

# **RF Test Report**

### For

Applicant Name: Shenzhen DOOGEE Hengtong Technology CO.,LTD

Address:

B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.

22, Longhua New District, Shenzhen, China

EUT Name: Tablet Brand Name: DOOGEE

Model Number: R10, R10Pro, R10S, R10E

Series Model Number: Refer to section 2

**Issued By** 

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF230607R00204 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2AX4YR10

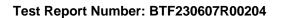
Test Date: 2023-04-22 to 2023-05-08

Date of Issue: 2023-06-07

Prepared By:

elma.yang/ roject

Elma . Kang


Date: 2023-06-0

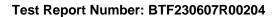
Approved By:

Ryan.CJ/ EMC Manager

Date: 2023-06-07

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.






| Revision History                                                                  |            |                   |  |
|-----------------------------------------------------------------------------------|------------|-------------------|--|
| Version                                                                           | Issue Date | Revisions Content |  |
| R_V0                                                                              | 2023-06-07 | Original          |  |
|                                                                                   |            |                   |  |
| Note: Once the revision has been made, then previous versions reports are invalid |            |                   |  |



#### **Table of Contents**

| 1 | INTR       | RODUCTION                                                              | 5  |
|---|------------|------------------------------------------------------------------------|----|
|   | 1.1        | Identification of Testing Laboratory                                   |    |
|   | 1.2        | Identification of the Responsible Testing Location                     |    |
|   | 1.3        | Announcement                                                           |    |
| 2 | PRO        | DUCT INFORMATION                                                       |    |
|   | 2.1        | Application Information                                                |    |
|   | 2.2<br>2.3 | Manufacturer Information                                               |    |
|   | 2.3<br>2.4 | Factory Information  General Description of Equipment under Test (EUT) | 6  |
|   | 2.5        | Technical Information                                                  | 6  |
| 3 | SUM        | MARY OF TEST RESULTS                                                   | 7  |
|   | 3.1        | Test Standards                                                         |    |
|   | 3.2        | Uncertainty of Test                                                    |    |
|   | 3.3        | Summary of Test Result                                                 |    |
| 4 | TES        | T CONFIGURATION                                                        | 8  |
|   | 4.1        | Test Equipment List                                                    | 8  |
|   | 4.2        | Test Auxiliary Equipment                                               |    |
|   | 4.3        | Channel list                                                           |    |
| 5 | EVA        | LUATION RESULTS (EVALUATION)                                           | 15 |
|   | 5.1        | Antenna requirement                                                    | 15 |
|   |            | 5.1.1 Conclusion:Pass                                                  | 15 |
| 6 | RAD        | DIO SPECTRUM MATTER TEST RESULTS (RF)                                  | 16 |
|   | 6.1        | Conducted Emission at AC power line                                    |    |
|   | 0          | 6.1.1 E.U.T. Operation:                                                |    |
|   |            | 6.1.2 Test Setup Diagram:                                              |    |
|   |            | 6.1.3 Test Data:                                                       |    |
|   | 6.2        | Maximum conducted output power                                         |    |
|   |            | 6.2.1 E.U.T. Operation:                                                |    |
|   |            | 6.2.2 Test Data:                                                       |    |
|   | 6.3        | Power spectral density                                                 |    |
|   |            | 6.3.1 E.U.T. Operation: 6.3.2 Test Data:                               |    |
|   | 6.4        | Emission bandwidth and occupied bandwidth                              |    |
|   | 0.4        | 6.4.1 E.U.T. Operation:                                                |    |
|   |            | 6.4.2 Test Data:                                                       | _  |
|   | 6.5        | Band edge emissions (Radiated)                                         |    |
|   |            | 6.5.1 E.U.T. Operation:                                                |    |
|   |            | 6.5.2 Test Setup Diagram:                                              | 95 |
|   |            | 6.5.3 Test Data:                                                       |    |
|   | 6.6        | Undesirable emission limits (below 1GHz)                               |    |
|   |            | 6.6.1 E.U.T. Operation:                                                |    |
|   |            | 6.6.2 Test Setup Diagram:                                              |    |
|   | 6.7        | Undesirable emission limits (above 1GHz)                               |    |
|   | 0.7        | 6.7.1 E.U.T. Operation:                                                |    |
|   |            | 6.7.2 Test Data:                                                       |    |
|   | 6.8        | Frequency stability                                                    |    |
|   |            |                                                                        |    |





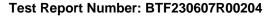
| 7 | TEST SETUP PHOTOS119                      |
|---|-------------------------------------------|
| 8 | EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)12 |



Test Report Number: BTF230607R00204

#### 1 Introduction

#### 1.1 Identification of Testing Laboratory


| Company Name: BTF Testing Lab (Shenzhen) Co., Ltd. |                                                                                                                                     |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Address:                                           | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |  |
| Phone Number:                                      | +86-0755-23146130                                                                                                                   |  |
| Fax Number:                                        | +86-0755-23146130                                                                                                                   |  |

#### 1.2 Identification of the Responsible Testing Location

| Company Name:            | BTF Testing Lab (Shenzhen) Co., Ltd.                                                                                                |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Address:                 | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |
| Phone Number:            | +86-0755-23146130                                                                                                                   |
| Fax Number:              | +86-0755-23146130                                                                                                                   |
| FCC Registration Number: | 518915                                                                                                                              |
| Designation Number:      | CN1330                                                                                                                              |

#### 1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.





#### 2 Product Information

## 2.1 Application Information

| Company Name: | Shenzhen DOOGEE Hengtong Technology CO.,LTD                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------|
| Address:      | B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China |

### 2.2 Manufacturer Information

| Company Name: | Shenzhen DOOGEE Hengtong Technology CO.,LTD                                                                      |  |
|---------------|------------------------------------------------------------------------------------------------------------------|--|
|               | B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China |  |

#### 2.3 Factory Information

| Company Name:                                             |          | Shenzhen DOOGEE Hengtong Technology CO.,LTD                                        |
|-----------------------------------------------------------|----------|------------------------------------------------------------------------------------|
| Company Name: Chenzhen Boodez Hengtong Technology Co.,ETB |          | Chenzhen Boocke Hengtong Teormology Co.,ETB                                        |
| 1                                                         | Address: | B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua |
|                                                           | Address. | New District, Shenzhen, China                                                      |

#### 2.4 General Description of Equipment under Test (EUT)

| EUT Name:            | Tablet                                                                                     |
|----------------------|--------------------------------------------------------------------------------------------|
| Test Model Number:   | R10                                                                                        |
| Series Model Number: | R10, R10Pro, R10S, R10E                                                                    |
| Diff:                | There is no difference except the name of the model. All tests are made with the R10 model |

#### 2.5 Technical Information

| Power Supply:               | DC 3.8V from battery or DC 9V from adapter                                    |  |  |
|-----------------------------|-------------------------------------------------------------------------------|--|--|
| Power Adaptor:              | Input: 100~240V 50/60Hz 0.6A                                                  |  |  |
| rower Adaptor.              | Output: 5V=3A, 9V=2.22A, 12V=1.67A                                            |  |  |
|                             | 802.11a/ 802.11ac20/ 802.11n(HT20)/ 802.11ax20: 5180-5240MHz,<br>5745-5825MHz |  |  |
| Operation Frequency:        | 802.11ac40/ 802.11n(HT40)/ 802.11ax40: 5190-5230MHz, 5755-5795MHz             |  |  |
|                             | 802.11ac80/802.11ax80: 5210MHz, 5775MHz                                       |  |  |
|                             | 802.11a/ac/ax/n(HT20):                                                        |  |  |
|                             | U-NII Band 1: 4;                                                              |  |  |
|                             | U-NII Band 3: 5;                                                              |  |  |
|                             | 802.11ax40,ac40,n(HT40):                                                      |  |  |
| Number of Channels:         | U-NII Band 1: 2;                                                              |  |  |
|                             | U-NII Band 3: 2;                                                              |  |  |
|                             |                                                                               |  |  |
|                             | 802.11ac80,ax80: .                                                            |  |  |
|                             | U-NII Band 1: 1                                                               |  |  |
|                             | U-NII Band 3: 1                                                               |  |  |
|                             | IIEEE 802.11n: OFDM (64QAM,16QAM,QPSK,BPSK)                                   |  |  |
| Modulation Type:            | IEEE 802.11a: OFDM (64QAM,16QAM,QPSK,BPSK)                                    |  |  |
| Wodalation Type.            | IEEE 802.11ac: OFDM (64QAM,16QAM, 256QAM,QPSK,BPSK)                           |  |  |
|                             | IEEE 802.11ax: OFDMA (64QAM,16QAM,QPSK,BPSK,256QAM,1024QAM)                   |  |  |
| Antenna Type:               | PIFA antenna                                                                  |  |  |
| Antenna Gain <sup>#</sup> : | 1.45dBi                                                                       |  |  |

#### Note:

<sup>#:</sup> The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.



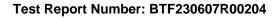
Test Report Number: BTF230607R00204

## 3 Summary of Test Results

#### 3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


#### 3.2 Uncertainty of Test

| Item                                | Measurement Uncertainty |  |
|-------------------------------------|-------------------------|--|
| Conducted Emission (150 kHz-30 MHz) | ±2.64dB                 |  |

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

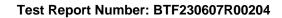
#### 3.3 Summary of Test Result

| Item                                      | Standard        | Requirement                                                                                                                                                                             | Result |
|-------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Antenna requirement                       | 47 CFR Part 15E | Part 15.203                                                                                                                                                                             | Pass   |
| Conducted Emission at AC power line       | 47 CFR Part 15E | 47 CFR Part 15.207(a)                                                                                                                                                                   | Pass   |
| Maximum conducted output power            | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i) | Pass   |
| Power spectral density                    | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)                | Pass   |
| Emission bandwidth and occupied bandwidth | 47 CFR Part 15E | U-NII 1, U-NII 3,:<br>No limits, only for report use.<br>47 CFR Part 15.407(e)                                                                                                          | Pass   |
| Band edge emissions (Radiated)            | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                           | Pass   |
| Frequency Stability                       | 47 CFR Part 15E | 15.407(f), RSS-GEN(6.11)                                                                                                                                                                | Pass   |
| Undesirable emission limits (below 1GHz)  | 47 CFR Part 15E | 47 CFR Part 47 CFR Part<br>15.407(b)(9)                                                                                                                                                 | Pass   |
| Undesirable emission limits (above 1GHz)  | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                           | Pass   |





## **Test Configuration**

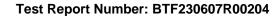

## **Test Equipment List**

| Conducted Emission at AC power line |                   |             |              |            |              |  |  |  |  |
|-------------------------------------|-------------------|-------------|--------------|------------|--------------|--|--|--|--|
| Equipment                           | Manufacturer      | Model No    | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| Pulse Limiter                       | SCHWARZBECK       | VTSD 9561-F | 00953        | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Coaxial Switcher                    | SCHWARZBECK       | CX210       | CX210        | 2022-11-24 | 2023-11-23   |  |  |  |  |
| V-LISN                              | SCHWARZBECK       | NSLK 8127   | 01073        | 2022-11-24 | 2023-11-23   |  |  |  |  |
| LISN                                | AFJ               | LS16/110VAC | 16010020076  | 2023-02-23 | 2024-02-22   |  |  |  |  |
| EMI Receiver                        | ROHDE&SCHWA<br>RZ | ESCI3       | 101422       | 2022-11-24 | 2023-11-23   |  |  |  |  |

| Duty Cycle                                             |                                                 |           |              |            |              |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|--|
| Equipment                                              | Manufacturer                                    | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| RFTest software                                        | 1                                               | V1.00     | /            | 1          | /            |  |  |  |  |
| RF Control Unit                                        | Techy                                           | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RF Sensor Unit                                         | Techy                                           | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                         | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan Tongmen Electronic Technology Co., LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                 | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                        | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |  |

| Maximum conducted output power                         |                                                             |           |              |            |              |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                        | /                                                           | V1.00     | 1            | /          | /            |  |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |

| Power spectral densit | ty           |          |              |          |              |
|-----------------------|--------------|----------|--------------|----------|--------------|
| Equipment             | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date |

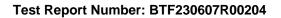





| RFTest software                                        | /                                               | V1.00     | /           | /          | /          |
|--------------------------------------------------------|-------------------------------------------------|-----------|-------------|------------|------------|
| RF Control Unit                                        | Techy                                           | TR1029-1  | /           | 2022-11-24 | 2023-11-23 |
| RF Sensor Unit                                         | Techy                                           | TR1029-2  | /           | 2022-11-24 | 2023-11-23 |
| Programmable constant temperature and humidity box     | ZZCKONG                                         | ZZ-K02A   | 20210928007 | 2022-11-24 | 2023-11-23 |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan Tongmen Electronic Technology Co., LTD | etm-6050c | 20211026123 | 2022-11-24 | 2023-11-23 |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                 | CMW500    | 161997      | 2022-11-24 | 2023-11-23 |
| MXA Signal Analyzer                                    | KEYSIGHT                                        | N9020A    | MY50410020  | 2022-11-24 | 2023-11-23 |

| Emission bandwidth and occupied bandwidth              |                                                             |           |              |            |              |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| RFTest software                                        | /                                                           | V1.00     | /            | /          | /            |  |  |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |  |

| Channel Availability Check Time                        |                                                             |           |              |            |              |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| RFTest software                                        | /                                                           | V1.00     | /            | /          | /            |  |  |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |  |



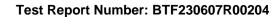



| U-NII Detection Bandwidth                              |                                                             |           |              |            |              |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| RFTest software                                        | /                                                           | V1.00     | /            | /          | /            |  |  |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |  |

| Statistical Performance Check                          |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | /                                                           | V1.00     | /            | /          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |

| <b>Channel Move Time,</b>                              | Channel Move Time, Channel Closing Transmission Time |           |              |            |              |  |  |  |  |
|--------------------------------------------------------|------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|--|
| Equipment                                              | Manufacturer                                         | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| RFTest software                                        | /                                                    | V1.00     | /            | /          | /            |  |  |  |  |
| RF Control Unit                                        | Techy                                                | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RF Sensor Unit                                         | Techy                                                | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                              | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan Tongmen Electronic Technology Co., LTD      | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                      | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |  |

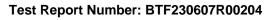





| WAA SIGNALANAIYEE     NETSIGNA   NGOZOA   WITSOFTOOZO   2022-11-24   2023-11-23 | MXA Signal Analyzer | KEYSIGHT | N9020A | MY50410020 | 2022-11-24 | 2023-11-23 |
|---------------------------------------------------------------------------------|---------------------|----------|--------|------------|------------|------------|
|---------------------------------------------------------------------------------|---------------------|----------|--------|------------|------------|------------|

| Non-Occupancy Period Test                              |                                                             |           |              |            |              |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| RFTest software                                        | /                                                           | V1.00     | /            | /          | /            |  |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |  |

| DFS Detection Thresholds                               |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | /                                                           | V1.00     | /            | /          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | /            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | /            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |


| Band edge emissions (Radiated) |              |                     |              |            |              |  |  |
|--------------------------------|--------------|---------------------|--------------|------------|--------------|--|--|
| Equipment                      | Manufacturer | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |
| Coaxial cable Multiflex 141    | Schwarzbeck  | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |
| Preamplifier                   | SCHWARZBECK  | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |  |  |
| POSITIONAL                     | SKET         | PCI-GPIB            | /            | /          | /            |  |  |





| CONTROLLER                  |                   |             |        |            |            |
|-----------------------------|-------------------|-------------|--------|------------|------------|
| Horn Antenna                | SCHWARZBECK       | BBHA9170    | 01157  | 2021-11-28 | 2023-11-27 |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7       | 101032 | 2022-11-24 | 2023-11-23 |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40       | 100010 | 2022-11-24 | 2023-11-23 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB    | /      | /          | /          |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D    | 00008  | 2023-03-24 | 2024-03-23 |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D   | 2597   | 2022-05-22 | 2024-05-21 |
| EZ_EMC                      | Frad              | FA-03A2 RE+ | 1      | /          | /          |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB    | 1      | /          | /          |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168   | 01328  | 2021-11-28 | 2023-11-27 |

| Undesirable emission limits (below 1GHz) |                   |                     |              |            |              |  |  |
|------------------------------------------|-------------------|---------------------|--------------|------------|--------------|--|--|
| Equipment                                | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |
| Coaxial cable Multiflex 141              | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |
| Preamplifier                             | SCHWARZBECK       | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | /            | /          | /            |  |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27   |  |  |
| EMI TEST RECEIVER                        | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2022-11-24 | 2023-11-23   |  |  |
| SIGNAL ANALYZER                          | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2022-11-24 | 2023-11-23   |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | /            | /          | /            |  |  |
| Broadband<br>Preamplilifier              | SCHWARZBECK       | BBV9718D            | 00008        | 2023-03-24 | 2024-03-23   |  |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |  |  |
| EZ_EMC                                   | Frad              | FA-03A2 RE+         | /            | /          | /            |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | /            | /          | /            |  |  |
| Log periodic antenna                     | SCHWARZBECK       | VULB 9168           | 01328        | 2021-11-28 | 2023-11-27   |  |  |





| <b>Undesirable emission</b>    | Undesirable emission limits (above 1GHz) |                     |              |            |              |  |  |  |  |
|--------------------------------|------------------------------------------|---------------------|--------------|------------|--------------|--|--|--|--|
| Equipment                      | Manufacturer                             | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |  |  |
| Coaxial cable Multiflex<br>141 | Schwarzbeck                              | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |  |  |
| Preamplifier                   | SCHWARZBECK                              | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent                             | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent                             | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent                             | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent                             | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| RE Cable                       | REBES Talent                             | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |  |  |  |  |
| POSITIONAL<br>CONTROLLER       | SKET                                     | PCI-GPIB            | /            | /          | /            |  |  |  |  |
| Horn Antenna                   | SCHWARZBECK                              | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27   |  |  |  |  |
| EMI TEST RECEIVER              | ROHDE&SCHWA<br>RZ                        | ESCI7               | 101032       | 2022-11-24 | 2023-11-23   |  |  |  |  |
| SIGNAL ANALYZER                | ROHDE&SCHWA<br>RZ                        | FSQ40               | 100010       | 2022-11-24 | 2023-11-23   |  |  |  |  |
| POSITIONAL<br>CONTROLLER       | SKET                                     | PCI-GPIB            | 1            | 1          | /            |  |  |  |  |
| Broadband<br>Preamplilifier    | SCHWARZBECK                              | BBV9718D            | 00008        | 2023-03-24 | 2024-03-23   |  |  |  |  |
| Horn Antenna                   | SCHWARZBECK                              | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |  |  |  |  |
| EZ_EMC                         | Frad                                     | FA-03A2 RE+         | /            | /          | /            |  |  |  |  |
| POSITIONAL<br>CONTROLLER       | SKET                                     | PCI-GPIB            | /            | /          | /            |  |  |  |  |
| Log periodic antenna           | SCHWARZBECK                              | VULB 9168           | 01328        | 2021-11-28 | 2023-11-27   |  |  |  |  |





#### 4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

#### 4.3 Channel list

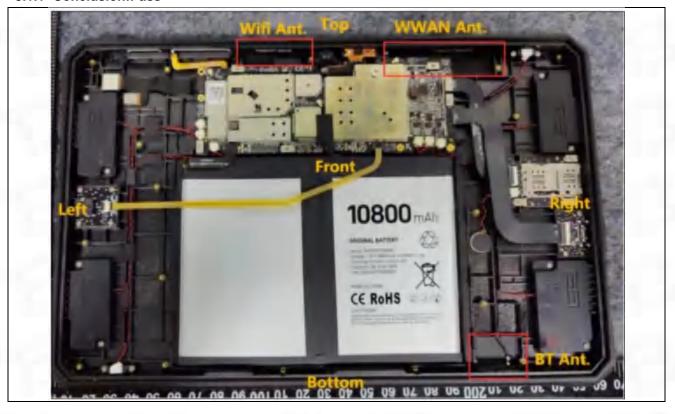
| Channel list                                       |                 |               |                        |         |                 |  |
|----------------------------------------------------|-----------------|---------------|------------------------|---------|-----------------|--|
| For 802.11a/ 802.11ac20/ 802.11n(HT20)/ 802.11ax20 |                 |               |                        |         |                 |  |
| Channel                                            | Frequency (MHz) | Channel       | Frequency (MHz)        | Channel | Frequency (MHz) |  |
| CH36                                               | 5180            | CH40          | 5200                   | CH44    | 5220            |  |
| CH48                                               | 5240            |               |                        |         |                 |  |
| CH149                                              | 5745            | CH153         | 5765                   | CH157   | 5785            |  |
| CH161                                              | 5805            | CH165         | 5825                   |         |                 |  |
|                                                    | 8               | 02.11ac40/ 80 | )2.11n(HT40)/ 802.11ax | 40      |                 |  |
| Channel                                            | Frequency (MHz) | Channel       | Frequency (MHz)        | Channel | Frequency (MHz) |  |
| CH38                                               | 5190            | CH46          | 5230                   |         |                 |  |
| CH151                                              | 5755            | CH159         | 25795                  |         |                 |  |
| Channel list                                       |                 |               |                        |         |                 |  |
| 802.11ac80/802.11ax80                              |                 |               |                        |         |                 |  |
| Channel                                            | Frequency (MHz) | Channel       | Frequency (MHz)        | Channel | Frequency (MHz) |  |
| CH42                                               | 5210            | CH155         | 5775                   |         |                 |  |

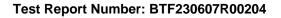
According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below .

|         | Test 2          |         | ЛHz                | 40N     | ЛHz                | 80MHz   |                    |
|---------|-----------------|---------|--------------------|---------|--------------------|---------|--------------------|
| Band    | Channel         | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|         | CH∟             | 36      | 5180               | 38      | 5190               | -       | -                  |
| U-NII-1 | CH <sub>M</sub> | 40      | 5200               | -       | -                  | 42      | 5210               |
|         | CH <sub>H</sub> | 48      | 5240               | 46      | 5230               | ı       | 1                  |
|         | CH∟             | 149     | 5745               | 151     | 5755               | 1       | 1                  |
| U-NII-3 | CH <sub>M</sub> | 157     | 5785               | •       | -                  | 155     | 5775               |
|         | CH <sub>H</sub> | 165     | 5825               | 159     | 5795               | -       | _                  |






## 5 Evaluation Results (Evaluation)


#### 5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

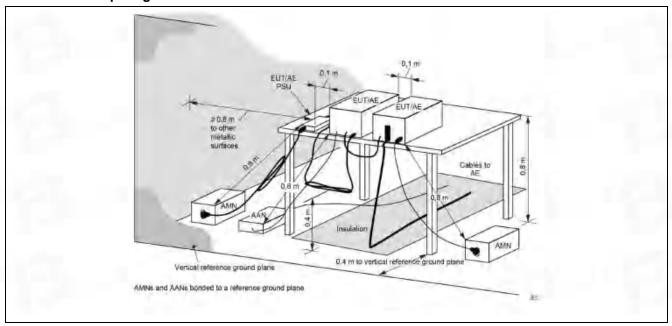
#### 5.1.1 Conclusion:Pass







## 6 Radio Spectrum Matter Test Results (RF)


## 6.1 Conducted Emission at AC power line

| Test Requirement: | 47 CFR Part 15.207(a)              |                                                                                                                                    |                 |  |  |  |  |
|-------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Test Method:      |                                    | Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices |                 |  |  |  |  |
|                   | Frequency of emission (MHz)        | Conducted limit (de Quasi-peak                                                                                                     | ΒμV)<br>Average |  |  |  |  |
| Test Limit:       | 0.15-0.5                           | 66 to 56*                                                                                                                          | 56 to 46*       |  |  |  |  |
| rest Limit.       | 0.5-5                              | 56                                                                                                                                 | 46              |  |  |  |  |
|                   | 5-30                               | 60                                                                                                                                 | 50              |  |  |  |  |
|                   | *Decreases with the logarithm of t | *Decreases with the logarithm of the frequency.                                                                                    |                 |  |  |  |  |

#### 6.1.1 E.U.T. Operation:

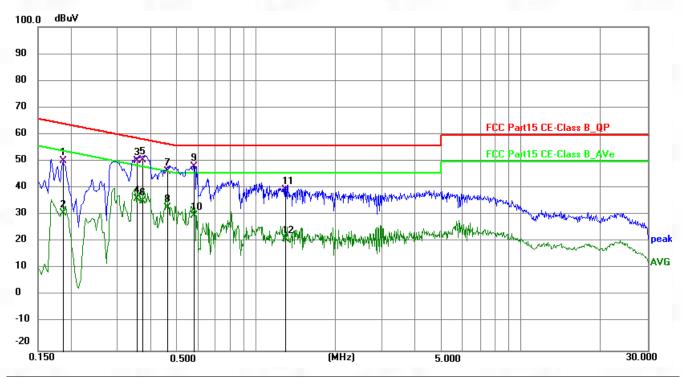
| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

#### 6.1.2 Test Setup Diagram:

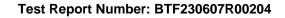




Test Report Number: BTF230607R00204

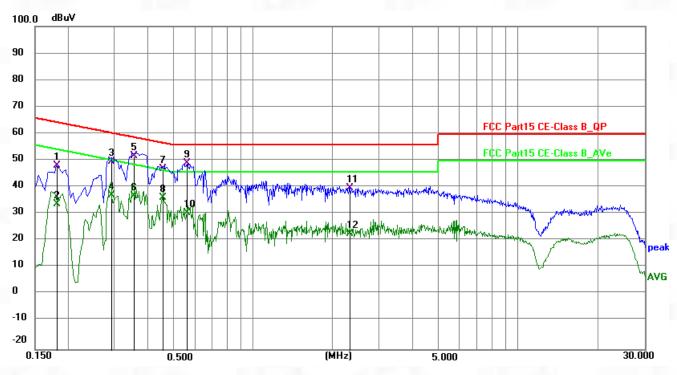

#### 6.1.3 Test Data:

An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



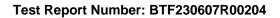



#### Line:



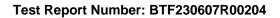

| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1860    | 40.86   | 9.63    | 50.49  | 64.21  | -13.72 | QP     |
| 2   | 0.1860    | 21.39   | 9.63    | 31.02  | 54.21  | -23.19 | AVG    |
| 3   | 0.3553    | 40.93   | 9.62    | 50.55  | 58.84  | -8.29  | QP     |
| 4   | 0.3553    | 26.69   | 9.62    | 36.31  | 48.84  | -12.53 | AVG    |
| 5   | 0.3747    | 40.98   | 9.62    | 50.60  | 58.40  | -7.80  | QP     |
| 6   | 0.3747    | 25.89   | 9.62    | 35.51  | 48.40  | -12.89 | AVG    |
| 7   | 0.4649    | 37.05   | 9.62    | 46.67  | 56.60  | -9.93  | QP     |
| 8   | 0.4649    | 23.62   | 9.62    | 33.24  | 46.60  | -13.36 | AVG    |
| 9   | 0.5820    | 38.63   | 9.62    | 48.25  | 56.00  | -7.75  | QP     |
| 10  | 0.5820    | 20.66   | 9.62    | 30.28  | 46.00  | -15.72 | AVG    |
| 11  | 1.2930    | 29.94   | 9.64    | 39.58  | 56.00  | -16.42 | QP     |
| 12  | 1.2930    | 11.94   | 9.64    | 21.58  | 46.00  | -24.42 | AVG    |






#### Neutral:




| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1814    | 38.62   | 9.63    | 48.25  | 64.42  | -16.17 | QP     |
| 2   | 0.1814    | 24.51   | 9.63    | 34.14  | 54.42  | -20.28 | AVG    |
| 3   | 0.2900    | 40.25   | 9.63    | 49.88  | 60.52  | -10.64 | QP     |
| 4   | 0.2900    | 27.75   | 9.63    | 37.38  | 50.52  | -13.14 | AVG    |
| 5   | 0.3530    | 42.16   | 9.63    | 51.79  | 58.89  | -7.10  | QP     |
| 6   | 0.3530    | 27.46   | 9.63    | 37.09  | 48.89  | -11.80 | AVG    |
| 7   | 0.4575    | 37.52   | 9.62    | 47.14  | 56.74  | -9.60  | QP     |
| 8   | 0.4575    | 26.68   | 9.62    | 36.30  | 46.74  | -10.44 | AVG    |
| 9   | 0.5639    | 39.69   | 9.62    | 49.31  | 56.00  | -6.69  | QP     |
| 10  | 0.5639    | 21.25   | 9.62    | 30.87  | 46.00  | -15.13 | AVG    |
| 11  | 2.3144    | 30.49   | 9.65    | 40.14  | 56.00  | -15.86 | QP     |
| 12  | 2.3144    | 13.33   | 9.65    | 22.98  | 46.00  | -23.02 | AVG    |

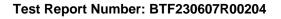
Note: All modes and channels have been tested and only the A 5180MHz mode with the worst data is listed.





| 6.2 Maximum cond  | ucted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement: | 47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Method:      | ANSI C63.10-2013, section 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Limit:       | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.  Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.  For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.  Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. |
|                   | For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |





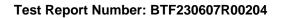

|            | For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.  However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | installed, the installer, is responsible for ensuring that systems employing high gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | directional antennas are used exclusively for fixed, point-to-point operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Method SA-1 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW >= 3 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | that narrowband signals are not lost between frequency bins.) e) Sweep time = auto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | only on full power pulses. The transmitter shall operate at maximum power control level for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Procedure: | entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | then the trigger shall be set to "free run."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | h) Trace average at least 100 traces in power averaging (rms) mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | using the instrument's band power measurement function, with band limits set equal to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | EBW or OBW band edges. If the instrument does not have a band power function, then sum the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### 6.2.1 E.U.T. Operation:

| Operating Environment: |           |  |  |  |
|------------------------|-----------|--|--|--|
| Temperature:           | 25.5 °C   |  |  |  |
| Humidity:              | 50.6 %    |  |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |  |

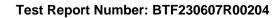
#### 6.2.2 Test Data:






Band 1 (5150-5250 MHz)

| Condition | Mode | Frequency | Antenna | Conducted   | Duty   | Total | Limit | Verdict |
|-----------|------|-----------|---------|-------------|--------|-------|-------|---------|
|           |      | (MHz)     |         | Power (dBm) | Factor | Power | (dBm) |         |
|           |      |           |         | ` '         | (dBm)  | (dBm) | ,     |         |
| NVNT      | а    | 5180      | Ant1    | 18.32       |        | 18.32 | 24    | Pass    |
| NVNT      | а    | 5200      | Ant1    | 18.94       |        | 18.94 | 24    | Pass    |
| NVNT      | а    | 5240      | Ant1    | 18.76       |        | 18.76 | 24    | Pass    |
| NVNT      | ac20 | 5180      | Ant1    | 18.46       | 0.09   | 18.55 | 24    | Pass    |
| NVNT      | ac20 | 5200      | Ant1    | 17.94       | 0.09   | 18.03 | 24    | Pass    |
| NVNT      | ac20 | 5240      | Ant1    | 18.12       | 0.09   | 18.21 | 24    | Pass    |
| NVNT      | ac40 | 5190      | Ant1    | 17.89       | 0.18   | 18.07 | 24    | Pass    |
| NVNT      | ac40 | 5230      | Ant1    | 18.38       | 0.18   | 18.56 | 24    | Pass    |
| NVNT      | ac80 | 5210      | Ant1    | 17.7        | 0.37   | 18.07 | 24    | Pass    |
| NVNT      | ax20 | 5180      | Ant1    | 18.62       | 0.09   | 18.71 | 24    | Pass    |
| NVNT      | ax20 | 5200      | Ant1    | 18.57       | 0.09   | 18.66 | 24    | Pass    |
| NVNT      | ax20 | 5240      | Ant1    | 18.32       | 0.09   | 18.41 | 24    | Pass    |
| NVNT      | ax40 | 5190      | Ant1    | 18.23       | 0.18   | 18.41 | 24    | Pass    |
| NVNT      | ax40 | 5230      | Ant1    | 17.83       | 0.18   | 18.01 | 24    | Pass    |
| NVNT      | ax80 | 5210      | Ant1    | 18.26       | 0.37   | 18.63 | 24    | Pass    |
| NVNT      | n20  | 5180      | Ant1    | 17.93       | 0.09   | 18.02 | 24    | Pass    |
| NVNT      | n20  | 5200      | Ant1    | 18.88       | 0.09   | 18.97 | 24    | Pass    |
| NVNT      | n20  | 5240      | Ant1    | 18.17       | 0.09   | 18.26 | 24    | Pass    |
| NVNT      | n40  | 5190      | Ant1    | 18.39       | 0.14   | 18.53 | 24    | Pass    |
| NVNT      | n40  | 5230      | Ant1    | 17.93       | 0.18   | 18.11 | 24    | Pass    |


Band 4 (5725 - 5850 MHz)

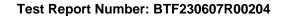
| Condition | Mode | Frequency | Antenna | Conducted   | Duty   | Total | Limit | Verdict |
|-----------|------|-----------|---------|-------------|--------|-------|-------|---------|
|           |      | (MHz)     |         | Power (dBm) | Factor | Power | (dBm) |         |
|           |      |           |         |             | (dBm)  | (dBm) |       |         |
| NVNT      | а    | 5745      | Ant1    | 18.02       |        | 18.02 | 30    | Pass    |
| NVNT      | а    | 5785      | Ant1    | 18.57       |        | 18.57 | 30    | Pass    |
| NVNT      | а    | 5825      | Ant1    | 18.95       |        | 18.95 | 30    | Pass    |
| NVNT      | ac20 | 5745      | Ant1    | 18.86       | 0.09   | 18.95 | 30    | Pass    |
| NVNT      | ac20 | 5785      | Ant1    | 18.38       | 0.11   | 18.49 | 30    | Pass    |
| NVNT      | ac20 | 5825      | Ant1    | 17.96       | 0.09   | 18.05 | 30    | Pass    |
| NVNT      | ac40 | 5755      | Ant1    | 18.3        | 0.18   | 18.48 | 30    | Pass    |
| NVNT      | ac40 | 5795      | Ant1    | 17.99       | 0.18   | 18.17 | 30    | Pass    |
| NVNT      | ac80 | 5775      | Ant1    | 18.49       | 0.37   | 18.86 | 30    | Pass    |
| NVNT      | ax20 | 5745      | Ant1    | 17.93       | 0.18   | 18.11 | 30    | Pass    |
| NVNT      | ax20 | 5785      | Ant1    | 17.87       | 0.18   | 18.05 | 30    | Pass    |
| NVNT      | ax20 | 5825      | Ant1    | 18.35       | 0.18   | 18.53 | 30    | Pass    |
| NVNT      | ax40 | 5755      | Ant1    | 18.62       | 0.18   | 18.80 | 30    | Pass    |
| NVNT      | ax40 | 5795      | Ant1    | 18.05       | 0.18   | 18.23 | 30    | Pass    |
| NVNT      | ax80 | 5775      | Ant1    | 18.53       | 0.37   | 18.90 | 30    | Pass    |
| NVNT      | n20  | 5745      | Ant1    | 18.62       |        | 18.62 | 30    | Pass    |
| NVNT      | n20  | 5785      | Ant1    | 18.08       |        | 18.08 | 30    | Pass    |
| NVNT      | n20  | 5825      | Ant1    | 18.26       |        | 18.26 | 30    | Pass    |
| NVNT      | n40  | 5755      | Ant1    | 18.15       | 0.18   | 18.33 | 30    | Pass    |
| NVNT      | n40  | 5795      | Ant1    | 17.96       | 0.18   | 18.14 | 30    | Pass    |





| 6.3 Power spectral | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:  | 47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Method:       | ANSI C63.10-2013, section 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.  For an indoor access point operating in the band 5.15-5.25 GHz, the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | power spectral density shall not exceed 17 dBm in any 1 megahertz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Limit:        | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.  Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.  Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. |
|                    | For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.  For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.  For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter                                                                                                                                                                                                                                                              |





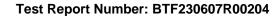

|            | conducted power.                                                                    |
|------------|-------------------------------------------------------------------------------------|
|            | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,    |
|            | omnidirectional applications, and multiple collocated transmitters transmitting the |
|            | same information. The operator of the U-NII device, or if the equipment is          |
|            | professionally installed, the installer, is responsible for ensuring that systems   |
|            | employing high gain directional antennas are used exclusively for fixed,            |
|            | point-to-point operations.                                                          |
|            | a) Create an average power spectrum for the EUT operating mode being tested by      |
|            | following the                                                                       |
|            | instructions in 12.3.2 for measuring maximum conducted output power using a         |
|            | spectrum                                                                            |
|            | analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,  |
|            | SA-3, or their                                                                      |
|            | respective alternatives) and apply it up to, but not including, the step labeled,   |
|            | "Compute                                                                            |
|            | power" (This procedure is required even if the maximum conducted output             |
|            | power                                                                               |
|            | measurement was performed using the power meter method PM.)                         |
|            | b) Use the peak search function on the instrument to find the peak of the spectrum. |
|            | c) Make the following adjustments to the peak value of the spectrum, if applicable: |
|            | 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty |
|            | cycle, to the peak of the spectrum.                                                 |
|            | 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,    |
|            | add                                                                                 |
| Procedure: | 1 dB to the final result to compensate for the difference between linear averaging  |
|            | and power averaging.                                                                |
|            | d) The result is the PPSD.                                                          |
|            | e) The procedure in item a) through item c) requires the use of 1 MHz resolution    |
|            | bandwidth to                                                                        |
|            | satisfy the 1 MHz measurement bandwidth specified by some regulatory                |
|            | authorities. This                                                                   |
|            | requirement also permits use of resolution bandwidths less than 1 MHz "provided     |
|            | that the                                                                            |
|            | measured power is integrated to show the total power over the measurement           |
|            | bandwidth" (i.e.,                                                                   |
|            | 1 MHz). If measurements are performed using a reduced resolution bandwidth and      |
|            | integrated                                                                          |
|            | over 1 MHz bandwidth, the following adjustments to the procedures apply:            |
|            | 1) Set RBW >= 1 / T, where T is defined in 12.2 a).                                 |
|            | 2) Set VBW >= [3 x RBW].                                                            |
|            | 3) Care shall be taken such that the measurements are performed during a period     |
|            | of continuous transmission or are corrected upward for duty cycle.                  |

#### 6.3.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

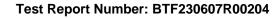
#### 6.3.2 Test Data:



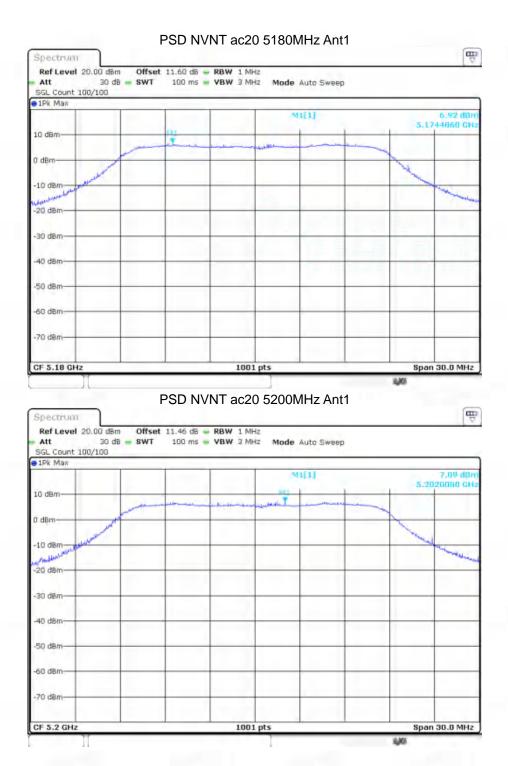


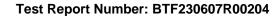

Band 1 (5150-5250 MHz)


| 5150-5250 I | VIHZ) |                 |         |               |             |         |
|-------------|-------|-----------------|---------|---------------|-------------|---------|
| Condition   | Mode  | Frequency (MHz) | Antenna | Max PSD (dBm) | Limit (dBm) | Verdict |
| NVNT        | а     | 5180            | Ant1    | 6.714         | 11          | Pass    |
| NVNT        | а     | 5200            | Ant1    | 7.323         | 11          | Pass    |
| NVNT        | а     | 5240            | Ant1    | 6.72          | 11          | Pass    |
| NVNT        | ac20  | 5180            | Ant1    | 6.917         | 11          | Pass    |
| NVNT        | ac20  | 5200            | Ant1    | 7.09          | 11          | Pass    |
| NVNT        | ac20  | 5240            | Ant1    | 7.262         | 11          | Pass    |
| NVNT        | ac40  | 5190            | Ant1    | 4.107         | 11          | Pass    |
| NVNT        | ac40  | 5230            | Ant1    | 4.131         | 11          | Pass    |
| NVNT        | ac80  | 5210            | Ant1    | 1.066         | 11          | Pass    |
| NVNT        | ax20  | 5180            | Ant1    | 8.626         | 11          | Pass    |
| NVNT        | ax20  | 5200            | Ant1    | 9.966         | 11          | Pass    |
| NVNT        | ax20  | 5240            | Ant1    | 10.187        | 11          | Pass    |
| NVNT        | ax40  | 5190            | Ant1    | 6.489         | 11          | Pass    |
| NVNT        | ax40  | 5230            | Ant1    | 6.239         | 11          | Pass    |
| NVNT        | ax80  | 5210            | Ant1    | 0.139         | 11          | Pass    |
| NVNT        | n20   | 5180            | Ant1    | 6.818         | 11          | Pass    |
| NVNT        | n20   | 5200            | Ant1    | 6.661         | 11          | Pass    |
| NVNT        | n20   | 5240            | Ant1    | 7.283         | 11          | Pass    |
| NVNT        | n40   | 5190            | Ant1    | 3.943         | 11          | Pass    |
| NVNT        | n40   | 5230            | Ant1    | 4.506         | 11          | Pass    |

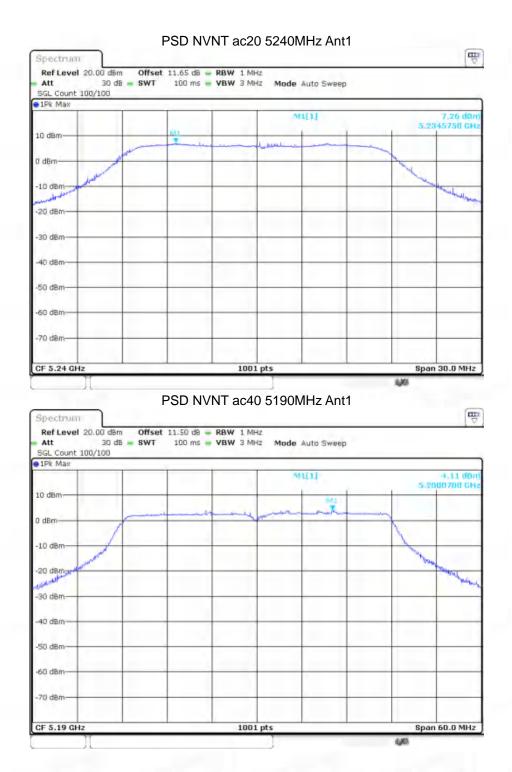

#### PSD NVNT a 5180MHz Ant1

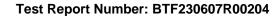




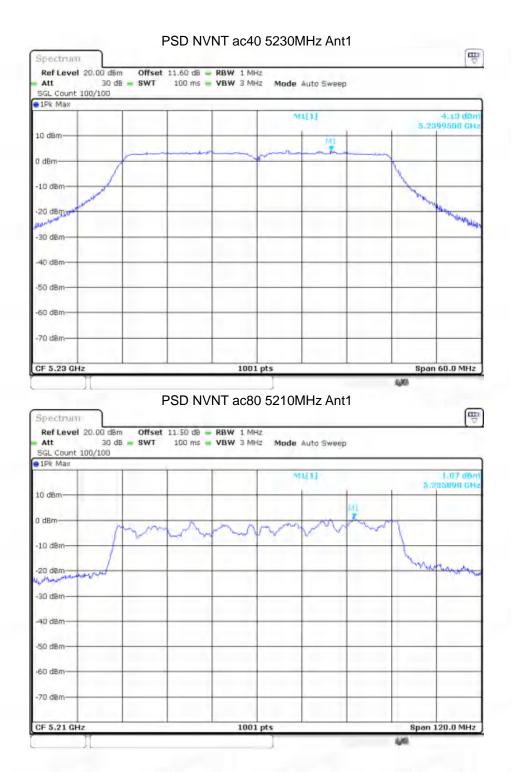



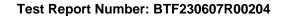


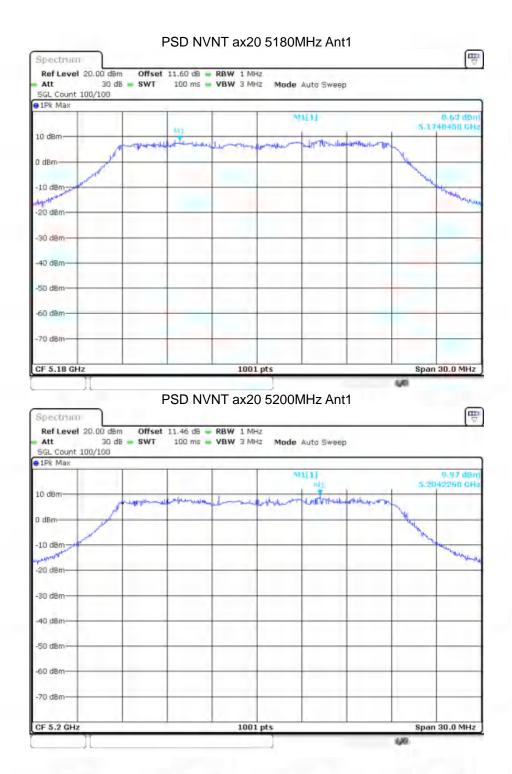



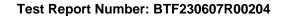


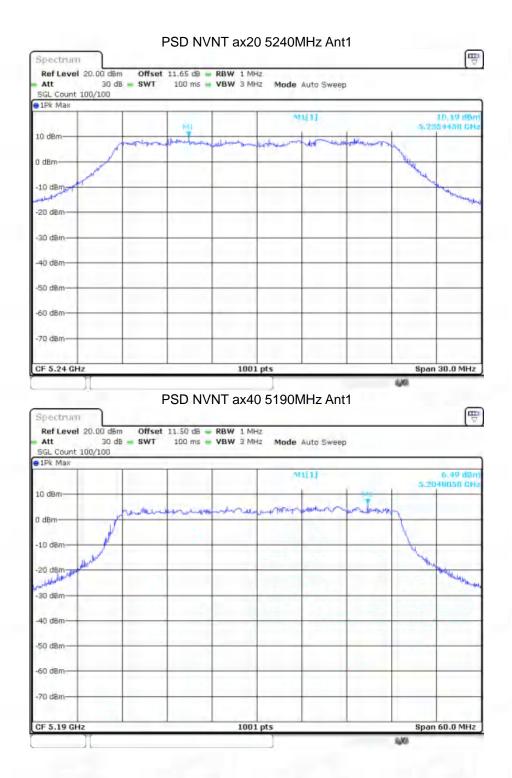



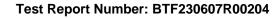


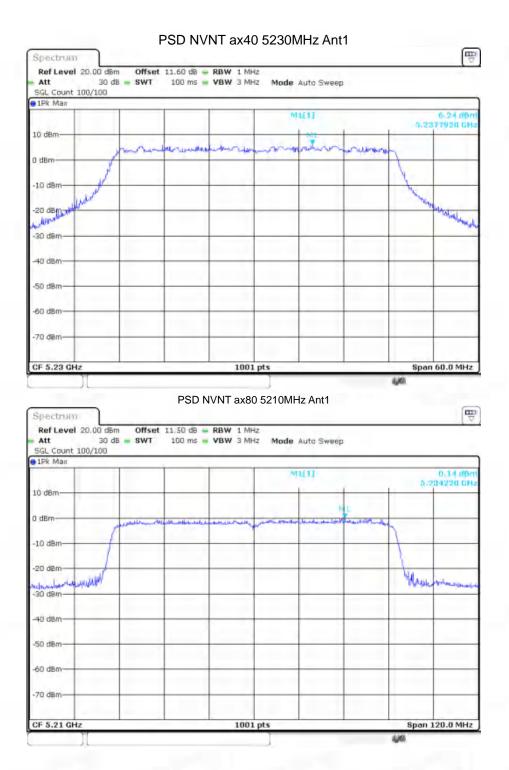



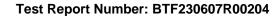


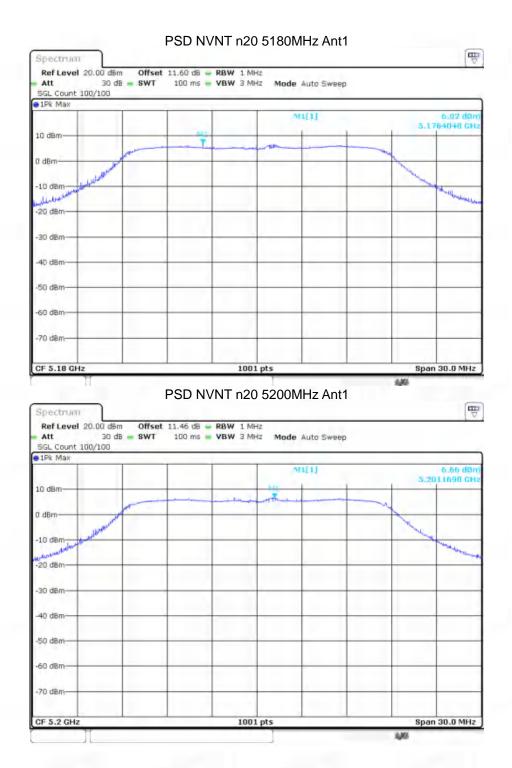





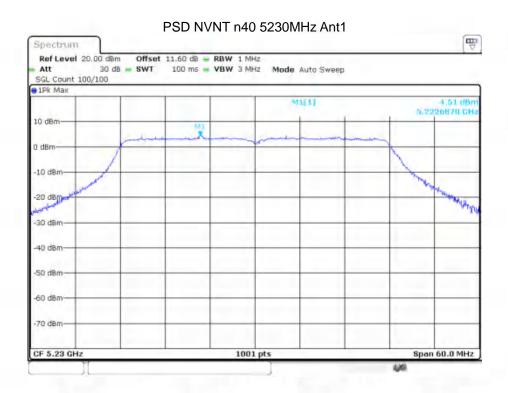


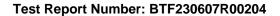









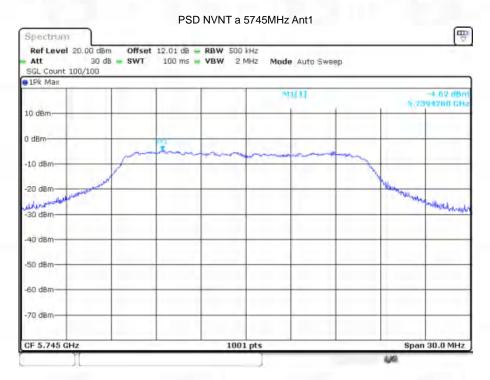



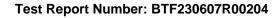





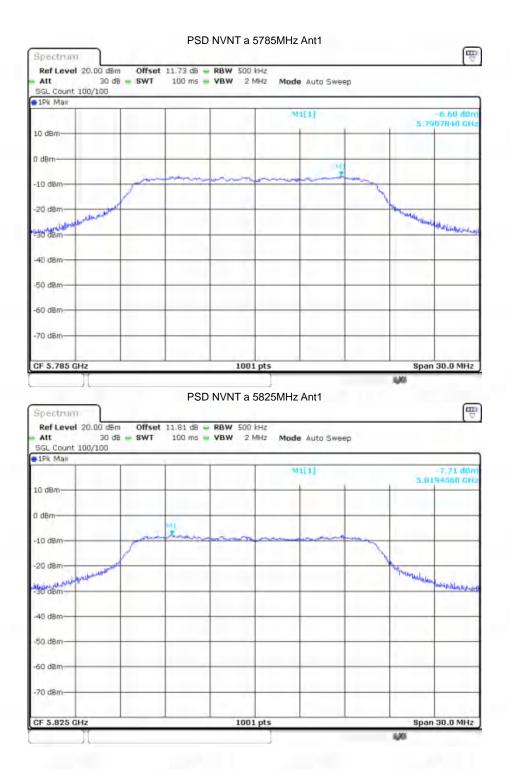


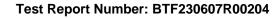


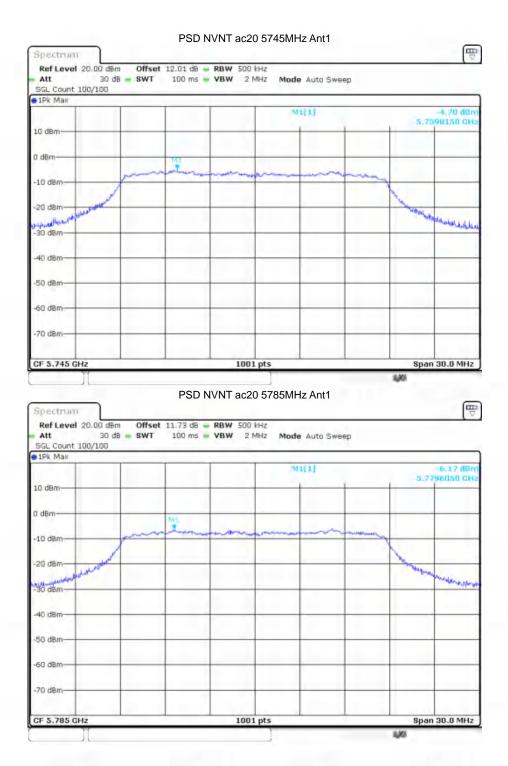





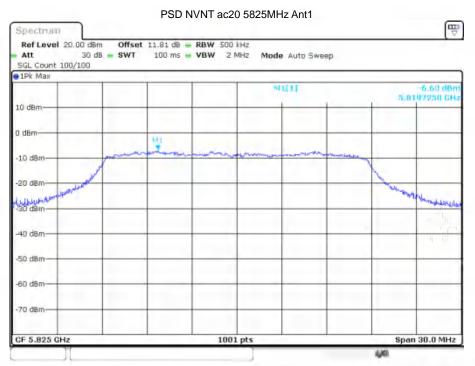


Band 4 (5725 - 5850 MHz)

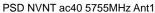

| Bailu 4 (3723 – 3630 Miliz) |      |                 |         |               |             |         |  |  |
|-----------------------------|------|-----------------|---------|---------------|-------------|---------|--|--|
| Condition                   | Mode | Frequency (MHz) | Antenna | Max PSD (dBm) | Limit (dBm) | Verdict |  |  |
| NVNT                        | a    | 5745            | Ant1    | -4.624        | 30          | Pass    |  |  |
| NVNT                        | a    | 5785            | Ant1    | -6.684        | 30          | Pass    |  |  |
| NVNT                        | а    | 5825            | Ant1    | -7.709        | 30          | Pass    |  |  |
| NVNT                        | ac20 | 5745            | Ant1    | -4.778        | 30          | Pass    |  |  |
| NVNT                        | ac20 | 5785            | Ant1    | -6.173        | 30          | Pass    |  |  |
| NVNT                        | ac20 | 5825            | Ant1    | -6.628        | 30          | Pass    |  |  |
| NVNT                        | ac40 | 5755            | Ant1    | -9.058        | 30          | Pass    |  |  |
| NVNT                        | ac40 | 5795            | Ant1    | -9.949        | 30          | Pass    |  |  |
| NVNT                        | ac80 | 5775            | Ant1    | -2.519        | 30          | Pass    |  |  |
| NVNT                        | ax20 | 5745            | Ant1    | 0.374         | 30          | Pass    |  |  |
| NVNT                        | ax20 | 5785            | Ant1    | -1.406        | 30          | Pass    |  |  |
| NVNT                        | ax20 | 5825            | Ant1    | -2.381        | 30          | Pass    |  |  |
| NVNT                        | ax40 | 5755            | Ant1    | -2.725        | 30          | Pass    |  |  |
| NVNT                        | ax40 | 5795            | Ant1    | -3.706        | 30          | Pass    |  |  |
| NVNT                        | ax80 | 5775            | Ant1    | -4.873        | 30          | Pass    |  |  |
| NVNT                        | n20  | 5745            | Ant1    | -4.309        | 30          | Pass    |  |  |
| NVNT                        | n20  | 5785            | Ant1    | -5.435        | 30          | Pass    |  |  |
| NVNT                        | n20  | 5825            | Ant1    | -7.485        | 30          | Pass    |  |  |
| NVNT                        | n40  | 5755            | Ant1    | -8.123        | 30          | Pass    |  |  |
| NVNT                        | n40  | 5795            | Ant1    | -9.378        | 30          | Pass    |  |  |

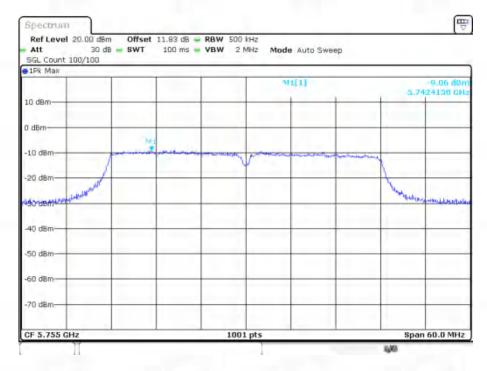


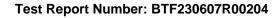




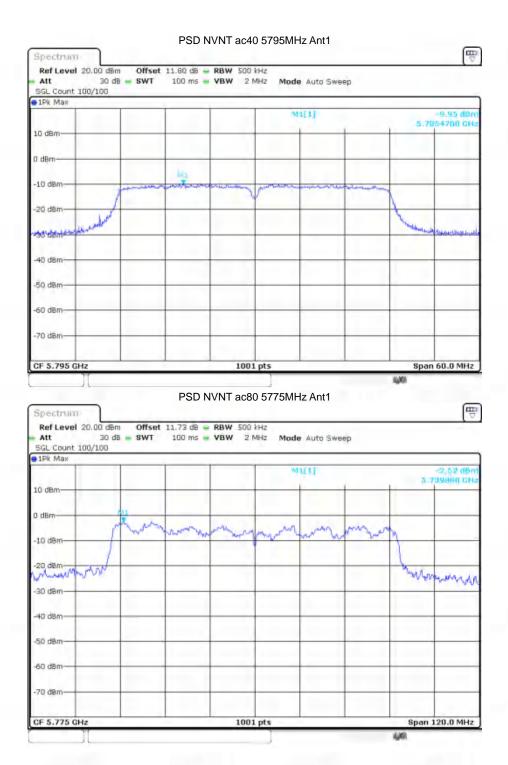



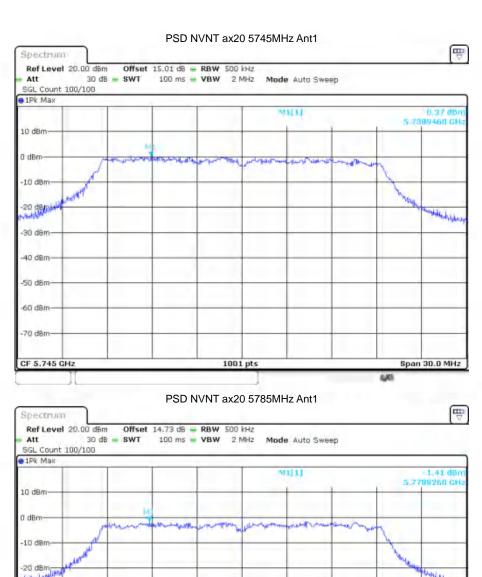



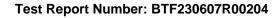


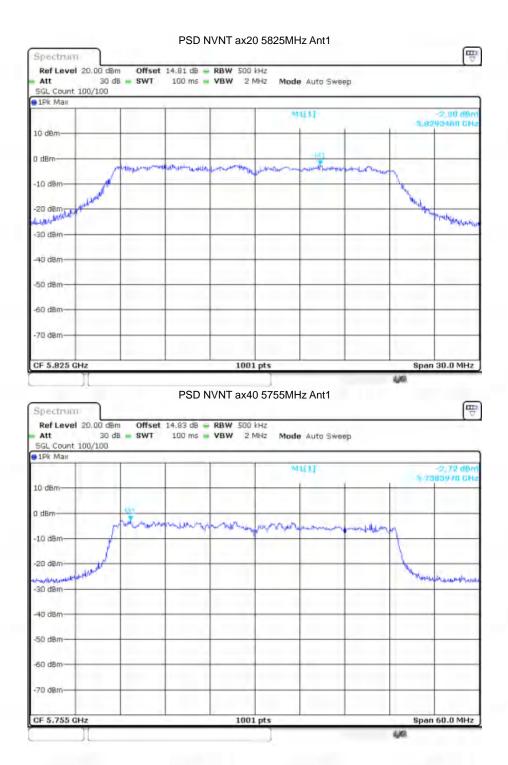


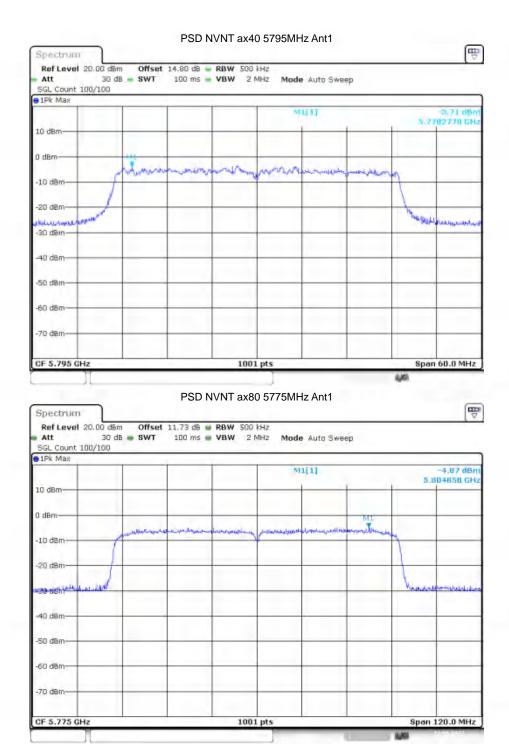


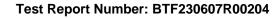





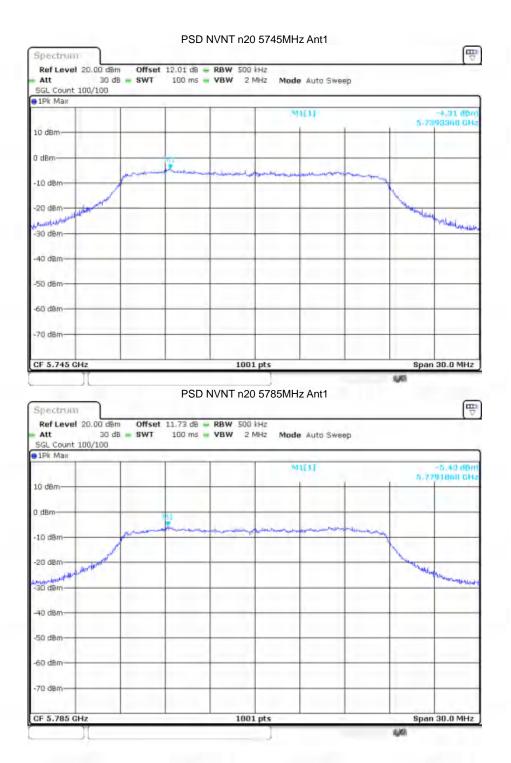



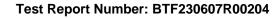




-30 dBm



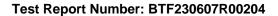


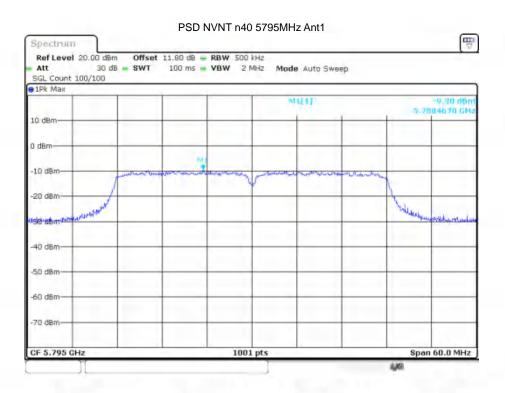









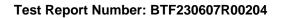











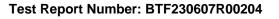





## 6.4 Emission bandwidth and occupied bandwidth

| Toot Doguiron anti | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                                                                       |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:  | U-NII 3, U-NII 4: 47 CFR Part 15.407(e)                                                                                                            |
| T ( ) A ( )        | ANSI C63.10-2013, section 6.9.3 & 12.4                                                                                                             |
| Test Method:       | KDB 789033 D02, Clause C.2                                                                                                                         |
|                    | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                                                                       |
| Test Limit:        | U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.     |
|                    | Emission bandwidth:  a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW.                                                |
|                    | c) Detector = peak.                                                                                                                                |
|                    | <ul><li>d) Trace mode = max hold.</li><li>e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.</li></ul> |
|                    | Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement                                                           |
|                    | as needed until the RBW/EBW ratio is approximately 1%.                                                                                             |
|                    | Occupied bandwidth:  a) The instrument center frequency is set to the nominal EUT channel center frequency. The                                    |
|                    | frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.                                                         |
|                    | b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of                                                                 |
|                    | the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the                                                     |
| Procedure:         | applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the                            |
| riocedule.         | maximum input mixer level for linear operation. In general, the peak of the spectral envelope                                                      |
|                    | shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given                                                        |
|                    | in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified                                                      |
|                    | range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode                                              |
|                    | shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.                                             |
|                    | f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.                                        |
|                    | g) If the instrument does not have a 99% power bandwidth function, then the trace data points are                                                  |
|                    | recovered and directly summed in linear power terms. The recovered amplitude data points,                                                          |
|                    | beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;                                                 |
|                    | that frequency is recorded as the lower frequency. The process is repeated until                                                                   |

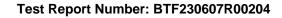




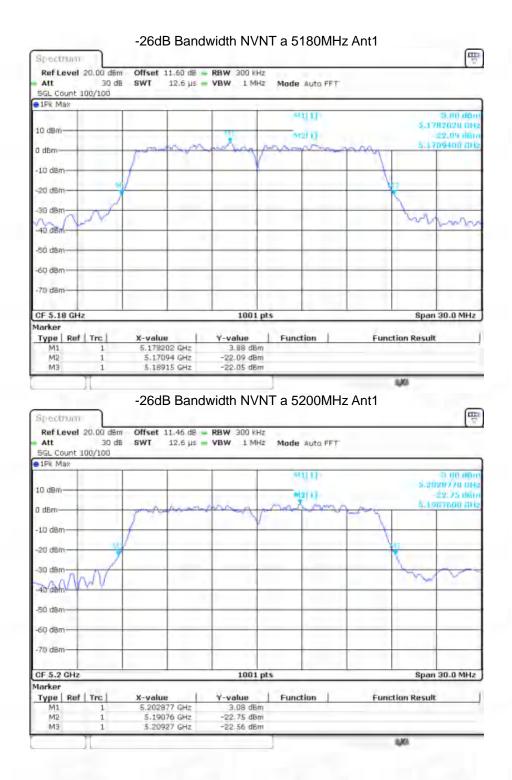

| 99.5% of the                                                                                        |
|-----------------------------------------------------------------------------------------------------|
| total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is     |
| the difference between these two frequencies.                                                       |
| h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument        |
| display; the plot axes and the scale units per division shall be clearly labeled.  Tabular data may |
| be reported in addition to the plot(s).                                                             |
| 6 dB emission bandwidth:                                                                            |
| a) Set RBW = 100 kHz.                                                                               |
| b) Set the video bandwidth (VBW) ≥ 3 >= RBW.                                                        |
| c) Detector = Peak.                                                                                 |
| d) Trace mode = max hold.                                                                           |
| e) Sweep = auto couple.                                                                             |
| f) Allow the trace to stabilize.                                                                    |
| g) Measure the maximum width of the emission that is constrained by the                             |
| frequencies associated with the two outermost amplitude points (upper and lower                     |
| frequencies) that are attenuated by 6 dB relative to the maximum level measured                     |
| in the fundamental emission.                                                                        |

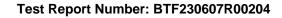
## 6.4.1 E.U.T. Operation:

| Operating Environment: |           |  |  |  |
|------------------------|-----------|--|--|--|
| Temperature:           | 25.5 °C   |  |  |  |
| Humidity:              | 50.6 %    |  |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |  |

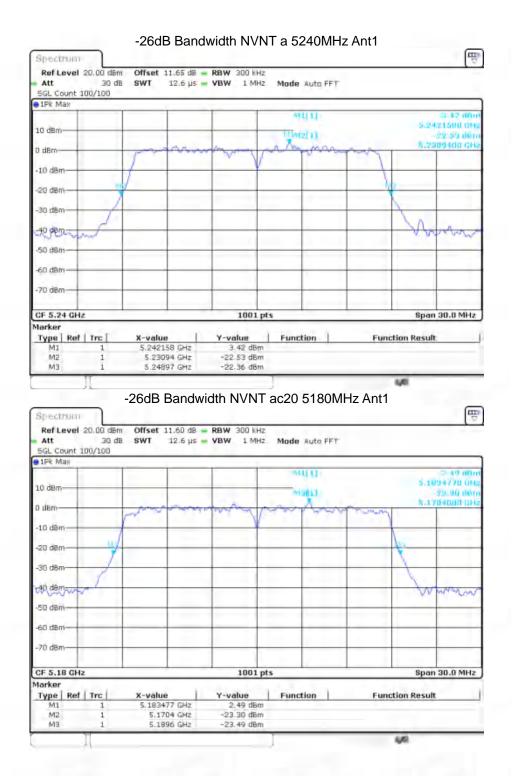

## 6.4.2 Test Data:

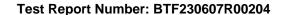




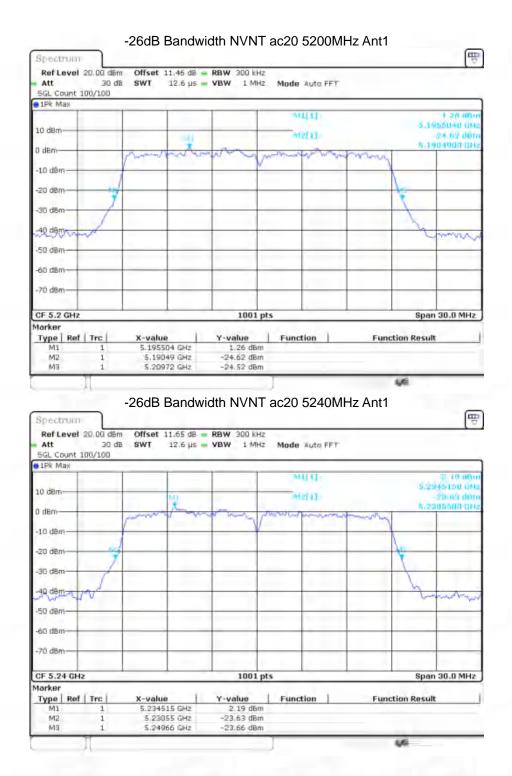


Band 1 -26dB Bandwidth

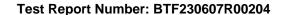
| -260B Bar | iawiatii |                    |         |                           |                              |         |
|-----------|----------|--------------------|---------|---------------------------|------------------------------|---------|
| Condition | Mode     | Frequency<br>(MHz) | Antenna | -26 dB Bandwidth<br>(MHz) | Limit -26 dB Bandwidth (MHz) | Verdict |
| NVNT      | а        | 5180               | Ant1    | 18.21                     | 0.5                          | Pass    |
| NVNT      | а        | 5200               | Ant1    | 18.51                     | 0.5                          | Pass    |
| NVNT      | а        | 5240               | Ant1    | 18.03                     | 0.5                          | Pass    |
| NVNT      | ac20     | 5180               | Ant1    | 19.2                      | 0.5                          | Pass    |
| NVNT      | ac20     | 5200               | Ant1    | 19.23                     | 0.5                          | Pass    |
| NVNT      | ac20     | 5240               | Ant1    | 19.11                     | 0.5                          | Pass    |
| NVNT      | ac40     | 5190               | Ant1    | 39.78                     | 0.5                          | Pass    |
| NVNT      | ac40     | 5230               | Ant1    | 41.04                     | 0.5                          | Pass    |
| NVNT      | ac80     | 5210               | Ant1    | 79.32                     | 0.5                          | Pass    |
| NVNT      | ax20     | 5180               | Ant1    | 19.77                     | 0.5                          | Pass    |
| NVNT      | ax20     | 5200               | Ant1    | 20.01                     | 0.5                          | Pass    |
| NVNT      | ax20     | 5240               | Ant1    | 20.1                      | 0.5                          | Pass    |
| NVNT      | ax40     | 5190               | Ant1    | 40.38                     | 0.5                          | Pass    |
| NVNT      | ax40     | 5230               | Ant1    | 40.14                     | 0.5                          | Pass    |
| NVNT      | ax80     | 5210               | Ant1    | 78.96                     | 0.5                          | Pass    |
| NVNT      | n20      | 5180               | Ant1    | 19.35                     | 0.5                          | Pass    |
| NVNT      | n20      | 5200               | Ant1    | 19.29                     | 0.5                          | Pass    |
| NVNT      | n20      | 5240               | Ant1    | 19.56                     | 0.5                          | Pass    |
| NVNT      | n40      | 5190               | Ant1    | 39.84                     | 0.5                          | Pass    |
| NVNT      | n40      | 5230               | Ant1    | 39.72                     | 0.5                          | Pass    |



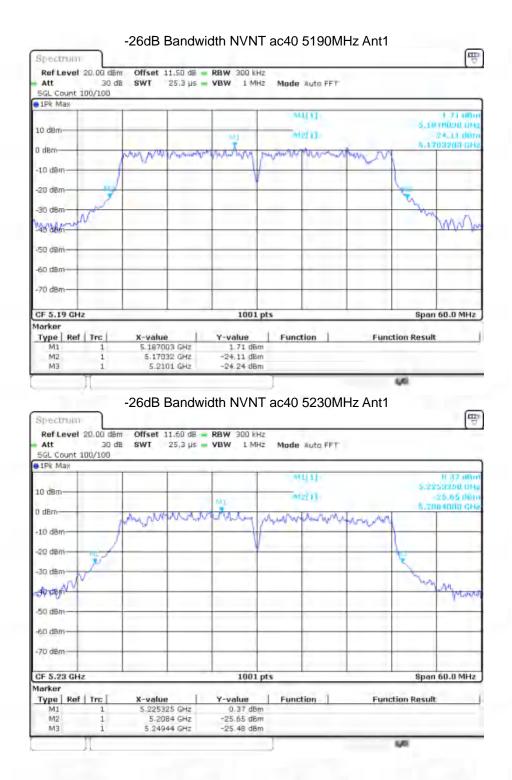



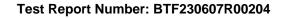


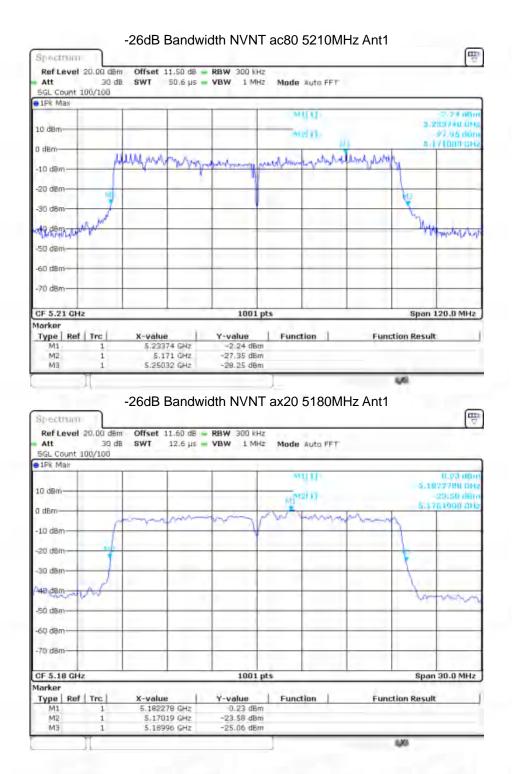



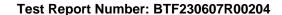


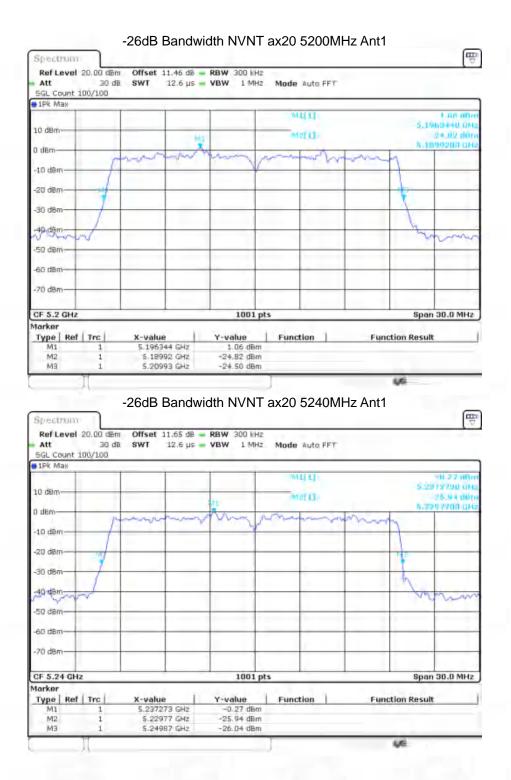



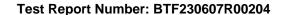


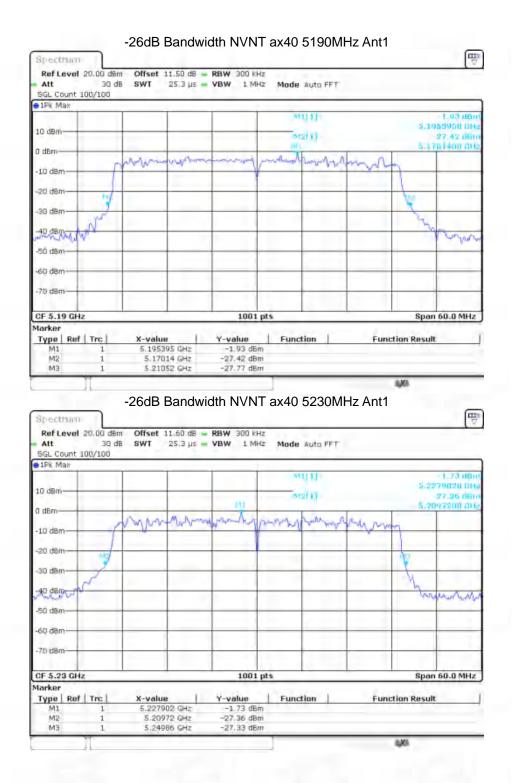



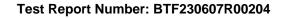


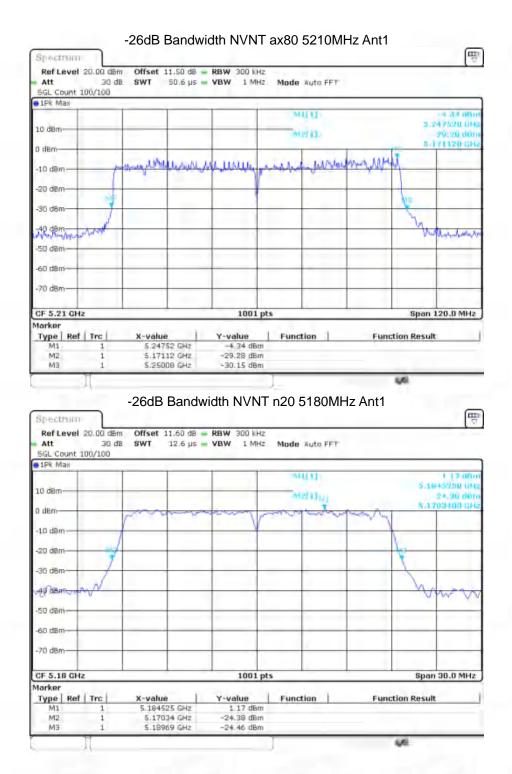



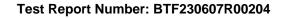


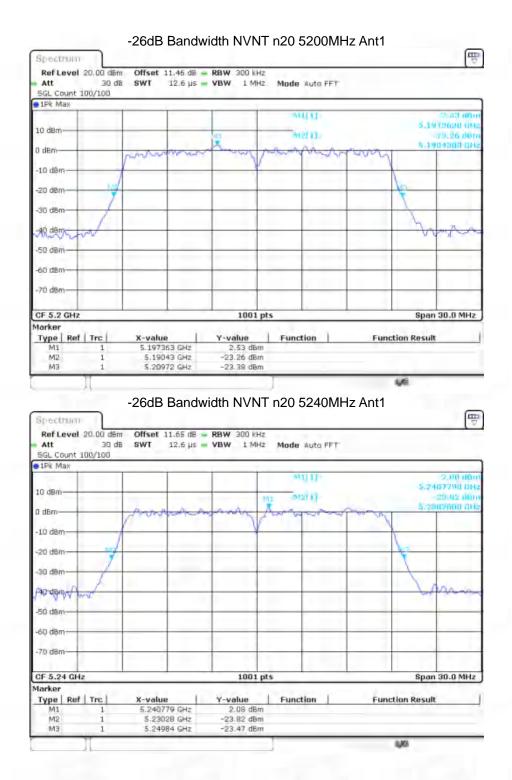



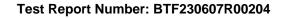


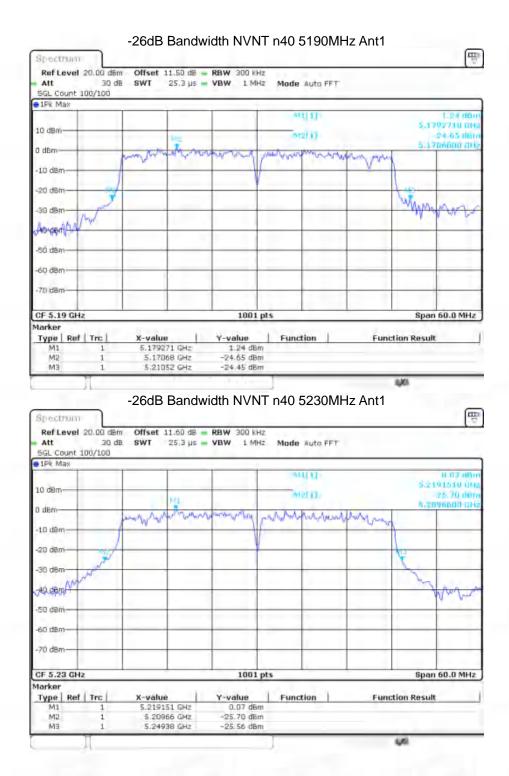



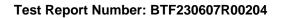


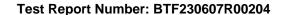


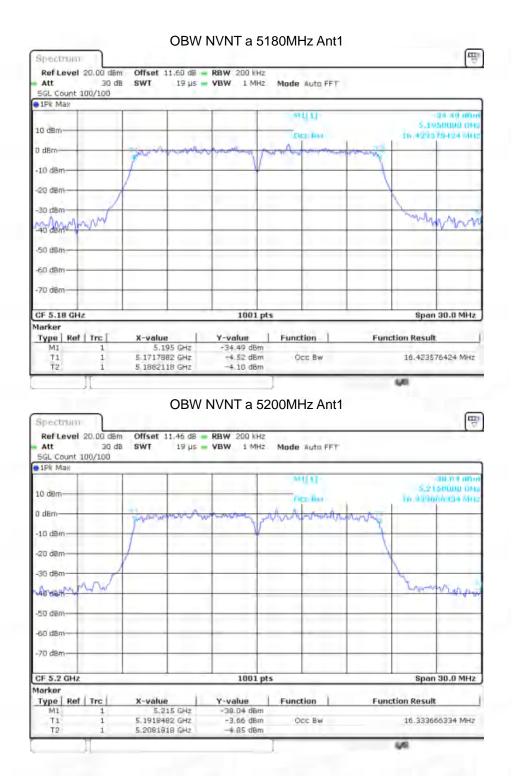



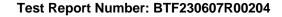




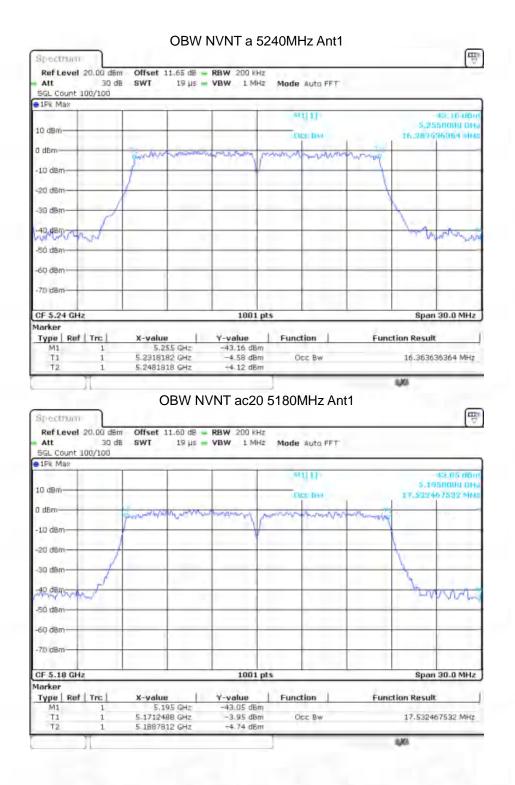



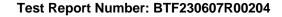


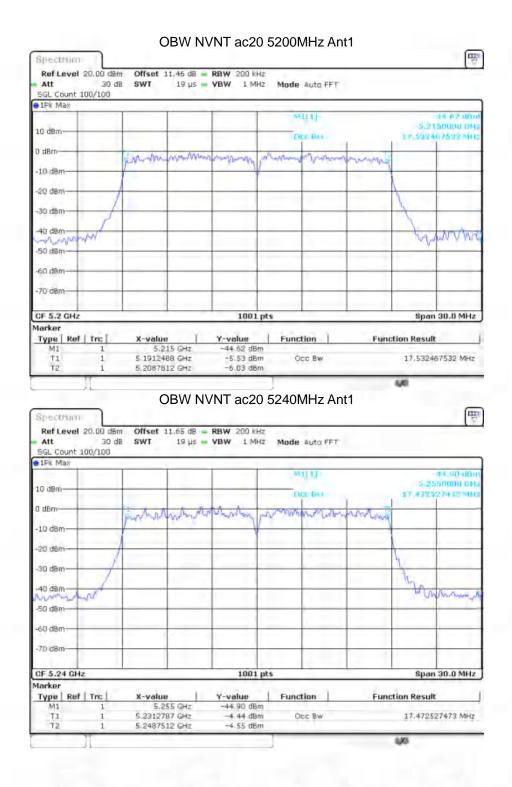



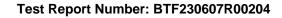

| Occupied Channel Bandwidth |      |                 |         |               |  |  |  |
|----------------------------|------|-----------------|---------|---------------|--|--|--|
| Condition                  | Mode | Frequency (MHz) | Antenna | 99% OBW (MHz) |  |  |  |
| NVNT                       | а    | 5180            | Ant1    | 16.424        |  |  |  |
| NVNT                       | а    | 5200            | Ant1    | 16.334        |  |  |  |
| NVNT                       | а    | 5240            | Ant1    | 16.364        |  |  |  |
| NVNT                       | ac20 | 5180            | Ant1    | 17.532        |  |  |  |
| NVNT                       | ac20 | 5200            | Ant1    | 17.532        |  |  |  |
| NVNT                       | ac20 | 5240            | Ant1    | 17.473        |  |  |  |
| NVNT                       | ac40 | 5190            | Ant1    | 36.384        |  |  |  |
| NVNT                       | ac40 | 5230            | Ant1    | 36.503        |  |  |  |
| NVNT                       | ac80 | 5210            | Ant1    | 76.244        |  |  |  |
| NVNT                       | ax20 | 5180            | Ant1    | 18.881        |  |  |  |
| NVNT                       | ax20 | 5200            | Ant1    | 18.941        |  |  |  |
| NVNT                       | ax20 | 5240            | Ant1    | 18.911        |  |  |  |
| NVNT                       | ax40 | 5190            | Ant1    | 37.942        |  |  |  |
| NVNT                       | ax40 | 5230            | Ant1    | 37.642        |  |  |  |
| NVNT                       | ax80 | 5210            | Ant1    | 76.244        |  |  |  |
| NVNT                       | n20  | 5180            | Ant1    | 17.562        |  |  |  |
| NVNT                       | n20  | 5200            | Ant1    | 17.502        |  |  |  |
| NVNT                       | n20  | 5240            | Ant1    | 17.562        |  |  |  |
| NVNT                       | n40  | 5190            | Ant1    | 36.264        |  |  |  |
| NVNT                       | n40  | 5230            | Ant1    | 35.964        |  |  |  |



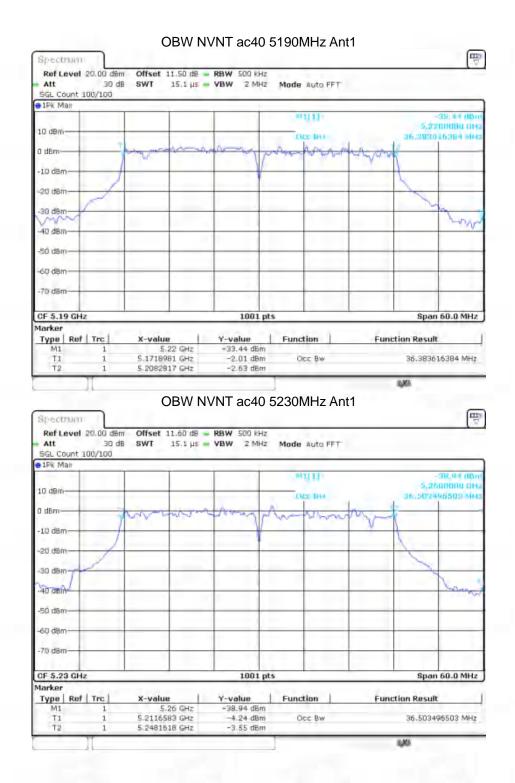



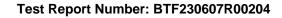


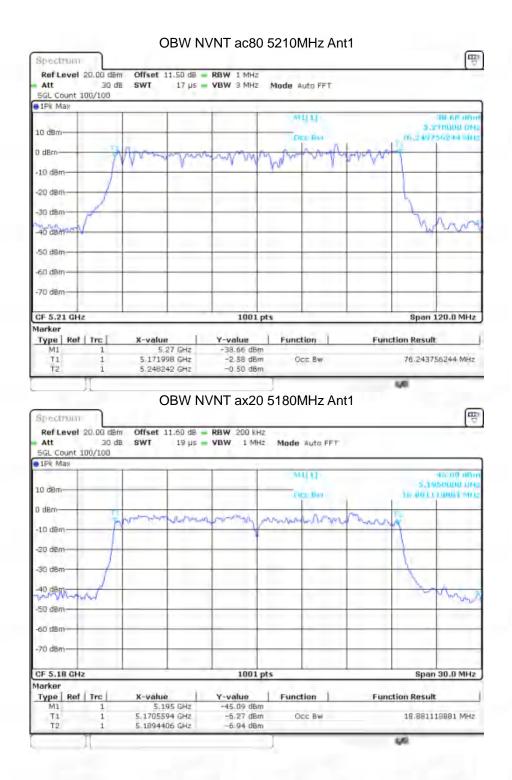



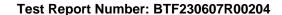


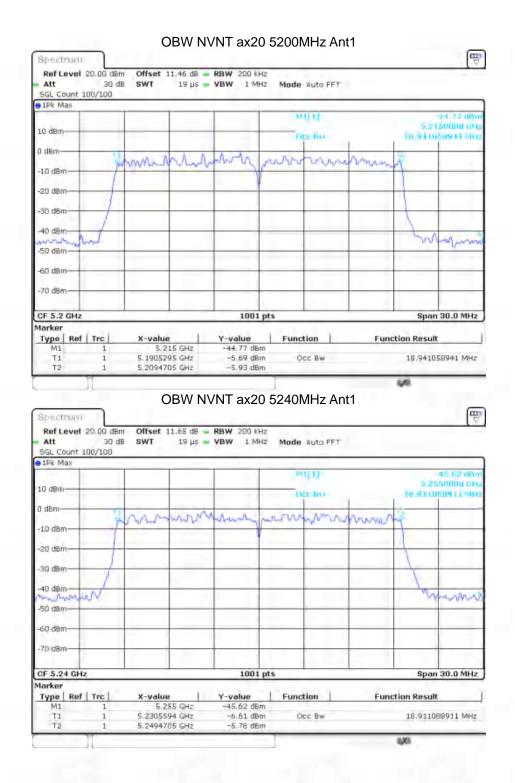



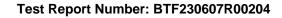


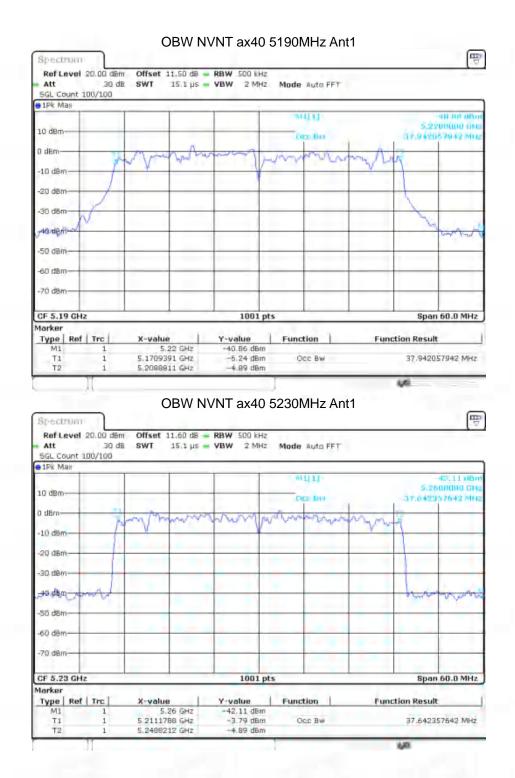



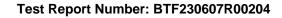


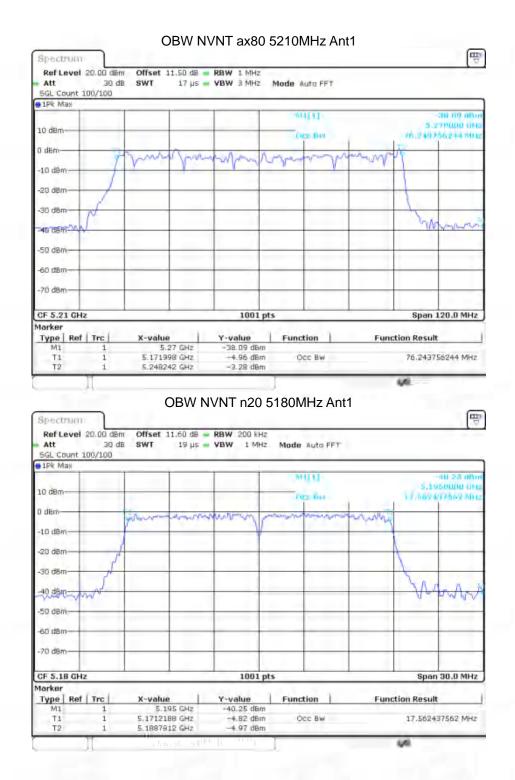



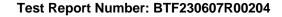


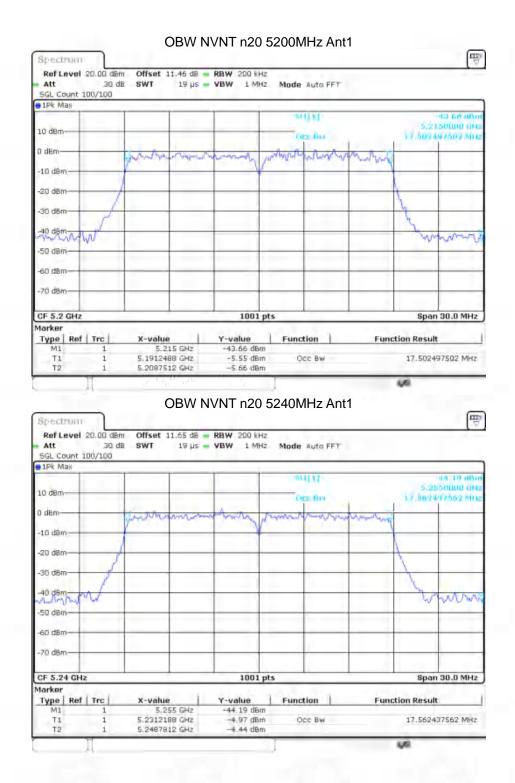



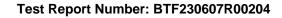


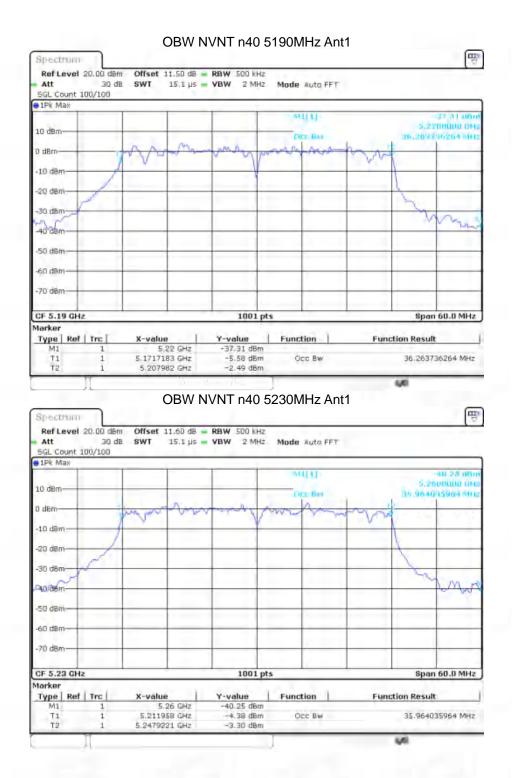



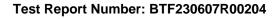




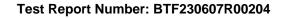



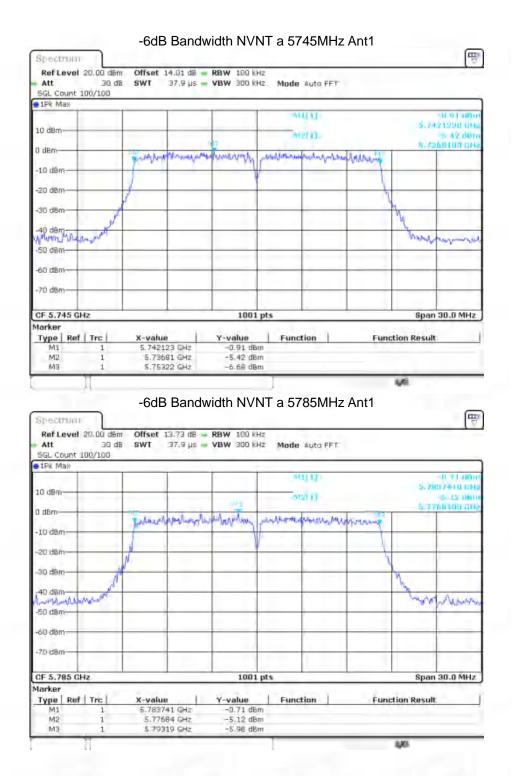


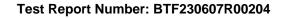




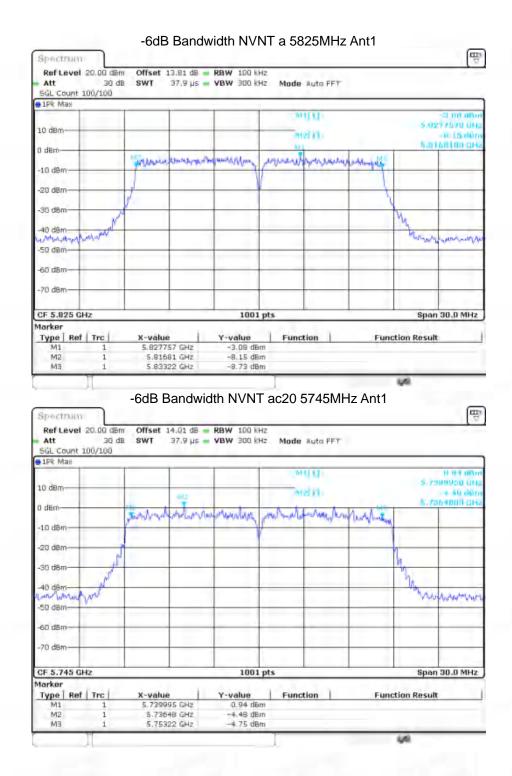



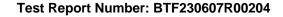


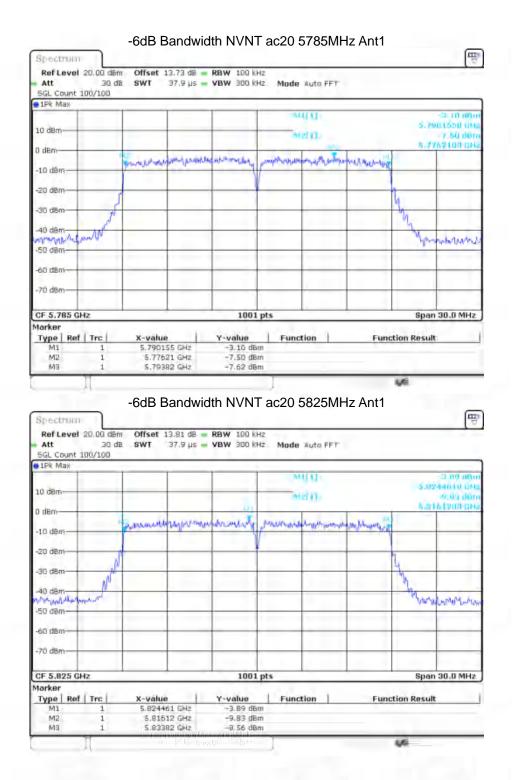


Band 4 -6dB Bandwidth

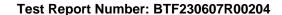
| -oub band | awiuiii |                    |         |                          |                             |         |
|-----------|---------|--------------------|---------|--------------------------|-----------------------------|---------|
| Condition | Mode    | Frequency<br>(MHz) | Antenna | -6 dB Bandwidth<br>(MHz) | Limit -6 dB Bandwidth (MHz) | Verdict |
| NVNT      | а       | 5745               | Ant1    | 16.41                    | 0.5                         | Pass    |
| NVNT      | а       | 5785               | Ant1    | 16.35                    | 0.5                         | Pass    |
| NVNT      | а       | 5825               | Ant1    | 16.41                    | 0.5                         | Pass    |
| NVNT      | ac20    | 5745               | Ant1    | 16.74                    | 0.5                         | Pass    |
| NVNT      | ac20    | 5785               | Ant1    | 17.61                    | 0.5                         | Pass    |
| NVNT      | ac20    | 5825               | Ant1    | 17.7                     | 0.5                         | Pass    |
| NVNT      | ac40    | 5755               | Ant1    | 36.24                    | 0.5                         | Pass    |
| NVNT      | ac40    | 5795               | Ant1    | 36.06                    | 0.5                         | Pass    |
| NVNT      | ac80    | 5775               | Ant1    | 76.56                    | 0.5                         | Pass    |
| NVNT      | ax20    | 5745               | Ant1    | 18.42                    | 0.5                         | Pass    |
| NVNT      | ax20    | 5785               | Ant1    | 18.99                    | 0.5                         | Pass    |
| NVNT      | ax20    | 5825               | Ant1    | 18.99                    | 0.5                         | Pass    |
| NVNT      | ax40    | 5755               | Ant1    | 38.1                     | 0.5                         | Pass    |
| NVNT      | ax40    | 5795               | Ant1    | 36.06                    | 0.5                         | Pass    |
| NVNT      | ax80    | 5775               | Ant1    | 77.28                    | 0.5                         | Pass    |
| NVNT      | n20     | 5745               | Ant1    | 17.1                     | 0.5                         | Pass    |
| NVNT      | n20     | 5785               | Ant1    | 17.01                    | 0.5                         | Pass    |
| NVNT      | n20     | 5825               | Ant1    | 17.01                    | 0.5                         | Pass    |
| NVNT      | n40     | 5755               | Ant1    | 36.18                    | 0.5                         | Pass    |
| NVNT      | n40     | 5795               | Ant1    | 36.48                    | 0.5                         | Pass    |



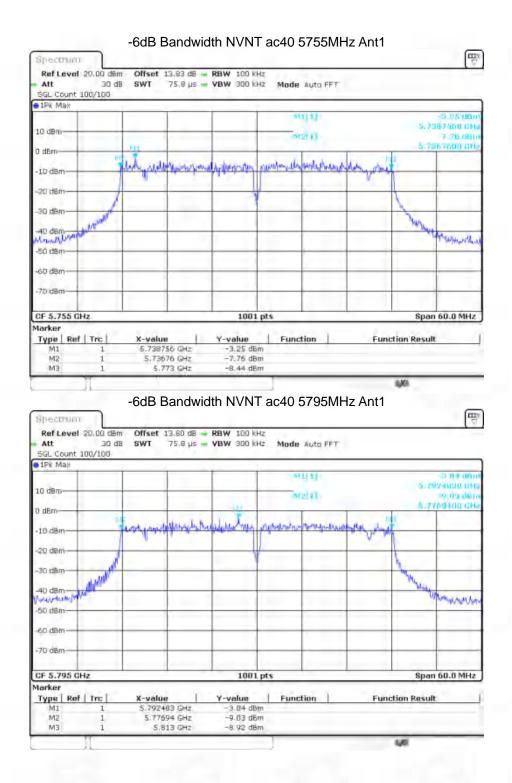



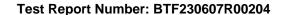


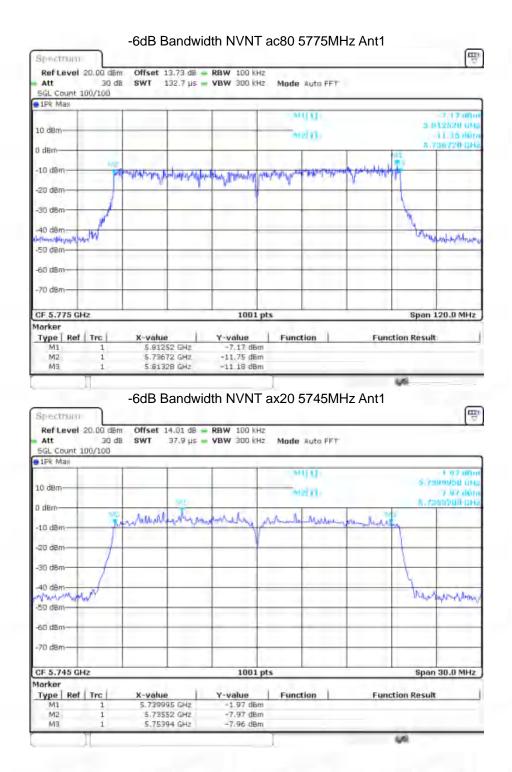



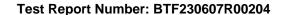


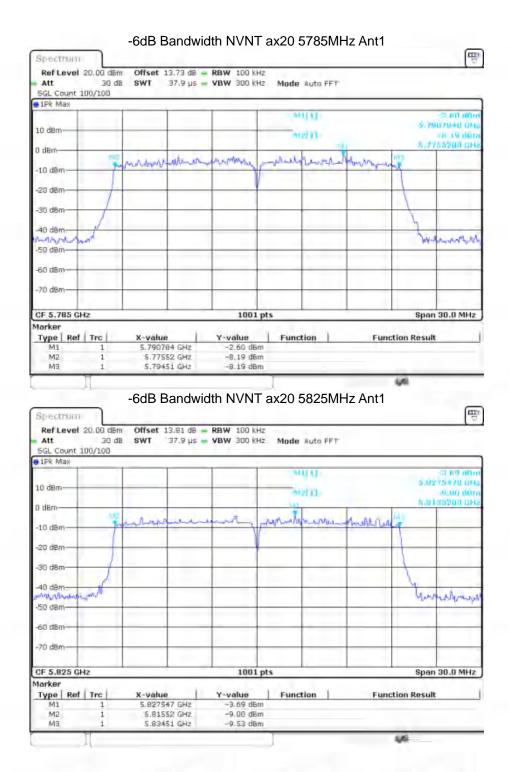



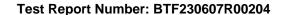


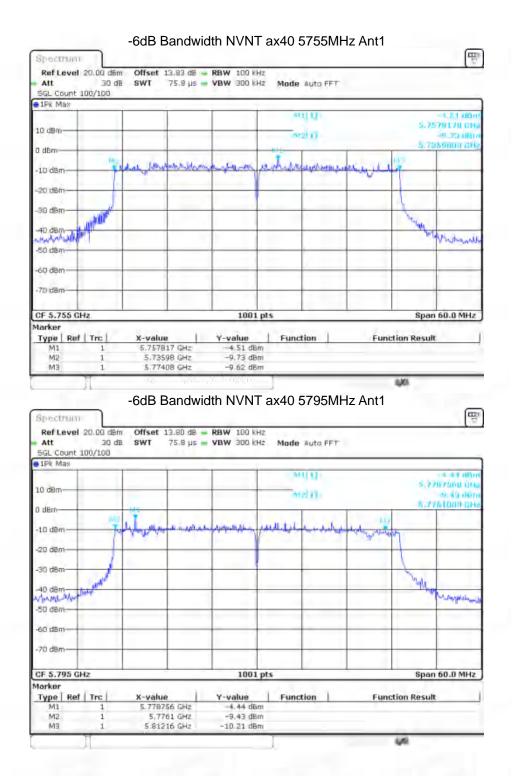



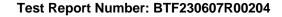


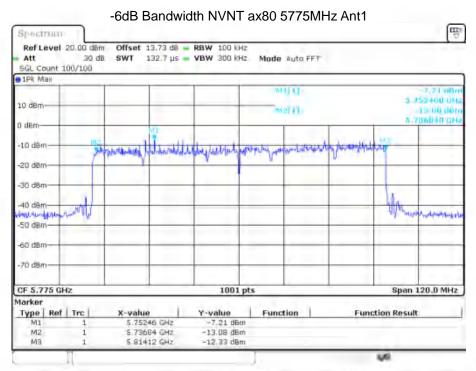





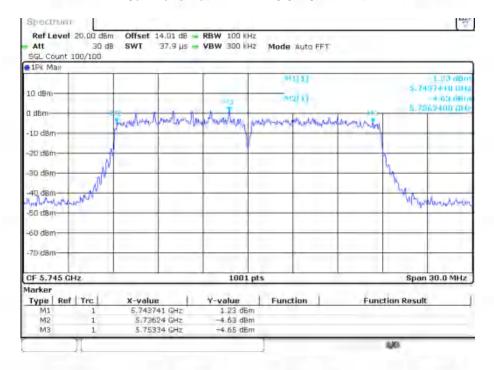



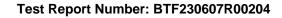





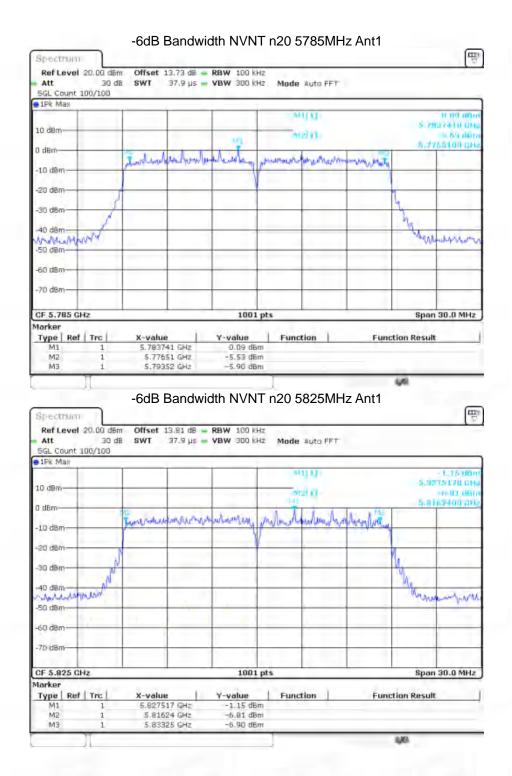



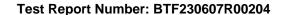


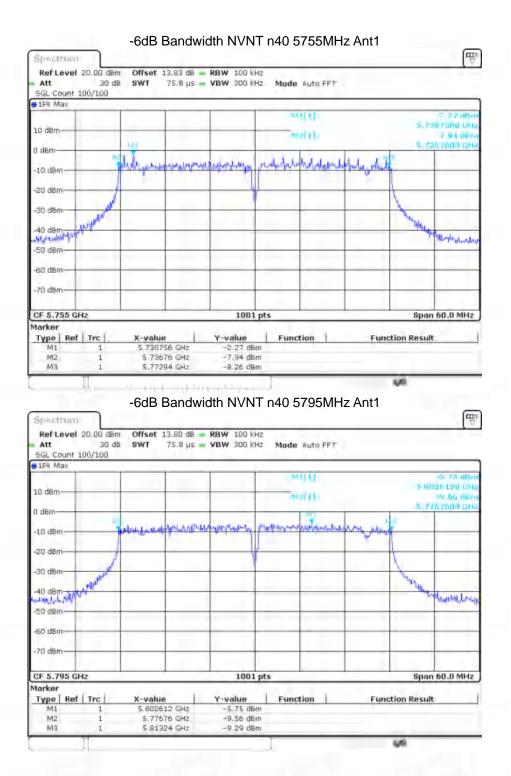



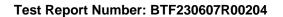




-6dB Bandwidth NVNT n20 5745MHz Ant1

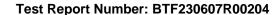




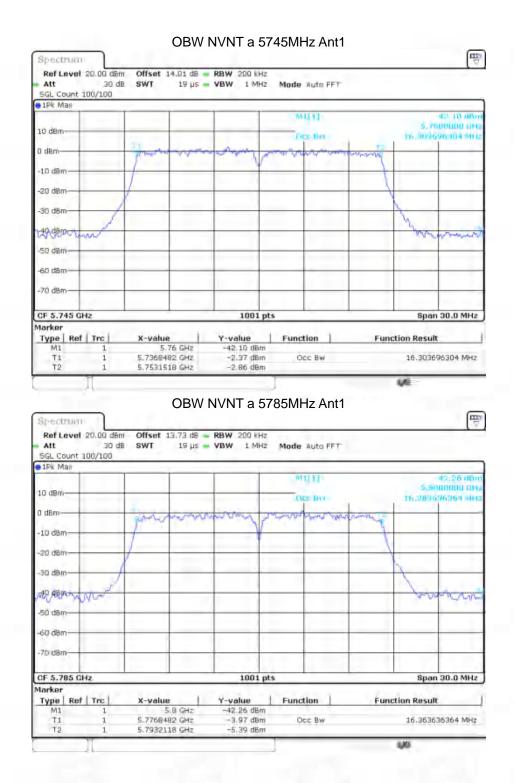



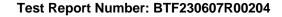




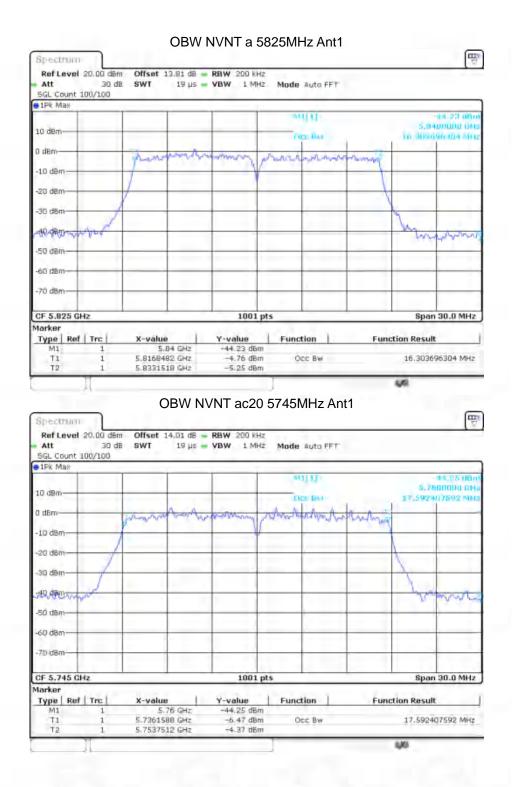



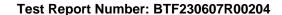


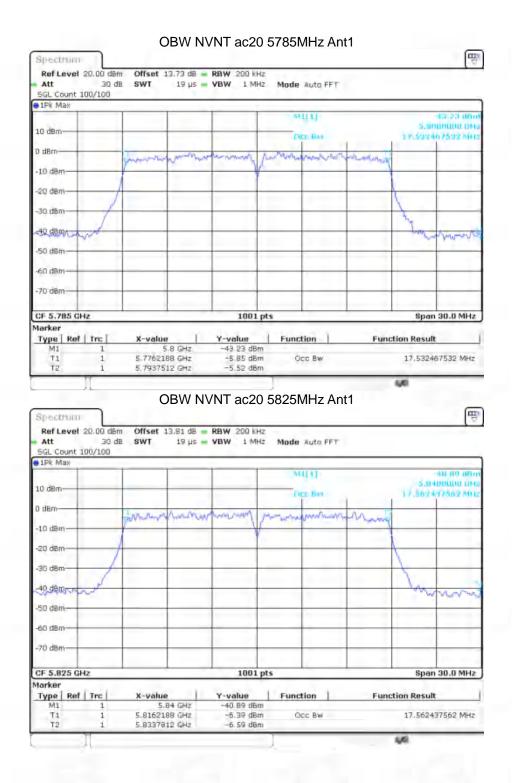



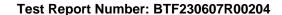

|           | C    | Occupied Channel I | Bandwidth |               |
|-----------|------|--------------------|-----------|---------------|
| Condition | Mode | Frequency (MHz)    | Antenna   | 99% OBW (MHz) |
| NVNT      | а    | 5745               | Ant1      | 16.304        |
| NVNT      | а    | 5785               | Ant1      | 16.364        |
| NVNT      | а    | 5825               | Ant1      | 16.304        |
| NVNT      | ac20 | 5745               | Ant1      | 17.592        |
| NVNT      | ac20 | 5785               | Ant1      | 17.532        |
| NVNT      | ac20 | 5825               | Ant1      | 17.562        |
| NVNT      | ac40 | 5755               | Ant1      | 36.683        |
| NVNT      | ac40 | 5795               | Ant1      | 36.503        |
| NVNT      | ac80 | 5775               | Ant1      | 76.004        |
| NVNT      | ax20 | 5745               | Ant1      | 18.851        |
| NVNT      | ax20 | 5785               | Ant1      | 18.911        |
| NVNT      | ax20 | 5825               | Ant1      | 18.851        |
| NVNT      | ax40 | 5755               | Ant1      | 37.642        |
| NVNT      | ax40 | 5795               | Ant1      | 37.702        |
| NVNT      | ax80 | 5775               | Ant1      | 77.323        |
| NVNT      | n20  | 5745               | Ant1      | 17.502        |
| NVNT      | n20  | 5785               | Ant1      | 17.562        |
| NVNT      | n20  | 5825               | Ant1      | 17.532        |
| NVNT      | n40  | 5755               | Ant1      | 36.324        |
| NVNT      | n40  | 5795               | Ant1      | 36.324        |



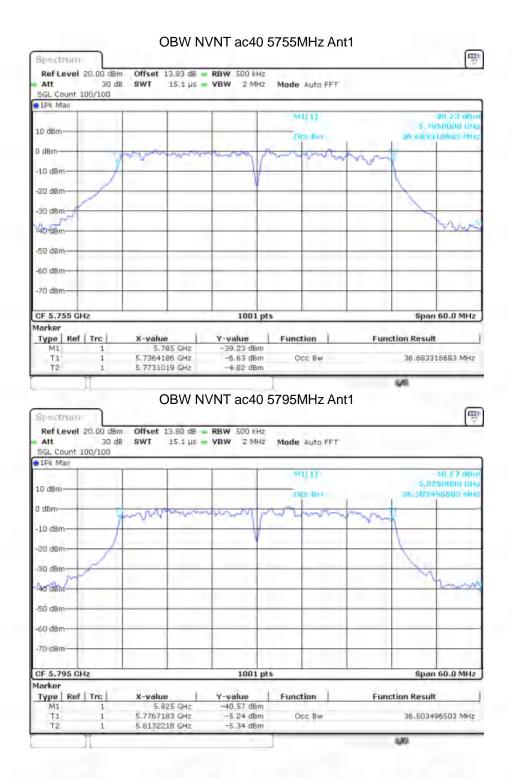



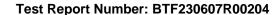


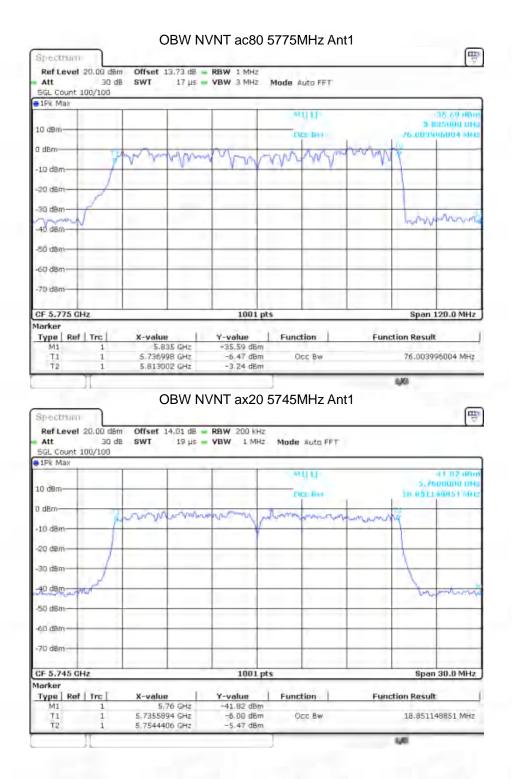



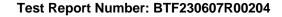


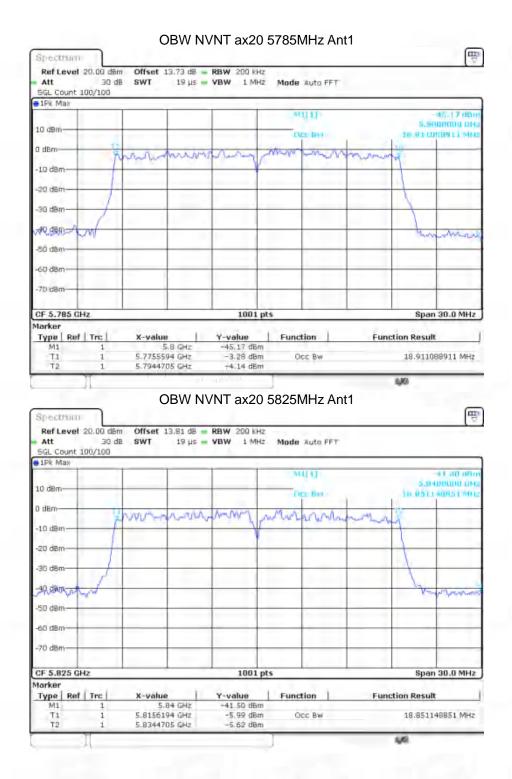



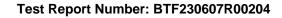


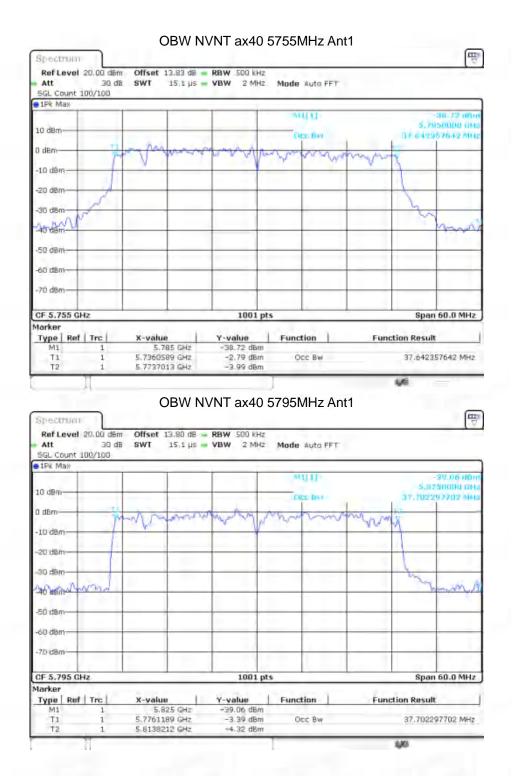



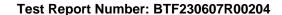


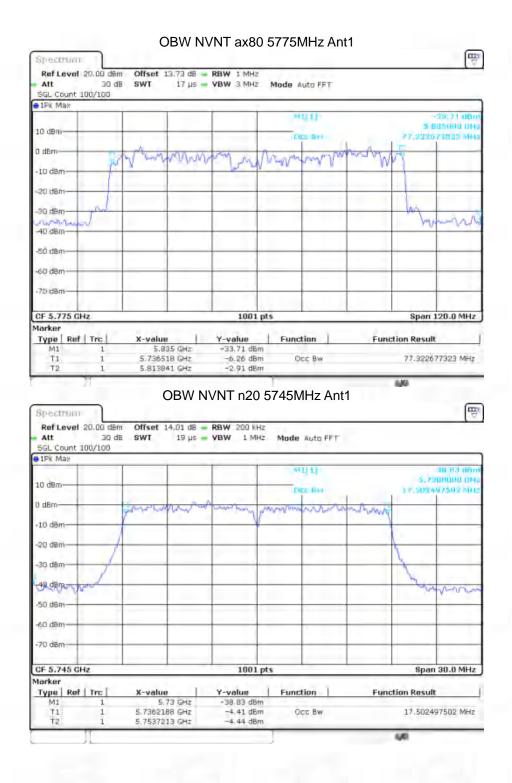



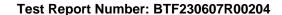


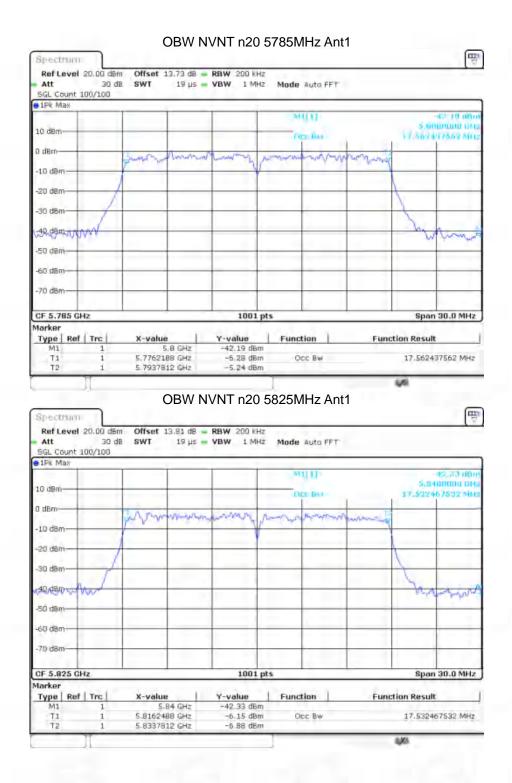



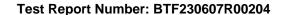


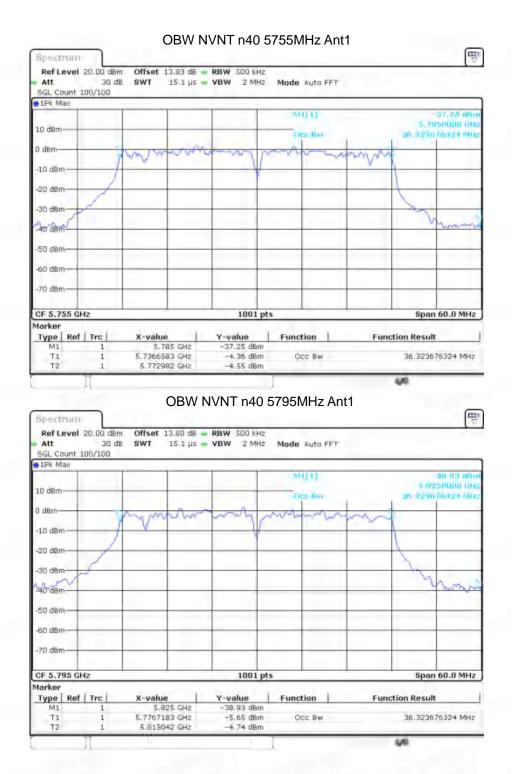







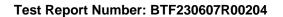

















# 6.5 Band edge emissions (Radiated)

| 6.5 Band edge em  | 47 CFR Part 15.407(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)                                                                                                                           |                                                                         |                                                                                   |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
|                   | 47 CFR Part 15.407(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
| Test Requirement: | 47 CFR Part 15.407(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
|                   | 47 CFR Part 15.407(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ` '                                                                                                                           |                                                                         |                                                                                   |  |  |  |  |
| Test Method:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | 7.6                                                                     |                                                                                   |  |  |  |  |
| rest Method.      | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6  For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
|                   | 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.  For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
|                   | 5.15-5.35 GHz band sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
|                   | For transmitters operated All emissions shall be lor below the band edge, a linearly to a level of 15 from 5 MHz above or below the band edge, a linearly to a level of 15 from 5 MHz above or below the same transfer of the linear shall be level of 15 from 5 MHz above or below the linear shall be linear transfer or below the linear shall be level to the linear sha | imited to a level of −27<br>e increasing linearly to<br>and from 25 MHz above<br>6 dBm/MHz at 5 MHz<br>elow the band edge inc | dBm/MHz at 75<br>10 dBm/MHz at<br>e or below the ba<br>above or below t | MHz or more above<br>25 MHz above or<br>and edge increasing<br>the band edge, and |  |  |  |  |
|                   | dBm/MHz at the band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | edge.                                                                                                                         |                                                                         |                                                                                   |  |  |  |  |
|                   | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz                                                                                                                           | MHz                                                                     | GHz                                                                               |  |  |  |  |
|                   | 0.090-0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.42-16.423                                                                                                                  | 399.9-410                                                               | 4.5-5.15                                                                          |  |  |  |  |
|                   | <sup>1</sup> 0.495-0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.69475-16.69525                                                                                                             | 608-614                                                                 | 5.35-5.46                                                                         |  |  |  |  |
|                   | 2.1735-2.1905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.80425-16.80475                                                                                                             | 960-1240                                                                |                                                                                   |  |  |  |  |
|                   | 4.125-4.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.5-25.67                                                                                                                    | 1300-1427                                                               |                                                                                   |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.5-38.25                                                                                                                    |                                                                         |                                                                                   |  |  |  |  |
|                   | 4.17725-4.17775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | 1435-1626.5                                                             | 9.0-9.2                                                                           |  |  |  |  |
|                   | 4.20725-4.20775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73-74.6                                                                                                                       | 1645.5-1646.                                                            | 9.3-9.5                                                                           |  |  |  |  |
|                   | 00170010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               | 5                                                                       | 10010=                                                                            |  |  |  |  |
|                   | 6.215-6.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.8-75.2                                                                                                                     | 1660-1710                                                               | 10.6-12.7                                                                         |  |  |  |  |
| Test Limit:       | 6.26775-6.26825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108-121.94                                                                                                                    | 1718.8-1722.<br>2                                                       | 13.25-13.4                                                                        |  |  |  |  |
| rest Limit.       | 6.31175-6.31225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123-138                                                                                                                       | 2200-2300                                                               | 14.47-14.5                                                                        |  |  |  |  |
|                   | 8.291-8.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 149.9-150.05                                                                                                                  | 2310-2390                                                               | 15.35-16.2                                                                        |  |  |  |  |
|                   | 8.362-8.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 156.52475-156.525<br>25                                                                                                       | 2483.5-2500                                                             | 17.7-21.4                                                                         |  |  |  |  |
|                   | 8.37625-8.38675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156.7-156.9                                                                                                                   | 2690-2900                                                               | 22.01-23.12                                                                       |  |  |  |  |
|                   | 8.41425-8.41475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 162.0125-167.17                                                                                                               | 3260-3267                                                               | 23.6-24.0                                                                         |  |  |  |  |
|                   | 12.29-12.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 167.72-173.2                                                                                                                  | 3332-3339                                                               | 31.2-31.8                                                                         |  |  |  |  |
|                   | 12.51975-12.52025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
|                   | 12.57975-12.52025<br>12.57675-12.57725<br>13.36-13.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240-285<br>322-335.4                                                                                                          | 3345.8-3358<br>3600-4400                                                | 36.43-36.5<br>( <sup>2</sup> )                                                    |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , this restricted band s                                                                                                      | hall be 0.490-0.5                                                       | 510 MHz.                                                                          |  |  |  |  |
|                   | <sup>2</sup> Above 38.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
|                   | The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                         |                                                                                   |  |  |  |  |
|                   | Except as provided els                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ewhere in this subpart,                                                                                                       | the emissions fi                                                        | rom an intentional                                                                |  |  |  |  |

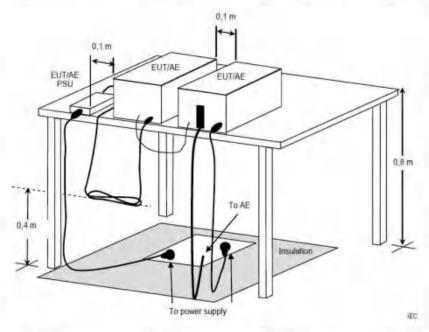




|            | radiator shall not exceed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the field strength levels speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ified in the following table:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Field strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Procedure: | above the ground at a 3 degrees to determine the b. The EUT was set 3 me was mounted on the top c. The antenna height is determine the maximum polarizations of the antend. For each suspected er the antenna was tuned to of below 30MHz, the antewas turned from 0 degree. The test-receiver system Bandwidth with Maximum f. If the emission level of specified, then testing coreported. Otherwise the cre-tested one by one using in a data sheet.  g. Test the EUT in the low h. The radiation measured Transmitting mode, and five in the example in the second Remark:  1. Level= Read Level+ C. Scan from 18GHz to 4 points marked on above testing, so only above polemissions from the radial need not be reported.  3. As shown in this section are based on average liminot exceed the maximum dB under any condition of than the average limit, or 4. The disturbance above | EUT was placed on the top of meter fully-anechoic chamber is position of the highest radiate eters away from the interference of a variable-height antenna to varied from one meter to four value of the field strength. Both are set to make the measing in the EUT was arranged to heights from 1 meter to 4 meters as to 360 degrees to find the remain was tuned to heights 1 meters as to 360 degrees to find the remain was set to Peak Detect Fund Hold Mode. The EUT in peak mode was 1 muld be stopped and the peak emissions that did not have 10 meters are performed in X, Y, found the X axis positioning were until all frequencies measing able Loss+ Antenna Factor-FoGHz, the disturbance above plots are the highest emission ints had been displayed. The tor which are attenuated more form, for frequencies above 1 GH ints. However, the peak field sign permitted average limits specific modulation. For the emissionally the peak measurement is seen and the peak measurement is seen as the peak measurement is seen and the peak me | c. The table was rotated 360 ion. ice-receiving antenna, which lower. meters above the ground to out horizontal and vertical urement. ed to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified  OdB lower than the limit values of the EUT would be odB margin would be specified and then reported anel, the Highest channel. Z axis positioning for which it is the worst case. Include a complete.  Preamp Factor 18GHz was very low. The last could be found when amplitude of spurious than 20dB below the limit latz, the field strength limits trength of any emission shall cified above by more than 20 ans whose peak level is lower shown in the report. The harmonics were the |

### 6.5.1 E.U.T. Operation:

| Operating Environment: |         |
|------------------------|---------|
| Temperature:           | 25.5 °C |
| Humidity:              | 50.6 %  |



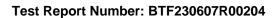



Atmospheric Pressure:

1010 mbar

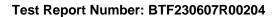
## 6.5.2 Test Setup Diagram:





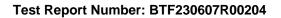

Test Report Number: BTF230607R00204

#### 6.5.3 Test Data:


#### Band1

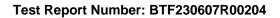
| Mo                              | ode:                                           | 802                                                                     | .11a                                        | Frequ                                                   | iency:                                 | 5180MHz                                 |                     |  |
|---------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------------|--|
| Antenna<br>Pol.                 | Frequency<br>(MHz)                             | Reading<br>Level<br>(dBuV)                                              | Factor<br>(dB/m)                            | Measure<br>Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                      | Over<br>limit(dB)                       | Detector            |  |
| Н                               | 5150.00                                        | 36.82                                                                   | 11.34                                       | 48.16                                                   | 68.2                                   | -20.04                                  | PK                  |  |
| V                               | 5150.00                                        | 34.19                                                                   | 11.34                                       | 45.53                                                   | 68.2                                   | -22.67                                  | PK                  |  |
| NA                              | ode:                                           | 802                                                                     | .11a                                        | Frequ                                                   | iency:                                 | 5180                                    | )MHz                |  |
| Antenna<br>Pol.                 | Frequency<br>(MHz)                             | Reading<br>Level<br>(dBuV)                                              | Factor<br>(dB/m)                            | Measure<br>Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                      | Over<br>limit(dB)                       | Detector            |  |
| Н                               | 5150.00                                        | 24.40                                                                   | 11.34                                       | 35.74                                                   | 54.00                                  | -18.26                                  | AV                  |  |
| V                               | 5150.00                                        | 24.44                                                                   | 11.34                                       | 35.78                                                   | 54.00                                  | -18.22                                  | AV                  |  |
|                                 |                                                |                                                                         |                                             |                                                         |                                        |                                         |                     |  |
| Mo                              | ode:                                           | 802                                                                     | .11a                                        | Frequ                                                   | iency:                                 | 5240                                    | )MHz                |  |
| Antenna<br>Pol.                 | ode:<br>Frequency<br>(MHz)                     | 802<br>Reading<br>Level<br>(dBuV)                                       | .11a<br>Factor<br>(dB/m)                    | Frequ<br>Measure<br>Level<br>(dBuV/m)                   | Limit (dBuV/m)                         | 5240<br>Over<br>limit(dB)               |                     |  |
| Antenna                         | Frequency                                      | Reading<br>Level                                                        | Factor                                      | Measure<br>Level                                        | Limit                                  | Over                                    |                     |  |
| Antenna<br>Pol.                 | Frequency<br>(MHz)                             | Reading<br>Level<br>(dBuV)                                              | Factor<br>(dB/m)                            | Measure<br>Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                      | Over<br>limit(dB)                       | Detector            |  |
| Antenna<br>Pol.<br>H<br>V       | Frequency<br>(MHz)<br>5350.00<br>5350.00       | Reading<br>Level<br>(dBuV)<br>36.48<br>36.82                            | Factor<br>(dB/m)<br>11.64<br>11.64          | Measure<br>Level<br>(dBuV/m)<br>48.12<br>48.46          | Limit<br>(dBuV/m)<br>68.20<br>68.20    | Over limit(dB) -20.08 -19.74            | Detector PK PK      |  |
| Antenna<br>Pol.<br>H<br>V       | Frequency<br>(MHz)<br>5350.00                  | Reading<br>Level<br>(dBuV)<br>36.48<br>36.82                            | Factor<br>(dB/m)<br>11.64                   | Measure<br>Level<br>(dBuV/m)<br>48.12<br>48.46          | Limit<br>(dBuV/m)<br>68.20             | Over limit(dB) -20.08 -19.74            | Detector PK PK OMHz |  |
| Antenna<br>Pol.<br>H<br>V<br>Mo | Frequency (MHz) 5350.00 5350.00 ode: Frequency | Reading<br>Level<br>(dBuV)<br>36.48<br>36.82<br>802<br>Reading<br>Level | Factor (dB/m) 11.64 11.64 11.64 .11a Factor | Measure Level (dBuV/m) 48.12 48.46  Frequ Measure Level | Limit (dBuV/m) 68.20 68.20 ency: Limit | Over limit(dB) -20.08 -19.74  5240 Over | Detector PK PK      |  |





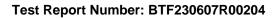

| Mo                              | ode:                                           | 802.11n(HT20)                                                               |                                                         | Frequ                                                   | iency:                                 | 5180                                   | )MHz           |
|---------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------------|----------------|
| Antenna<br>Pol.                 | Frequency<br>(MHz)                             | Reading<br>Level<br>(dBuV)                                                  | Factor<br>(dB/m)                                        | Measure<br>Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                      | Over<br>limit(dB)                      | Detector       |
| Н                               | 5150.00                                        | 34.51                                                                       | 11.34                                                   | 45.85                                                   | 68.20                                  | -22.35                                 | PK             |
| V                               | 5150.00                                        | 36.44                                                                       | 11.34                                                   | 47.78                                                   | 68.20                                  | -20.42                                 | PK             |
|                                 |                                                |                                                                             |                                                         |                                                         |                                        |                                        |                |
| Mo                              | ode:                                           | 802.11r                                                                     | n(HT20)                                                 | Frequ                                                   | iency:                                 | 5180                                   | )MHz           |
| Antenna<br>Pol.                 | Frequency<br>(MHz)                             | Reading<br>Level<br>(dBuV)                                                  | Factor<br>(dB/m)                                        | Measure<br>Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                      | Over<br>limit(dB)                      | Detector       |
| Н                               | 5150.00                                        | 27.14                                                                       | 11.34                                                   | 38.48                                                   | 54.00                                  | -15.52                                 | AV             |
| V                               | 5150.00                                        | 24.67                                                                       | 11.34                                                   | 36.01                                                   | 54.00                                  | -17.99                                 | AV             |
|                                 |                                                |                                                                             |                                                         |                                                         |                                        |                                        |                |
|                                 |                                                |                                                                             |                                                         |                                                         |                                        |                                        |                |
| Antenna<br>Pol.                 | ode:<br>Frequency<br>(MHz)                     | Reading<br>Level                                                            | (HT20)<br>Factor<br>(dB/m)                              | Measure<br>Level                                        | Limit                                  | Over                                   | DMHz Detector  |
| Antenna<br>Pol.                 | Frequency<br>(MHz)                             | Reading<br>Level<br>(dBuV)                                                  | Factor (dB/m)                                           | Measure<br>Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                      | Over<br>limit(dB)                      | Detector       |
| Antenna<br>Pol.                 | Frequency<br>(MHz)<br>5350.00                  | Reading<br>Level<br>(dBuV)<br>36.03                                         | Factor<br>(dB/m)<br>11.64                               | Measure<br>Level<br>(dBuV/m)<br>47.67                   | Limit<br>(dBuV/m)<br>68.20             | Over limit(dB)                         | Detector<br>PK |
| Antenna<br>Pol.                 | Frequency<br>(MHz)                             | Reading<br>Level<br>(dBuV)                                                  | Factor (dB/m)                                           | Measure<br>Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                      | Over<br>limit(dB)                      | Detector       |
| Antenna<br>Pol.<br>H<br>V       | Frequency<br>(MHz)<br>5350.00<br>5350.00       | Reading<br>Level<br>(dBuV)<br>36.03<br>36.85                                | Factor<br>(dB/m)<br>11.64<br>11.64                      | Measure<br>Level<br>(dBuV/m)<br>47.67<br>48.49          | Limit<br>(dBuV/m)<br>68.20<br>68.20    | Over limit(dB) -20.53 -19.71           | Detector PK PK |
| Antenna<br>Pol.<br>H<br>V       | Frequency<br>(MHz)<br>5350.00                  | Reading<br>Level<br>(dBuV)<br>36.03<br>36.85                                | Factor<br>(dB/m)<br>11.64                               | Measure<br>Level<br>(dBuV/m)<br>47.67<br>48.49          | Limit<br>(dBuV/m)<br>68.20             | Over limit(dB) -20.53 -19.71           | Detector<br>PK |
| Antenna<br>Pol.<br>H<br>V       | Frequency<br>(MHz)<br>5350.00<br>5350.00       | Reading<br>Level<br>(dBuV)<br>36.03<br>36.85                                | Factor<br>(dB/m)<br>11.64<br>11.64                      | Measure<br>Level<br>(dBuV/m)<br>47.67<br>48.49          | Limit<br>(dBuV/m)<br>68.20<br>68.20    | Over limit(dB) -20.53 -19.71           | Detector PK PK |
| Antenna<br>Pol.<br>H<br>V<br>Mo | Frequency (MHz) 5350.00 5350.00 ode: Frequency | Reading<br>Level<br>(dBuV)<br>36.03<br>36.85<br>802.11r<br>Reading<br>Level | Factor<br>(dB/m)<br>11.64<br>11.64<br>n(HT20)<br>Factor | Measure Level (dBuV/m) 47.67 48.49  Frequ Measure Level | Limit (dBuV/m) 68.20 68.20 ency: Limit | Over limit(dB) -20.53 -19.71 5240 Over | PK<br>PK<br>PM |





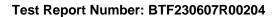

| M               | lode:              | 802.11a                    | c(HT20)          | Frequ                        | uency:            | 5180              | MHz      |
|-----------------|--------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 37.02                      | 11.34            | 48.36                        | 68.20             | -19.84            | PK       |
| V               | 5150.00            | 33.13                      | 11.34            | 44.47                        | 68.20             | -23.73            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| M               | lode:              | 802.11a                    | c(HT20)          | Frequ                        | uency:            | 5180              | MHz      |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 27.07                      | 11.34            | 38.41                        | 54.00             | -15.59            | AV       |
| V               | 5150.00            | 26.95                      | 11.34            | 38.29                        | 54.00             | -15.71            | AV       |
|                 |                    |                            |                  |                              |                   |                   |          |
| N               | lode:              | 802.11ac(HT20)             |                  | Frequency:                   |                   | 5240              | MHz      |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor           | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 34.16                      | 11.64            | 45.8                         | 68.20             | -22.4             | PK       |
| V               | 5350.00            | 36.68                      | 11.64            | 48.32                        | 68.20             | -19.88            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| N               | lode:              | 802.11a                    | c(HT20)          | Frequ                        | uency:            | 5240              | MHz      |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 27.06                      | 11.64            | 38.7                         | 54.00             | -15.3             | AV       |
| V               | 5350.00            | 25.02                      | 11.64            | 36.66                        | 54.00             | -17.34            | AV       |





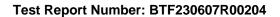

| М               | ode:               | 802.11ax(H                 | T20)             | Fregu                        | uency:            | 5180              | MHz      |
|-----------------|--------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading Level (dBuV)       | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit(dB)    | Detector |
| Н               | 5150.00            | 34.88                      | 11.34            | 46.22                        | 68.20             | -21.98            | PK       |
| V               | 5150.00            | 34.76                      | 11.34            | 46.1                         | 68.20             | -22.1             | PK       |
| N               | lode:              | 802.11ax(H                 | HT20)            | Frequ                        | uency:            | 5180              | MHz      |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 25.71                      | 11.34            | 37.05                        | 54.00             | -16.95            | AV       |
| V               | 5150.00            | 24.57                      | 11.34            | 35.91                        | 54.00             | -18.09            | AV       |
|                 |                    |                            |                  |                              |                   |                   |          |
| N               | lode:              | 802.11ax(HT20)             |                  | Frequency:                   |                   | 5240MHz           |          |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 35.03                      | 11.64            | 46.67                        | 68.20             | -21.53            | PK       |
| V               | 5350.00            | 35.26                      | 11.64            | 46.9                         | 68.20             | -21.3             | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| N               | lode:              | 802.11ax(F                 | HT20)            | Frequ                        | lency:            | 5240              | MHz<br>• |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| H               | 5350.00            | 25.95                      | 11.64            | 37.59                        | 54.00             | -16.41            | AV       |
| V               | 5350.00            | 27.09                      | 11.64            | 38.73                        | 54.00             | -15.27            | AV       |





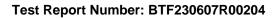

| M               | ode:               | 802.11r                    | (HT40)           | Frequ                        | uency:            | 5190              | )MHz     |
|-----------------|--------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 33.80                      | 11.34            | 45.14                        | 68.20             | -23.06            | PK       |
| V               | 5150.00            | 33.22                      | 11.34            | 44.56                        | 68.20             | -23.64            | PK       |
| M               | ode:               | 802.11r                    | n(HT40)          | Frequ                        | Jency:            | 5190              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 27.93                      | 11.34            | 39.27                        | 54.00             | -14.73            | AV       |
| V               | 5150.00            | 27.05                      | 11.34            | 38.39                        | 54.00             | -15.61            | AV       |
|                 |                    |                            |                  |                              |                   |                   |          |
| M               | ode:               | 802.11n(HT40)              |                  | Frequency:                   |                   | 5230MHz           |          |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 36.80                      | 11.64            | 48.44                        | 68.20             | -19.76            | PK       |
| V               | 5350.00            | 34.98                      | 11.64            | 46.62                        | 68.20             | -21.58            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| M               | ode:               | 802.11r                    | (HT40)           | Frequ                        | uency:            | 5230              | MHz      |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 25.42                      | 11.64            | 37.06                        | 54.00             | -16.94            | AV       |
| V               | 5350.00            | 26.58                      | 11.64            | 38.22                        | 54.00             | -15.78            | AV       |





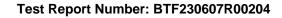

| Me              | ode:               | 802.11a                    | c(HT40)          | Frequ                        | iency:            | 5190              | )MHz     |
|-----------------|--------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 35.17                      | 11.34            | 46.51                        | 68.20             | -21.69            | PK       |
| V               | 5150.00            | 35.80                      | 11.34            | 47.14                        | 68.20             | -21.06            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Me              | ode:               | 802.11a                    | c(HT40)          | Frequ                        | iency:            | 5190              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 25.26                      | 11.34            | 36.6                         | 54.00             | -17.4             | AV       |
| V               | 5150.00            | 25.45                      | 11.34            | 36.79                        | 54.00             | -17.21            | AV       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Me              | ode:               | 802.11a                    | c(HT40)          | Frequ                        | iency:            | 5230              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 36.83                      | 11.64            | 48.47                        | 68.20             | -19.73            | PK       |
| V               | 5350.00            | 34.30                      | 11.64            | 45.94                        | 68.20             | -22.26            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Me              | ode:               | 802.11a                    | c(HT40)          | Frequ                        | iency:            | 5230              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 27.46                      | 11.64            | 39.1                         | 54.00             | -14.9             | AV       |
| V               | 5350.00            | 25.67                      | 11.64            | 37.31                        | 54.00             | -16.69            | AV       |



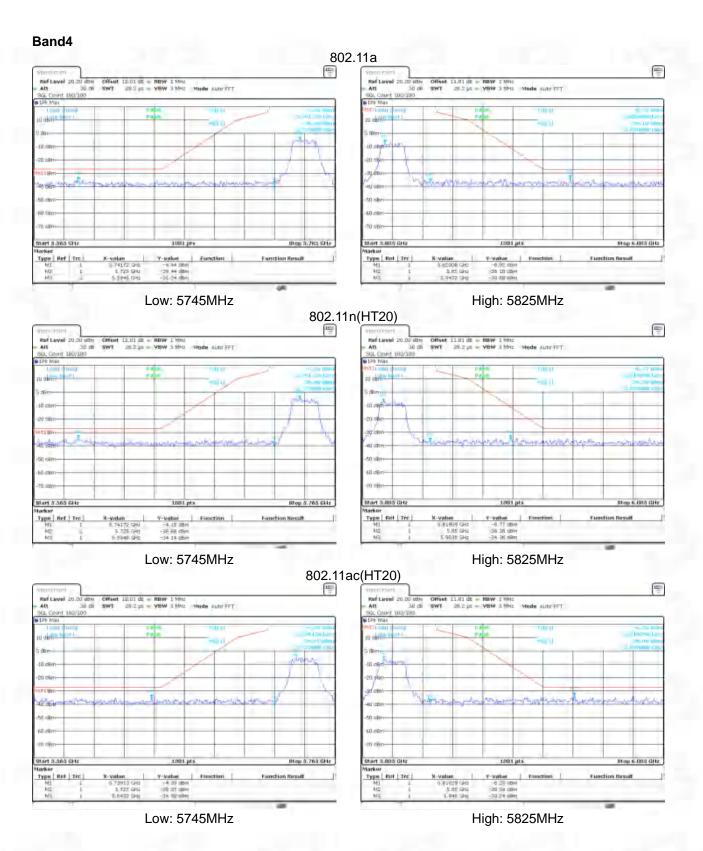


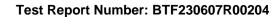

| M               | ode:               | 802.11a                    | x(HT40)          | Frequ                        | iency:            | 5190              | )MHz     |
|-----------------|--------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 34.13                      | 11.34            | 45.47                        | 68.20             | -22.73            | PK       |
| V               | 5150.00            | 32.89                      | 11.34            | 44.23                        | 68.20             | -23.97            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| M               | ode:               | 802.11a                    | x(HT40)          | Frequ                        | iency:            | 5190              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 27.54                      | 11.34            | 38.88                        | 54.00             | -15.12            | AV       |
| V               | 5150.00            | 26.71                      | 11.34            | 38.05                        | 54.00             | -15.95            | AV       |
|                 |                    |                            |                  |                              |                   |                   |          |
| М               | ode:               | 802.11ax(HT40)             |                  | Frequency:                   |                   | 5230MHz           |          |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 35.44                      | 11.64            | 47.08                        | 68.20             | -21.12            | PK       |
| V               | 5350.00            | 33.75                      | 11.64            | 45.39                        | 68.20             | -22.81            | PK       |
| 100             |                    |                            |                  | - 19-1                       | _                 |                   |          |
| М               | ode:               | 802.11a                    | x(HT40)          | Frequ                        | iency:            | 5230              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 27.07                      | 11.64            | 38.71                        | 54.00             | -15.29            | AV       |
| V               | 5350.00            | 25.51                      | 11.64            | 37.15                        | 54.00             | -16.85            | AV       |



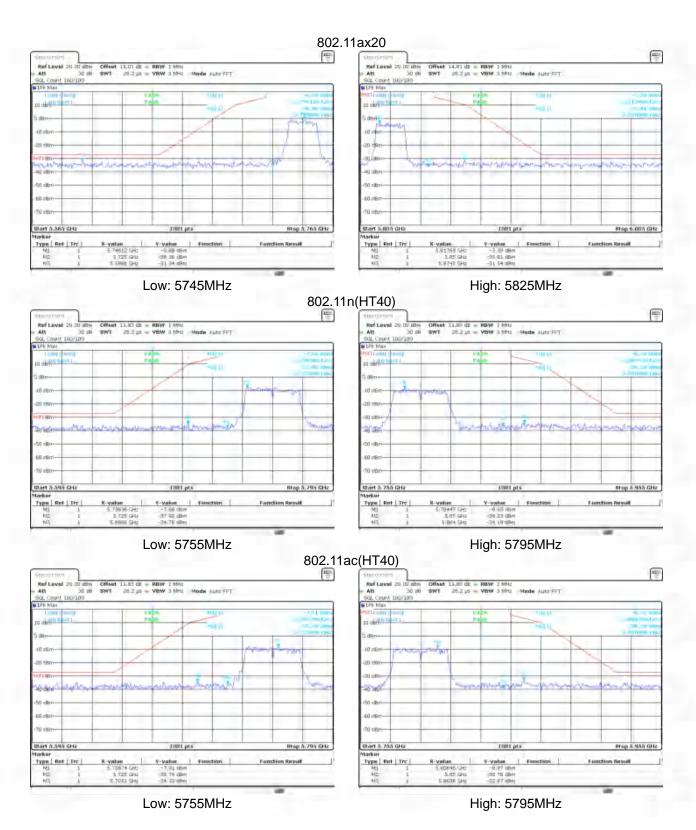


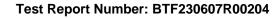

| Me              | ode:               | 802.11a                    | c(HT80)          | Frequ                        | iency:            | 5210MHz           |          |
|-----------------|--------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 34.28                      | 11.34            | 45.62                        | 68.20             | -22.58            | PK       |
| V               | 5150.00            | 36.73                      | 11.34            | 48.07                        | 68.20             | -20.13            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Me              | ode:               | 802.11a                    | c(HT80)          | Frequ                        | iency:            | 5210              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 26.99                      | 11.34            | 38.33                        | 54.00             | -15.67            | AV       |
| V               | 5150.00            | 27.14                      | 11.34            | 38.48                        | 54.00             | -15.52            | AV       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Me              | ode:               | 802.11ac(HT80)             |                  | Frequency:                   |                   | 5210MHz           |          |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 34.91                      | 11.64            | 46.55                        | 68.20             | -21.65            | PK       |
| V               | 5350.00            | 36.11                      | 11.64            | 47.75                        | 68.20             | -20.45            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Me              | ode:               | 802.11a                    | c(HT80)          | Frequ                        | iency:            | 5210              | )MHz     |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 24.52                      | 11.64            | 36.16                        | 54.00             | -17.84            | AV       |
| V               | 5350.00            | 24.19                      | 11.64            | 35.83                        | 54.00             | -18.17            | AV       |



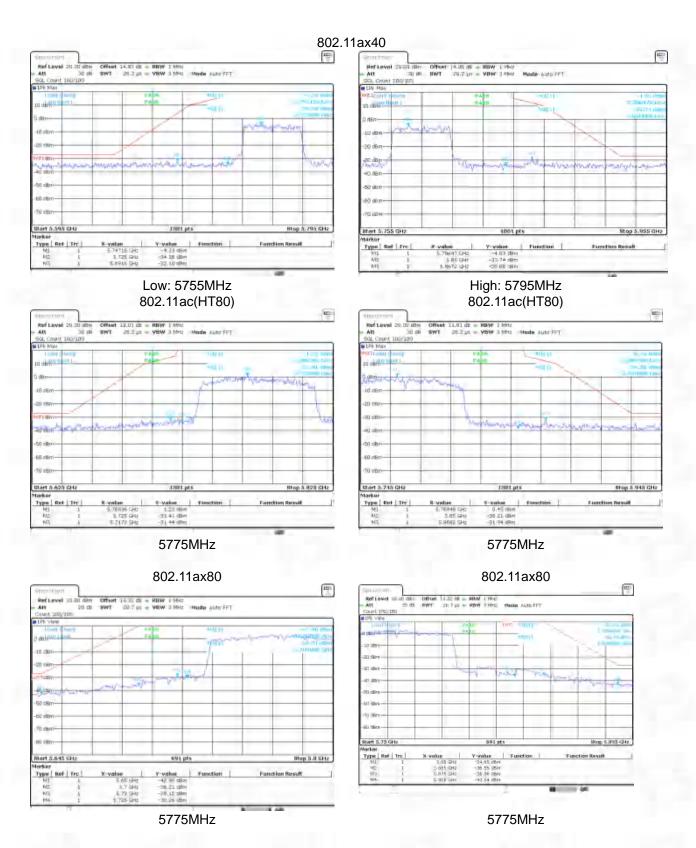



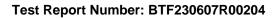

| Mode:           |                    | 802.11ax(HT80)             |                  | Frequency:                   |                   | 5210MHz           |          |
|-----------------|--------------------|----------------------------|------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor<br>(dB/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 36.00                      | 11.34            | 47.34                        | 68.20             | -20.86            | PK       |
| V               | 5150.00            | 36.21                      | 11.34            | 47.55                        | 68.20             | -20.65            | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Mode:           |                    | 802.11ax(HT80)             |                  | Frequency:                   |                   | 5210MHz           |          |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5150.00            | 25.98                      | 11.34            | 37.32                        | 54.00             | -16.68            | AV       |
| V               | 5150.00            | 26.41                      | 11.34            | 37.75                        | 54.00             | -16.25            | AV       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Mode:           |                    | 802.11ax(HT80)             |                  | Frequency:                   |                   | 5210MHz           |          |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 36.02                      | 11.64            | 47.66                        | 68.20             | -20.54            | PK       |
| V               | 5350.00            | 35.96                      | 11.64            | 47.6                         | 68.20             | -20.6             | PK       |
|                 |                    |                            |                  |                              |                   |                   |          |
| Mode:           |                    | 802.11ax(HT80)             |                  | Frequency:                   |                   | 5210MHz           |          |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV) | Factor (dB/m)    | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| Н               | 5350.00            | 24.68                      | 11.64            | 36.32                        | 54.00             | -17.68            | AV       |
| V               | 5350.00            | 23.55                      | 11.64            | 35.19                        | 54.00             | -18.81            | AV       |



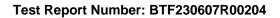






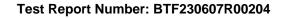







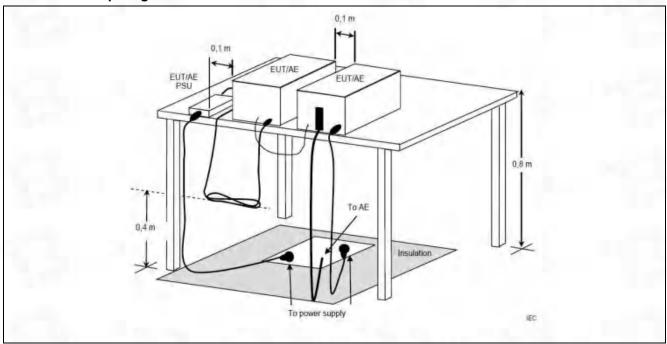



| Test Requirement: | 47 CFR Part 15.407(b)(                                                                                                                                                                                                                                                                                                                                                | 47 CFR Part 15.407(b)(9)                                        |                                           |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10-2013, sec                                                                                                                                                                                                                                                                                                                                                 | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6                |                                           |  |  |  |  |
| Test Limit:       | Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.  Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz)  Field strength  (microvolts/meter)  Measurement  (inicrovolts/meter) |                                                                 |                                           |  |  |  |  |
|                   | 0.009-0.490<br>0.490-1.705<br>1.705-30.0<br>30-88<br>88-216<br>216-960<br>Above 960                                                                                                                                                                                                                                                                                   | 2400/F(kHz)<br>24000/F(kHz)<br>30<br>100 **<br>150 **<br>200 ** | 300<br>30<br>30<br>30<br>3<br>3<br>3<br>3 |  |  |  |  |
| Procedure:        | 216-960 200 ** 3                                                                                                                                                                                                                                                                                                                                                      |                                                                 |                                           |  |  |  |  |






- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


#### 6.6.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |





## 6.6.2 Test Setup Diagram:



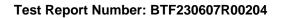



Test Report Number: BTF230607R00204

#### 6.6.3 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report

#### **Below 1GHz**


| Delow IGIIZ        |                         |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 33.87              | 47.72                   | 11.25                       | 0.59                  | 30.08                    | 29.48             | 40                     | -10.52                | Vertical     |
| 54.59              | 41.67                   | 11.93                       | 0.81                  | 29.96                    | 24.45             | 40                     | -15.55                | Vertical     |
| 120.76             | 46.56                   | 9.4                         | 1.36                  | 29.57                    | 27.75             | 43.5                   | -15.75                | Vertical     |
| 172.01             | 43.20                   | 8.5                         | 1.7                   | 29.31                    | 24.09             | 43.5                   | -19.41                | Vertical     |
| 440.86             | 37.22                   | 16.29                       | 3.05                  | 29.41                    | 27.15             | 46                     | -18.85                | Vertical     |
| 860.15             | 33.58                   | 21.83                       | 4.69                  | 29.14                    | 30.96             | 46                     | -15.04                | Vertical     |
| 64.70              | 36.48                   | 8.73                        | 0.9                   | 29.89                    | 16.22             | 40                     | -23.78                | Horizontal   |
| 100.41             | 33.52                   | 11.73                       | 1.19                  | 29.7                     | 16.74             | 43.5                   | -26.76                | Horizontal   |
| 270.38             | 45.23                   | 12.53                       | 2.22                  | 29.79                    | 30.19             | 46                     | -15.81                | Horizontal   |
| 350.56             | 36.62                   | 14.5                        | 2.62                  | 29.73                    | 24.01             | 46                     | -21.99                | Horizontal   |
| 627.93             | 36.39                   | 19.43                       | 3.83                  | 29.27                    | 30.38             | 46                     | -15.62                | Horizontal   |
| 955.44             | 41.39                   | 22.54                       | 5.06                  | 29.1                     | 39.89             | 46                     | -6.11                 | Horizontal   |





## 6.7 Undesirable emission limits (above 1GHz)

|                   | mission mints (abov                 | •                                                              |                   |                       |  |  |  |  |  |  |
|-------------------|-------------------------------------|----------------------------------------------------------------|-------------------|-----------------------|--|--|--|--|--|--|
|                   | 47 CFR Part 15.407(b)               |                                                                |                   |                       |  |  |  |  |  |  |
| Test Requirement: | 47 CFR Part 15.407(b)               |                                                                |                   |                       |  |  |  |  |  |  |
| rest requirement. | 47 CFR Part 15.407(b)               |                                                                |                   |                       |  |  |  |  |  |  |
|                   | 47 CFR Part 15.407(b)               | )(10)                                                          |                   |                       |  |  |  |  |  |  |
| Test Method:      | ANSI C63.10-2013, se                | ection 12.7.4, 12.7.5, 12                                      | .7.6              |                       |  |  |  |  |  |  |
|                   | For transmitters opera              | ting in the 5.15-5.25 GH                                       | Iz band: All emis | ssions outside of the |  |  |  |  |  |  |
|                   | 5.15-5.35 GHz band sl               | hall not exceed an e.i.r.                                      | p. of -27 dBm/N   | 1Hz.                  |  |  |  |  |  |  |
|                   | For transmitters opera              | ting in the 5.25-5.35 GH                                       | Iz band: All emis | ssions outside of the |  |  |  |  |  |  |
|                   | 5.15-5.35 GHz band sl               | hall not exceed an e.i.r.                                      | p. of −27 dBm/N   | 1Hz.                  |  |  |  |  |  |  |
|                   | For transmitters on ord             | For transmitters operating solely in the 5.725-5.850 GHz band: |                   |                       |  |  |  |  |  |  |
|                   |                                     | ling solely in the 5.725-<br>limited to a level of −27         |                   |                       |  |  |  |  |  |  |
|                   |                                     |                                                                |                   |                       |  |  |  |  |  |  |
|                   |                                     | e increasing linearly to                                       |                   |                       |  |  |  |  |  |  |
|                   |                                     | and from 25 MHz above                                          |                   |                       |  |  |  |  |  |  |
|                   |                                     | .6 dBm/MHz at 5 MHz                                            |                   |                       |  |  |  |  |  |  |
|                   |                                     | pelow the band edge in                                         | creasing linearly | to a level of 27      |  |  |  |  |  |  |
|                   | dBm/MHz at the band<br>MHz          | MHz                                                            | MHz               | GHz                   |  |  |  |  |  |  |
|                   | 0.090-0.110                         | 16.42-16.423                                                   | 399.9-410         | 4.5-5.15              |  |  |  |  |  |  |
|                   | 10.495-0.505                        | 16.69475-16.69525                                              | 608-614           | 5.35-5.46             |  |  |  |  |  |  |
|                   | 2.1735-2.1905                       | 16.80425-16.80475                                              | 960-1240          | 7.25-7.75             |  |  |  |  |  |  |
|                   | 4.125-4.128                         | 25.5-25.67                                                     | 1300-1427         | 8.025-8.5             |  |  |  |  |  |  |
|                   | 4.17725-4.17775                     | 37.5-38.25                                                     | 1435-1626.5       | 9.0-9.2               |  |  |  |  |  |  |
|                   | 4.20725-4.20775                     | 73-74.6                                                        | 1645.5-1646.      | 9.0-9.2<br>9.3-9.5    |  |  |  |  |  |  |
|                   | 4.20725-4.20775                     | 73-74.0                                                        | 5                 | 9.3-9.5               |  |  |  |  |  |  |
|                   | 6.215-6.218                         | 74.8-75.2                                                      | 1660-1710         | 10.6-12.7             |  |  |  |  |  |  |
|                   | 6.26775-6.26825                     | 108-121.94                                                     | 1718.8-1722.      | 13.25-13.4            |  |  |  |  |  |  |
|                   | 0.20775-0.20025                     | 100-121.94                                                     | 2                 | 13.23-13.4            |  |  |  |  |  |  |
|                   | 6.31175-6.31225                     | 123-138                                                        | 2200-2300         | 14.47-14.5            |  |  |  |  |  |  |
| Test Limit:       | 8.291-8.294                         | 149.9-150.05                                                   | 2310-2390         | 15.35-16.2            |  |  |  |  |  |  |
|                   | 8.362-8.366                         | 156.52475-156.525                                              | 2483.5-2500       | 17.7-21.4             |  |  |  |  |  |  |
|                   | 8.302-8.300                         | 25                                                             | 2403.3-2300       | 17.7-21.4             |  |  |  |  |  |  |
|                   | 8.37625-8.38675                     | 156.7-156.9                                                    | 2690-2900         | 22.01-23.12           |  |  |  |  |  |  |
|                   | 8.41425-8.41475                     | 162.0125-167.17                                                | 3260-3267         | 23.6-24.0             |  |  |  |  |  |  |
|                   | 12.29-12.293                        | 167.72-173.2                                                   | 3332-3339         | 31.2-31.8             |  |  |  |  |  |  |
|                   | 12.51975-12.52025                   | 240-285                                                        | 3345.8-3358       | 36.43-36.5            |  |  |  |  |  |  |
|                   | 12.57675-12.57725                   | 322-335.4                                                      | 3600-4400         | ( <sup>2</sup> )      |  |  |  |  |  |  |
|                   | 13.36-13.41                         | 322-333.4                                                      | 3000-4400         | ( )                   |  |  |  |  |  |  |
|                   |                                     |                                                                |                   |                       |  |  |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1999 | 9, this restricted band s                                      | hall be 0.490-0.5 | 510 MHz.              |  |  |  |  |  |  |
|                   | <sup>2</sup> Above 38.6             |                                                                |                   |                       |  |  |  |  |  |  |
|                   |                                     |                                                                |                   |                       |  |  |  |  |  |  |
|                   |                                     | missions appearing with                                        |                   |                       |  |  |  |  |  |  |
|                   |                                     | n in § 15.209. At freque                                       |                   |                       |  |  |  |  |  |  |
|                   |                                     | the limits in § 15.209sh                                       |                   |                       |  |  |  |  |  |  |
|                   |                                     | entation employing a Cl                                        |                   |                       |  |  |  |  |  |  |
|                   |                                     | with the emission limit                                        |                   |                       |  |  |  |  |  |  |
|                   |                                     | value of the measured                                          | emissions. The    | provisions in §       |  |  |  |  |  |  |
|                   | 15.35apply to these m               | easurements.                                                   |                   |                       |  |  |  |  |  |  |
|                   | Except as provided els              | sewhere in this subpart,                                       | the emissions for | rom an intentional    |  |  |  |  |  |  |
|                   |                                     | ed the field strength lev                                      |                   |                       |  |  |  |  |  |  |
|                   | Frequency (MHz)                     | Field strength                                                 | •                 | Measurement           |  |  |  |  |  |  |
|                   |                                     | c.c chongan                                                    |                   |                       |  |  |  |  |  |  |





|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (migravalta/matar)                  | dictores                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (microvolts/meter)                  | distance                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | (meters)                        |
|            | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2400/F(kHz)                         | 300                             |
|            | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24000/F(kHz)                        | 30                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                 |
|            | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                  | 30                              |
|            | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 **                              | 3                               |
|            | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150 **                              | 3                               |
|            | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 **                              | 3                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                 |
|            | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 500                                 | 3                               |
|            | Above 1GHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                 |
|            | a. For above 1GHz, the I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EUT was placed on the top o         | f a rotating table 1.5 meters   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | meter fully-anechoic chambe         |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | position of the highest radia       |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | nce-receiving antenna, which    |
|            | was mounted on the top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of a variable-height antenna        | tower.                          |
|            | c. The antenna height is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | varied from one meter to fou        | r meters above the ground to    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | value of the field strength. Bo     |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nna are set to make the meas        |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | ed to its worst case and then   |
|            | the antenna was tuned to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o heights from 1 meter to 4 m       | eters (for the test frequency   |
|            | of below 30MHz, the ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | enna was tuned to heights 1 i       | meter) and the rotatable table  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es to 360 degrees to find the       |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | em was set to Peak Detect F         |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | unction and Specified           |
|            | Bandwidth with Maximun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the EUT in peak mode was 1          |                                 |
|            | specified, then testing co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uld be stopped and the peak         | values of the EUT would be      |
|            | reported. Otherwise the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | emissions that did not have 1       | 0dB margin would be             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | s specified and then reported   |
| Procedure: | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ig peak of average method a         | is specified and their reported |
| Procedure. | in a data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vest channel, the middle cha        |                                 |
|            | h. The radiation measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ements are performed in X, Y        | , Z axis positioning for        |
|            | Transmitting mode, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ound the X axis positioning v       | which it is the worst case.     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res until all frequencies meas      |                                 |
|            | Remark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | roo ariai ali iroquorioloo irioa    | saroa wao compreter             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | abla Lassy Antonna Fastar           | Dragon Factor                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | able Loss+ Antenna Factor-          |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0GHz, the disturbance above         |                                 |
|            | points marked on above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | plots are the highest emissio       | ns could be found when          |
|            | testing, so only above po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ints had been displayed. The        | e amplitude of spurious         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tor which are attenuated mor        |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to milor are attendated filor       | 5 than 2000 bolow the little    |
|            | need not be reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to the first of the second          | 11 0 0 11 10 0 0 0              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on, for frequencies above 1G        |                                 |
|            | are based on average lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nits. However, the peak field s     | strength of any emission shall  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | ecified above by more than 20   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | ons whose peak level is lower   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nly the peak measurement is         |                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                   | •                               |
|            | 4. The disturbance above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 18GHz were very low and t         | ne narmonics were the           |
|            | In the following the second of the first of the second | and the street of the street of the |                                 |

### 6.7.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

highest point could be found when testing, so only the above harmonics had been

displayed.



Test Report Number: BTF230607R00204

#### 6.7.2 Test Data:

10360.93

15540.98

33.04

32.18

11.25

11.93

14.62

17.66

| 202 | 11. | S 51 | 90 | MHz   |
|-----|-----|------|----|-------|
| カリノ | 111 | 1 วา | au | IVIH/ |

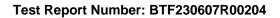
|                    |                         |                             | 80                    | 02.11a 5180              | MHz               |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 10360.81           | 28.65                   | 11.25                       | 14.62                 | 32.65                    | 21.87             | 74                     | -52.13                | Vertical     |
| 15540.22           | 30.89                   | 11.93                       | 17.66                 | 34.46                    | 26.02             | 74                     | -47.98                | Vertical     |
| 10360.70           | 32.86                   | 11.25                       | 14.62                 | 32.65                    | 26.08             | 74                     | -47.92                | Horizontal   |
| 15540.07           | 32.12                   | 11.93                       | 17.66                 | 34.46                    | 27.25             | 74                     | -46.75                | Horizontal   |
|                    |                         |                             | 80                    | 02.11a 5200              | MHz               |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 10360.43           | 28.72                   | 11.25                       | 14.62                 | 32.65                    | 21.94             | 74                     | -52.06                | Vertical     |
| 15540.39           | 30.32                   | 11.93                       | 17.66                 | 34.46                    | 25.45             | 74                     | -48.55                | Vertical     |
| 10360.85           | 32.31                   | 11.25                       | 14.62                 | 32.65                    | 25.53             | 74                     | -48.47                | Horizontal   |
| 15540.99           | 32.43                   | 11.93                       | 17.66                 | 34.46                    | 27.56             | 74                     | -46.44                | Horizontal   |
|                    |                         |                             | 80                    | 02.11a 5240              | MHz               |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 10360.19           | 28.54                   | 11.25                       | 14.62                 | 32.65                    | 21.76             | 74                     | -52.24                | Vertical     |
| 15540.09           | 30.61                   | 11.93                       | 17.66                 | 34.46                    | 25.74             | 74                     | -48.26                | Vertical     |
| 10360.30           | 32.51                   | 11.25                       | 14.62                 | 32.65                    | 25.73             | 74                     | -48.27                | Horizontal   |
| 15540.39           | 25                      | 11.93                       | 17.66                 | 34.46                    | 20.13             | 74                     | -53.87                | Horizontal   |
|                    |                         |                             | 802.1                 | 1n(HT20) 5               | 180MHz            |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 10360.10           | 28.21                   | 11.25                       | 14.62                 | 32.65                    | 21.43             | 74                     | -52.57                | Vertical     |
| 15540.27           | 31.03                   | 11.93                       | 17.66                 | 34.46                    | 26.16             | 74                     | -47.84                | Vertical     |
| 10360.13           | 32.41                   | 11.25                       | 14.62                 | 32.65                    | 25.63             | 74                     | -48.37                | Horizontal   |
| 15540.84           | 31.74                   | 11.93                       | 17.66                 | 34.46                    | 26.87             | 74                     | -47.13                | Horizontal   |
|                    |                         |                             |                       | 1n(HT20) 52              | 200MHz            |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 10360.10           | 28.20                   | 11.25                       | 14.62                 | 32.65                    | 21.42             | 74                     | -52.58                | Vertical     |
| 15540.30           | 30.97                   | 11.93                       | 17.66                 | 34.46                    | 26.1              | 74                     | -47.9                 | Vertical     |
|                    |                         |                             |                       |                          |                   |                        |                       |              |

74

-47.74

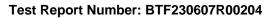
-46.69

Horizontal


Horizontal

32.65

34.46


26.26

27.31





|                    |                         |                             | 802.1                 | 1n(HT20) 52              | 240MHz            |                        |                       |              |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |  |  |
| 10360.05           | 28.64                   | 11.25                       | 14.62                 | 32.65                    | 21.86             | 74                     | -52.14                | Vertical     |  |  |
| 15540.98           | 30.29                   | 11.93                       | 17.66                 | 34.46                    | 25.42             | 74                     | -48.58                | Vertical     |  |  |
| 10360.12           | 32.34                   | 11.25                       | 14.62                 | 32.65                    | 25.56             | 74                     | -48.44                | Horizontal   |  |  |
| 15540.71           | 32.41                   | 11.93                       | 17.66                 | 34.46                    | 27.54             | 74                     | -46.46                | Horizontal   |  |  |
| 10040.71           | 802.11ac(HT20) 5180MHz  |                             |                       |                          |                   |                        |                       |              |  |  |
|                    | Read                    | Antenna                     | Cable                 | Preamp                   | TOOM 12           |                        | Over                  |              |  |  |
| Frequency          | Level                   | Factor                      | Loss                  | Factor                   | Level             | Limit Line             | Limit                 | polarization |  |  |
| (MHz)              | (dBuV)                  | (dB/m)                      | (dB)                  | (dB)                     | (dBuV/m)          | (dBuV/m)               | (dB)                  | polarization |  |  |
| 10360.93           | 28.70                   | 11.25                       | 14.62                 | 32.65                    | 21.92             | 74                     | -52.08                | Vertical     |  |  |
| 15540.32           | 30.59                   | 11.93                       | 17.66                 | 34.46                    | 25.72             | 74                     | -48.28                | Vertical     |  |  |
| 10360.81           | 32.62                   | 11.25                       | 14.62                 | 32.65                    | 25.84             | 74                     | -48.16                | Horizontal   |  |  |
| 15540.08           | 31.59                   | 11.93                       | 17.66                 | 34.46                    | 26.72             | 74                     | -47.28                | Horizontal   |  |  |
| 13340.00           | 31.33                   | 11.95                       |                       | 1ac(HT20) 5              |                   | /                      | -47.20                | Honzontai    |  |  |
|                    | Read                    | Antenna                     | Cable                 | Preamp                   |                   |                        | Over                  |              |  |  |
| Frequency          | Level                   | Factor                      | Loss                  | Factor                   | Level             | Limit Line             | Limit                 | polarization |  |  |
| (MHz)              | (dBuV)                  | (dB/m)                      | (dB)                  | (dB)                     | (dBuV/m)          | (dBuV/m)               | (dB)                  | polarization |  |  |
| 10360.28           | 28.33                   | 11.25                       | 14.62                 | 32.65                    | 21.55             | 74                     | -52.45                | Vertical     |  |  |
| 15540.96           | 31.17                   | 11.93                       | 17.66                 | 34.46                    | 26.3              | 74                     | -47.7                 | Vertical     |  |  |
| 10360.75           | 32.60                   | 11.25                       | 14.62                 | 32.65                    | 25.82             | 74                     | -48.18                | Horizontal   |  |  |
| 15540.50           | 31.97                   | 11.93                       | 17.66                 | 34.46                    | 27.1              | 74                     | -46.9                 | Horizontal   |  |  |
| .00.000            | 0                       |                             |                       | ac(HT20)                 | 5240MHz           |                        |                       |              |  |  |
|                    | Read                    | Antenna                     | Cable                 | Preamp                   |                   | 1.1 - 16.1 1           | Over                  |              |  |  |
| Frequency          | Level                   | Factor                      | Loss                  | Factor                   | Level             | Limit Line             | Limit                 | polarization |  |  |
| (MHz)              | (dBuV)                  | (dB/m)                      | (dB)                  | (dB)                     | (dBuV/m)          | (dBuV/m)               | (dB)                  |              |  |  |
| 10360.69           | 28.53                   | 11.25                       | 14.62                 | 32.65                    | 21.75             | 74                     | -52.25                | Vertical     |  |  |
| 15540.44           | 30.97                   | 11.93                       | 17.66                 | 34.46                    | 26.1              | 74                     | -47.9                 | Vertical     |  |  |
| 10360.27           | 32.13                   | 11.25                       | 14.62                 | 32.65                    | 25.35             | 74                     | -48.65                | Horizontal   |  |  |
| 15540.53           | 32.02                   | 11.93                       | 17.66                 | 34.46                    | 27.15             | 74                     | -46.85                | Horizontal   |  |  |
|                    |                         |                             | 802.1                 | 1n(HT40) 5               | 190MHz            |                        |                       |              |  |  |
| Frequency          | Read                    | Antenna                     | Cable                 | Preamp                   | Level             | Limit Line             | Over                  |              |  |  |
| (MHz)              | Level                   | Factor                      | Loss                  | Factor                   | (dBuV/m)          | (dBuV/m)               | Limit                 | polarization |  |  |
|                    | (dBuV)                  | (dB/m)                      | (dB)                  | (dB)                     |                   | ` i                    | (dB)                  |              |  |  |
| 10360.68           | 29.08                   | 11.25                       | 14.62                 | 32.65                    | 22.3              | 74                     | -51.7                 | Vertical     |  |  |
| 15540.87           | 30.19                   | 11.93                       | 17.66                 | 34.46                    | 25.32             | 74                     | -48.68                | Vertical     |  |  |
| 10360.08           | 32.49                   | 11.25                       | 14.62                 | 32.65                    | 25.71             | 74                     | -48.29                | Horizontal   |  |  |
| 15540.87           | 31.84                   | 11.93                       | 17.66                 | 34.46                    | 26.97             | 74                     | -47.03                | Horizontal   |  |  |
|                    |                         |                             |                       | 1n(HT40) 52              | 230MHz            |                        |                       |              |  |  |
| Frequency          | Read                    | Antenna                     | Cable                 | Preamp                   | Level             | Limit Line             | Over                  |              |  |  |
| (MHz)              | Level                   | Factor                      | Loss                  | Factor                   | (dBuV/m)          | (dBuV/m)               | Limit                 | polarization |  |  |
| , ,                | (dBuV)                  | (dB/m)                      | (dB)                  | (dB)                     | ` '               | , ,                    | (dB)                  |              |  |  |
| 10360.75           | 28.29                   | 11.25                       | 14.62                 | 32.65                    | 21.51             | 74                     | -52.49                | Vertical     |  |  |
| 15540.40           | 30.33                   | 11.93                       | 17.66                 | 34.46                    | 25.46             | 74                     | -48.54                | Vertical     |  |  |
| 10360.93           | 32.92                   | 11.25                       | 14.62                 | 32.65                    | 26.14             | 74                     | -47.86                | Horizontal   |  |  |
| 15540.36           | 31.99                   | 11.93                       | 17.66                 | 34.46                    | 27.12             | 74                     | -46.88                | Horizontal   |  |  |





15540.89

|                                |                          |                           | 802.1                          | 1ac(HT40) 5             | 190MHz            |                        |                         |              |
|--------------------------------|--------------------------|---------------------------|--------------------------------|-------------------------|-------------------|------------------------|-------------------------|--------------|
| _                              | Read                     | Antenna                   | Cable                          | Preamp                  |                   | 1.1.14.1.1             | Over                    |              |
| Frequency                      | Level                    | Factor                    | Loss                           | Factor                  | Level             | Limit Line             | Limit                   | polarization |
| (MHz)                          | (dBuV)                   | (dB/m)                    | (dB)                           | (dB)                    | (dBuV/m)          | (dBuV/m)               | (dB)                    |              |
| 10360.48                       | 28.95                    | 11.25                     | 14.62                          | 32.65                   | 22.17             | 74                     | -51.83                  | Vertical     |
| 15540.64                       | 31.05                    | 11.93                     | 17.66                          | 34.46                   | 26.18             | 74                     | -47.82                  | Vertical     |
| 10360.29                       | 32.11                    | 11.25                     | 14.62                          | 32.65                   | 25.33             | 74                     | -48.67                  | Horizontal   |
| 15540.51                       | 32.30                    | 11.93                     | 17.66                          | 34.46                   | 27.43             | 74                     | -46.57                  | Horizontal   |
|                                |                          |                           | 802.1                          | 1ac(HT40) 5             | 230MHz            |                        |                         |              |
| Frequency                      | Read                     | Antenna                   | Cable                          | Preamp                  | Level             | Limit Line             | Over                    |              |
| (MHz)                          | Level                    | Factor                    | Loss                           | Factor                  | (dBuV/m)          | (dBuV/m)               | Limit                   | polarization |
| (IVII IZ)                      | (dBuV)                   | (dB/m)                    | (dB)                           | (dB)                    | ,                 | (ubu v/III)            | (dB)                    |              |
| 10360.47                       | 28.73                    | 11.25                     | 14.62                          | 32.65                   | 21.95             | 74                     | -52.05                  | Vertical     |
| 15540.58                       | 30.46                    | 11.93                     | 17.66                          | 34.46                   | 25.59             | 74                     | -48.41                  | Vertical     |
| 10360.51                       | 32.28                    | 11.25                     | 14.62                          | 32.65                   | 25.5              | 74                     | -48.5                   | Horizontal   |
| 15540.94                       | 31.68                    | 11.93                     | 17.66                          | 34.46                   | 26.81             | 74                     | -47.19                  | Horizontal   |
|                                |                          |                           |                                | .11ax20 518             | 0MHz              |                        |                         |              |
| Frequency                      | Read                     | Antenna                   | Cable                          | Preamp                  | Level             | Limit Line             | Over                    |              |
| (MHz)                          | Level                    | Factor                    | Loss                           | Factor                  | (dBuV/m)          | (dBuV/m)               | Limit                   | polarization |
| `                              | (dBuV)                   | (dB/m)                    | (dB)                           | (dB)                    | ` ,               | ,                      | (dB)                    |              |
| 10360.24                       | 28.90                    | 11.25                     | 14.62                          | 32.65                   | 22.12             | 74                     | -51.88                  | Vertical     |
| 15540.51                       | 30.51                    | 11.93                     | 17.66                          | 34.46                   | 25.64             | 74                     | -48.36                  | Vertical     |
| 10360.90                       | 32.26                    | 11.25                     | 14.62                          | 32.65                   | 25.48             | 74                     | -48.52                  | Horizontal   |
| 15540.15                       | 31.89                    | 11.93                     | 17.66                          | 34.46                   | 27.02             | 74                     | -46.98                  | Horizontal   |
|                                |                          |                           |                                | .11ax20 520             | 0MHz              |                        |                         |              |
| Frequency                      | Read                     | Antenna                   | Cable                          | Preamp                  | Level             | Limit Line             | Over                    |              |
| (MHz)                          | Level                    | Factor                    | Loss                           | Factor                  | (dBuV/m)          | (dBuV/m)               | Limit                   | polarization |
|                                | (dBuV)                   | (dB/m)                    | (dB)                           | (dB)                    | ` ,               | ` ,                    | (dB)                    |              |
| 10360.47                       | 28.69                    | 11.25                     | 14.62                          | 32.65                   | 21.91             | 74                     | -52.09                  | Vertical     |
| 15540.05                       | 31.16                    | 11.93                     | 17.66                          | 34.46                   | 26.29             | 74                     | -47.71                  | Vertical     |
| 10360.96                       | 32.48                    | 11.25                     | 14.62                          | 32.65                   | 25.7              | 74                     | -48.3                   | Horizontal   |
| 15540.97                       | 31.82                    | 11.93                     | 17.66                          | 34.46                   | 26.95             | 74                     | -47.05                  | Horizontal   |
|                                |                          |                           |                                | .11ax20 524             | 0MHz              |                        | 1                       |              |
| Frequency                      | Read                     | Antenna                   | Cable                          | Preamp                  | Level             | Limit Line             | Over                    |              |
| (MHz)                          | Level                    | Factor                    | Loss                           | Factor                  | (dBuV/m)          | (dBuV/m)               | Limit                   | polarization |
| ` '                            | (dBuV)                   | (dB/m)                    | (dB)                           | (dB)                    | , ,               | ,                      | (dB)                    |              |
| 10360.27                       | 28.30                    | 11.25                     | 14.62                          | 32.65                   | 21.52             | 74                     | -52.48                  | Vertical     |
| 15540.08                       | 30.89                    | 11.93                     | 17.66                          | 34.46                   | 26.02             | 74                     | -47.98                  | Vertical     |
| 10360.26                       | 32.56                    | 11.25                     | 14.62                          | 32.65                   | 25.78             | 74                     | -48.22                  | Horizontal   |
| 15540.79                       | 32.12                    | 11.93                     | 17.66                          | 34.46                   | 27.25             | 74                     | -46.75                  | Horizontal   |
| 13340.73                       |                          |                           | 802                            | 11ax40 519              | 0MHz              |                        |                         |              |
| 15540.79                       |                          | 1 -                       |                                | _                       |                   |                        |                         |              |
|                                | Read                     | Antenna                   | Cable                          | Preamp                  | Level             | Limit Line             | Over                    |              |
| Frequency                      | Level                    | Factor                    | Cable<br>Loss                  | Factor                  | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Limit                   | polarization |
| Frequency<br>(MHz)             | Level<br>(dBuV)          | Factor<br>(dB/m)          | Cable<br>Loss<br>(dB)          | Factor<br>(dB)          | (dBuV/m)          | (dBuV/m)               | Limit<br>(dB)           |              |
| Frequency<br>(MHz)<br>10360.06 | Level<br>(dBuV)<br>28.69 | Factor<br>(dB/m)<br>11.25 | Cable<br>Loss<br>(dB)<br>14.62 | Factor<br>(dB)<br>32.65 | (dBuV/m)<br>21.91 | (dBuV/m)<br>74         | Limit<br>(dB)<br>-52.09 | Vertical     |
| Frequency<br>(MHz)             | Level<br>(dBuV)          | Factor<br>(dB/m)          | Cable<br>Loss<br>(dB)          | Factor<br>(dB)          | (dBuV/m)          | (dBuV/m)               | Limit<br>(dB)           |              |

11.93

Horizontal





802.11ax40 5230MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 10360.38           | 28.83                   | 11.25                       | 14.62                 | 32.65                    | 22.05             | 74                     | -51.95                | Vertical     |
| 15540.39           | 30.92                   | 11.93                       | 17.66                 | 34.46                    | 26.05             | 74                     | -47.95                | Vertical     |
| 10360.14           | 32.58                   | 11.25                       | 14.62                 | 32.65                    | 25.8              | 74                     | -48.2                 | Horizontal   |
| 15540.34           | 32.23                   | 11.93                       | 17.66                 | 34.46                    | 27.36             | 74                     | -46.64                | Horizontal   |

802.11ac(HT80) 5210MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 10360.41           | 28.99                   | 11.25                       | 14.62                 | 32.65                    | 22.21             | 74                     | -51.79                | Vertical     |
| 15540.92           | 31.09                   | 11.93                       | 17.66                 | 34.46                    | 26.22             | 74                     | -47.78                | Vertical     |
| 10360.84           | 32.42                   | 11.25                       | 14.62                 | 32.65                    | 25.64             | 74                     | -48.36                | Horizontal   |
| 15540.89           | 32.31                   | 11.93                       | 17.66                 | 34.46                    | 27.44             | 74                     | -46.56                | Horizontal   |

802.11ax(HT80) 5210MHz

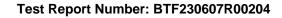
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 10360.72           | 28.20                   | 11.25                       | 14.62                 | 32.65                    | 21.42             | 74                     | -52.58                | Vertical     |
| 15540.94           | 30.21                   | 11.93                       | 17.66                 | 34.46                    | 25.34             | 74                     | -48.66                | Vertical     |
| 10360.40           | 32.61                   | 11.25                       | 14.62                 | 32.65                    | 25.83             | 74                     | -48.17                | Horizontal   |
| 15540.90           | 31.65                   | 11.93                       | 17.66                 | 34.46                    | 26.78             | 74                     | -47.22                | Horizontal   |

#### Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.
- 4. This Report only show the test plots of the worst case (U-NII-1).



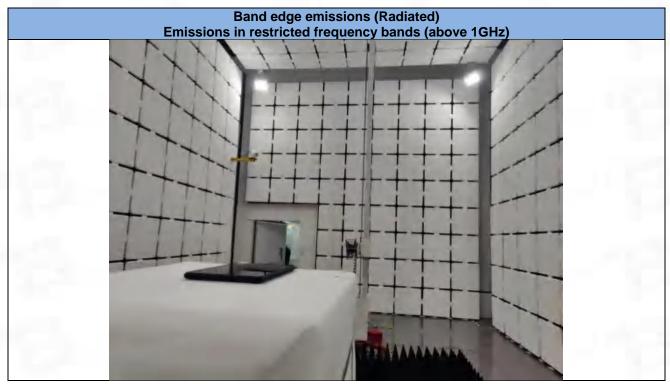


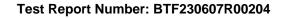

## 6.8 Frequency stability

| Test limit    | Manufacturers of U-NII devices are responsible for ensuring frequency       |
|---------------|-----------------------------------------------------------------------------|
|               | stability such that an emission is maintained within the band of operation  |
|               | under all conditions of normal operation as specified in the user's manual. |
| Test results: | Pass                                                                        |

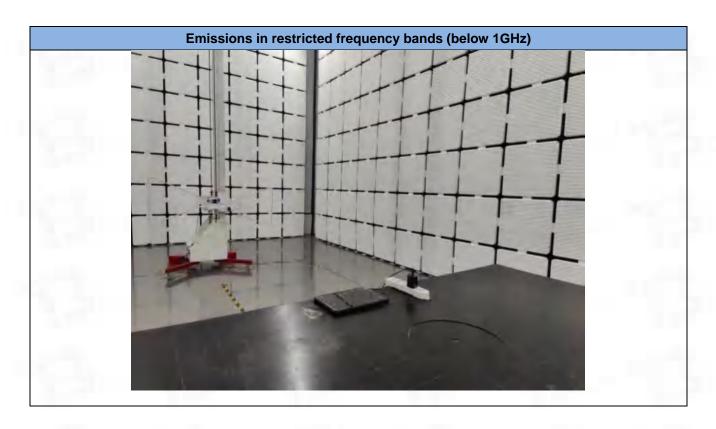
Measurement Data:

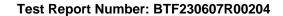
| weasurement Data.             |                |                  |                    |                  |                    |  |  |  |
|-------------------------------|----------------|------------------|--------------------|------------------|--------------------|--|--|--|
| Mode                          | Voltage<br>(V) | FHL<br>(5180MHz) | Deviation<br>(KHz) | FHH<br>(5240MHz) | Deviation<br>(KHz) |  |  |  |
| Band 1<br>(5150-5250<br>MHz ) | DC 3.61V       | 5179.996         | 4                  | 5239.998         | 2                  |  |  |  |
|                               | DC 3.80V       | 5179.992         | 8                  | 5239.995         | 5                  |  |  |  |
|                               | DC 4.18V       | 5179.993         | 7                  | 5239.995         | 5                  |  |  |  |
| Mode                          | Voltage<br>(V) | FHL<br>(5745MHz) | Deviation<br>(KHz) | FHH<br>(5825MHz) | Deviation<br>(KHz) |  |  |  |
| Band 4<br>(5725-5850<br>MHz)  | DC 3.61V       | 5744.993         | 7                  | 5824.995         | 5                  |  |  |  |
|                               | DC 3.80V       | 5744.994         | 6                  | 5824.994         | 6                  |  |  |  |
|                               | DC 4.18V       | 5744.996         | 4                  | 5824.992         | 8                  |  |  |  |


| Mode                          | Temperature<br>(°C) | FHL<br>(5180MHz) | Deviation<br>(KHz) | FHH<br>(5240MHz) | Deviation<br>(KHz) |
|-------------------------------|---------------------|------------------|--------------------|------------------|--------------------|
| Band 1<br>(5150-5250<br>MHz ) | -20℃                | 5179.993         | 7                  | 5239.993         | 7                  |
|                               | -10°C               | 5179.995         | 5                  | 5239.997         | 3                  |
|                               | -5℃                 | 5179.994         | 6                  | 5239.996         | 4                  |
|                               | 0°C                 | 5179.996         | 4                  | 5239.995         | 5                  |
|                               | +10°C               | 5179.995         | 5                  | 5239.998         | 2                  |
|                               | +20°C               | 5179.994         | 6                  | 5239.997         | 3                  |
|                               | +30°C               | 5179.998         | 2                  | 5239.998         | 2                  |
|                               | +40°C               | 5179.994         | 6                  | 5239.996         | 4                  |
|                               | +50°C               | 5179.996         | 4                  | 5239.997         | 3                  |
| Mode                          | Temperature<br>(°C) | FHL<br>(5745MHz) | Deviation<br>(KHz) | FHH<br>(5825MHz) | Deviation<br>(KHz) |
| Band 4<br>(5725-5850<br>MHz)  | -20℃                | 5744.993         | 7                  | 5824.997         | 3                  |
|                               | -10℃                | 5744.995         | 5                  | 5824.994         | 6                  |
|                               | -5℃                 | 5744.993         | 7                  | 5824.993         | 7                  |
|                               | 0°C                 | 5744.992         | 8                  | 5824.995         | 5                  |
|                               | +10°C               | 5744.996         | 4                  | 5824.994         | 6                  |
|                               | +20°C               | 5744.992         | 8                  | 5824.995         | 5                  |
|                               | +30℃                | 5744.996         | 4                  | 5824.993         | 7                  |
|                               | +40°C               | 5744.996         | 4                  | 5824.997         | 3                  |
|                               | +50°C               | 5744.996         | 4                  | 5824.996         | 4                  |







# 7 Test Setup Photos

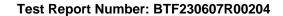




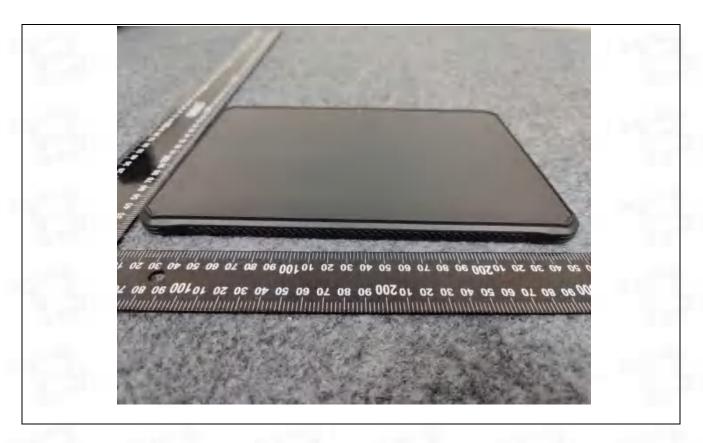


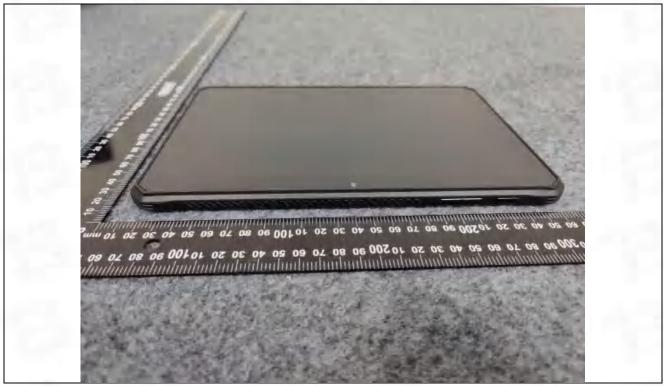


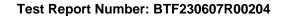






# **EUT Constructional Details (EUT Photos)**

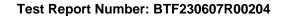






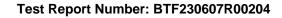








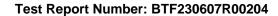









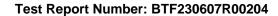





### Internal

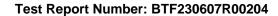








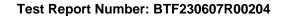






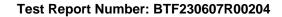


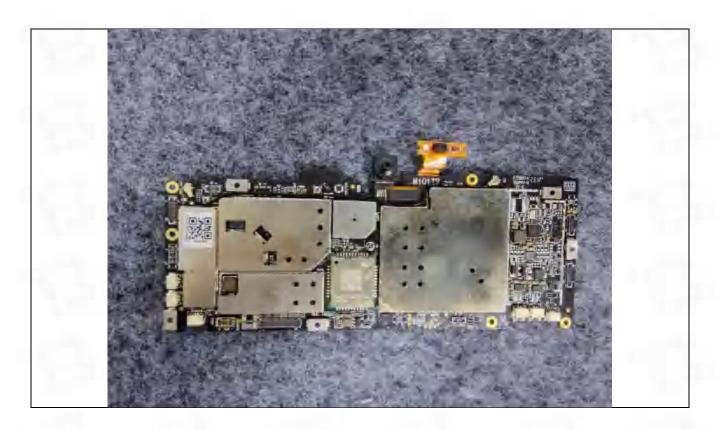


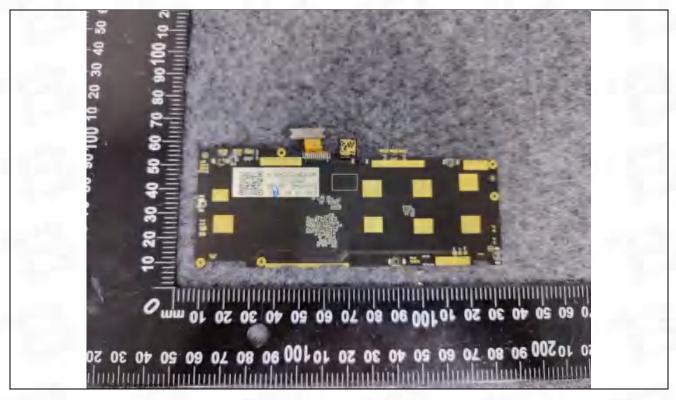


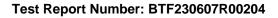


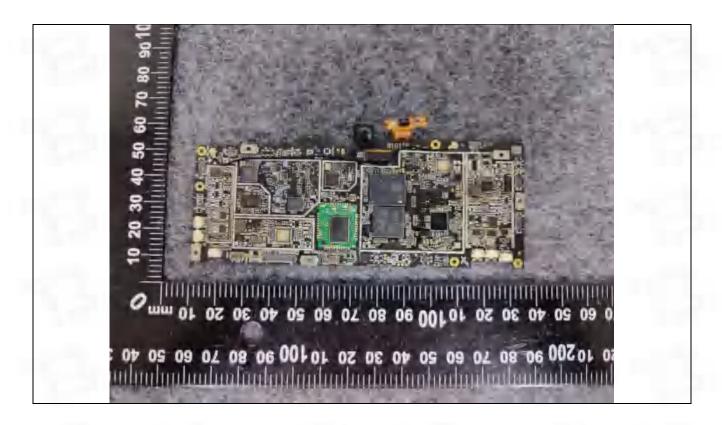


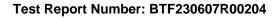




















BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --