

Product Name: Smart Phone	Report No: ITEZA2-202400192RF8
Product Model: S118, V31, V31 GT, S110, S110 GT, V31 Plus, V31 Ultra, S118 Pro, S118 S, S118 E, S118 SE, S118 Plus, S118 Max, S118 Ultra	Security Classification: Open
Version: V1.0	Total Page: 38

TIRT Testing Report

Prepared By:	Checked By:	Approved By:	chnology Se
Aaron Long	Stone Tang	Joky Wang	A seture of the
Sover long	Stone Tang	Joby Wany	All Shenzhen , o

RF TEST REPORT

FCC ID: 2AX4YS118

According to

47 CFR FCC Part 15, Subpart C(Section 15.225)

ANSI C63.10:2013

Applicant:	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.
Address:	22, Longhua New District, Shenzhen, China
Manufacturer:	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.
Address.	22, Longhua New District, Shenzhen, China
Sample No:	1000036597
Product Name:	Smart Phone
Brand Name:	DOOGEE
Madal Na	S118, V31, V31 GT, S110, S110 GT, V31 Plus, V31 Ultra, S118 Pro,
Model No.:	S118 S, S118 E, S118 SE, S118 Plus, S118 Max, S118 Ultra
Test No.:	S118

Date of Receipt:	2024/06/13
Date of Test:	2024/06/13~2024/06/25
Issued Date:	2024/06/30
Testing Lab:	TIRT

Note: This report shall not be reproduced except in full, without the written approval of Beijing TIRT Technology Service Co.,Ltd Shenzhen.Laboratory.

This document may be altered or revised by Beijing TIRT Technology Service Co.,Ltd Shenzhen. Laboratory.Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.

TABLE OF CONTENTS

Descript	tion	Page
1. Generation	al Information	5
1.1.	Description of Device (EUT)	5
1.2.	Accessories of Device (EUT)	6
1.3.	Ancillary Equipment Details	6
1.4.	Test Lab Information	6
2. Summ	nary of test	7
2.1.	Summary of test result	7
2.2.	Block Diagram	7
2.3.	Test mode	7
2.4.	Test Conditions	7
2.5.	Measurement Uncertainty	8
2.6.	Test Equipment	9
3. Occup	bied bandwidth and 20dB Bandwidth	10
3.1.	Limit	10
3.2.	Test Procedure	10
3.3.	Test Setup	10
3.4.	Test Result	10
4. Radiat	ted emissions	11
4.1.	Limit	11
4.2.	Block Diagram of Test setup	11
4.3.	Test Procedure	12
4.4.	Test Result	13
5. Freque	ency stability	19
5.1.	Test limit	19
5.2.	Test Procedure	19
5.3.	Test Setup	19
5.4.	Test Results	19
6. Power	^r Line Conducted Emissions	21
6.1.	Block Diagram of Test Setup	21
6.2.	Limit	21
6.3.	Test Procedure	21
6.4.	Test Result	21
7. Anten	na Requirements	24
	Limit	
	Antenna Connected Construction	
	Results	
	etup photo	
	Photos of Radiated emission	
	Photos of Conducted Emission test	
9.Photos	of EUT	27

History of this test report

Original Report Issue Date: 2024.06.30

- No additional attachment
- \circ Additional attachments were issued following record

Attachment No.	Issue Date	Description

1. General Information

1.1. Description of Device (EUT)

Equipment	Smart Phone
Brand Name	DOOGEE
Test Model	S118
Series Model	V31, V31 GT, S110, S110 GT, V31 Plus, V31 Ultra, S118 Pro, S118 S,
Series Model	S118 E, S118 SE, S118 Plus, S118 Max, S118 Ultra
Model Difference(s)	There is no difference except the name of the model
Software Version	DOOGEE-S118-EEA-Android14.0-20240427
Hardware Version	M116-MUB-V1
Power Rating	DC 3.85V from battery or DC 11V from adapter
Modulation Type	ASK
Operation frequency	13.56MHz
Channel No	1
Antenna Type	Coil antenna, Antenna gain 0dBi.

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

1.2. Accessories of Device (EUT)

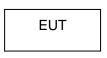
Accessories	Adapter	
Manufacturer	/	
Model	TP303C-US	
	Input: AC100-240V~ 50/60Hz 0.7A Max	
	Output: USB-C: 5.0V-3.0A 15.0W; 9.0V-3.0A 27.0W;	
Ratings	12.0V-2.5A 30.0W; 15.0V-2.0A 30.0W,	
	20.0V=1.5A 30.0W	
	PPS: 5.0V-11.0V-3.0A 33.0W	
	Power: 33.0W	

1.3. Ancillary Equipment Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC
1.	N/A	N/A	N/A	N/A	N/A

1.4. Test Lab Information

Company:	Beijing TIRT Technology Service Co.,Ltd Shenzhen
Address:	104 Building C, Xinmingsheng Industrial Park No.132, Zhangge Old Village East Zone, Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong, P. R. China
CNAS Registration Number:	CNAS L14158
A2LA Registration Number:	6049.01
FCC Accredited Lab.Designation Number:	CN1366
FCC Test Firm Registration Number:	820690
Telephone:	+86-0755-27087573



2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
Conducted Emission	15.207(a)	PASS
Radiated emissions	15.209(a)&15.225	PASS
Fundamental field strength limit	15.225(a)	PASS
Frequency stability	15.225(e)	PASS
Band edge compliance	15.225	PASS
Antenna Requirement	15.203	PASS

2.2. Block Diagram

2.3. Test mode

Tested mode, channel, and data rate information				
Mode Channel Frequency				
Mode	Channel	(MHz)		
1	CH1	13.56		
Note: According exploratory test, EUT will have maximum output power in those				
data rate. so those data rate were used for all test.				

2.4. Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

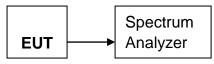
2.5. Measurement Uncertainty

Uncerta	inty		
Parameter	Uncertainty		
Occupied Channel Bandwidth	±142.12 KHz		
RF power conducted	±0.74 dB		
RF power radiated	±3.25dB		
Spurious emissions, conducted	±1.78dB		
Spurious emissions, radiated (9KHz~30MHz)	±2.56dB		
Spurious emissions, radiated (30MHz \sim 1GHz)	±4.6dB		
Spurious emissions, radiated (Above 1GHz)	±4.9dB		
Conduction Emissions(150kHz~30MHz)	±3.1 dB		
Humidity	±4.6%		
Temperature	±0.7°C		
Time	±1.25%		

2.6. Test Equipment

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Receiver	Rohde&Schwarz	ESIB 40	YH-TIRT-SAC-9 66-20220911	2024/01/06	2025/01/05
Integral Antenna	Schwarzbeck	VULB 9163	01314	2022.12.11	2024.12.10
Preamplifier	Emtrace	RP01A	'02017	2024/01/06	2025/01/05
Preamplifier	Schwarzbeck	BBV9744	00143	2024/01/06	2025/01/05
Loop Antenna	ZHINAN	ZN30900A	12024	2024/01/06	2025/01/05
RF Cable	/	LMR400UF-NMNM- 7.0M	/	2024/01/06	2025/01/05
RF Cable	/	SFT2050PUR-NMN M-7.0M	/	2024/01/06	2025/01/05
EMI Receiver	Rohde&Schwarz	ESR7	1316.3003K07-1 02611-mk	2023/11/02	2024/11/01
RF Cable	١	SFT2050PUR-NMN M-2.0M	/	2024/01/06	2025/01/05
Spectrum analyzer	ROHDE&SCHWA RZ	FSU26	200732	2024/01/06	2025/01/05

3. Occupied bandwidth and 20dB Bandwidth


3.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in FCC part 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

3.2. Test Procedure

The transmitter output was directly connected to a spectrum analyzer with a 50Ω cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3KHz RBW and 10kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

3.3. Test Setup

3.4. Test Result

Mode	Freq (MHz)	20dB Bandwidth (KHz)	99% Bandwidth	Limit (kHz)	Conclusion
Tx Mode	13.56	8.894	10.796	/	PASS

4. Radiated emissions

4.1. Limit

F	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m) uV/m		dBuV/m		
$0.009 \sim 0.490$	2400/F(kHz)	300	10000 * 2400/F(kHz)	$20\log^{(2400/F(kHz))} + 80$		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	$20\log^{(24000/F(kHz))} + 40$		
$1.705 \sim 30$	30	30	100 * 30	$20\log^{(30)} + 40$		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88~216	150	3	150	20log ⁽¹⁵⁰⁾		
$216 \sim 960$	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

Note:

a) The tighter limit applies at the band edges.

For example: F.S limit at 88MHz is 100uV/m

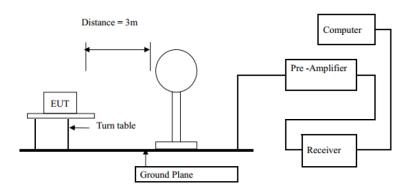
b) If measurement is made at 3m distance, then F.S Limit at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d2/d1)^2$.

For example:

F.S Limit at 30m(d2) distance is 30uV/m(Ld2), then F.S Limit at 3m(d1) distance is

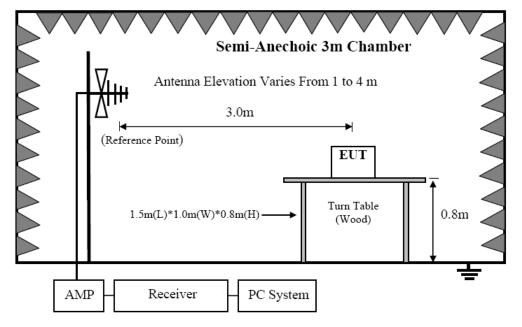
 $L_{d1} = 30 uV/m * (30/3)^2 = 100 * 30 uV/m = 69.54 dBuV/m$

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.


(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.


4.2. Block Diagram of Test setup

In 3m Anechoic Chamber Test Setup Diagram for below 30MHz

In 3m Anechoic Chamber Test Setup Diagram for frequency 30MHz-1GHz

4.3. Test Procedure

Procedure of Preliminary Test

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 4.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.

Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No extension cords shall be used to mains receptacle.

The antenna was placed at 3 meter away from the EUT as stated in ANSI C63.10:2013. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Receiver quickly scanned from 9KHz to 30MHz and 30MHz to 1GHz The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The test mode(s) described in clause 2.4 were scanned during the preliminary test:

After the preliminary scan, we found the test mode producing the highest emission level. The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

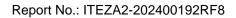
EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

The Receiver scanned from9KHz to 30MHz and 30MHz to 1GHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 200Hz for 9 KHz to 150 KHz measure, 10 KHz for 150 KHz to 30MHz measure and 120 KHz for 30 MHz to 1GHz measure .

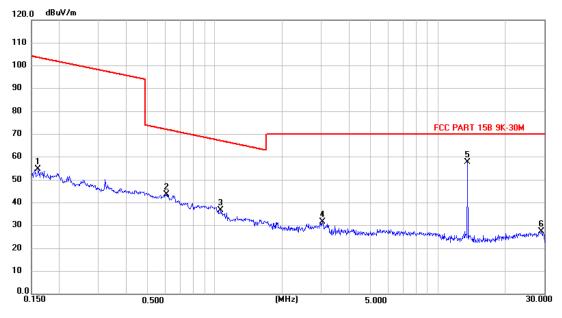

4.4. Test Result

PASS. (See below detailed test result)

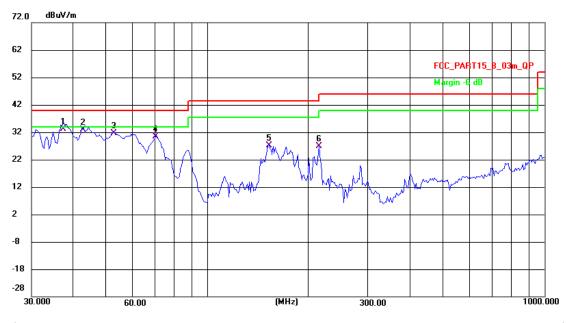

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Frequer	ncy Range	:	9KHz~30MHz							
Test Mode :		:	TX: 13.56MHz							
Test Re	sults	:	PASS							
Note:	ote: 1. The test results are listed in next pages.									
	2. This mod	le is	worst case mode, so this report only reflected the worst mode.							
	3. If the limi	its fo	or the measurement with the average detector are met when using a receiver with							
	a peak detector, the test unit shall be deemed to meet both limits and the measurement with the									
	quasi-peak	dete	ector need not be carried out.							



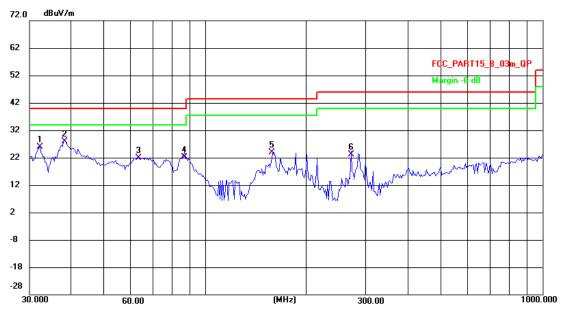
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.0111	9.22	21.47	30.69	126.79	-96.10	peak	Р	
2	0.0151	11.53	21.37	32.90	124.13	-91.23	peak	Р	
3	0.0233	12.82	21.16	33.98	120.37	-86.39	peak	Р	
4	0.0468	14.24	20.07	34.31	114.33	-80.02	peak	Ρ	
5	0.0771	17.40	20.09	37.49	110.01	-72.52	peak	Ρ	
6 *	0.0985	19.62	19.81	39.43	107.89	-68.46	peak	Р	



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.1612	34.54	20.18	54.72	103.63	- <mark>4</mark> 8.91	peak	Ρ	
2	0.6048	23.86	19.76	43.62	72.14	-28.52	peak	Ρ	
3	1.0617	16.67	20.01	36.68	67.18	-30.50	peak	Ρ	
4	3.0392	11.03	20.52	31.55	70.00	-38.45	peak	Ρ	
5 *	13.5625	37.29	20.64	57.93	70.00	-12.07	peak	Р	
6	29.1021	6.44	21.06	27.50	70.00	-42.50	peak	Ρ	

From 30MHz to 1GHz: Conclusion: PASS

Vertical:



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	37.3016	55.58	-22.54	33.04	40.00	-6.96	QP	100	0	Ρ	
2	42.6300	55.00	-22.15	32.85	40.00	-7.15	QP	100	0	Ρ	
3	52.6343	53.96	-22.22	31.74	40.00	-8.26	QP	100	90	Ρ	
4	70.2095	54.34	-24.07	30.27	40.00	-9.73	QP	100	180	Р	
5	152.0901	47.78	-20.76	27.02	43.50	-16.48	QP	100	0	Ρ	
6	214.6062	52.10	-25.16	26.94	43.50	-16.56	QP	100	0	Ρ	

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	32.1840	49.14	-23.21	25.93	40.00	-14.07	QP	200	360	Ρ	
2 *	38.0964	50.25	-22.40	27.85	40.00	-12.15	QP	200	0	Р	
3	63.1856	44.96	-23.00	21.96	40.00	-18.04	QP	200	180	Ρ	
4	86.6864	47.93	-25.79	22.14	40.00	-17.86	QP	200	0	Р	
5	158.6397	44.72	-20.74	23.98	43.50	-19.52	QP	200	0	Ρ	
6	270.6161	45.92	-22.80	23.12	46.00	-22.88	QP	200	0	Ρ	

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Field Strength Emissions Result

Temperatu	re	24°C			Relative H	umidity	56%		
Pressure		960hP	a		Distance		3m		
Test Mode		ТΧ							
Freq. (MHz)		ition /V	Detector Mode (PK/QP)	Reading Factor Actual FS (dBuV) (dB) (dBuV/m)		Limits 3m (dBuV/m)	Margin (dBuV/m)		
13.560		Н	Peak	71.86	-13.94	57.92	124	-66.08	
13.560		Н	AV	71.85	-13.94	57.91	104	-46.09	
13.110		Н	Peak	71.40	-13.94	57.46	80.5	-23.04	
13.412		Н	Peak	71.15	-13.94	57.21	90.5	-33.29	
13.557		Н	Peak	71.06	-13.94	57.12	90.5	-33.38	
13.569		Н	Peak	70.91	-13.93	56.98	90.5	-33.52	
13.713		Н	Peak	70.87	-13.93	56.94	80.5	-23.56	
14.013		Н	Peak	70.18	-13.93	56.25	80.5	-24.25	
Freq. (MHz)		ition /V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)	
13.560		V	Peak	71.83	-13.94	57.89	124	-66.11	
13.560		V	AV	71.72	-13.94	57.78	104	-46.22	
13.110		V	Peak	71.41	-13.94	57.47	80.5	-23.03	
13.414		V	Peak	71.25	-13.94	57.31	90.5	-33.19	
13.552		V	Peak	71.22	-13.94	57.28	90.5	-33.22	
13.561		V	Peak	71.00	-13.93	57.07	90.5	-33.43	
13.713		V	Peak	70.92	-13.93	56.99	80.5	-23.51	
14.012		V	Peak	70.80	-13.93	56.87	80.5	-23.63	

Note:

1: 30m to 3m correction factor calculation:

40*Log(30m/3m)=40

2: --Means other frequency and mode comply with standard requirements and at least have 20dB margin.

3: Correct Factor=Cable Loss+ Antenna Factor- Amplifier Gain

Measurement Result=Reading + Correct Factor

Margin=Measurement Result-Limit

5. Frequency stability

5.1. Test limit

Please refer section RSS-Gen & 15.225e.

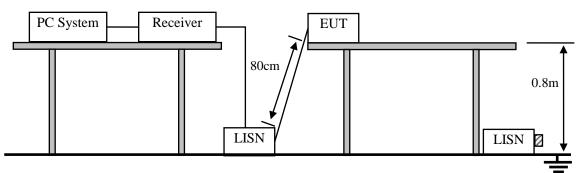
Regulation 15.225(e) The frequency tolerance of the carrier signal shall be maintained within $\pm -0.01\%(\pm 100 \text{ ppm})$ of the operating frequency over a temperature variation of -20 degrees to ± 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.2. Test Procedure

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3. Test Setup

PASS.


Detailed information please see the following page.

	A	ssigned Frequency(MHz): 1	3.56MHz		
Voltage	Temperature	Measured Frequency (MHz)	Frequency stability	Limit	
Low DC 3.27V	20 ℃	13.5604121	0.000421		
	-20 °C	13.560310	0.000310		
	-10°C	13.560327	0.000327		
	-5 ℃	13.560738	0.000738		
Normal	0 °C	13.560571	0.000571		
DC 3.85V	+ 10 ℃	13.560077	0.000077	±100 ppm ±0.001356MHz	
	+20 ℃	+20℃ 13.560383			
	+30 ℃	13.560460	0.000460		
	+40 ℃	13.559641	-0.000359		
	+50 ℃	13.560468	0.000468		
High DC 4.43V	+20 ℃	13.560425	0.000425		

6. Power Line Conducted Emissions

 \blacksquare :50 Ω Terminator

6.1. Block Diagram of Test Setup

6.2. Limit

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	dB(µV)	dB(μV)			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3. Test Procedure

(1) The EUT was placed on a non-metallic table, 80cm above the ground plane.

(2) Setup the EUT and simulator as shown in 10.1

(3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N1), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C64.10:2013 on conducted Emission test.

- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

6.4. Test Result

PASS. (See below detailed test data)

Note: If peak Result comply with AV limit, QP and AV Result is deemed to comply with AV limit

Line:

5

6

7

8

9

10

11 12 1.9500

1.9500

4.9245

4.9245

10.7203

10.7203

23.7119

23.7119

29.66

19.04

28.96

18.31

37.89

25.89

33.87

17.06

9.65

9.65

9.68

9.68

9.72

9.72

9.77

9.77

39.31

28.69

38.64

27.99

47.61

35.61

43.64

26.83

56.00

46.00

56.00

46.00

60.00

50.00

60.00

50.00

-16.69

-17.31

-17.36

-18.01

-12.39

-14.39

-16.36

-23.17

QP

AVG

QP

AVG

QP

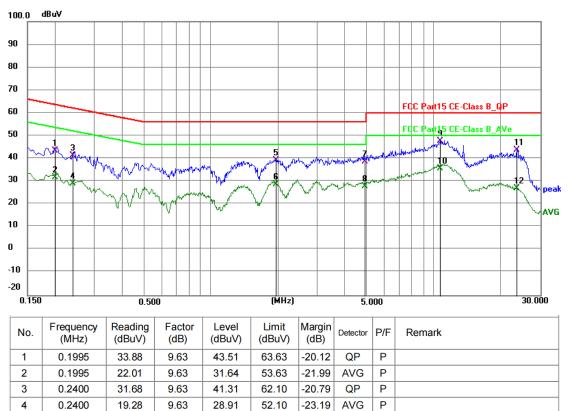
AVG

QP

AVG

Ρ

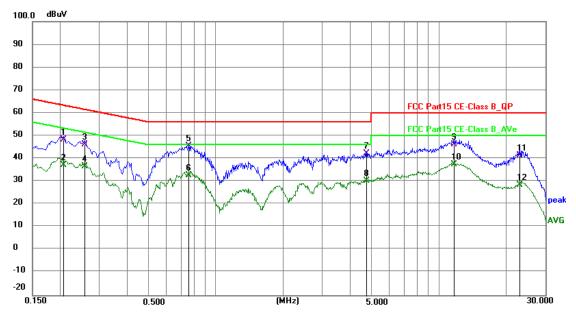
Ρ


Ρ

Ρ

Ρ

P P


Ρ

Neutral:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2061	38.68	9.63	48.31	63.36	-15.05	QP	Р	
2	0.2061	27.49	9.63	37.12	53.36	-16.24	AVG	Р	
3	0.2580	36.59	9.62	46.21	61.50	-15.29	QP	Р	
4	0.2580	26.83	9.62	36.45	51.50	-15.05	AVG	Р	
5 *	0.7574	36.07	9.62	45.69	56.00	-10.31	QP	Р	
6	0.7574	23.02	9.62	32.64	46.00	-13.36	AVG	Р	
7	4.7445	32.46	9.67	42.13	56.00	-13.87	QP	Ρ	
8	4.7445	20.45	9.67	30.12	46.00	-15.88	AVG	Р	
9	11.7195	36.51	9.74	46.25	60.00	-13.75	QP	Р	
10	11.7195	27.57	9.74	37.31	50.00	-12.69	AVG	Р	
11	23.0775	31.48	9.83	41.31	60.00	-18.69	QP	Р	
12	23.0775	18.48	9.83	28.31	50.00	-21.69	AVG	Р	

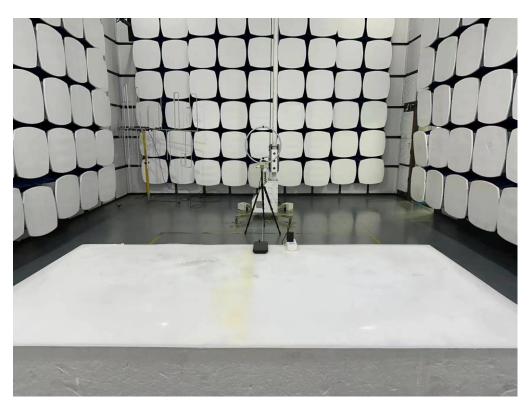
7. Antenna Requirements

7.1. Limit

For intentional device, according to RSS-Gen Section 6.8 and FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.209, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.2. Antenna Connected Construction

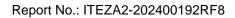
The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.


7.3. Results

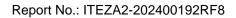
The EUT antenna of NFC is Coil Antenna. It complies with the standard requirement.

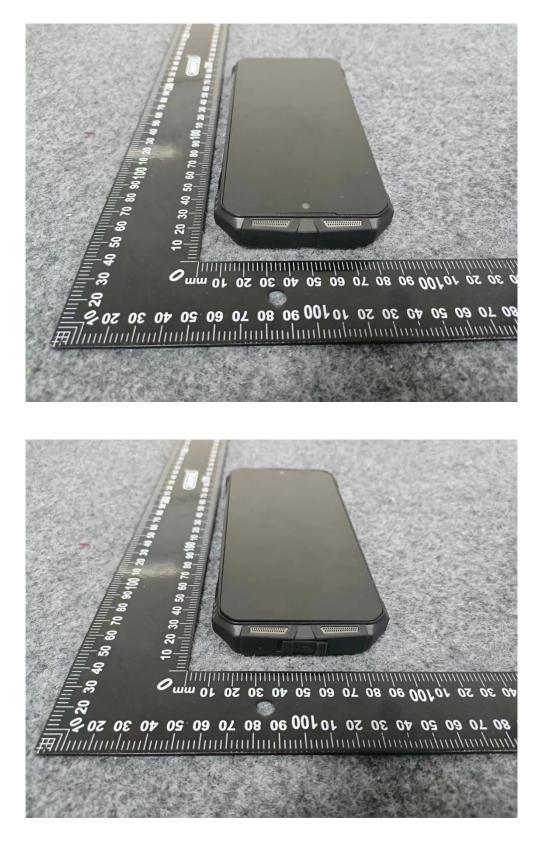
8. Test setup photo

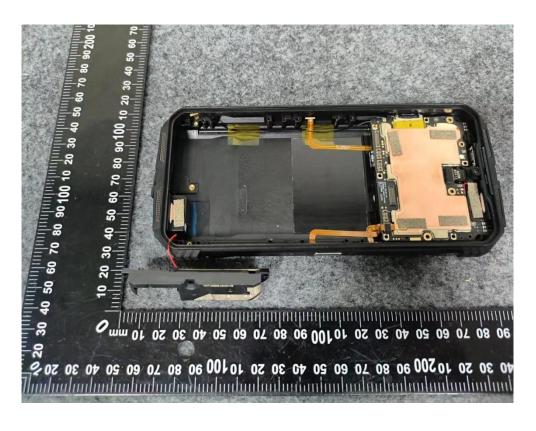
8.1. Photos of Radiated emission

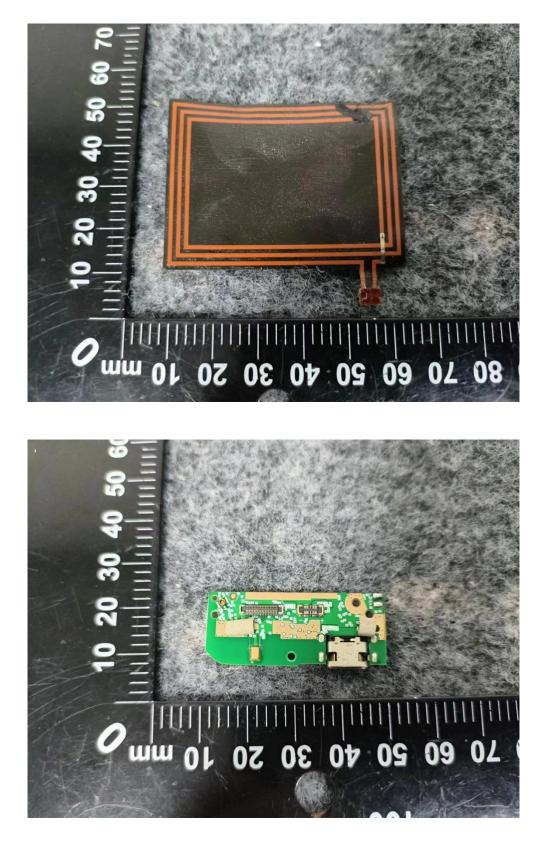

8.2. Photos of Conducted Emission test

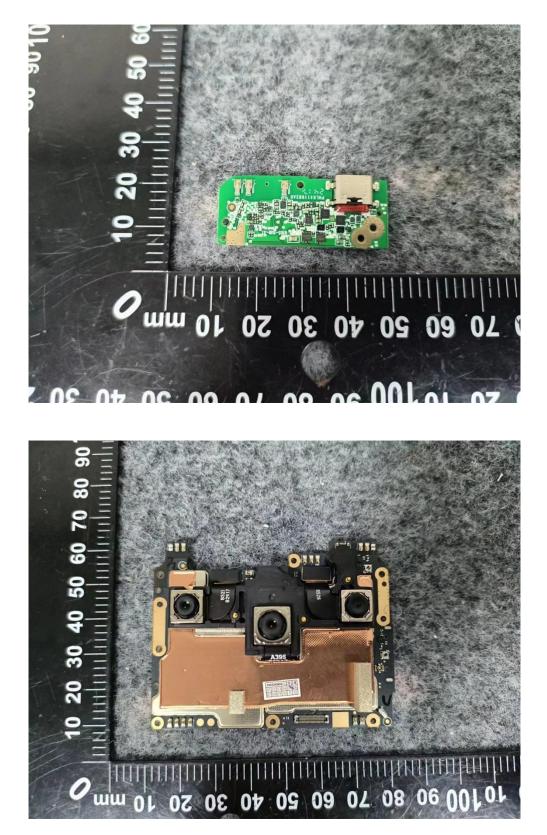
9. Photos of EUT

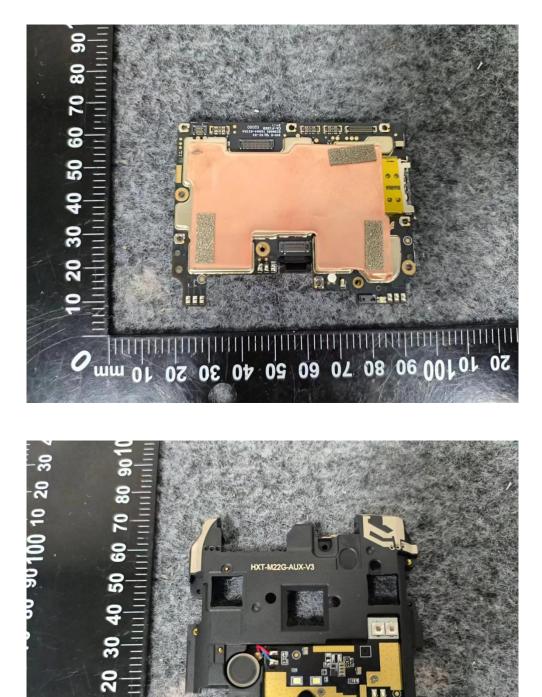


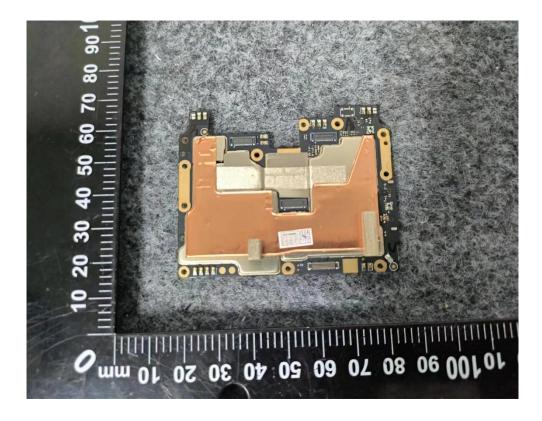


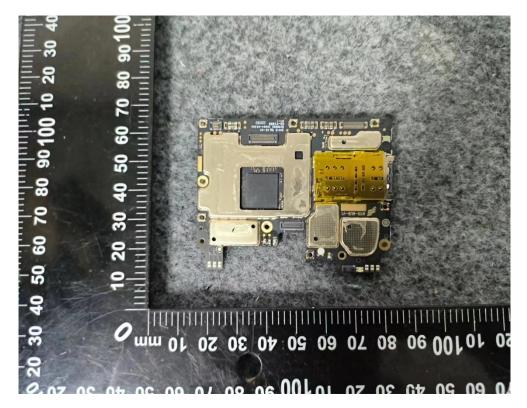




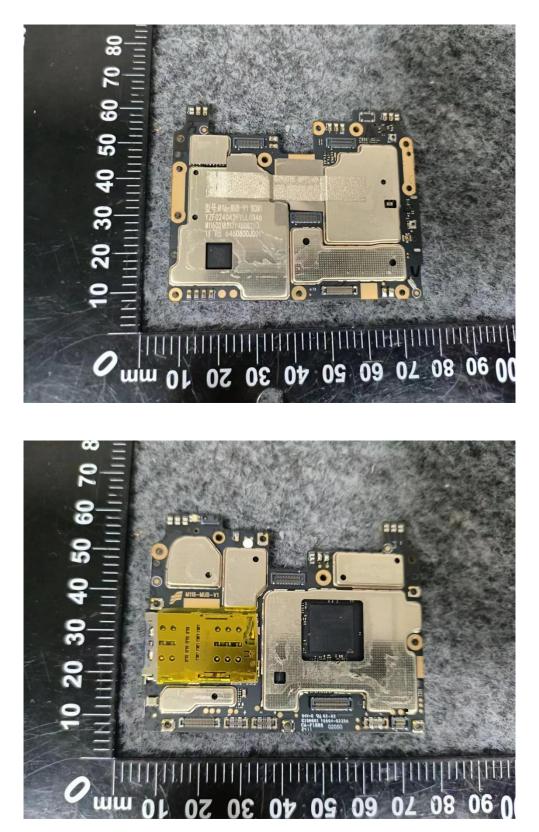


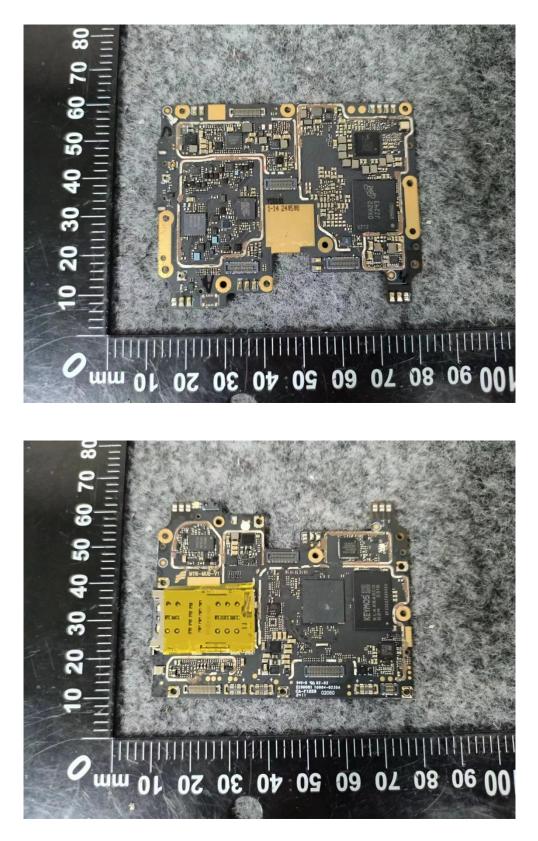






00


0 00 00 80 10 60 20 40 30 50 10 mm 0



-----END OF REPORT------