH limits. However, the peak field sum permitted average limits spend of modulation. For the emission only the peak measurement is to be 18GHz were very low and the position of the peak measurement is to the strength of the peak measurement is to the strength of modulation. For the emission only the peak measurement is to the strength of modulation. For the emission only the peak measurement is to the strength of modulation. For the emission only the peak measurement is to the strength of modulation.	r. The table was rotated 360 tion. Ince-receiving antenna, which tower. In meters above the ground to oth horizontal and vertical surement. Index to its worst case and then eters (for the test frequency meter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be odB margin would be a specified and then reported anel, the Highest channel. It is the worst case. In a value of specified Preamp Factor In 18GHz was very low. The maximum reading for which it is the worst case. In a value of spurious than 20dB below the limit of the specified above by more than 20 ons whose peak level is lower shown in the report.

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

highest point could be found when testing, so only the above harmonics had been

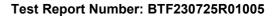
displayed.

6.8.2 Test Data:

UNII-1 20M 5180MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4477.178	79.04	-27.61	51.43	68.20	-16.77	peak	Р
2	6455.279	81.08	-27.87	53.22	68.20	-14.98	peak	Р
3	9070.055	83.18	-28.62	54.55	68.20	-13.65	peak	Р
4	10049.768	83.42	-29.04	54.38	68.20	-13.82	peak	Р
5	12352.388	84.57	-30.39	54.17	68.20	-14.03	peak	Р
6	16010.533	85.00	-32.27	52.72	68.20	-15.48	peak	Р

UNII-1 20M 5180MHz Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4477.633	78.92	-28.01	50.91	68.20	-17.29	peak	Р
2	6454.095	81.49	-28.33	53.16	68.20	-15.04	peak	Р
3	9069.854	82.47	-28.90	53.56	68.20	-14.64	peak	Р
4	10050.542	83.87	-29.57	54.30	68.20	-13.90	peak	Р
5	12352.028	84.60	-29.27	55.32	68.20	-12.88	peak	Р
6	16010.415	85.68	-32.28	53.40	68.20	-14.80	peak	Р

UNII-1 20M 5240MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3465.086	79.64	-27.53	52.10	68.20	-16.10	peak	Р
2	5442.228	81.24	-28.34	52.90	68.20	-15.30	peak	Р
3	8057.764	82.63	-28.90	53.73	68.20	-14.47	peak	Р
4	9037.799	84.58	-29.57	55.02	68.20	-13.18	peak	Р
5	11339.715	85.03	-30.39	54.64	68.20	-13.56	peak	Р
6	14998.395	85.67	-32.17	53.49	68.20	-14.71	peak	Р

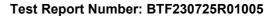
UNII-1 20M 5240MHz Vertical

					_			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3465.596	79.51	-27.84	51.68	68.20	-16.52	peak	Р
2	5443.180	82.18	-27.20	54.98	68.20	-13.22	peak	Р
3	8058.078	83.16	-28.23	54.94	68.20	-13.26	peak	Р
4	9038.024	84.73	-28.81	55.92	68.20	-12.28	peak	Р
5	11340.190	85.91	-29.12	56.79	68.20	-11.41	peak	Р
6	14999.240	86.52	-31.85	54.66	68.20	-13.54	peak	Р

UNII-3 20M 5745MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3511.759	79.58	-26.67	52.91	68.20	-15.29	peak	Р
2	5488.966	80.86	-27.22	53.64	68.20	-14.56	peak	Р
3	8103.854	82.64	-27.72	54.91	68.20	-13.29	peak	Р
4	9084.083	84.61	-29.34	55.26	68.20	-12.94	peak	Р
5	11385.760	83.96	-29.22	54.74	68.20	-13.46	peak	Р
6	15048.034	85.20	-31.55	53.66	68.20	-14.54	peak	Р

UNII-3 20M 5745MHz Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3511.325	79.09	-27.70	51.39	68.20	-16.81	peak	Р
2	5488.218	80.12	-27.18	52.94	68.20	-15.26	peak	Р
3	8103.838	81.83	-27.90	53.94	68.20	-14.26	peak	Р
4	9083.398	83.84	-28.49	55.35	68.20	-12.85	peak	Р
5	11385.762	84.11	-29.98	54.13	68.20	-14.07	peak	Р
6	15047.771	86.56	-31.31	55.26	68.20	-12.94	peak	Р

UNII-3 20M 5785MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4002.315	78.53	-26.80	51.73	68.20	-16.47	peak	Р
2	5979.760	80.50	-28.09	52.40	68.20	-15.80	peak	Р
3	8595.235	82.86	-27.38	55.48	68.20	-12.72	peak	Р
4	9575.659	83.26	-28.85	54.40	68.20	-13.80	peak	Р
5	11876.102	84.59	-28.89	55.70	68.20	-12.50	peak	Р
6	15535.738	84.63	-31.27	53.35	68.20	-14.85	peak	Р

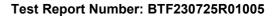
UNII-3 20M 5785MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4002.623	79.76	-27.23	52.52	68.20	-15.68	peak	Р
2	5979.086	80.49	-27.45	53.04	68.20	-15.16	peak	Р
3	8594.964	82.34	-27.17	55.17	68.20	-13.03	peak	Р
4	9575.402	84.44	-28.81	55.62	68.20	-12.58	peak	Р
5	11876.979	84.08	-29.50	54.57	68.20	-13.63	peak	Р
6	15536.002	85.04	-31.59	53.45	68.20	-14.75	peak	Р

UNII-3 20M 5825MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4012.231	79.94	-26.66	53.28	68.20	-14.92	peak	Р
2	5990.036	81.38	-27.60	53.77	68.20	-14.43	peak	Р
3	8605.072	83.14	-27.29	55.85	68.20	-12.35	peak	Р
4	9584.484	84.25	-28.07	56.18	68.20	-12.02	peak	Р
5	11887.298	85.61	-28.56	57.05	68.20	-11.15	peak	Р
6	15545.742	86.60	-30.61	55.99	68.20	-12.21	peak	Р

UNII-3 20M 5825MHz Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4012.318	79.77	-26.40	53.37	68.20	-14.83	peak	Р
2	5989.768	81.56	-27.21	54.35	68.20	-13.85	peak	Р
3	8604.853	83.50	-27.68	55.83	68.20	-12.37	peak	Р
4	9585.376	84.66	-27.83	56.83	68.20	-11.37	peak	Р
5	11886.874	85.51	-28.99	56.52	68.20	-11.68	peak	Р
6	15545.471	86.06	-31.15	54.92	68.20	-13.28	peak	Р

UNII-1_40M_5190MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.251	80.54	-27.72	52.82	68.20	-15.38	peak	Р
2	6646.376	82.74	-27.78	54.96	68.20	-13.24	peak	Р
3	9261.303	83.78	-27.61	56.16	68.20	-12.04	peak	Р
4	10241.404	85.10	-28.40	56.70	68.20	-11.50	peak	Р
5	12542.711	85.54	-28.74	56.80	68.20	-11.40	peak	Р
6	16201.060	86.65	-31.49	55.16	68.20	-13.04	peak	Р

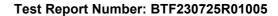
UNII-1 & 2A 40M 5190MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.792	81.08	-27.28	53.80	68.20	-14.40	peak	Р
2	6645.070	82.53	-27.89	54.64	68.20	-13.56	peak	Р
3	9260.727	84.06	-27.74	56.33	68.20	-11.87	peak	Р
4	10240.328	86.04	-28.26	57.79	68.20	-10.41	peak	Р
5	12542.600	85.31	-28.83	56.48	68.20	-11.72	peak	Р
6	16201.794	86.57	-31.48	55.09	68.20	-13.11	peak	Р

UNII-1 40M 5230MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.318	79.09	-27.51	51.58	68.20	-16.62	peak	Р
2	6645.606	81.60	-28.05	53.56	68.20	-14.64	peak	Р
3	9260.689	82.87	-28.30	54.57	68.20	-13.63	peak	Р
4	10241.885	83.57	-28.39	55.19	68.20	-13.01	peak	Р
5	12543.028	85.13	-28.64	56.50	68.20	-11.70	peak	Р
6	16201.890	86.30	-31.42	54.87	68.20	-13.33	peak	Р

UNII-1_40M_5230MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.745	78.90	-27.30	51.60	68.20	-16.60	peak	Р
2	6645.815	80.61	-27.81	52.80	68.20	-15.40	peak	Р
3	9261.038	82.08	-27.16	54.93	68.20	-13.27	peak	Р
4	10242.030	84.69	-28.43	56.25	68.20	-11.95	peak	Р
5	12543.292	84.73	-28.45	56.28	68.20	-11.92	peak	Р
6	16201.557	86.56	-31.93	54.63	68.20	-13.57	peak	Р

UNII-3 40M 5755MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2910.971	75.00	-30.53	44.47	68.20	-23.73	peak	Р
2	4011.304	75.03	-30.96	44.07	68.20	-24.13	peak	Р
3	6286.025	78.58	-31.15	47.43	68.20	-20.77	peak	Р
4	9587.627	84.29	-32.19	52.10	68.20	-16.10	peak	Р
5	11467.555	85.12	-34.08	51.04	68.20	-17.16	peak	Р
6 *	17014.136	81.82	-30.71	51.12	68.20	-17.08	peak	Р

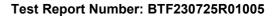
UNII-3 40M 5755MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2911.099	74.35	-29.98	44.38	68.20	-23.82	peak	Р
2	4011.317	76.53	-30.97	45.55	68.20	-22.65	peak	Р
3	6286.711	78.64	-30.91	47.73	68.20	-20.47	peak	Р
4	9587.248	84.02	-31.49	52.53	68.20	-15.67	peak	Р
5	11467.274	84.53	-33.58	50.95	68.20	-17.25	peak	Р
6	17014.341	81.52	-30.86	50.66	68.20	-17.54	peak	Р

UNII-3	40M	5795MHz	Horizontal
OTAIL-O	TOIVI		I IOHZOHIGH

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3615.200	78.78	-27.93	50.85	68.20	-17.35	peak	Р
2	5591.532	81.01	-27.60	53.41	68.20	-14.79	peak	Р
3	8206.920	82.56	-28.07	54.50	68.20	-13.70	peak	Р
4	9187.480	84.29	-28.66	55.62	68.20	-12.58	peak	Р
5	11489.241	84.01	-29.35	54.67	68.20	-13.53	peak	Р
6	15147.462	86.44	-31.30	55.14	68.20	-13.06	peak	Р

UNII-3_40M_5795MHz_Vertical

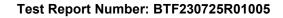

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3615.072	79.11	-27.38	51.73	68.20	-16.47	peak	Р
2	5592.004	81.24	-27.49	53.75	68.20	-14.45	peak	Р
3	8206.561	82.84	-27.76	55.08	68.20	-13.12	peak	Р
4	9186.671	84.65	-28.93	55.72	68.20	-12.48	peak	Р
5	11488.542	84.86	-29.39	55.47	68.20	-12.73	peak	Р
6	15147.283	86.67	-31.88	54.79	68.20	-13.41	peak	Р

UNII-1 80M 5210MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.321	79.17	-26.81	52.36	68.20	-15.84	peak	Р
2	6645.459	81.65	-27.53	54.12	68.20	-14.08	peak	Р
3	9261.307	83.52	-27.14	56.38	68.20	-11.82	peak	Р
4	10241.498	84.36	-27.94	56.42	68.20	-11.78	peak	Р
5	12542.347	85.04	-29.02	56.01	68.20	-12.19	peak	Р
6	16202.025	85.44	-31.17	54.28	68.20	-13.92	peak	Р

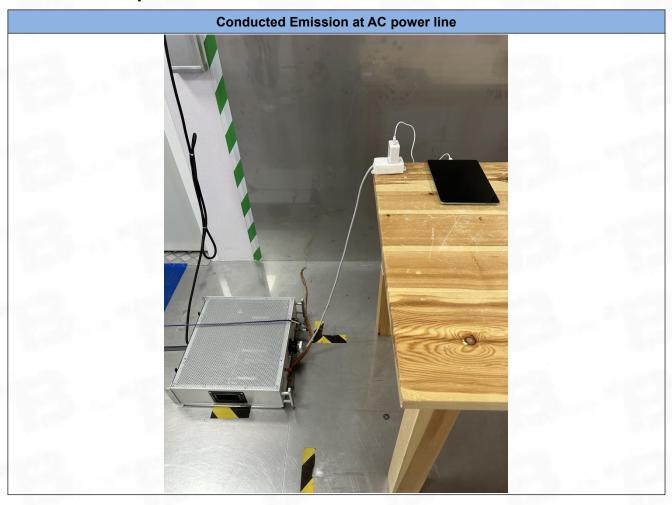
UNII-1 80M 5210MHz Vertical

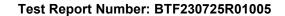
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.264	78.86	-27.26	51.60	68.20	-16.60	peak	Р
2	6646.051	81.35	-27.38	53.97	68.20	-14.23	peak	Р
3	9261.221	82.81	-27.13	55.67	68.20	-12.53	peak	Р
4	10241.103	84.07	-28.16	55.91	68.20	-12.29	peak	Р
5	12542.347	85.07	-29.57	55.50	68.20	-12.70	peak	Р
6	16201.744	85.88	-31.41	54.47	68.20	-13.73	peak	Р

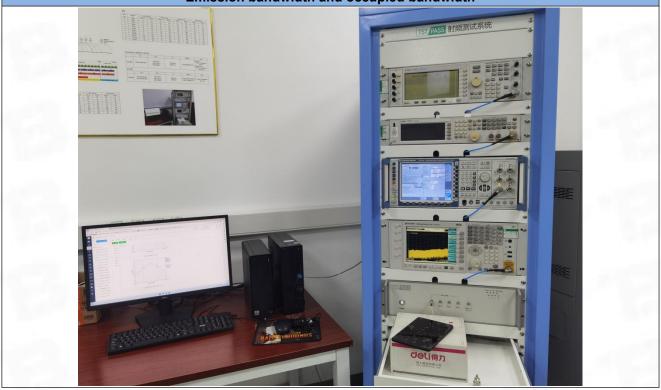


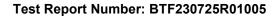
UNII-3 80M 5775MHz Horizontal

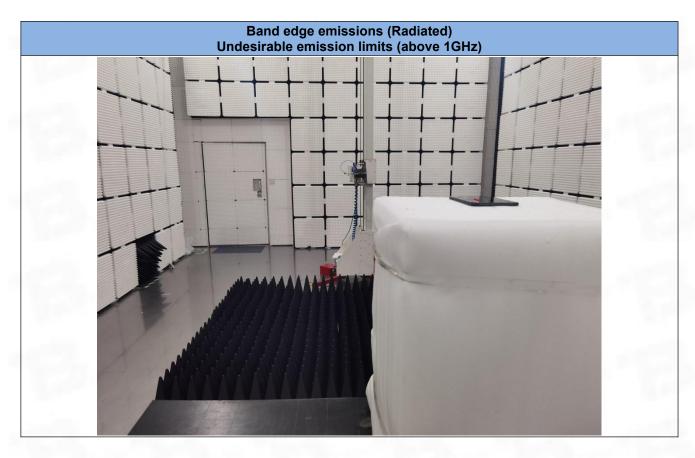
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3614.406	79.59	-28.08	51.50	68.20	-16.70	peak	Р
2	5591.328	81.12	-27.69	53.42	68.20	-14.78	peak	Р
3	8207.482	82.88	-28.40	54.48	68.20	-13.72	peak	Р
4	9187.508	83.48	-28.31	55.16	68.20	-13.04	peak	Р
5	11488.453	84.95	-28.52	56.43	68.20	-11.77	peak	Р
6	15147.846	85.95	-32.10	53.85	68.20	-14.35	peak	Р

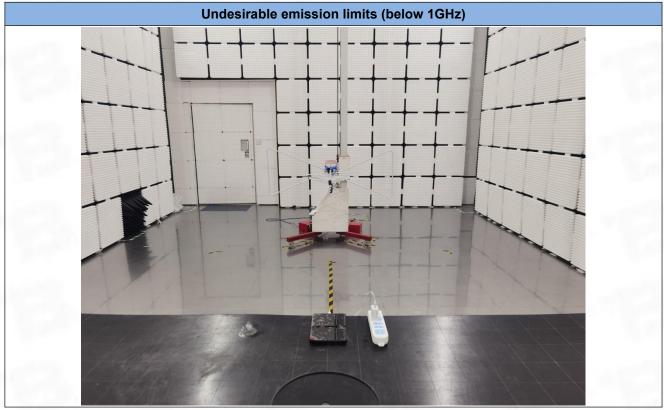

UNII-3_80M_5775MHz_Vertical

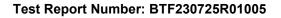

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3613.659	80.12	-27.75	52.36	68.20	-15.84	peak	Р
2	5591.758	81.32	-28.21	53.11	68.20	-15.09	peak	Р
3	8207.016	83.19	-28.13	55.06	68.20	-13.14	peak	Р
4	9186.910	84.08	-28.22	55.86	68.20	-12.34	peak	Р
5	11488.453	85.08	-29.30	55.78	68.20	-12.42	peak	Р
6	15147.928	85.84	-31.79	54.04	68.20	-14.16	peak	Р


Test Setup Photos

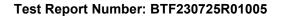





Duty Cycle Maximum conducted output power Power spectral density Emission bandwidth and occupied bandwidth

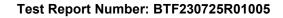


Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 57 of 14 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


8 EUT Constructional Details (EUT Photos)

Please refer to the report No.BTF230725R01001

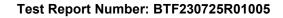
Appendix

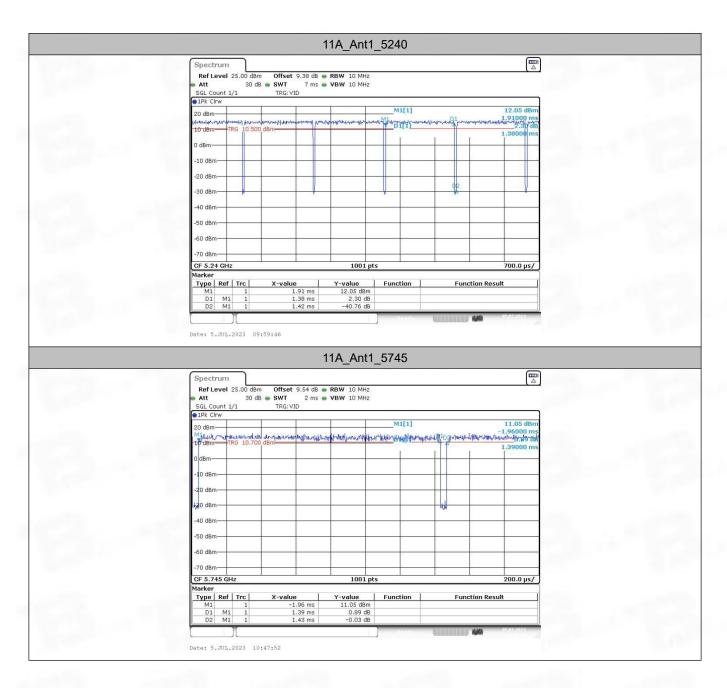


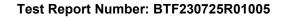
1. Duty Cycle

1.1 Ant1

1.1.1 Test Result


TestMode	Antenna	Freq(MHz)	Transmission	Transmission Period	Duty Cycle	
restivious	Antonna	i req(ivii iz)	Duration [ms]	[ms]	[%]	
11A		5180	1.39	1.43	97.20	
		5200	1.40	1.43	97.90	
	Ant1	5240	1.38	1.42	97.18	
	Anti	5745	1.39	1.43	97.20	
		5785	1.39	1.43	97.20	
		5825	1.39	1.43	97.20	
		5180	1.29	1.34	96.27	
		5200	1.30	1.34	97.01	
11N20SISO	Ant1	5745	1.30	1.33	97.74	
		5785	1.29	1.33	96.99	
		5825	1.29	1.33	96.99	
	Ant1	5190	0.65	0.68	95.59	
11N40SISO		5230	0.65	0.69	94.20	
1111405150		5755	0.65	0.69	94.20	
		5795	0.65	0.68	95.59	
		5180	1.28	1.32	96.97	
		5200	1.28	1.33	96.24	
44.4.0000100	A == 4.1	5240	1.29	1.33	96.99	
11AC20SISO	Ant1	5745	1.29	1.33	96.99	
		5785	1.29	1.33	96.99	
		5825	1.29	1.33	96.99	
		5190	0.64	0.67	95.52	
11.4.0.40.0.0.0	A = 44	5230	0.64	0.67	95.52	
11AC40SISO	Ant1	5755	0.63	0.67	94.03	
		5795	0.63	0.67	94.03	
1110000100	A 1544	5210	0.32	0.36	88.89	
11AC80SISO	Ant1	5775	0.33	0.36	91.67	




1.1.2 Test Graph



