

RF Test Report

For

Applicant Name: Shenzhen DOOGEE Hengtong Technology CO., LTD

Address:

B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.

22, Longhua New District, Shenzhen, China

EUT Name: Tablet
Brand Name: DOOGEE
Model Number: T10E

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230710R00304 Test Standards: 47 CFR Part 15.247

Test Conclusion: Pass

Address:

Approved By:

FCC ID: 2AX4YT10E

Test Date: 2023-06-20 to 2023-07-11

Date of Issue: 2023-07-14

Prepared By: Elma Kang

elma.yang / Project Figinals Shenz

Date: 2023-07-14

Ryan.CJ / EMC Manage

Date: 2023-07-14

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-07-14	Original	
Note: Once the i	revision has been made, then pre	vious versions reports are invalid.	

Table of Contents

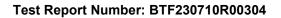
1	INTR	RODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	5
2	PRO	DUCT INFORMATION	6
	2.1	Application Information	
	2.2	Manufacturer Information	6
	2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	
3	SUM	MARY OF TEST RESULTS	7
	3.1	Test Standards	7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	
4	TES	T CONFIGURATION	
7			
	4.1 4.2	Test Equipment ListTest Auxiliary Equipment	8
	4.2	Test Modes	
_		LUATION RESULTS (EVALUATION)	
5			
	5.1	Antenna requirement	
		5.1.1 Conclusion:	
6	RAD	IO SPECTRUM MATTER TEST RESULTS (RF)	14
	6.1	Conducted Emission at AC power line	14
		6.1.1 E.U.T. Operation:	14
		6.1.2 Test Setup Diagram:	14
		6.1.3 Test Data:	15
	6.2	Occupied Bandwidth	17
		6.2.1 E.U.T. Operation:	17
		6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	17
	6.3	Maximum Conducted Output Power	18
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Setup Diagram:	
		6.3.3 Test Data:	
	6.4	Power Spectral Density	
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Emissions in non-restricted frequency bands	
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Setup Diagram:	
		6.5.3 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
	o =	6.6.2 Test Data:	
	6.7	Emissions in restricted frequency bands (below 1GHz)	
		6.7.1 E.U.T. Operation:	28

	6.7.2 Test Data:	29
6	6.8 Emissions in restricted frequency bands (above 1GHz)	31
	6.8.1 E.U.T. Operation:	31
	6.8.2 Test Data:	32
7 T	FEST SETUP PHOTOS	36
8 E	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	38
	IDIX	

Test Report Number: BTF230710R00304

1 Introduction

1.1 Identification of Testing Laboratory


Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	Shenzhen DOOGEE Hengtong Technology CO., LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China

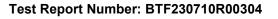
2.2 Manufacturer Information

Company Name:	Shenzhen DOOGEE Hengtong Technology CO., LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District. Shenzhen. China

2.3 Factory Information

	Company Name:	Shenzhen DOOGEE Hengtong Technology CO., LTD
	Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China

2.4 General Description of Equipment under Test (EUT)


EUT Name:	Tablet
Test Model Number:	T10E
Series Model Number: T10Pro, T10S, T10, T10Plus, T10W, T10Ultra	
Description of Model	There is no difference except the name of the model. All tests are made with the
name differentiation:	T10E model
Hardware version: Q30-T616-V1.0-230612-L1	
Software version:	DOOGEE-T10E-EEA-Android13.0-20230711

2.5 Technical Information

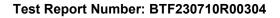
Power Supply:	DC 3.8V from battery or DC 5V from adapter
Power Adaptor:	Input: 100~240V 50/60Hz 0.35A Output: 5V=2A, 10W
Operation Frequency:	802.11b/g/n(HT20): 2412MHz to 2462MHz; 802.11n(HT40): 2422MHz to 2452MHz
Number of Channels:	802.11b/g/n(HT20): 11 Channels; 802.11n(HT40): 7 Channels
Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK); 802.11g: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n(HT20 and HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type:	PIFA ANT
Antenna Gain#:	2.11 dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards


The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

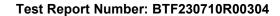
3.2 Uncertainty of Test

Measurement	Value
Occupied Channel Bandwidth	69 KHz
RF output power, conducted	0.87 dB
Power Spectral Density, conducted	0.69 dB
Unwanted Emissions, conducted	0.94 dB
All emissions, radiated(<1GHz)	4.12 dB
All emissions, radiated(>1GHz)	4.16 dB
Temperature	0.82 °C
Humidity	4.1 %

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Test Configuration

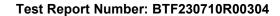

Test Equipment List

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23	
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23	
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23	
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22	
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23	

Occupied Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	1	V1.00	1	1	1	
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Maximum Conducted Output Power						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	1	V1.00	1	1	1	
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

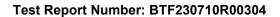
Power Spectral Densi	ty				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date



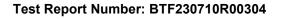
RFTest software	/	V1.00	1	1	/
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-restricted frequency bands						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	1	V1.00	1	/	/	
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Band edge emissions (Radiated)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	

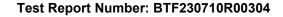


SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	1	1
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27


Emissions in restricte	Emissions in restricted frequency bands (below 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	1	1	1		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27		

Emissions in restricted frequency bands (above 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	1	1
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

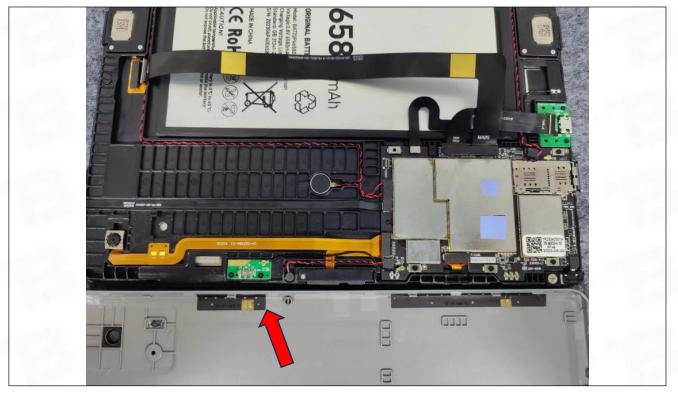


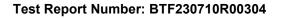
4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	802.11b mode	Keep the EUT in continuously transmitting mode with 802.11b modulation.
TM2	802.11g mode	Keep the EUT in continuously transmitting mode with 802.11g modulation.
TM3	802.11n(HT20) mode	Keep the EUT in continuously transmitting mode with 802.11n(HT20) modulation.
TM4	802.11n(HT40) mode	Keep the EUT in continuously transmitting mode with 802.11n(HT40) modulation.


5 Evaluation Results (Evaluation)

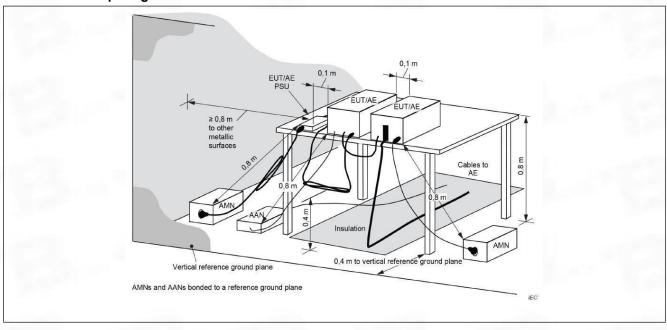

5.1 Antenna requirement

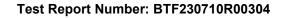
Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

6 Radio Spectrum Matter Test Results (RF)

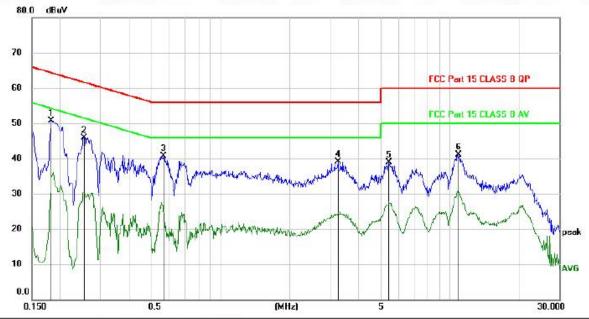

6.1 Conducted Emission at AC power line


Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					
	Frequency of emission (MHz) Conducted limit (dBµV)		/)			
		Quasi-peak	Average			
Test Limit:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					

6.1.1 E.U.T. Operation:

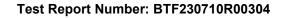
Operating Environment:	
Temperature:	24.8 °C
Humidity:	52.5 %
Atmospheric Pressure:	1010 mbar

6.1.2 Test Setup Diagram:



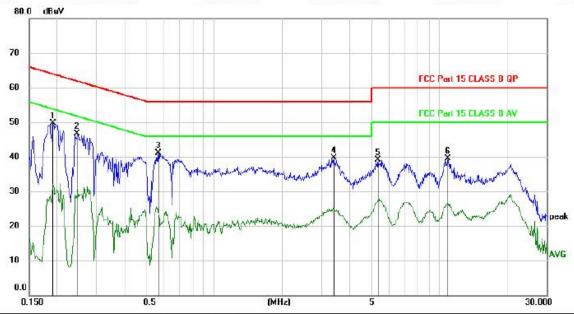
6.1.3 Test Data:

TM1 / Line: Line / Band: 2.4G / BW: 20 / CH: M

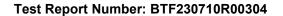


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1		
		MHz	dBuV	dB	dBu∀	dBu∀	dB	Detector	Comment	
1	*	0.1830	40.85	9.83	50.68	64.35	-13.67	peak		
2		0.2535	36.07	9.83	45.90	61.64	-15.74	peak		
3		0.5670	30.80	9.83	40.63	56.00	-15.37	peak		
4		3.2580	29.33	9.81	39.14	56.00	-16.86	peak		
5		5.4360	28.91	9.90	38.81	60.00	-21.19	peak		
6		10.9320	31.15	10.02	41.17	60.00	-18.83	peak		

(Reference Only


Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin

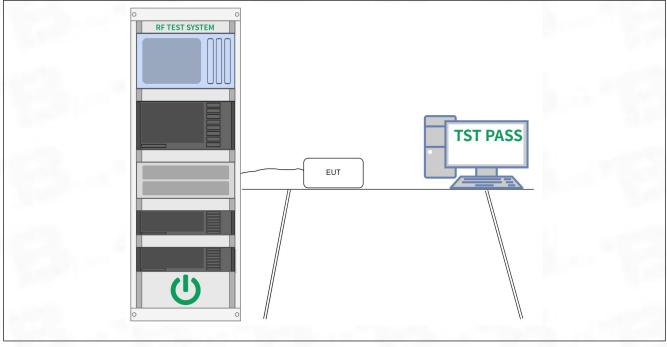


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margii	1		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.1920	39.92	9.83	49.75	63.95	-14.20	peak		
2	0.2460	36.78	9.83	46.61	61.89	-15.28	peak		
3	0.5670	31.25	9.83	41.08	56.00	-14.92	peak		
4	3.3960	29.86	9.82	39.68	56.00	-16.32	peak		
5	5.3430	29.19	9.90	39.09	60.00	-20.91	peak		
6	10.9620	29.43	10.02	39.45	60.00	-20.55	peak		

(Reference Only

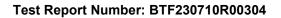
Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin


6.2 Occupied Bandwidth

	Systems using digital modulation techniques may operate in the 902-928 MHz, and
Test Requirement:	2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	DTS bandwidth
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

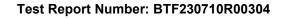
6.2.1 E.U.T. Operation:


Operating Environment:	
Temperature:	23.6 °C
Humidity:	52.9 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

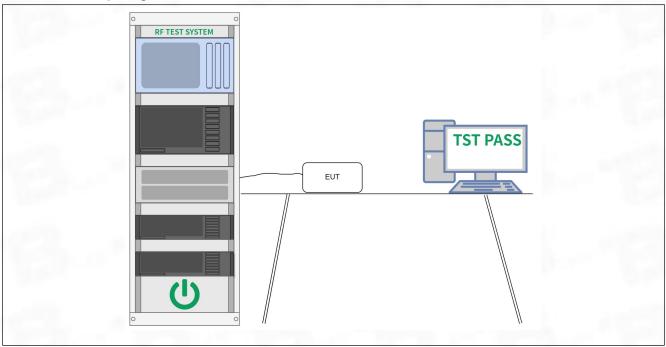
6.2.3 Test Data:

Please Refer to Appendix for Details.

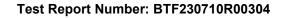


6.3 Maximum Conducted Output Power

	•
Test Requirement:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	Maximum peak conducted output power
Test Limit:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power


6.3.1 E.U.T. Operation:

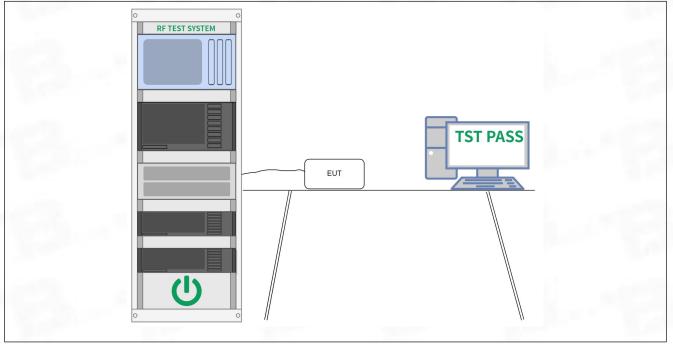
Operating Environment:	
Temperature:	23.6 °C
Humidity:	52.9 %
Atmospheric Pressure:	1010 mbar



6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.


6.4 Power Spectral Density

Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	Maximum power spectral density level in the fundamental emission
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

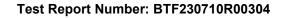
6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	23.6 °C
Humidity:	52.9 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Setup Diagram:

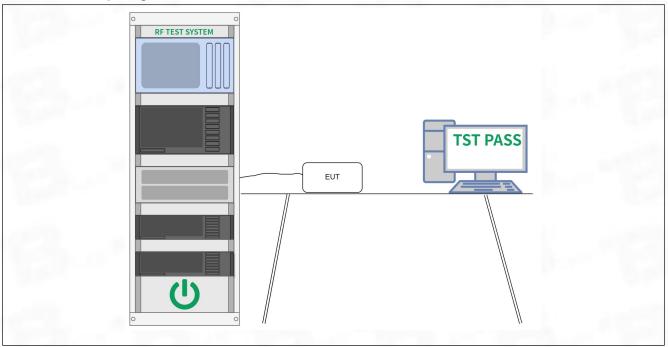
6.4.3 Test Data:

Please Refer to Appendix for Details.

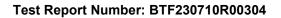


6.5 Emissions in non-restricted frequency bands

Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3


6.5.1 E.U.T. Operation:

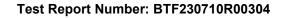
Operating Environment:	
Temperature:	23.6 °C
Humidity:	52.9 %
Atmospheric Pressure:	1010 mbar



6.5.2 Test Setup Diagram:

6.5.3 Test Data:

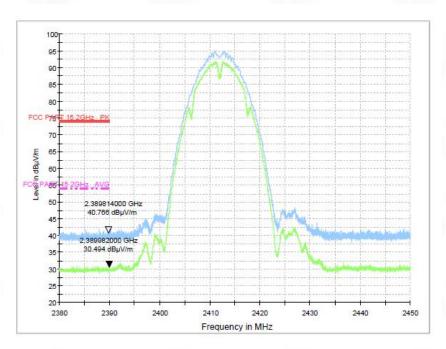
Please Refer to Appendix for Details.

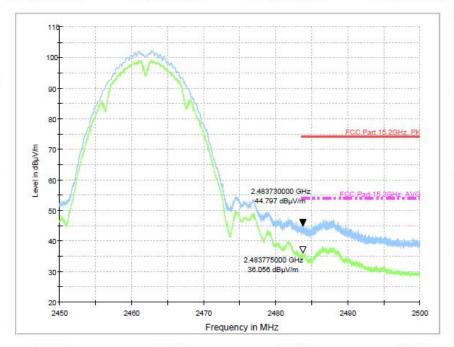


6.6 Band edge emissions (Radiated)

Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`								
Test Method:	Radiated emissions test	S								
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)							
	0.009-0.490	2400/F(kHz)	300							
	0.490-1.705	24000/F(kHz)	30							
	1.705-30.0	30	30							
	30-88	100 **	3							
Test Limit:	88-216	150 **	3							
	216-960	200 **	3							
	Above 960	500	3							
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.									
Procedure:	ANSI C63.10-2013 secti	ANSI C63.10-2013 section 6.6.4								

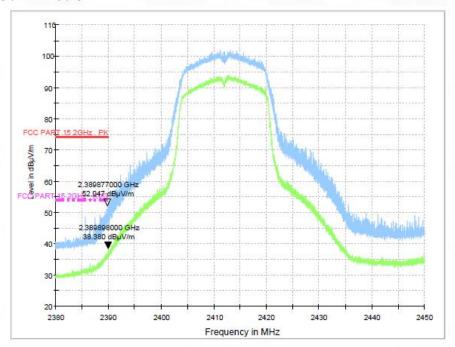
6.6.1 E.U.T. Operation:


Operating Environment:	
Temperature:	25.8 °C
Humidity:	51.2 %
Atmospheric Pressure:	1010 mbar

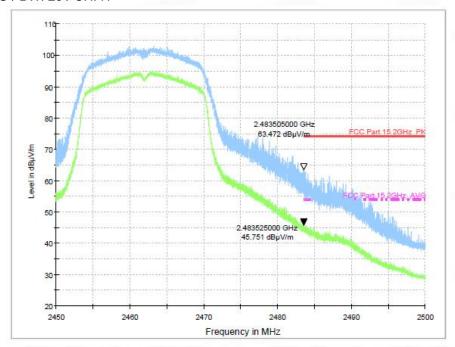


6.6.2 Test Data:

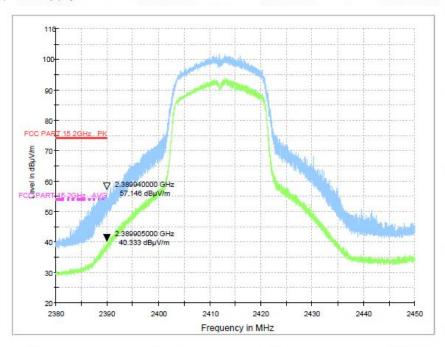
TM1 / Band: 2.4G / BW: 20 / CH: L



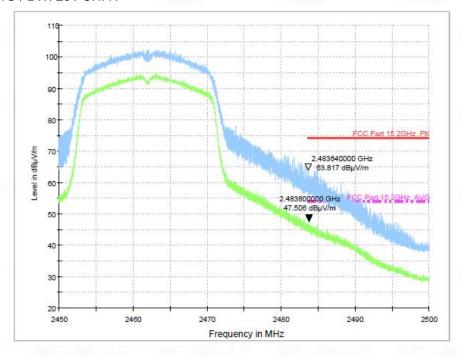
TM1 / Band: 2.4G / BW: 20 / CH: H



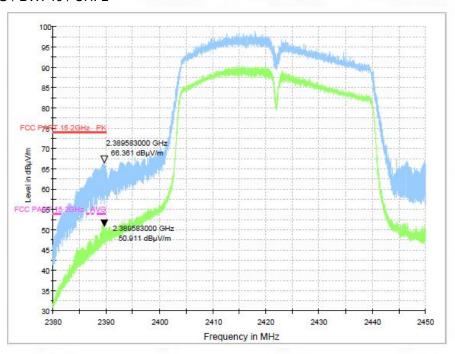
TM2 / Band: 2.4G / BW: 20 / CH: L



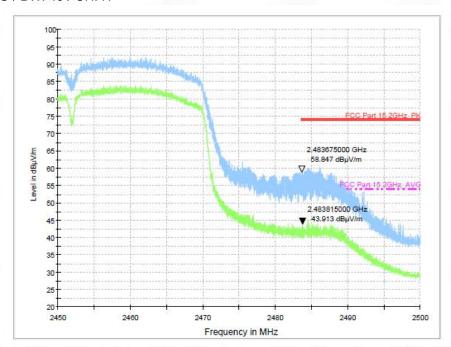
TM2 / Band: 2.4G / BW: 20 / CH: H

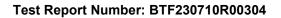


TM3 / Band: 2.4G / BW: 20 / CH: L



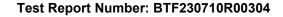
TM3 / Band: 2.4G / BW: 20 / CH: H





TM4 / Band: 2.4G / BW: 40 / CH: L

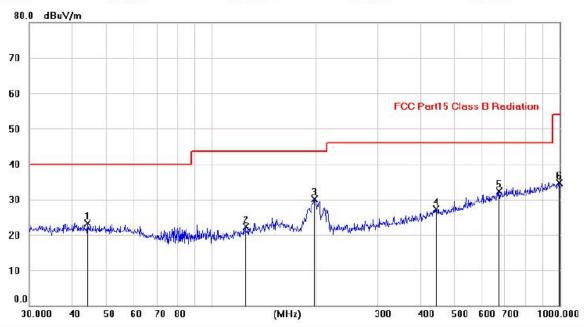
TM4 / Band: 2.4G / BW: 40 / CH: H



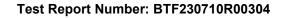
6.7 Emissions in restricted frequency bands (below 1GHz)

Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Method:	Radiated emissions tests								
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
Test Limit:	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.								
Procedure:	ANSI C63.10-2013 secti	on 6.6.4							

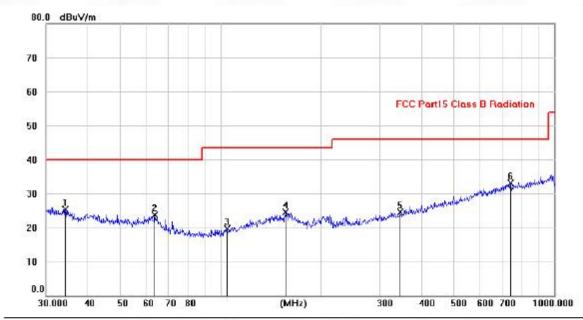
6.7.1 E.U.T. Operation:


Operating Environment:	
Temperature:	25.8 °C
Humidity:	51.2 %
Atmospheric Pressure:	1010 mbar

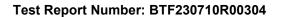
6.7.2 Test Data:


Note: All the mode have been tested, and only the worst case of 802.11n mode are in the report TM4 / Polarization: Horizontal / Band: 2.4G / BW: 40 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.1820	9.01	14.20	23.21	40.00	-16.79	peak			
2		125.7100	8.88	13.35	22.23	43.50	-21.27	peak			
3	*	198.1705	19.19	11.00	30.19	43.50	-13.31	peak			
4	12	442.5176	10.00	17.38	27.38	46.00	-18.62	peak			
5	1.19	672.1369	10.98	21.35	32.33	46.00	-13.67	peak			
6	1	997.4317	9.89	24.80	34.69	54.00	-19.31	peak			


Note:1. *: Maximum data; x: Over limit; !: over margin.

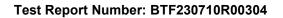
^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.



Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	34.3361	11.58	13.71	25.29	40.00	-14.71	peak			
	63.6024	11.22	12.52	23.74	40.00	-16.26	peak			
1	04.6705	8.43	11.31	19.74	43.50	-23.76	peak			
1	56.8606	9.51	15.05	24.56	43.50	-18.94	peak			
3	346.2015	9.31	15.17	24.48	46.00	-21.52	peak			
* 7	41.2182	10.92	22.27	33.19	46.00	-12.81	peak			
	1 1 3	MHz 34.3361 63.6024 104.6705 156.8606 346.2015	MHz dBuV 34.3361 11.58 63.6024 11.22 104.6705 8.43 156.8606 9.51 346.2015 9.31	Level Factor MHz dBuV dB 34.3361 11.58 13.71 63.6024 11.22 12.52 104.6705 8.43 11.31 156.8606 9.51 15.05 346.2015 9.31 15.17	Level Factor ment MHz dBuV dB dBuV/m 34.3361 11.58 13.71 25.29 63.6024 11.22 12.52 23.74 104.6705 8.43 11.31 19.74 156.8606 9.51 15.05 24.56 346.2015 9.31 15.17 24.48	Level Factor ment MHz dBuV dB dBuV/m dBuV/m 34.3361 11.58 13.71 25.29 40.00 63.6024 11.22 12.52 23.74 40.00 104.6705 8.43 11.31 19.74 43.50 156.8606 9.51 15.05 24.56 43.50 346.2015 9.31 15.17 24.48 46.00	Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB 34.3361 11.58 13.71 25.29 40.00 -14.71 63.6024 11.22 12.52 23.74 40.00 -16.26 104.6705 8.43 11.31 19.74 43.50 -23.76 156.8606 9.51 15.05 24.56 43.50 -18.94 346.2015 9.31 15.17 24.48 46.00 -21.52	Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector 34.3361 11.58 13.71 25.29 40.00 -14.71 peak 63.6024 11.22 12.52 23.74 40.00 -16.26 peak 104.6705 8.43 11.31 19.74 43.50 -23.76 peak 156.8606 9.51 15.05 24.56 43.50 -18.94 peak 346.2015 9.31 15.17 24.48 46.00 -21.52 peak	Level Factor ment Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 34.3361 11.58 13.71 25.29 40.00 -14.71 peak 63.6024 11.22 12.52 23.74 40.00 -16.26 peak 104.6705 8.43 11.31 19.74 43.50 -23.76 peak 156.8606 9.51 15.05 24.56 43.50 -18.94 peak 346.2015 9.31 15.17 24.48 46.00 -21.52 peak	Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 34.3361 11.58 13.71 25.29 40.00 -14.71 peak 63.6024 11.22 12.52 23.74 40.00 -16.26 peak 104.6705 8.43 11.31 19.74 43.50 -23.76 peak 156.8606 9.51 15.05 24.56 43.50 -18.94 peak 346.2015 9.31 15.17 24.48 46.00 -21.52 peak

Note:1. *: Maximum data; x: Over limit; !: over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.



6.8 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Method:	Radiated emissions test	Radiated emissions tests							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
Test Limit:	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.								
Procedure:	ANSI C63.10-2013 secti	on 6.6.4							

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.8 °C
Humidity:	51.2 %
Atmospheric Pressure:	1010 mbar

6.8.2 Test Data:

From 1G-25GHz

Test Mo	de: IEEE 802	.11b TX	Low						
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4824	48.40	V	33.93	10.18	34.26	58.25	74	-15.75	PK
4824	36.56	V	33.93	10.18	34.26	46.41	54	-7.59	AV
7236	1	/	1	1	/	1	1	1	1
9648	1	/	1	1	/	1	1	1	1
4824	47.41	Н	33.93	10.18	34.26	57.26	74	-16.74	PK
4824	35.17	Н	33.93	10.18	34.26	45.02	54	-8.98	AV
7236	1	/	1	1	/	1	1	1	1
9648	1	/	1	1	/	1	1	1	1
Test Mo	de: IEEE 802	.11b TX	Mid						
4874	49.11	V	33.95	10.20	34.26	59.00	74	-15.00	PK
4874	35.60	V	33.95	10.20	34.26	45.49	54	-8.51	AV
7311	1	/	1	/	/	1	1	1	1
9748	1	/	1	1	/	1	1	1	1
4874	48.26	Н	33.95	10.20	34.26	58.15	74	-15.85	PK
4874	34.38	Н	33.95	10.20	34.26	44.27	54	-9.73	AV
7311	1	/	1	1	/	1	1	1	1
9748	1	1	1	1	/	1	1	1	1
Γest Mo	de: IEEE 802	11b TX	High						
4924	47.17	V	33.98	10.22	34.25	57.12	74	-16.88	PK
4924	33.66	V	33.98	10.22	34.25	43.61	54	-10.39	AV
7386	1	/	1	/	1	1	1	/	1
9848	/	/	1	1	1	1	1	1	1
4924	46.73	Н	33.98	10.22	34.25	56.68	74	-17.32	PK
4924	32.58	Н	33.98	10.22	34.25	42.53	54	-11.47	AV
7386	/	/	1	/	1	1	1	/	1
9848	1	1	1	1	/	1	1	1	/

Note:

^{1,} Result = Read level + Antenna factor + cable loss-Amp factor

^{2,} All the other emissions not reported were too low to read and deemed to comply with FCC limit.