

Мо	ode:	802.11r	n(HT20)	Frequ	lency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	84.77	-32.28	52.49	68.20	-15.71	PK
V	5150.00	82.59	-33.13	49.46	68.20	-18.74	PK
Мо	ode:	802.11n(HT20)		Frequency:		5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	72.50	-30.53	41.97	54.00	-12.03	AV
V	5150.00	73.52	-31.69	41.82	54.00	-12.18	AV
Мо	ode:	802.11r	n(HT20)	Frequency:		5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	86.14	-33.15	53.00	68.20	-15.20	PK
V	5350.00	83.29	-31.59	51.70	68.20	-16.50	PK
Мо	ode:	802.11r	n(HT20)	Frequ	lency:	5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	75.12	-33.17	41.95	54.00	-12.05	AV
V	5350.00	74.87	-33.49	41.38	54.00	-12.62	AV

Μ	lode:	802.11a	c(HT20)	Frequ	uency:	5180	5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5150.00	84.87	-33.59	51.28	68.20	-16.92	PK	
V	5150.00	84.33	-32.44	51.89	68.20	-16.31	PK	
Μ	lode:	802.11a	c(HT20)	Frequ	uency:	5180	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5150.00	73.27	-31.24	42.02	54.00	-11.98	AV	
V	5150.00	75.30	-32.37	42.94	54.00	-11.06	AV	
						•		
Μ	lode:	802.11ac(HT20)		Frequ	uency:	5240MHz		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	84.18	-30.69	53.49	68.20	-14.71	PK	
V	5350.00	83.10	-31.16	51.94	68.20	-16.26	PK	
					10		100	
Μ	lode:	802.11a	c(HT20)	Frequ	uency:	5240MHz		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	75.61	-33.75	41.86	54.00	-12.14	AV	
V	5350.00	73.71	-32.52	41.19	54.00	-12.81	AV	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 32 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

М	ode:	802.11r	n(HT40)	Frequ	Jency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	84.11	-32.80	51.31	68.20	-16.89	РК
V	5150.00	82.88	-33.78	49.10	68.20	-19.10	РК
					•		
М	ode:	802.11r	n(HT40)	Frequ	lency:	zv: 5190MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
н	5150.00	74.87	-32.88	41.98	54.00	-12.02	AV
V	5150.00	72.60	-31.19	41.42	54.00	-12.58	AV
М	ode:	802.11r	1n(HT40) Frequency:		5230	5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	84.98	-33.14	51.83	68.20	-16.37	PK
V	5350.00	83.34	-31.79	51.55	68.20	-16.65	PK
1.5	1.1		1.00				1.000
М	ode:	802.11r	n(HT40)	Frequ	lency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	72.38	-33.94	38.44	54.00	-15.56	AV
V	5350.00	75.05	-30.60	44.46	54.00	-9.54	AV

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 33 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Μ	ode:	802.11a	c(HT40)	Frequ	lency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	82.81	-30.55	52.26	68.20	-15.94	PK
V	5150.00	83.34	-33.36	49.98	68.20	-18.22	PK
	1.0						
Μ	ode:	802.11a	c(HT40)	Frequency:		5190MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	73.49	-31.07	42.42	54.00	-11.58	AV
V	5150.00	72.50	-31.29	41.21	54.00	-12.79	AV
Μ	ode:	802.11a	c(HT40)	Frequ	lency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	82.71	-33.47	49.23	68.20	-18.97	РК
V	5350.00	83.97	-31.56	52.41	68.20	-15.79	PK
		1. State 1.					
M	ode:	802.11a	c(HT40)	Frequ	lency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	74.45	-33.38	41.07	54.00	-12.93	AV
V	5350.00	71.58	-32.56	39.02	54.00	-14.98	AV

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 34 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

М	ode:	802.11a	c(HT80)	Frequ	lency:	5210MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	84.92	-32.33	52.59	68.20	-15.61	PK
V	5150.00	84.68	-30.64	54.04	68.20	-14.16	PK
М	ode:	802.11a	c(HT80)	Frequ	lency:	5210)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	71.79	-30.44	41.35	54.00	-12.65	AV
V	5150.00	73.61	-33.54	40.07	54.00	-13.93	AV
			1000				
М	ode:	802.11a	c(HT80)	Frequ	lency:	5210)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	82.91	-32.33	50.59	68.20	-17.61	РК
V	5350.00	83.32	-31.29	52.04	68.20	-16.16	PK
						-	
М	ode:	802.11a	c(HT80)	Frequ	lency:	5210)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	73.95	-30.52	43.43	54.00	-10.57	AV
V	5350.00	72.36	-33.36	38.99	54.00	-15.01	AV

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 35 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Band4

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 36 of 137

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 37 of 137

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 38 of 137

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 39 of 137

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 40 of 137

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Undesirable emission limits (below 1GHz) 6.7

Test Requirement:	47 CFR Part 15.407(b)(9)						
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6						
	Unwanted emissions below limits set forth in § 15.209.	v 1 GHz must comply with	n the general field strength				
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance				
Test Limit:		· · · · · ·	(meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Procedure:	Below 1GHz: a. For below 1GHz, the EU above the ground at a 3 me degrees to determine the p b. The EUT was set 3 or 10 which was mounted on the c. The antenna height is va determine the maximum va polarizations of the antenna d. For each suspected emi the antenna was tuned to h of below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H f. If the emission level of th specified, then testing coul reported. Otherwise the em re-tested one by one using data sheet. g. Test the EUT in the lower h. The radiation measurem Transmitting mode, and fou i. Repeat above procedure Remark: 1. Level= Read Level+ Cat 2. Scan from 9kHz to 30MH points marked on above plutesting, so only above poin emissions from the radiator need not be reported. 3. The disturbance below 1 point could be found when displayed.	T was placed on the top of eter semi-anechoic cham bosition of the highest rad 0 meters away from the in- top of a variable-height a aried from one meter to fo alue of the field strength. If a are set to make the mea- ssion, the EUT was arran- heights from 1 meter to 4 na was tuned to heights 1 to 360 degrees to find th was set to Peak Detect Hold Mode. e EUT in peak mode was d be stopped and the pea- hissions that did not have quasi-peak method as sp est channel, the middle ch- lents are performed in X, und the X axis positioning s until all frequencies mea- top Loss+ Antenna Factor Hz, the disturbance below ots are the highest emiss ts had been displayed. The r which are attenuated mode GHz was very low and the testing, so only the above	of a rotating table 0.8 meters ber. The table was rotated 360 jation. Iterference-receiving antenna, antenna tower. If meters above the ground to Both horizontal and vertical asurement. ged to its worst case and then meters (for the test frequency meter) and the rotatable table e maximum reading. Function and Specified 10dB lower than the limit ak values of the EUT would be 10dB margin would be becified and then reported in a annel, the Highest channel. Y, Z axis positioning for which it is the worst case. asured was complete. - Preamp Factor 2 30MHz was very low. The ions could be found when he amplitude of spurious ore than 20dB below the limit are harmonics were the highest e harmonics had been				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
 As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 44 of 137BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.3 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L 00.0 dBuV/m

MHz 34.0643	dBuV 9.30	dB 13.70	dBuV/m 23.00	dBuV/m	dB	Detector	cm	degree	Comment
34.0643	9.30	13.70	23.00	40.00					
60.0760	0.04			40.00	-17.00	peak			
00.0700	8.81	13.22	22.03	40.00	-17.97	peak			
196.7165	18.45	11.09	29.54	43.50	-13.96	peak			
331.1997	9.95	14.85	24.80	46.00	-21.20	peak			
500.0086	11.97	18.21	30.18	46.00	-15.82	peak			
States and States	11.14	24.65	35.79	46.00	-10.21	peak			
	331.1997 500.0086 952.5389	331.19979.95500.008611.97952.538911.14	331.19979.9514.85500.008611.9718.21952.538911.1424.65	331.19979.9514.8524.80500.008611.9718.2130.18952.538911.1424.6535.79	331.19979.9514.8524.8046.00500.008611.9718.2130.1846.00952.538911.1424.6535.7946.00	331.1997 9.95 14.85 24.80 46.00 -21.20 500.0086 11.97 18.21 30.18 46.00 -15.82 952.5389 11.14 24.65 35.79 46.00 -10.21	331.1997 9.95 14.85 24.80 46.00 -21.20 peak 500.0086 11.97 18.21 30.18 46.00 -15.82 peak 952.5389 11.14 24.65 35.79 46.00 -10.21 peak	331.1997 9.95 14.85 24.80 46.00 -21.20 peak 500.0086 11.97 18.21 30.18 46.00 -15.82 peak 952.5389 11.14 24.65 35.79 46.00 -10.21 peak	331.1997 9.95 14.85 24.80 46.00 -21.20 peak 500.0086 11.97 18.21 30.18 46.00 -15.82 peak 952.5389 11.14 24.65 35.79 46.00 -10.21 peak

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 45 of 137

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		66.1654	13,11	12.09	25.20	40.00	-14.80	peak			
2		114.0604	8.41	12.32	20.73	43.50	-22.77	peak			
3		210.9338	14.39	11.13	25.52	43.50	-17.98	peak			
4		364.6854	9.93	15.53	25.46	46.00	-20.54	peak			
5	*	500.0086	13.75	18.21	31.96	46.00	-14.04	peak			
6		996.9655	10.38	24.80	35.18	54.00	-18.82	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

6.8 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b) 47 CFR Part 15.407(b) 47 CFR Part 15.407(b) 47 CFR Part 15.407(b) 47 CFR Part 15.407(b)	(1) (2) (4) (10)					
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6						
	For transmitters operati 5.15-5.35 GHz band sh For transmitters operati 5.15-5.35 GHz band sh For transmitters operati All emissions shall be li or below the band edge below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band edge	ing in the 5.15-5.25 GH hall not exceed an e.i.r. ing in the 5.25-5.35 GH hall not exceed an e.i.r. ing solely in the 5.725- mited to a level of -27 the increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz above elow the band edge increasing and edge	Hz band: All emis p. of -27 dBm/N Hz band: All emis p. of -27 dBm/N 5.850 GHz band dBm/MHz at 75 10 dBm/MHz at 75 above or below the ba above or below the creasing linearly	ssions outside of the IHz. ssions outside of the IHz. MHz or more above 25 MHz above or and edge increasing the band edge, and to a level of 27			
	MHz	MHz	MHz	GHz			
	0.090-0.110	16 42-16 423	399 9-410	4 5-5 15			
	¹ 0 495-0 505	16 69475-16 69525	608-614	5 35-5 46			
	2 1735-2 1905	16 80425-16 80475	960-1240	7 25-7 75			
	4 125-4 128	25 5-25 67	1300-1427	8 025-8 5			
	4 17725-4 17775	37 5-38 25	1435-1626 5	9.0-9.2			
	4 20725-4 20775	73-74 6	1645 5-1646	93-95			
	4.20723-4.20773	10-14.0	5	9.0-9.0			
	6 215 6 219	74 9 75 2	1660 1710	10 6 12 7			
	6 26775 6 26825	100 101 01	1719 9 1722	12 25 12 /			
	0.20775-0.20025	100-121.94	1/10.0-1/22.	13.20-13.4			
	6 21175 6 21225	100 100	2	14 47 14 5			
Test Limit:	0.311/5-0.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-10.2			
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4			
	0.07005.0.00075		0000 0000	00.04.00.40			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	(2)			
	13.36-13.41						
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6						
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.						
	Except as provided else radiator shall not excee Frequency (MHz)	ewhere in this subpart, ad the field strength lev Field strength	the emissions fi els specified in t	rom an intentional he following table: Measurement			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 47 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 47 of 137

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1,705-30.0	30	30
	30-88	100 **	3
	88 216	150 **	3
	216.060	200 **	3
	210-900 Above 000	200	5
	Above 960	500	3
	Above 1GHz: a. For above 1GHz, the EL above the ground at a 3 me degrees to determine the p b. The EUT was set 3 meter was mounted on the top of c. The antenna height is var	T was placed on the top of a eter fully-anechoic chamber. osition of the highest radiatio ers away from the interference a variable-height antenna tov ried from one meter to four m	rotating table 1.5 meters The table was rotated 360 n. e-receiving antenna, which wer. neters above the ground to
	polarizations of the antenna	liue of the field strength. Both a are set to make the measur	norizontal and vertical
	d. For each suspected emi	ssion, the EUT was arranged	to its worst case and then
	of below 30MHz, the anten	na was tuned to heights 1 me	eter) and the rotatable table
	was turned from 0 degrees	to 360 degrees to find the m	aximum reading.
	e. The test-receiver system	was set to Peak Detect Fund	ction and Specified
	f If the emission level of th	a ELIT in peak mode was 100	B lower than the limit
	1. If the emission level of the	e EUT III peak mode was too	blues of the EUT would be
	specified, then testing cour	be slopped and the peak va	
	reported. Otherwise the em	lissions that did not have 10d	B margin would be
	re-tested one by one using	peak or average method as s	specified and then reported
Procedure:	in a data sheet.		
	g. lest the EUT in the lowe h. The radiation measurem	st channel, the middle chann ents are performed in X, Y, Z	el, the Highest channel. axis positioning for
	Transmitting mode, and fou	ind the X axis positioning whi	ch it is the worst case.
	i. Repeat above procedure	s until all frequencies measur	ed was complete.
	1 Lovel - Dood Lovel Cok	la Laga L Antanna Fastar, Dr	amp Faster
	2 Soon from 1904 to 100	NE LUSST AILEIIIIA FACIOL- PIC	
	points marked on above pi		could be found when
	testing, so only above poin	is had been displayed. The a	mplitude of spurious
	emissions from the radiator	which are attenuated more t	han 20dB below the limit
	need not be reported.	fan faan waardig die de de de de	the field stress of the back
	3. As shown in this section	for frequencies above 1GHz	, the field strength limits
	are based on average limits not exceed the maximum p dB under any condition of r	b. However, the peak field street ermitted average limits specific nodulation. For the emissions the peak measurement is shown and the second strengthesis and the second strengthest and the secon	ength of any emission shall ied above by more than 20 s whose peak level is lower
	4 The disturbance above 1	8GHz were very low and the	harmonics were the
	highest point could be foun displayed.	d when testing, so only the a	bove harmonics had been

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 48 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 48 of 137

6.8.2 Test Data:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4476.695	78.26	-28.15	50.11	68.20	-18.09	peak	Р
2	6454.826	80.34	-28.47	51.87	68.20	-16.33	peak	Р
3	9069.062	82.22	-29.39	52.83	68.20	-15.37	peak	Р
4	10049.367	83.13	-30.00	53.13	68.20	-15.07	peak	Р
5	12351.808	83.93	-30.55	53.38	68.20	-14.82	peak	Р
6	16009.871	84.60	-32.36	52.23	68.20	-15.97	peak	Р

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4477.471	78.22	-28.28	49.94	68.20	-18.26	peak	Р
2	6453.945	80.90	-29.03	51.86	68.20	-16.34	peak	Р
3	9069.536	82.41	-29.22	53.19	68.20	-15.01	peak	Р
4	10049.997	82.99	-30.23	52.76	68.20	-15.44	peak	Р
5	12351.897	83.97	-30.02	53.95	68.20	-14.25	peak	Р
6	16010.287	84.92	-32.79	52.13	68.20	-16.07	peak	Р

UNII-1_20M_5240MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3464.545	79.06	-28.53	50.53	68.20	-17.67	peak	Р
2	5441.845	80.80	-29.04	51.76	68.20	-16.44	peak	Р
3	8056.925	82.46	-29.26	53.20	68.20	-15.00	peak	Р
4	9037.195	83.76	-30.04	53.72	68.20	-14.48	peak	Р
5	11339.086	84.47	-30.53	53.94	68.20	-14.26	peak	Р
6	14997.697	85.32	-32.92	52.40	68.20	-15.80	peak	Р

UNII-1 20M 5240MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3465.328	79.06	-28.01	51.05	68.20	-17.15	peak	Р
2	5442.664	81.63	-28.16	53.47	68.20	-14.73	peak	Р
3	8057.754	82.50	-28.32	54.18	68.20	-14.02	peak	Р
4	9037.799	84.00	-29.60	54.40	68.20	-13.80	peak	Р
5	11339.379	85.30	-29.90	55.41	68.20	-12.79	peak	Р
6	14998.278	86.19	-32.08	54.12	68.20	-14.08	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 49 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 49 of 137

			UNII-3_20	VI_5745IVIHZ	Horizontai			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3510.811	79.01	-27.19	51.82	68.2	-16.38	peak	Р
2	5488.223	80.21	-28.16	52.05	68.2	-16.15	peak	Р
3	8103.339	82.31	-28.03	54.28	68.2	-13.92	peak	Р
4	9083.709	83.62	-29.59	54.02	68.2	-14.18	peak	Р
5	11385.552	83.64	-29.84	53.80	68.2	-14.40	peak	Р
6	15047.105	84.94	-31.72	53.22	68.2	-14.98	peak	Р

UNII-3_20M_5745MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3511.114	78.10	-27.98	50.12	68.20	-18.08	peak	Р
2	5487.874	79.91	-27.85	52.06	68.20	-16.14	peak	Р
3	8103.799	81.63	-28.39	53.24	68.20	-14.96	peak	Р
4	9083.359	82.93	-29.28	53.65	68.20	-14.55	peak	Р
5	11385.033	83.59	-30.12	53.47	68.20	-14.73	peak	Р
6	15047.219	85.84	-31.50	54.34	68.20	-13.86	peak	Р

UNII-3 20M 5785MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4002.203	78.46	-27.12	51.34	68.20	-16.86	peak	Р
2	5979.607	79.81	-28.17	51.64	68.20	-16.56	peak	Р
3	8594.891	82.01	-28.02	53.98	68.20	-14.22	peak	Р
4	9574.841	82.91	-29.41	53.49	68.20	-14.71	peak	Р
5	11876.078	83.73	-29.85	53.88	68.20	-14.32	peak	Р
6	15534.874	84.47	-31.47	53.00	68.20	-15.20	peak	Р

UNII-3_20M_5785MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4001.635	78.88	-27.39	51.49	68.20	-16.71	peak	Р
2	5979.052	80.42	-27.99	52.43	68.20	-15.77	peak	Р
3	8594.250	82.16	-28.16	54.00	68.20	-14.20	peak	Р
4	9574.801	83.52	-28.84	54.68	68.20	-13.52	peak	Р
5	11876.881	83.36	-29.99	53.37	68.20	-14.83	peak	Р
6	15535.240	84.44	-32.11	52.33	68.20	-15.87	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 50 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4012.003	79.01	-27.23	51.78	68.20	-16.42	peak	Р
2	5989.135	80.76	-27.63	53.13	68.20	-15.07	peak	Р
3	8604.726	82.53	-27.51	55.02	68.20	-13.18	peak	Р
4	9584.333	83.70	-29.06	54.64	68.20	-13.56	peak	Р
5	11886.635	84.87	-28.72	56.15	68.20	-12.05	peak	Р
6	15544.893	85.78	-31.23	54.55	68.20	-13.65	peak	Р

UNII-3_20M_5825MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4011.696	79.26	-27.01	52.25	68.20	-15.95	peak	Р
2	5989.506	81.23	-27.80	53.43	68.20	-14.77	peak	Р
3	8604.592	82.55	-28.05	54.51	68.20	-13.69	peak	Р
4	9584.649	83.73	-28.12	55.60	68.20	-12.60	peak	Р
5	11886.370	84.64	-29.42	55.23	68.20	-12.97	peak	Р
6	15544.925	85.10	-31.64	53.46	68.20	-14.74	peak	Р

UNII-1 40M 5190MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.250	80.36	-27.94	52.42	68.20	-15.78	peak	Р
2	6645.456	81.75	-28.10	53.65	68.20	-14.55	peak	Р
3	9260.624	83.50	-28.54	54.96	68.20	-13.24	peak	Р
4	10240.952	84.47	-28.72	55.76	68.20	-12.44	peak	Р
5	12542.689	85.19	-29.05	56.14	68.20	-12.06	peak	Р
6	16200.811	86.46	-31.75	54.71	68.20	-13.49	peak	Р

UNII-1 & 2A_40M_5190MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.051	80.21	-27.48	52.72	68.20	-15.48	peak	Р
2	6644.891	82.31	-28.39	53.92	68.20	-14.28	peak	Р
3	9260.571	83.36	-27.90	55.46	68.20	-12.74	peak	Р
4	10240.256	85.17	-28.69	56.48	68.20	-11.72	peak	Р
5	12542.304	85.26	-29.34	55.92	68.20	-12.28	peak	Р
6	16201.220	86.00	-31.64	54.35	68.20	-13.85	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 51 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	UNII-1_40M_5230MHZ_Horizontal										
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F			
1	4668.267	78.78	-28.00	50.78	68.20	-17.42	peak	Р			
2	6645.279	81.09	-28.08	53.01	68.20	-15.19	peak	Р			
3	9260.386	82.20	-28.39	53.81	68.20	-14.39	peak	Р			
4	10241.133	83.54	-28.97	54.58	68.20	-13.62	peak	Р			
5	12542.334	84.79	-29.59	55.20	68.20	-13.00	peak	Р			
6	16201.338	85.58	-31.77	53.81	68.20	-14.39	peak	Р			

UNII-1_40M_5230MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.138	78.78	-27.63	51.15	68.20	-17.05	peak	Р
2	6645.397	80.59	-28.14	52.46	68.20	-15.74	peak	Р
3	9260.718	81.90	-28.15	53.75	68.20	-14.45	peak	Р
4	10241.041	84.08	-29.15	54.93	68.20	-13.27	peak	Р
5	12542.941	84.66	-29.41	55.25	68.20	-12.95	peak	Р
6	16201.372	85.63	-32.32	53.31	68.20	-14.89	peak	Р

UNII-3 40M 5755MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2910.001	74.33	-30.63	43.69	68.20	-24.51	peak	Р
2	4010.547	74.65	-31.59	43.06	68.20	-25.14	peak	Р
3	6285.988	78.34	-31.51	46.83	68.20	-21.37	peak	Р
4	9586.664	83.63	-32.56	51.07	68.20	-17.13	peak	Р
5	11467.462	84.17	-34.51	49.65	68.20	-18.55	peak	Р
6 *	17014.006	81.65	-30.97	50.68	68.20	-17.52	peak	Р

UNII-3 40M 5755MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2910.205	74.28	-30.33	43.95	68.20	-24.25	peak	Р
2	4010.523	75.56	-31.03	44.53	68.20	-23.67	peak	Р
3	6286.235	78.15	-31.02	47.13	68.20	-21.07	peak	Р
4	9586.273	83.08	-32.25	50.83	68.20	-17.37	peak	Р
5	11467.113	84.07	-34.12	49.95	68.20	-18.25	peak	Р
6	17014.236	81.20	-30.90	50.30	68.20	-17.90	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 52 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3614.395	78.58	-28.11	50.46	68.20	-17.74	peak	Р
2	5591.072	80.68	-28.29	52.39	68.20	-15.81	peak	Р
3	8206.287	82.38	-28.15	54.22	68.20	-13.98	peak	Р
4	9186.500	83.71	-29.25	54.47	68.20	-13.73	peak	Р
5	11488.542	84.00	-29.68	54.32	68.20	-13.88	peak	Р
6	15147.168	85.70	-31.94	53.76	68.20	-14.44	peak	Р

UNII-3_40M_5795MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3613.575	78.96	-27.55	51.41	68.20	-16.79	peak	Р
2	5590.866	80.26	-28.47	51.79	68.20	-16.41	peak	Р
3	8206.232	82.34	-28.53	53.81	68.20	-14.39	peak	Р
4	9187.044	84.07	-29.00	55.07	68.20	-13.13	peak	Р
5	11488.246	84.59	-29.99	54.60	68.20	-13.60	peak	Р
6	15147.125	84.97	-32.32	52.65	68.20	-15.55	peak	Р

UNII-1 80M 5210MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4667.936	78.52	-27.73	50.79	68.20	-17.41	peak	Р
2	6645.257	81.10	-27.67	53.42	68.20	-14.78	peak	Р
3	9260.389	82.75	-27.94	54.80	68.20	-13.40	peak	Р
4	10240.996	84.04	-28.84	55.21	68.20	-12.99	peak	Р
5	12542.347	84.24	-29.58	54.66	68.20	-13.54	peak	Р
6	16201.437	85.02	-31.53	53.48	68.20	-14.72	peak	Р

UNII-1_80M_5210MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4668.139	78.59	-27.44	51.15	68.20	-17.05	peak	Р
2	6645.757	80.88	-27.98	52.90	68.20	-15.30	peak	Р
3	9259.959	82.62	-28.26	54.36	68.20	-13.84	peak	Р
4	10240.515	83.32	-29.45	53.88	68.20	-14.32	peak	Р
5	12543.032	84.02	-29.99	54.03	68.20	-14.17	peak	Р
6	16200.756	84.92	-31.82	53.09	68.20	-15.11	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 53 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3613.606	79.39	-28.16	51.23	68.20	-16.97	peak	Р
2	5591.261	81.08	-28.24	52.83	68.20	-15.37	peak	Р
3	8206.824	82.35	-28.53	53.83	68.20	-14.37	peak	Р
4	9186.551	83.22	-28.93	54.30	68.20	-13.90	peak	Р
5	11488.453	84.79	-29.33	55.45	68.20	-12.75	peak	Р
6	15146.966	85.62	-32.14	53.48	68.20	-14.72	peak	Р

UNII-3 80M 5775MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3613.907	79.17	-27.99	51.18	68.20	-17.02	peak	Р
2	5590.886	80.61	-28.54	52.07	68.20	-16.13	peak	Р
3	8206.482	82.62	-28.61	54.00	68.20	-14.20	peak	Р
4	9187.025	84.10	-28.81	55.29	68.20	-12.91	peak	Р
5	11488.745	84.48	-29.97	54.51	68.20	-13.69	peak	Р
6	15147.344	85.16	-31.77	53.39	68.20	-14.81	peak	Р

7 Test Setup Photos

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 55 of 137BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 56 of 137BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

8 EUT Constructional Details (EUT Photos)

Please refer to the report No.BTF230710R00301

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 137BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 58 of 137BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1. Duty Cycle

1.1 Ant1

1.1.1 Test Result

TestMode	Antenna	Freq(MHz)	Transmission	Transmission	Duty Cycle
		,	Duration [ms]	Period [ms]	[%]
		5180	1.38	1.43	96.50
		5200	1.39	1.43	97.20
11 Δ	Ant1	5240	1.40	1.43	97.90
		5745	1.39	1.42	97.89
		5785 1.39		1.43	97.20
		5825	1.39	1.43	97.20
		5180	1.29	1.34	96.27
1		5200	1.30	1.33	97.74
11N20SISO		5240	1.30	1.34	97.01
11N205150	Ant'i	5745	1.30	1.34	97.01
		5785	1.30	1.34	97.01
1. A.L.		5825	1.30	1.34	97.01
		5190	0.65	0.68	95.59
111100100	Ant1	5230	0.65	0.68	95.59
1111405150		5755	0.64	0.68	94.12
		5795	0.65	0.68	95.59
		5180	1.29	1.33	96.99
		5200	1.29	1.33	96.99
444.000010.0		5240	1.29	1.32	97.73
11AC205150	Ant'i	5745	1.29	1.32	97.73
		5785	1.29	1.32	97.73
		5825	1.28	1.32	96.97
		5190	0.64	0.67	95.52
444.040010.0		5230	0.64	0.67	95.52
11AC40SISO	Ant1	5755	0.64	0.67	95.52
11AC40SISO		5795	0.64	0.67	95.52
444.000010.0		5210	0.32	0.36	88.89
TIACOUSISU	Ant1	5775	0.33	0.36	91.67

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 59 of 13BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 60 of 137