SAR TEST REPORT

For

Shenzhen DOOGEE Hengtong Technology CO., LTD

3G/4G Smart Phone

Test Model: S59Pro

Prepared for Address	: •	Shenzhen DOOGEE Hengtong Technology CO., LTD B,2F,Silicon Valley Power Digital Industrial Park, Dafu Industrial Zone, Guanlan Aobei Community, Shenzhen, China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park
		Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel	:	(86)755-82591330
Fax	:	(86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	March 10, 2021
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	March 10, 2021~March 31, 2021
Date of Report	:	April 14, 2021

ENZHEN LCS COMPLIANCE TESTING LABO	DRATORY LTD. FCC ID: 2AX4Y-S59PRO Report No.: LCS210305004A.			
	SAR TEST REPORT			
Report Reference No:	LCS210305004AEB			
Date Of Issue:	April 14, 2021			
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Address:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China			
Testing Location/ Procedure :	Full application of Harmonised standards			
	Partial application of Harmonised standards			
	Other standard testing method \Box			
Applicant's Name:	Shenzhen DOOGEE Hengtong Technology CO., LTD			
Address:	B,2F,Silicon Valley Power Digital Industrial Park, Dafu Industrial Zone, Guanlan Aobei Community, Shenzhen, China			
Test Specification:				
Standard:	IEEE Std C95.1, 2005& IEEE Std 1528 [™] -2013&FCC Part 2.1093			
Test Report Form No :	LCSEMC-1.0			
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Master TRF:	Dated 2014-09			
Shenzhen LCS Compliance Testing	ed in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of			
not assume liability for damages reduce to its placement and context.	bliance Testing Laboratory Ltd. takes noresponsibility for and will esulting from the reader's interpretation of the reproduced material			
not assume liability for damages re	esulting from the reader's interpretation of the reproduced material			
not assume liability for damages reduce to its placement and context.	esulting from the reader's interpretation of the reproduced material			
not assume liability for damages reduce to its placement and context. Test Item Description:	esulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE			
not assume liability for damages reduce to its placement and context. Test Item Description: Trade Mark	esulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE			
not assume liability for damages reduce to its placement and context. Test Item Description: Trade Mark	asulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE S59Pro GSM 850/PCS1900,WCDMA Band II/IV/V;			
not assume liability for damages redue to its placement and context. Test Item Description: Trade Mark	asulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE S59Pro GSM 850/PCS1900,WCDMA Band II/IV/V;			
not assume liability for damages redue to its placement and context. Test Item Description: Trade Mark	asulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE S59Pro GSM 850/PCS1900,WCDMA Band II/IV/V; LTE Band 2/4/5/7/12/17/38/41;			
not assume liability for damages reduce to its placement and context. Test Item Description: Trade Mark Model/Type Reference: Operation Frequency	asulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE S59Pro GSM 850/PCS1900,WCDMA Band II/IV/V; LTE Band 2/4/5/7/12/17/38/41;			
not assume liability for damages redue to its placement and context. Test Item Description: Trade Mark Model/Type Reference: Operation Frequency: Modulation Type	asulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE S59Pro GSM 850/PCS1900,WCDMA Band II/IV/V; LTE Band 2/4/5/7/12/17/38/41; WLAN2.4G and Bluetooth5.0. /			
not assume liability for damages redue to its placement and context. Test Item Description: Trade Mark Model/Type Reference: Operation Frequency: Modulation Type	asulting from the reader's interpretation of the reproduced material 3G/4G Smart Phone DOOGEE S59Pro GSM 850/PCS1900,WCDMA Band II/IV/V; LTE Band 2/4/5/7/12/17/38/41; WLAN2.4G and Bluetooth5.0. / DC 3.85V by Rechargeable Li-ion Battery(10050mAh)			

Compiled by:

Ping Li

Supervised by:

Jin Wang

Approved by:

Jamo

Ping Li/ File administrators

Jin Wang/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 174 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AX4Y-S59PRO

Report No.: LCS210305004AEB

SAR -- TEST REPORT

Test Report No. :	LCS210305004AEB	<u>April 14, 2021</u> Date of issue
Type / Model	: S59Pro	
EUT	: 3G/4G Smart Phone	
	: /	
	: /	
Factory Address Telephone Fax	: / : /	

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 174

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO
--	---	----------------------

Report No.: LCS210305004AEB

Revison History

Revision	Issue Date	Revisions	Revised By
000	April 14, 2021	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 174

TABLE OF CONTENTS

1. TES	T STANDARDS AND TEST DESCRIPTION	6
1.1.	Test Standards	6
1.2.	Test Description	
1.3.	General Remarks	
1.4.	PRODUCT DESCRIPTION	
1.5.	STATEMENT OF COMPLIANCE	8
2. TES	T ENVIRONMENT	9
2.1.	TEST FACILITY	9
2.2.	Environmental conditions	
2.3.	~	
2.4.	EQUIPMENTS USED DURING THE TEST	10
3. SAR	R MEASUREMENTS SYSTEM CONFIGURATION	
3.1.	SAR MEASUREMENT SET-UP	
3.2.	OPENSAR E-FIELD PROBE SYSTEM	
3.3.	PHANTOMS	
3.4.	Device Holder	
3.5.	SCANNING PROCEDURE	
3.6. 3.7.	DATA STORAGE AND EVALUATION POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	
3.7. 3.8.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOM	
3.8. 3.9.	TISSUE DIELECTRIC FARAMETERS FOR HEAD AND BODT FHANTOMS TISSUE EQUIVALENT LIQUID PROPERTIES	
	SYSTEM CHECK	
	SAR MEASUREMENT PROCEDURE	
3.12	Power Reduction	
3.13	. Power Drift	
4. TES	T CONDITIONS AND RESULTS	
4.1	CONDUCTED POWER RESULTS	
4.2	TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION	
4.3	SAR MEASUREMENT RESULTS	
4.4	SIMULTANEOUS TX SAR CONSIDERATIONS	
4.5	SAR MEASUREMENT VARIABILITY	
4.6	GENERAL DESCRIPTION OF TEST PROCEDURES	
4.7 4.8	Measurement Uncertainty (450MHz-6GHz) System Check Results	
	SAR TEST GRAPH RESULTS	
	BRATION CERTIFICATES	
	PROBE-EPGO324 CALIBRATION CERTIFICATE	
5.1 5.2	PROBE-EPGO324 CALIBRATION CERTIFICATE SID750Dipole Calibration Ceriticate	
5.2 5.3	SID 750Dipole Calibration Certificate	
5.3 5.4	SID SID BIOLE CALIBRATION CERTIFICATE	
5.5	SID 1900 DIPOLE CALIBRATION CERTIFICATE	
5.6	SID2450 DIPOLE CALIBRATION CERITICATE	
5.7	SID2600 DIPOLE CALIBRATION CERITICATE	
6. SAR	R SYSTEM PHOTOGRAPHS	
7. SET	UP PHOTOGRAPHS	
8. EUT	T PHOTOGRAPHS	

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1, 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093:Radiofrequency Radiation Exposure Evaluation:Portable Devices

KDB447498 D01 General RF Exposure Guidance : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

<u>KDB648474 D04:</u> Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets <u>KDB865664 D01 SAR Measurement 100 MHz to 6 GHz :</u> SAR Measurement Requirements for 100 MHz to 6

GHz

<u>KDB865664 D02 RF Exposure Reporting:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802.11 Wi-Fi SAR: SAR Guidance For leee 802.11 (Wi-Fi) Transmitters

KDB941225 D01 3G SAR Procedures: 3G SAR Meaurement Procedures

KDB 941225 D06 Hotspot Mode: SAR Evaluation Procedures For Portable Devices With Wireless Router Capabilities

KDB 941225 D05 SAR for LTE Devices: SAR Evaluation Considerations For LTE Devices

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	March 10, 2021
Testing commenced on	:	March 10, 2021
Testing concluded on	:	March 31, 2021

1.4. Product Description

The Shenzhen DOOGEE Hengtong Technology CO., LTD. Model: S59Pro or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description			
Product Name:	3G/4G Smart Phone		
Test Model:	S59Pro		
List Model No.:	1		
Modulation Type:	GMSK for GSM; QPSK for UMTS; QPSK, 16QAM for LTE		
Hardware Version:	HCT-M602MB-A2		
Software Version:	DOOGEE-S59Pro-Android10-20210201		
	DC 3.85V by Rechargeable Li-ion Battery(10050mAh)		
Power supply:	Recharged by 5.0V3000mA/7.0V3000mA/		
	9.0V2700mA/12V2000mA From Adapter		
Hotspot:	Supported, power not reduced when Hotspot open		
VoIP	Supported		

The EUT is GSM,WCDMA,LTE,WLAN. the 3G/4G Smart Phone is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for GSM850,PCS1900, WCDMA Band II,Band V,LTE Band2,Band4,Band5,Band7,Band12 and Band17,Band38,Band41,Bluetooth,WiFi2.4G mobile phone functions. For more information see the following datasheet

Technical Characteristics		
GSM		
Support Band:	GSM850/PCS1900	
Frequency:	GSM850:824.2~848.8MHz	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 174

NZHEN LCS COMPLIANCE TESTING	LABORATORY LTD. FCC ID: 2AX4Y-S59PRO Report No.: LCS210305004
	GSM1900:1850.2~1909.8MHz
Device Olegan	GSM850:Power Class12
Power Class:	PCS1900:Power Class12
Modulation Type:	GMSK for GSM/GPRS; 8PSK for EGPRS
DTM Mode:	Not Supported
	PIFA Antenna;
Antenna Description:	2.0dBi (max.) For GSM 850
	2.0dBi (max.) For PCS 1900
UMTS	
Support Networks:	WCDMA RMC12.2K,HSDPA,HSUPA
Operation Band:	UMTS FDD Band V/IV/II
Release Version:	R8
Modulation Type:	WCDMA: QPSK; HSDPA/HSUPA: QPSK
DC-HSUPA Release Version:	Not Supported
DC-1130FA Release version.	PIFA Antenna
	2.0dBi (max.) For WCDMA Band II
Antenna Description:	2.0dBi (max.) For WCDMA Band V
	2.0dBi (max.) For WCDMA Band IV
LTE Over east Dan de	
Support Band:	LTE FDD band 2,4,5,7,12,17,38,41
Power Class:	Class 12
LTE Release Version:	R9
Modulation Type:	QPSK,16QAM for LTE
VoLTE	Not Support
	PIFA Antenna
	2.0dBi (max.) For E-UTRA Band 2
	2.0dBi (max.) For E-UTRA Band 4
	2.0dBi (max.) For E-UTRA Band 5
Antenna Description:	2.0dBi (max.) For E-UTRA Band 7
	2.0dBi (max.) For E-UTRA Band 12
	2.0dBi (max.) For E-UTRA Band 17
	2.0dBi (max.) For E-UTRA Band 38
	2.0dBi (max.) For E-UTRA Band 41
Bluetooth	
Frequency Range:	2402MHz-2480MHz
Bluetooth Version:	V5.0
	79 channels for Bluetooth V5.0(BDR/EDR)
Bluetooth Channel Number:	40 channels for Bluetooth V5.0(BT LE/BT 2LE)
	1MHz for Bluetooth V5.0(BDR/EDR)
Bluetooth Channel Spacing:	2MHz for Bluetooth V5.0(BT LE/BT 2LE)
	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.0(BDR/EDR)
Bluetooth Modulation Type:	GFSK for Bluetooth V5.0(BT LE/BT 2LE)
Antonno Description:	PIFA Antenna, 2.0dBi(Max.)
Antenna Description: 2.4G WLAN	FIFA Antenna, 2.000 (Max.)
	2442 2462 MU
Frequency Range:	2412 – 2462 MHz
Channel Number:	11 Channel for 20MHz bandwidth(2412~2462MHz)
	7 Channel for 40MHz bandwidth(2422~2452MHz)
Modulation Type	802.11b: DSSS; 802.11g/n: OFDM
Channel Spacing:	5MHz
Antenna Description:	PIFA Antenna, 2.0dBi(Max.)
GPS function:	Support and only RX
FM function:	Support and only RX

1.5. Statement of Compliance

The maximum of results of SAR found during testing for **S59Pro** are follows:

Classment Class	Frequency Band	Head (Report SAR _{1-g} (W/kg)	Hotspot (Report SAR _{1-g} (W/kg) (Separation Di	Body-worn (Report SAR _{1-g} (W/kg) stance 10mm)
	GSM 850	0.098	0.032	0.032
	GSM1900	0.022	0.008	0.008
	WCDMA Band V	0.514	0.211	0.211
	WCDMA Band IV	0.702	0.474	0.474
PCE L L L L	WCDMA Band II	0.739	0.601	0.601
	LTE Band 2	0.768	0.798	0.798
	LTE Band 4	0.602	0.788	0.788
	LTE Band 5	0.763	0.262	0.262
	LTE Band 7	0.773	0.759	0.759
	LTE Band 12	0.493	0.324	0.324
	LTE Band 17	0.479	0.301	0.301
	LTE Band 38	0.351	0.677	0.677
	LTE Band 41	0.580	0.785	0.785
DTS	WIFI2.4G	0.223	0.165	0.165

<Highest Reported standalone SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Head (Report SAR _{1-g} (W/kg)	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)	
Darka	PCE	0.773	0.996	
Body	DTS	0.223		

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- Site Description
- EMC Lab.
- : NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

	FCC Limit (1g Tissue)	
	SAR (W/k	ag)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average(averaged over the whole body)	0.08	0.4
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

SHENZHEN LCS COMPLIANCE TESTING LABORATORY	'LTE
--	------

FCC ID: 2AX4Y-S59PRO

Report No.: LCS210305004AEB

2.4. Equipments Used during the Test

	· ·	·					
Item	Equipment	uipment Manufacturer Model No. Serial No.				Due Date	
1	PC	Lenovo	G5005	MY42081102	N/A	N/A	
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A	
3	Signal Generator	Agilent	E4438C	MY49072627	2020-06-11	2021-06-10	
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2020-11-15	2021-11-14	
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2020-11-15	2021-11-14	
6	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2020-11-22	2021-11-21	
7	E-Field PROBE	EPG0324		EPGO324	2020-10-07	2021-10-06	
8	DIPOLE 750	0G750-302		2018-10-01	2021-09-30		
9	DIPOLE 835	0G835-303		2018-10-01	2021-09-30		
10	DIPOLE 1800	SATIMO	SID 1800	SN 07/14 DIP 1G800-301	2018-10-01	2021-09-30	
11	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2018-09-24	2021-09-23	
12	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2018-10-01	2021-09-30	
13	DIPOLE 2600	SATIMO	SID 2600	SN 38/18 DIP 2G600-468	2018-09-24	2021-09-23	
14	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2020-11-15	2021-11-14	
15	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2020-11-15	2021-11-14	
16	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2020-11-15	2021-11-14	
17	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A	
18	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A	
19	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A	
20	Liquid measurement Kit	HP	85033D	3423A03482	2020-11-15	2021-11-14	
21	Power meter	Agilent	E4419B	MY45104493	2020-06-11	2021-06-10	
22	Power meter	Agilent	E4419B	MY45100308	2020-11-22	2021-11-21	
23	Power sensor	Agilent	E9301H	MY41495616	2020-11-22	2021-11-21	
24	Power sensor	Agilent	E9301H	MY41495234	2020-06-11	2021-06-10	
25	Directional Coupler	MCLI/USA	4426-20	03746	2020-06-11	2021-06-10	

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

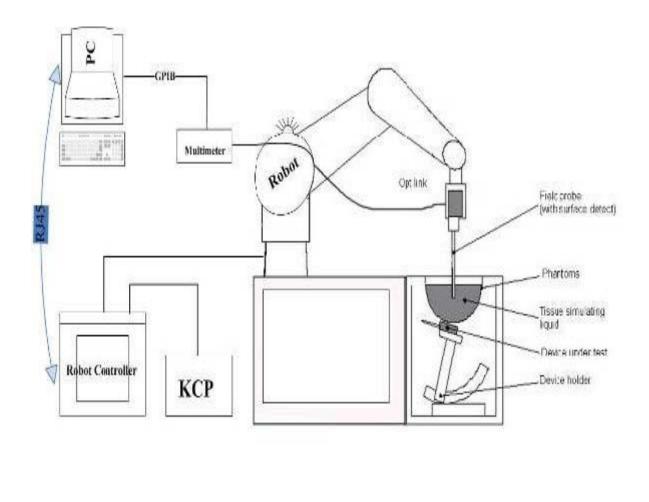
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 174

FCC ID: 2AX4Y-S59PRO

Report No.: LCS210305004AEB

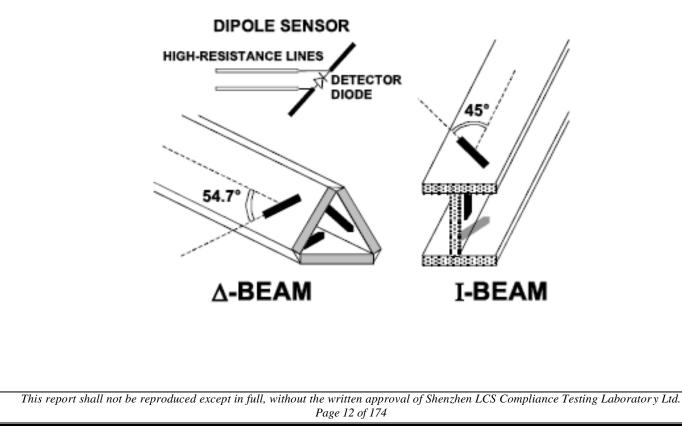
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

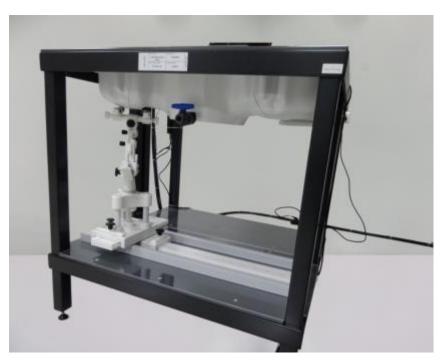
ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

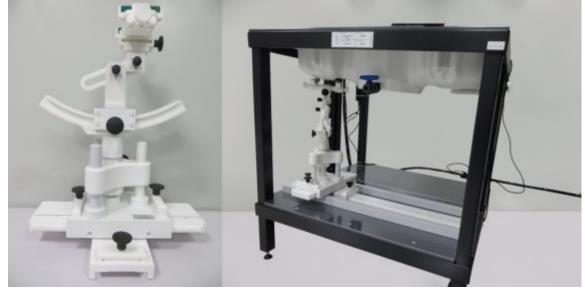
Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 174

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz $>$ 3 GHz					
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$				
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$				
	$ \begin{array}{c c} \leq 2 \ \text{GHz:} \leq 15 \ \text{mm} & 3 - 4 \ \text{GHz:} \leq 12 \ \text{mm} \\ 2 - 3 \ \text{GHz:} \leq 12 \ \text{mm} & 4 - 6 \ \text{GHz:} \leq 10 \ \text{mm} \end{array} $					
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.					

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \hspace{0.1cm} \text{GHz:} \leq 5 \hspace{0.1cm} \text{mm}^* \\ 4-6 \hspace{0.1cm} \text{GHz:} \leq 4 \hspace{0.1cm} \text{mm}^* \end{array}$
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 4 \text{ mm} \\ 4-5 \text{ GHz:} \leq 3 \text{ mm} \\ 5-6 \text{ GHz:} \leq 2 \text{ mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \ \mathrm{mm}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 3 \text{ mm} \\ 4-5 \text{ GHz:} \leq 2.5 \text{ mm} \\ 5-6 \text{ GHz:} \leq 2 \text{ mm} \end{array}$
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoc}$	m(n-1) mm
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \geq 28 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \geq 25 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \geq 22 \ \mathrm{mm} \end{array}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AX4Y-S39PRO Report No.: LCS21030500	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO	Report No.: LCS210305004AEB
--	---	----------------------	-----------------------------

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion fac	tor ConvFi
- Diode compres	sion point Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 V_i

 $a_{i0} + a_{i1}f + a_{i2}f^2$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{neidprobes}: \qquad E_i = \sqrt{\frac{1}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}}{f}$$
With Vi = compensated signal of channel i (i = x, y, z)
Normi = sensor sensitivity of channel i (i = x, y, z)
[mV/(V/m)2] for E-field Probes
ConvF = sensitivity enhancement in solution
aij = sensor sensitivity factors for H-field probes

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 174

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO
--	---	----------------------

Report No.: LCS210305004AEB

- f = carrier frequency [GHz]
- Ei = electric field strength of channel i in V/m
- Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR

R = local specific absorption rate in mW/g Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

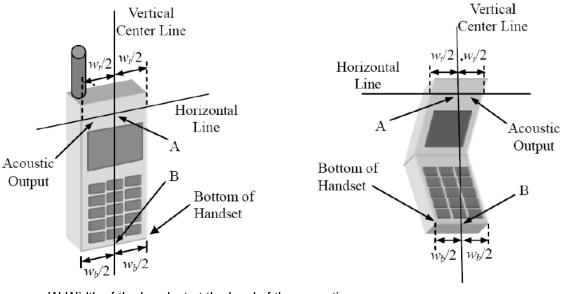
ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

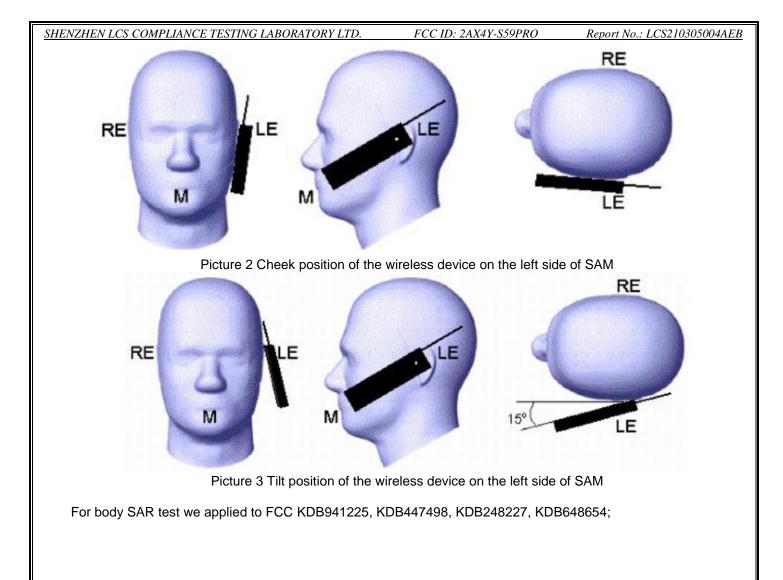

The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770}$$
 or $P_{(\text{pwe})} = H_{\text{tot}}^2.37.7$

Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

E_{tot}=total electric field strength in V/m

H_{tot}=total magnetic field strength in A/m



 W_t Width of the handset at the level of the acoustic

- W_bWidth of the bottom of the handset
- A Midpoint of the widthw_t of the handset at the level of the acoustic output
- B Midpoint of the width w_b of the bottom of the handset

Picture 1-a Typical "fixed" case handset Picture 1-b Typical "clam-shell" case handset

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 174

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

	The composition of the tissue simulating liquid													
Ingredient	750	ИНz	8351	ИНz	1800	MHz	1900	MHz	2450	MHz	2600	MHz	5000	MHz
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.3	41.45	52.5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.5	78.6
Preventol	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Triton X- 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7

Target Frequency	He	ad	В	lody
(MHz)	ε _r	σ(S/m)	٤r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.9. Tissue equivalent liquid properties

Dielectric Performance of Head and Body Tissue Simulating Liquid


Test Eng	Test Engineer: Jenny Wu												
Tissue	Measured	Target		Measure	d Tissue		Liquid						
Type Fr	Frequency (MHz)	σ	٤ _r	σ	Dev.	٤r	Dev.	Temp.	Test Data				
750H	750	0.99	56.57	0.97	-2.02%	57.24	1.18%	20.4	03/10/2021				
835H	835	0.90	41.50	0.92	2.22%	42.82	1.81%	21.5	03/12/2021				
1800H	1800	1.52	53.30	1.50	-1.32%	52.11	-2.23%	21.6	03/16/2021				
1900H	1900	1.40	40.00	1.37	-2.14%	38.56	-3.60%	22.3	03/18/2021				
2450H	2450	1.80	39.20	1.84	2.22%	39.70	1.28%	23.4	03/25/2021				
2600H	2600	1.96	39.00	1.92	-2.04%	38.43	-1.46%	21.8	03/31/2021				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 174

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FO	FCC ID: 2AX4Y-S59PRO	Report No.: LCS210305004AEB
--	----------------------	-----------------------------

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

	510750	<u> SN 07/14 DIP (</u>	JG750-302 Exter	SID750 SN 07/14 DIP 0G750-302 Extend Dipole Calibrations											
Date of Measurement	Return-Loss (dB)	(dB) (%)		Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)									
2018-10-01	-34.80		50.7		1.6										
2019-10-01	-34.35	-1.29	51.2	0.5	1.5	-0.1									
2020-10-01	-34.42	-1.09	51.3	0.4	1.5	-0.1									

SID750 SN 07/14 DIP 0G750-302 Extend Dipole Calibrations

Imaginary Real Return-Loss Date of Delta Delta Delta Impedance Impedance (dB) Measurement (%) (ohm) (ohm) (ohm) (ohm) 2018-10-01 -24.49 54.9 2.8 2019-10-01 -24.17 -1.31 54.5 2.6 -0.2 -0.4 2020-10-01 -24.20 -1.18 54.2 -0.7 2.5 -0.3

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

SID1800 SN 30/14 DIP 1G800-301 Extend Dipole Calibrations

Date of Measureme	nt (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-0	-20.26		43.1		6.9	
2019-10-0	-20.13	-0.64	42.9	-0.2	6.7	-0.2
2020-10-0	-20.15	-0.54	42.8	-0.3	6.6	-0.3

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-01	-26.43		50.5		4.7	
2019-09-01	-26.33	-0.38	50.2	-0.3	4.5	-0.2
2020-09-01	-26.40	-0.11	50.1	-0.4	4.6	-0.1

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss Delta (dB) (%)		Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-25.59		44.7		-1.1	
2019-10-01	-25.68	0.35	44.8	0.1	-1.0	0.1
2020-10-01	-25.70	0.43	44.5	-0.2	-1.1	0.0

SID2600 SN 38/18 DIP 2G600-468 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-29.14		49.2		3.4	
2019-09-24	-29.12	-0.07	49.1	-0.1	3.2	-0.2
2020-09-24	-29.10	-0.07	49.2	0.0	3.3	-0.1

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 174

Mixture	Frequency	Power	SAR _{1g}	SAR _{10g}	Drift	1W Ta	arget		rence ntage	Liqui	Date
Туре	(MHz)	Fower	(W/kg)	(W/kg)	(%)	SAR _{1g} (W/kg)	SAR _{10g} (W/kg)	1g	10g	Temp	Dale
		100 mW	0.870	0.562							
Head	750	Normalize to 1 Watt	8.70	5.62	-1.44	8.77	5.78	-0.80%	-2.77%	20.4	03/10/2021
		100 mW	0.923	0.639	'						
Head	Head 835	Normalize to 1 Watt	9.23	6.39	2.03	9.60	6.20	-3.85%	3.06%	21.5	03/12/2021
Head 1800	100 mW	3.853	2.055								
	Normalize to 1 Watt	38.53	20.55	1.62	39.03	20.65	-1.28%	-0.48%	21.6	03/16/2021	
		100 mW	3.911	2.096					2.00%	22.3	
Head	1900	Normalize to 1 Watt	39.11	20.96	-1.20	40.03	20.55	-2.30%			03/18/2021
		100 mW	5.487	2.521							
Head	2450	Normalize to 1 Watt	54.87	25.21	-0.08	53.89	24.15	1.82%	4.39%	23.4	03/25/2021
		100 mW	5.747	2.246							
Head	2600	Normalize to 1 Watt	57.47	22.46	3.14	56.91	24.69	0.98%	-9.03%	21.8	03/31/2021

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.11.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

1) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO	Report No.: LCS210305004AEB

configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set

Sub-set	β _c	β_{d}	$\begin{pmatrix} \beta_d \\ (SF) \end{pmatrix} \beta_c/\beta_d$		β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Table 2: Subtests for UMTS Release 5 HSDPA

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI}= 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15*\beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

	Table 5. Sub-Test 5 Setup for Release 6 HSOFA												
Sub- set	βc	β_d	β _d (SF)	βc/βd	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81
	This report shall not be reproduced except in full without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd												

Table 3: Sub-Test 5 Setup for Release 6 HSUPA

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO	Report No.: LCS210305004AEB

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

3.11.4 LTE Test Configuration

QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.8 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

QPSK with 50% RB allocation

The procedures required for 1 RB allocation in section 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.9

QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in sections 4.2.1 and 4.2.2 are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

3.11.5 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands

c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.
 An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the

4. An initial test position is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions .

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 174

|--|

a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.

6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 174

Report No.: LCS210305004AEB

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 174

- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4. TEST CONDITIONS AND RESULTS

4.1 Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

2. According to October 2013TCB Workshop, for GSM / GPRS / EGPRS, the number of time slots to test for SAR should correspond to the highest frame-average maximum output power configuration, considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (4Tx slot) for GSM850/GSM1900 band due to their highest frame-average power.

3. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (4 Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

Conducted power measurement results for GSM050/FCS1500										
GSM 850		Tune	Burst C	Conducted (dBm)	power		Tune-	Average power (dBm)		
		-up	Channel/Frequency(MHz)			Division	up	Channel/Frequency(MHz)		
		Max	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max	128/ 824.2	190/ 836.6	251/8 48.8
G	SM	32.50	32.38	32.43	32.43	-9.03dB	23.47	23.35	23.40	23.40
	1TX slot	32.50	32.32	32.31	32.31	-9.03dB	23.47	23.29	23.28	23.28
GPRS	2TX slot	31.50	31.02	30.97	31.03	-6.02dB	25.48	25.00	24.95	25.01
(GMSK)	3TX slot	29.50	29.49	29.48	29.50	-4.26dB	25.24	25.23	25.22	25.24
	4TX slot	28.50	28.01	28.00	28.02	-3.01dB	25.49	25.00	24.99	25.01
	1TX slot	26.00	25.99	25.99	26.00	-9.03dB	16.97	16.96	16.96	16.97
EGPRS	2TX slot	25.00	24.47	24.48	24.51	-6.02dB	18.98	18.45	18.46	18.49
(8PSK)	3TX slot	23.50	22.98	22.99	23.01	-4.26dB	19.24	18.72	18.73	18.75
	4TX slot	22.00	21.53	21.47	21.47	-3.01dB	18.99	18.52	18.46	18.46
		Tune	Tune Burst Conducted power -up (dBm) Channel/Frequency(MHz)				Tune- Average power (dBr			Bm)
GSM	1 1000	-up			Division	up	Channel/Frequency(MHz)			
GSM 1900		Max	512/ 1850.2	661/ 1880	810/ 1909.8	Factors	Max.	512/ 1850.2	661/ 1880	810/ 1909. 8
G	SM	29.50	29.46	29.44	29.44	-9.03dB	20.47	20.43	20.41	20.41
	1TX slot	29.50	29.41	29.41	29.40	-9.03dB	20.47	20.38	20.38	20.37
GPRS	2TX slot	28.50	28.02	27.99	27.99	-6.02dB	22.48	22.00	21.97	21.97
(GMSK)	3TX slot	27.00	26.52	26.47	26.50	-4.26dB	22.74	22.26	22.21	22.24
	4TX slot	25.50	25.01	24.99	25.01	-3.01dB	22.49	22.00	21.98	22.00
	1TX slot	26.00	25.52	25.48	25.50	-9.03dB	16.97	16.49	16.45	16.47
EGPRS	2TX slot	24.50	23.98	24.03	23.99	-6.02dB	18.48	17.96	18.01	17.97
(8PSK)	3TX slot	22.50	22.50	22.49 20.97	22.49 21.02	-4.26dB	18.24 18.49	<u>18.24</u> 18.00	18.23 17.96	18.23 18.01
	4TX slot	21.50	21.01			-3.01dB				

Conducted power measurement results for GSM850/PCS1900

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB 2. According to the conducted power as above, the GPRS measurements are performed with 3Txslot for GPRS850 and 3Txslot GPRS1900.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AX	AX4Y-S59PRO Report No.: LCS210305004AEB
---	---

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

C.

- a. The EUT was connected to Base Station E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
 - A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and $\beta_d)$ and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	βd (SF)	βc/βd	βHs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)			
1	2/15	15/15	64	2/15	4/15	0.0	0.0			
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0			
3	15/15	8/15	64	15/8	30/15	1.5	0.5			
4	15/15	4/15	64	15/4	30/15	1.5	0.5			
Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$. Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and $\Delta_{NACK} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$, and $\Delta_{CQI} = 24/15$ with $\beta_{hs} = 24/15 * \beta_c$.										
Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS- DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.										

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station R&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

FCC ID: 2AX4Y-S59PRO

Report No.: LCS210305004AEB

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βc	βa	βd (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.													
Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.													
Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.													
Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.													
Note 5		e of testi 306 Tabl	• •		E-DPDC	H Physic	al Layer categ	gory 1,	Sub-test	3 is omit	tted acco	rding to	

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Conducted Power Measurement Results(WCDMA Band II/V)												
	band		WCDMA Band II result (dBm)			WCDMA Band IV result (dBm)			WCDMA Band V result (dBm)			
Item	Danu	Chann	el/Frequenc	y(MHz)	Channe	el/Frequency	/(MHz)	Channe	el/Frequenc	y(MHz)		
nem	aub toot	9262/	9400/	9538/	1312/	1413/	1513/	4132/	4182/	4233/		
	sub-test	1852.4	1880	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6		
	12.2kbps	23.20	23.25	23.34	23.21	23.15	23.33	22.80	22.98	22.73		
RMC	64kbps	23.14	23.15	23.11	23.19	23.12	23.22	21.85	21.23	21.20		
	144kbps	23.12	23.05	23.18	23.19	23.14	23.25	21.77	21.35	21.32		
	384kbps	23.18	23.20	23.08	23.20	23.10	23.18	21.20	21.06	21.21		
	Sub –Test 1	22.80	22.82	22.46	22.56	22.64	22.71	22.42	22.81	22.72		
HSDPA	Sub –Test 2	22.63	22.62	22.54	22.43	22.60	22.62	22.59	22.71	22.68		
	Sub –Test 3	22.64	22.44	22.39	22.50	22.70	22.40	22.67	22.72	22.48		
	Sub –Test 4	22.34	22.60	22.54	22.35	22.65	22.65	22.55	22.65	22.59		
	Sub –Test 1	22.69	22.57	22.41	22.56	22.62	22.47	22.57	22.63	22.57		
HSUPA	Sub –Test 2	22.48	22.45	22.48	22.52	22.58	22.53	22.47	22.78	22.51		
	Sub –Test 3	22.65	22.56	22.47	22.55	22.52	22.63	22.48	22.62	22.56		
	Sub –Test 4	22.35	22.29	22.24	22.51	22.64	22.40	21.54	21.68	21.43		
	Sub –Test 5	21.46	21.56	21.56	23.38	23.61	23.32	21.63	21.05	21.78		

Note: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤1/2dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 174

FCC ID: 2AX4Y-S59PRO

Report No.: LCS210305004AEB

LTE Band2

BW	Frequency		nfiguration	Average Power [dBm]			
(MHz)	(MHz)	Size	Offset	QPSK	16QAM		
		1	0	23.33	22.45		
		1	3	23.44	22.62		
		1	5	23.37	22.53		
	1850.7	3	0	23.44	22.31		
	1000.1	3	2	23.44	22.33		
		3	3	23.45	22.31		
	_	6	0	22.36	21.43		
	_	1	0	22.56	21.74		
		1	3	22.64	21.87		
		1	5	22.60	21.78		
1.4	1880.0	3	0	22.66	21.59		
		3	2	22.66	21.58		
		3	3	22.71	21.59		
		6	0	21.60	20.52		
		1	0	22.75	21.65		
		1	3	22.94	21.78		
		1	5	22.79	21.68		
	1909.3	3	0	22.84	21.66		
	1000.0	3	2	22.84	21.66		
	-	3	3	22.92	21.60		
	_						
		6	0	21.85	20.83		
		1	0	23.32	22.52		
		1	7	23.37	22.51		
		1	14	23.48	22.61		
3	1851.5	8	0	22.35	21.40		
		8	4	22.34	21.42		
		8	7	22.46	21.48		
		15	0	22.40	21.44		
		1	0	22.53	21.76		
		1	7	22.61	21.77		
		1	14	22.65	21.84		
	1880.0	8	0	21.58	20.61		
	1000.0						
	_	8	4	21.56	20.59		
	_	8	7	21.62	20.64		
		15	0	21.58	20.53		
ſ		1	0	22.76	21.68		
		1	7	22.77	21.70		
		1	14	22.82	21.72		
	1908.5	8	0	21.85	20.82		
		8	4	21.82	20.81		
		8	7	21.84	20.83		
		15	0	21.76	20.70		
		1	0	23.32	22.33		
		1	12	23.55	22.56		
		1	24	23.52	22.53		
	1852.5	12	0	22.36	22.33		
	1052.5						
		12	6	22.39	21.38		
		12	13	22.53	21.52		
5		25	0	22.44	21.53		
-		1	0	22.52	21.72		
		1	12	22.70	21.91		
		1	24	22.70	21.93		
	1880.0	12	0	21.58	20.62		
		12	6	21.58	20.64		
		12	13	21.69	20.77		
		• —					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 174

	LIANCE TESTING LABO		FCC ID: 2AX4Y-		rt No.: LCS210305
		1	0	22.72	21.74
		1	12	22.88	21.87
		1	24	22.84	21.83
	1907.5	12	0	21.71	20.71
		12	6	21.68	20.78
		12	13	21.81	20.79
		25	0	21.77	20.84
		1	0	23.33	22.52
		1	24	23.60	22.82
		1	49	23.47	22.70
	1855.0	25	0	22.51	21.54
		25	12	22.49	21.54
		25	25	22.53	21.58
		50	0	22.53	21.51
		1	0	22.55	21.54
	-	1	24	22.67	21.78
	-	1	49	22.70	21.90
10	1880.0	25	0	21.49	20.54
10	1000.0	25	12	21.45	20.54
		25	25	21.67	20.51
	+	<u> </u>	0	21.55	20.75
		<u> </u>	0	21.55	20.60
			24	22.74	21.66
		<u>1</u> 1	49	22.71	21.67
	1005.0				
	1905.0	25	0	21.72	20.78
	-	25	12	21.68	20.78
	-	25	25	21.70	20.76
		50	0	21.65	20.69
	-	1	0	23.15	22.32
	_	1	37	23.46	22.69
		1	74	23.02	22.23
	1857.5	37	0	22.46	22.46
		37	18	22.48	22.46
		37	38	22.46	22.46
		75	0	22.46	21.41
		1	0	22.31	21.59
		1	37	22.49	21.76
		1	74	22.73	22.05
15	1880.0	37	0	21.56	21.59
		37	18	21.56	21.61
		37	38	21.58	21.59
	Į Ī	75	0	21.56	20.58
		1	0	22.90	21.76
		1	37	22.68	21.60
		1	74	22.54	21.47
	1902.5	37	0	21.85	21.85
		37	18	21.86	21.85
		37	38	21.85	21.86
		75	0	21.85	20.79
	† †	1	0	23.07	20.79
		1	49	23.54	22.65
		1	99	23.34	22.05
	1860.0	50	0	22.46	21.47
	1000.0	<u> </u>	25	22.58	21.61
20		50	50	22.08	21.14
		100	0	22.42	21.49
		1	0	22.38	21.52
		1	49	22.59	21.76
	1880.0	1	99	22.67	21.87
		50	0	21.29	20.29
		50	25	21.23	20.29

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 174

SHENZHEN LCS COMPLIANCE T	IENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			59PRO F	Report No.: LCS210305004AEB	
		50	50	21.72	20.79	
		100	0	21.48	20.57	
		1	0	22.65	21.85	
		1	49	22.81	21.90	
		1	99	22.21	21.39	
19	900.0	50	0	22.11	21.23	
		50	25	22.10	21.22	
		50	50	21.71	20.79	
		100	0	21.94	20.97	

FCC ID: 2AX4Y-S59PRO

LTE Band4

BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size Offset		QPSK 16QAM	
		1	0	21.02	20.19
1.4		1	3	21.07	20.36
		1	5	20.99	20.20
	1710.7	3	0	21.12	20.09
	1710.7	3	2	21.12	20.08
		3	3	21.15	19.99
		6	0	20.08	19.16
		1	0	21.75	20.90
		1	3	21.91	21.11
		1	5	21.75	20.95
	1732.5	3	0	21.84	20.74
	-	3	2	21.83	20.76
		3	3	21.89	20.80
		6	0	20.82	19.75
		1	0	21.46	20.33
		1	3	21.52	20.47
		1	5	21.38	20.27
	1754.3	3	0	21.49	20.32
	1754.5	3	2	21.47	20.31
		3	3	21.51	20.29
		6	0	20.41	19.48
	1711.5	1	0	21.04	20.28
		1	7	20.99	20.17
		1	14	20.97	20.11
		8	0	20.07	19.17
		8	4	20.07	19.15
		8	7	19.99	19.05
		15	0	20.00	19.04
		1	0	21.68	20.90
		1	7	21.84	20.96
		1	14	21.89	21.00
3	1732.5	8	0	20.72	19.81
-	-	8	4	20.71	19.82
		8	7	20.80	19.94
		15	0	20.76	19.79
	1753.5	1	0	21.53	20.40
			7		
		1		21.44	20.36
		1	14	21.42	20.35
		8	0	20.48	19.50
		8	4	20.46	19.55
		8	7	20.46	19.51
		15	0	20.40	19.42
		1	0	20.96	20.13
	1712.5	1	12	21.04	20.10
		1	24	20.76	19.85
		12	0	19.98	19.04
		12	6	20.01	19.01
		12	13	19.98	18.97
		25	0	20.00	19.02
5	1732.5	1	0	21.62	20.75
		1	12	21.88	21.08
		1	24	21.87	21.11
		12	0	20.67	19.81
		12	6	20.68	19.79
		12	13	20.92	20.05
		25	0	20.84	19.92

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 174

	LIANCE TESTING LABO		FCC ID: 2AX4Y-		rt No.: LCS210305
		1	0	21.53	20.54
		1	12	21.63	20.57
		1	24	21.44	20.40
	1752.5	12	0	20.49	19.54
		12	6	20.48	19.57
		12	13	20.47	19.53
		25	0	20.51	19.59
		1	0	20.96	20.20
		1	24	20.84	20.13
		1	49	20.69	19.94
	1715.0	25	0	19.98	19.00
		25	12	19.98	18.99
		25	25	20.02	19.03
		50	0	19.94	19.00
		1	0	21.35	20.56
		1	24	21.89	21.09
		1	49	21.94	21.13
10	1732.5	25	0	20.68	19.76
10		25	12	20.66	19.78
		25	25	21.12	20.23
		50	0	20.90	20.23
		<u> </u>	0	21.63	20.60
		1	24	21.67	20.63
	1750.0	1	49	21.46	20.03
		25	<u> </u>	21.46	19.88
	1750.0	25	12	20.73	19.88
		25	25	20.74	19.88
		50	0	20.63	19.69
	1717.5	1	0	20.82	20.12
		1	37	20.75	19.98
		1	74	20.83	20.08
		37	0	19.93	19.92
		37	18	19.89	19.92
		37	38	19.90	19.92
		75	0	19.89	18.84
		1	0	21.00	20.28
	1732.5	1	37	21.81	21.11
		1	74	21.76	21.03
15		37	0	20.86	20.85
		37	18	20.88	20.87
		37	38	20.88	20.88
		75	0	20.87	19.92
		1	0	21.75	20.69
	1747.5	1	37	21.67	20.60
		1	74	21.34	20.24
		37	0	20.81	20.82
		37	18	20.80	20.78
		37	38	20.80	20.77
		75	0	20.83	19.81
	1720.0	1	0	20.74	19.85
		1	49	20.93	19.99
00		1	99	21.22	20.25
		50	0	19.60	18.65
		50	25	19.62	18.68
		50	50	19.95	19.04
20		100	0	19.76	18.84
		1	0	20.70	19.81
		1	49	22.06	21.20
	1732.5	1	99	21.60	20.75
		50	0	20.47	19.58
		50	25	20.47	19.59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID: 2AX4Y-S59PRO		Report No.: LCS210305004AEB	
		50	50	21.16	20.22	
		100	0	20.86	19.94	
		1	0	21.54	20.69	
	1745.0	1	49	21.76	20.86	
		1	99	21.05	20.18	
		50	0	20.95	20.07	
		50	25	20.94	20.05	
		50	50	20.52	19.64	
		100	0	20.77	19.88	

Report No.: LCS210305004AEB

BW	Frequency	RB Con	figuration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.62	21.84
		1	3	22.73	21.98
		1	5	22.66	21.82
	824.7	3	0	22.73	21.65
		3	2	22.73	21.68
		3	3	22.84	21.69
		6	0	21.73	20.63
		1	0	22.57	21.54
		1	3	22.73	21.70
		1	5	22.54	21.48
1.4	836.5	3	0	22.67	21.50
		3	2	22.66	21.52
		3	3	22.70	21.49
		6	0	21.64	20.64
		1	0	22.54	21.76
		1	3	22.76	21.97
		1	5	22.64	21.78
	848.3	3	0	22.73	21.67
		3	2	22.73	21.66
		3	3	22.74	21.65
		6	0	21.74	20.79
		1	0	22.64	21.86
		1	7	22.65	21.87
	825.5	1	14	22.72	21.92
		8	0	21.73	20.77
		8	4	21.70	20.75
		8	7	21.75	20.76
		15	0	21.69	20.68
		1	0	22.59	21.78
	836.5	1	7	22.56	21.75
		1	14	22.61	21.73
3		8	0	21.62	20.61
		8	4	21.62	20.62
		8	7	21.62	20.62
		15	0	21.60	20.53
		1	0	22.69	21.60
		1	7	22.70	21.64
		1	14	22.71	21.70
	847.5	8	0	21.71	20.74
		8	4	21.73	20.74
		8	7	21.74	20.74
	+ +	15	0	21.66	20.60
		1	0	22.62	21.68
		1	12	22.79	21.86
F		1	24	22.65	21.73
	826.5	12	0	21.66	20.65
		12	6	21.68	20.66
		12	13	21.77	20.77
		25	0	21.72	20.77
5		1	0 12	22.57	21.82
		1		22.65	21.92
	000 5	1	24	22.56	21.80
	836.5	12	0	21.63	20.69
		12 12	6	21.63	20.70
			13	21.58	20.65
	846.5	25	0	21.67	20.67
	840.5	1	I U	22.52	21.63

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 174

SHENZHEN LCS COMP	LIANCE TESTING LAB	ORATORY LTD.	FCC ID: 2AX4Y-S	59PRO Repo	rt No.: LCS210305004AEB
		1	12	22.70	21.78
		1	24	22.66	21.69
		12	0	21.69	20.66
		12	6	21.65	20.66
		12	13	21.73	20.69
		25	0	21.70	20.72
		1	0	22.62	21.88
		1	24	22.80	22.03
		1	49	22.54	21.81
	829.0	25	0	21.79	20.84
		25	12	21.82	20.83
		25	25	21.87	20.86
		50	0	21.82	20.82
		1	0	22.60	21.86
		1	24	22.69	21.91
		1	49	22.60	21.83
10	836.5	25	0	21.74	20.75
		25	12	21.72	20.76
		25	25	21.61	20.70
		50	0	21.66	20.70
		1	0	22.47	21.73
		1	24	22.65	21.88
		1	49	22.67	21.93
	844.0	25	0	21.69	20.73
		25	12	21.67	20.72
		25	25	21.71	20.74
		50	0	21.67	20.68

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	
--	---	--

Report No.: LCS210305004AEB

BW	Frequency	RB Con	figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
((1	0	22.92	21.94
		1	12	23.24	22.23
		1	24	23.30	22.34
	2502.5	12	0	22.37	21.35
	2002.0	12	6	22.12	21.00
		12	13	22.35	21.32
		25	0	22.25	21.31
		1	0	25.15	24.35
		1	12	25.42	24.60
		1	24	25.30	24.51
5	2535.0	12	0	24.29	23.41
Ū.	200010	12	6	24.39	23.36
		12	13	24.29	23.35
	-	25	0	24.37	23.38
		1	0	24.33	23.50
	-	1	12	24.48	23.32
	-	1	24	24.57	23.41
	2567.5	12	0	23.48	23.41
	2307.5	12	6	23.40	22.44
		12	13	23.41	22.40
		25	0	23.45	22.47
		1	0	23.30	22.52
		1	24	23.50	22.30
		1	49	22.96	21.80
	2505.0	25	0	21.93	21.33
	2505.0	25	12	22.29	21.33
		25	25	22.30	21.29
		50	0	22.30	21.00
		1	0	25.26	24.65
	_	1	24	24.88	24.03
	_	1	49	25.48	24.08
10	2535.0	25	0	24.26	23.32
10	2000.0	25	12	24.20	23.46
		25	25	24.47	23.30
		50	0	24.31	23.39
		1	0	24.44	23.09
	-	1	24	24.47	23.40
	-	1	49	24.14	23.32
	2565.0	25	0	23.43	22.50
	2000.0	25	12	23.50	22.48
		25	25	23.41	22.40
		50	0	23.44	22.33
		1	0	23.33	22.40
		1	37	22.81	21.71
		1	74	22.57	21.71
	2507.5	37	0	21.71	22.00
	2007.0	37	18	22.04	22.00
		37	38	22.04	22.49
		75	0	22.07	21.73
15	+	1	0	24.52	24.30
10		1	37	25.46	24.30
		1	74	25.08	24.69
	2535.0	37	0	25.08	23.82
	2000.0	37	18	24.31	24.69
		37	38	23.83	24.29
			<u> </u>	23.83	23.85
	2562.5	75			
	2562.5	1	0	24.43	23.31

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 174

SH	ENZHEN LCS COMPL	IANCE TESTING LAB	ORATORY LTD.	FCC ID: 2AX4Y-S.	59PRO Repo	rt No.: LCS210305004AEB
			1	37	24.32	22.99
			1	74	24.06	23.33
			37	0	23.01	23.02
			37	18	23.35	23.32
			37	38	23.31	23.34
			75	0	23.57	22.53
			1	0	22.93	22.25
			1	49	22.92	22.02
			1	99	23.23	21.90
		2510.0	50	0	22.04	21.00
			50	25	22.03	21.06
			50	50	21.97	21.08
			100	0	21.95	20.98
			1	0	24.73	23.88
			1	49	25.65	24.68
	20		1	99	24.06	23.22
	20	2535.0	50	0	24.02	23.05
			50	25	23.99	23.41
			50	50	24.36	23.06
			100	0	24.18	23.21
			1	0	23.96	23.39
			1	49	24.15	23.07
			1	99	24.22	23.20
		2560.0	50	0	23.35	22.43
			50	25	23.35	22.44
			50	50	23.32	22.48
			100	0	23.34	22.39

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO	Report No.: LCS210305004AEB
--	---	----------------------	-----------------------------

BW	Frequency		figuration		ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAN
		1	0	22.63	21.80
		1	3	22.79	21.91
		1	5	22.73	21.77
	699.7	3	0	22.71	21.60
		3	2	22.73	21.60
		3	3	22.85	21.58
		6	0	21.76	20.61
		1	0	22.49	21.36
		1	3	22.57	21.55
		1	5	22.44	21.33
1.4	707.5	3	0	22.51	21.34
		3	2	22.52	21.33
		3	3	22.52	21.25
		6	0	21.50	20.49
		1	0	22.22	21.26
		1	3	22.34	21.42
		1	5	22.25	21.29
	715.3	3	0	22.26	21.10
		3	2	22.26	21.10
		3	3	22.31	21.09
		6	0	21.31	20.31
		1	0	22.71	21.85
		1	7	22.73	21.82
	700.5	1	14	22.66	21.81
		8	0	21.75	20.76
		8	4	21.76	20.77
3		8	7	21.76	20.76
		15	0	21.72	20.69
	707.5	1	0	22.55	21.66
		1	7	22.54	21.61
		1	14	22.43	21.52
		8	0	21.55	20.54
		8	4	21.54	20.53
		8	7	21.50	20.49
		15	0	21.50	20.39
		1	0	22.33	21.17
	714.5	1	7	22.31	21.22
		1	14	22.30	21.20
		8	0	21.39	20.35
		8	4	21.38	20.35
		8	7	21.31	20.22
		15	0	21.27	20.16
		1	0	22.62	21.58
	701.5	1	12	22.77	21.74
		1	24	22.57	21.53
		12	0	21.70	20.64
		12	6	21.71	20.63
		12	13	21.64	20.60
		25	0	21.67	20.63
5		1	0	22.52	21.70
		1	12	22.60	21.76
	F F	1	24	22.39	21.54
	707.5	12	0	21.56	20.54
		12	6	21.55	20.55
		12	13	21.52	20.49
		25	0	21.51	20.48
	713.5	1	0	22.28	21.26

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 174

SHENZHEN LCS COMP	LIANCE TESTING LAB	ORATORY LTD.	FCC ID: 2AX4Y-S	59PRO Repo	ort No.: LCS210305004AEB
		1	12	22.43	21.37
		1	24	22.25	21.21
		12	0	21.35	20.27
		12	6	21.34	20.30
		12	13	21.08	20.06
		25	0	21.24	20.19
		1	0	22.62	21.79
		1	24	22.70	21.81
		1	49	22.43	21.52
	704	25	0	21.70	20.69
		25	12	21.74	20.66
		25	25	21.59	20.52
		50	0	21.64	20.59
		1	0	22.59	21.71
		1	24	22.59	21.80
		1	49	22.31	21.40
10	707.5	25	0	21.69	20.67
		25	12	21.65	20.66
		25	25	21.61	20.61
		50	0	21.62	20.57
		1	0	22.51	21.37
		1	24	22.47	21.36
		1	49	22.27	21.15
	711.0	25	0	21.31	20.30
		25	12	21.32	20.29
		25	25	21.13	20.14
		50	0	21.21	20.15

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO

Report No.: LCS210305004AEB

BW	Frequency	RB Con	figuration	Average Po	Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM	
, ,		1	0	22.98	21.99	
		1	12	23.54	22.05	
		1	24	23.52	22.11	
	706.5	12	0	22.17	20.93	
		12	6	22.18	21.02	
		12	13	22.31	21.31	
		25	0	22.18	21.22	
		1	0	23.38	21.94	
		1	12	23.31	21.55	
		1	24	23.21	21.48	
5	710	12	0	22.27	21.12	
		12	6	22.20	20.94	
		12	13	22.20	21.04	
		25	0	22.22	21.02	
		1	0	23.00	21.52	
		1	12	22.81	21.27	
		1	24	22.32	21.15	
	713.5	12	0	21.90	20.82	
		12	6	21.78	20.49	
		12	13	21.45	20.39	
		25	0	21.68	20.77	
		1	0	22.92	22.14	
		1	24	23.14	22.30	
		1	49	22.90	22.26	
	709	25	0	22.29	21.23	
		25	12	22.21	21.17	
		25	25	22.20	21.19	
		50	0	22.17	21.22	
		1	0	22.98	22.58	
		1	24	23.09	22.73	
		1	49	22.69	22.02	
10	710	25	0	22.20	21.17	
		25	12	22.19	21.08	
		25	25	22.08	21.09	
		50	0	22.12	21.03	
		1	0	23.10	22.04	
		1	24	22.90	21.55	
		1	49	22.52	21.07	
	711	25	0	22.21	21.06	
		25	12	22.16	20.85	
		25	25	21.86	20.78	
		50	0	22.00	20.98	

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO
---	----------------------

Report No.: LCS210305004AEB

BW	Frequency		figuration	Average Power [dBm]		
(MHz)	(MHz)	Size	Offset	QPSK	16QAM	
		1	0	23.37	22.55	
		1	12	23.34	22.48	
		1	24	23.21	22.37	
	2572.5	12	0	23.39	22.37	
		12	6	23.38	22.38	
		12	13	23.11	22.02	
		25	0	22.25	21.22	
		1	0	23.41	22.61	
		1	12	23.33	22.45	
		1	24	23.24	22.39	
5	2595.0	12	0	23.41	22.35	
		12	6	23.38	22.37	
		12	13	23.11	22.04	
		25	0	22.31	21.23	
		1	0	23.44	22.54	
		1	12	23.37	22.54	
		1	24	23.22	22.37	
	2617.5	12	0	23.39	22.35	
		12	6	23.39	22.34	
		12	13	23.11	22.02	
		25	0	22.31	21.22	
		1	0	23.44	22.52	
		1	24	23.34	22.57	
	2575.0	1	49	23.25	22.39	
		25	0	22.30	21.22	
		25	12	22.29	21.24	
		25	25	22.08	21.04	
		50	0	22.19	21.12	
		1	0	23.44	22.59	
		1	24	23.37	22.54	
		1	49	23.23	22.41	
10	2595.0	25	0	22.25	21.19	
		25	12	22.31	21.19	
		25	25	22.07	21.04	
		50	0	22.16	21.09	
		1	0	23.40	22.54	
		1	24	23.35	22.55	
		1	49	23.25	22.36	
	2615.0	25	0	22.28	21.24	
		25	12	22.27	21.25	
		25	25	22.08	21.02	
		50	0	22.16	21.10	
		1	0	23.42	22.57	
		1	37	23.32	22.57	
		1	74	23.23	22.37	
	2577.5	37	0	22.16	22.17	
		37	18	22.16	22.17	
		37	38	22.17	22.17	
4 5		75	0	22.16	22.14	
15		1	0	23.42	22.56	
		1	37	23.31	22.52	
		1	74	23.23	22.38	
	2595.0	37	0	22.15	22.17	
		37	18	22.16	22.17	
		37	38	22.16	22.17	
		75	0	22.17	22.18	
	2612.5	1	0	23.42	22.56	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 174

SHENZHEN LCS COM	PLIANCE TESTING LAB	ORATORY LTD.	FCC ID: 2AX4Y-S	59PRO Repor	rt No.: LCS210305004AEB
		1	37	23.35	22.57
		1	74	23.22	22.41
		37	0	22.18	22.17
		37	18	22.15	22.19
		37	38	22.18	22.18
		75	0	22.16	22.17
		1	0	23.43	22.59
		1	49	23.48	22.52
		1	99	23.23	22.40
	2580.0	50	0	22.16	21.09
		50	25	22.15	21.09
		50	50	22.15	21.09
		100	0	22.15	22.17
		1	0	23.41	22.57
		1	49	23.35	22.55
20		1	99	23.26	22.40
20	2595.0	50	0	22.13	21.13
		50	25	22.12	21.14
		50	50	22.15	21.14
		100	0	22.18	22.16
		1	0	23.44	22.59
		1	49	23.34	22.55
		1	99	23.25	22.39
	2610.0	50	0	22.15	21.11
		50	25	22.17	21.14
		50	50	22.19	21.13
		100	0	22.19	22.19

Report No.: LCS210305004AEB

LTE Band41

BW	Frequency		figuration	Average Power [dBm]		
(MHz)	(MHz)	Size	Offset	QPSK	16QAM	
. ,		1	0	24.02	22.95	
		1	12	24.17	23.08	
		1	24	24.11	23.02	
	2498.5	. 12	0	23.18	22.11	
	2400.0	12	6	23.16	22.10	
	-	12	13			
	_			23.14	22.08	
		25	0	23.10	22.13	
		1	0	23.79	22.78	
		1	12	23.54	22.81	
		1	24	23.78	22.56	
5	2593.0	12	0	22.77	21.74	
		12	6	22.76	21.79	
		12	13	22.67	21.83	
		25	0	22.69	21.72	
		1	0	24.44	23.51	
		1	12	24.40	23.35	
		1	24	24.59	23.34	
	2687.5	12	0	23.54	23.54	
	2007.0	12	6	23.54	22.50	
		12	13	23.57	22.60	
		25	0	23.51	22.58	
	-	1	0	24.48	23.13	
		1	24	24.36	22.85	
		1	49	24.06	23.26	
	2501.0	25	0	23.22	22.34	
		25	12	23.22	22.24	
		25	25	23.31	22.24	
		50	0	23.28	22.25	
		1	0	23.91	22.23	
		1	24	23.52	22.66	
		1	49	24.00	22.70	
10	2593.0	25	0	22.65	21.70	
		25	12	22.80	21.83	
		25	25	22.79	21.84	
	-	50	0	22.70	21.74	
		1	0	24.70	23.73	
	-	1	24	24.70	23.38	
	-					
		1	49	24.42	23.51	
	2685.0	25	0	23.53	22.53	
		25	12	23.57	22.55	
		25	25	23.52	22.57	
		50	0	23.54	22.58	
		1	0	23.86	23.01	
		1	37	24.27	23.35	
		1	74	24.35	23.43	
	2503.5	37	0	23.03	23.38	
		37	18	23.35	23.01	
		37	38	23.41	23.43	
		75	0	23.41	22.38	
15		1	0	23.94	22.58	
		1	37	23.34	22.00	
	-					
		1	74	23.72	22.12	
	2593.0	37	0	22.67	22.09	
		37	18	22.43	22.66	
		37	38	22.08	22.43	
		75	0	22.78	21.77	

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID: 2AX4Y-S	59PRO Re	port No.: LCS210305004AEB
		1	0	24.37	23.47
		1	37	24.12	23.17
	2682.5	1	74	24.42	23.44
		37	0	23.16	23.18
		37	18	23.51	23.51
		37	38	23.45	23.46
		75	0	23.54	22.51
		1	0	24.40	23.49
		1	49	24.80	23.01
		1	99	23.87	23.83
	2506.0	50	0	23.37	22.65
		50	25	23.37	22.40
		50	50	23.64	22.39
		100	0	23.52	22.49
		1	0	23.96	22.08
		1	49	23.29	22.76
20		1	99	24.02	22.83
20	2593.0	50	0	22.61	21.73
		50	25	22.87	21.99
		50	50	22.88	21.98
		100	0	22.75	21.79
		1	0	24.30	23.27
		1	49	23.56	22.46
		1	99	23.90	22.82
	2680.0	50	0	22.97	22.05
		50	25	23.17	22.05
		50	50	23.00	22.16
		100	0	23.08	22.10

	<wla< th=""><th>N 2.4GHz Conducted</th><th>l Power></th><th></th></wla<>	N 2.4GHz Conducted	l Power>	
Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Outpu Power (dBm)
			1	14.32
	4	0440	2	13.18
	1	2412	5.5	13.19
			11	13.06
			1	15.42
IEEE 802.11b	C	0407	2	15.22
	6	2437	5.5	15.10
			11	15.18
			1	14.54
	11	2462	2	13.23
		2402	5.5	12.08
			11	13.20
			6	14.74
			9	14.10
			12	13.34
	1	2412	18	13.50
	I	2412	24	13.23
IEEE 802.11g		2437	36	13.61
			48	13.56
			54	13.30
			6	15.06
			9	13.09
			12	13.13
	6		18	13.18
	0		24	13.10
			36	13.12
			48	13.24
			54	13.10
			6	14.08
			9	14.12
			12	14.10
	11	2462	18	14.03
			24	14.01
			36	14.00
			48	14.16
			54	14.14
			MCS0	13.95
			MCS1 MCS2	13.83
			MCS2	13.54 13.50
	1	2412	MCS4	13.19
			MCS4	13.19
			MCS5 MCS6	13.13
			MCS8 MCS7	13.17
+			MCS7 MCS0	15.01
			MCS0 MCS1	14.13
IEEE 802.11n			MCS1 MCS2	14.13
HT20			MCS2 MCS3	14.03
	6	2437	MCS3 MCS4	14.10
			MCS4 MCS5	14.08
			MCS5 MCS6	14.08
			MCS6	14.10
F			MCS0	14.16
			MCS0	14.32
	11	2462	MCS1	13.13
	11	2402		
			MCS3 MCS4	13.22 13.46

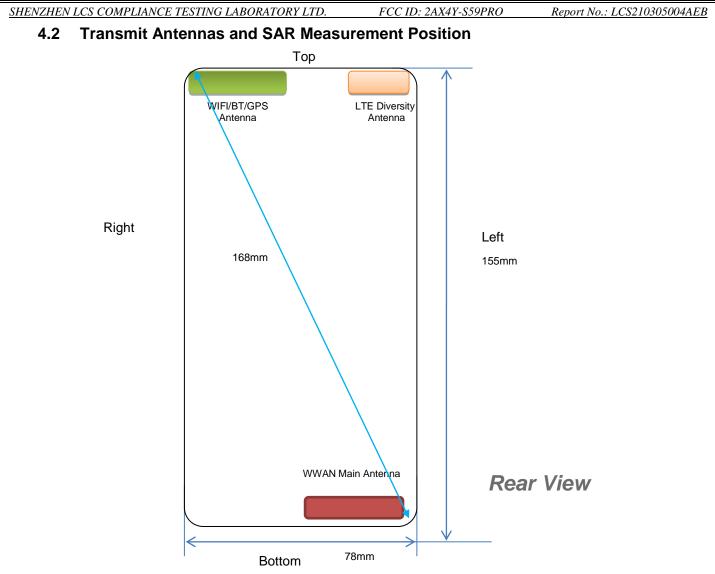
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 174

SHENZHEN LCS COMPLIANO	ENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.		2AX4Y-S59PRO	Report No.: LCS210305004AEE	
			MCS5	13.24	
			MCS6	13.53	
			MCS7	13.63	
			MCS0	14.79	
			MCS1	13.23	
			MCS2	13.16	
	3	2422	MCS3	13.10	
	3	2422	MCS4	13.43	
			MCS5	13.60	
			MCS6	13.50	
			MCS7	13.52	
	6		MCS0	14.98	
			MCS1	13.18	
			MCS2	13.10	
IEEE 802.11n		2437	MCS3	13.40	
HT40		2437	MCS4	13.00	
			MCS5	13.19	
			MCS6	13.03	
			MCS7	13.26	
			MCS0	14.71	
			MCS1	13.53	
			MCS2	13.63	
	9	0450	MCS3	12.62	
	Э	2452	MCS4	12.43	
			MCS5	12.28	
			MCS6	12.19	
			MCS7	12.39	

Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

<pre><bt conducted="" power=""></bt></pre>							
Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)				
	0	2402	0.474				
GFSK-BLE	19	2440	2.053				
	39	2480	0.554				
	0	2402	3.427				
GFSK	39	2441	4.940				
	78	2480	3.359				
	0	2402	2.601				
π/4-DQPSK	39	2441	4.127				
	78	2480	2.589				
	0	2402	2.679				
8DPSK	39	2441	4.277				
	78	2480	2.769				

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:


[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\sqrt[[]{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
5.0	5	2.45	1.0

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.0< 3.0, SAR testing is not required.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 174

Antenna information:

WWAN Main Antenna	GSM/UMTS/LTE TX/RX
LTE Diversity antenna	Only RX
WLAN/BT Antenna	WLAN/BT TX/RX

Note:

1). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

2). According to the KDB941225 D06 Hot Spot SAR v02, the edges with less than 25 mm distance to the antennas need to be tested for SAR.

Distance of The Antenna to the EUT surface and edge (mm)							
Antennas Front Back Top Side Bottom Side Left Side Right Side							
WWAN	<5	<5	147	<5	<5	32	
BT/WLAN	<5	<5	<5	146	43	<5	

Positions for SAR tests; Hotspot mode							
Antennas Front Back Top Side Bottom Side Left Side Right Side							
WWAN	Yes	Yes	No	Yes	Yes	No	
BT/WLAN	Yes	Yes	Yes	No	No	Yes	

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are \geq 9cm*5cm, the test distance is 10mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 174

Report No.: LCS210305004AEB

4.3 SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
Speech for GSM850/1900	3:8
GPRS850	1:2.67
GPRS1900	1:2.67
UMTS	1:1
LTE	1:1
WLAN2450	1:1

4.3.1 SAR Results

	SAR Values [GSM 850]												
	Freq.	Time	Test	Conducted	Maximum Allowed	Power	Scaling	SAR _{1-g} res	Graph				
Ch.	(MHz)	slots	Position	Power (dBm)	Power (dBm)	Drift (%)	Factor	Measured	Reported	Results			
			measur	ed / reported	SAR number	s – Heac	I <sim1></sim1>						
251	848.8	Voice	Left Cheek	32.43	32.50	-0.95	1.016	0.096	0.098	Plot 1			
251	848.8	Voice	Left Tilt	32.43	32.50	4.02	1.016	0.045	0.046				
251	848.8	Voice	Right Cheek	32.43	32.50	2.41	1.016	0.072	0.073				
251	848.8	Voice	Right Tilt	32.43	32.50	3.21	1.016	0.038	0.039				
		meas	sured / reported	SAR numbers	- Body (hotspo	t open, di	stance 10n	nm) <sim1></sim1>					
251	848.8	3Txslots	Front	29.50	29.50	-1.36	1.000	0.019	0.019				
251	848.8	3Txslots	Rear	29.50	29.50	-1.83	1.000	0.032	0.032	Plot 2			
251	848.8	3Txslots	Left	29.50	29.50	0.21	1.000	0.020	0.020				
251	848.8	3Txslots	Bottom	29.50	29.50	1.36	1.000	0.011	0.011				
Domo													

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

	SAR Values [GSM 1900]												
Ch.	Freq. (MHz)	time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results			
			mea	sured / reported	SAR numbers	s – Head <s< td=""><td>SIM1></td><td></td><td></td><td></td></s<>	SIM1>						
661	1880.0	Voice	Left Cheek	x 29.44	29.50	4.11	1.014	0.022	0.022	Plot 3			
661	1880.0	Voice	Left Tilt	29.44	29.50	0.21	1.014	0.012	0.012				
661	1880.0	Voice	Right Chee	k 29.44	29.50	1.52	1.014	0.017	0.017				
661	1880.0	Voice	Right Tilt	29.44	29.50	1.74	1.014	0.008	0.008				
	•	measu	ured / reported	SAR numbers -	- Body (hotspo	t open, dis	tance 10m	m) <sim1></sim1>					
512	1850.2	3Txslots	Front	26.52	27.00	1.22	1.117	0.005	0.006				
512	1850.2	3Txslots	Rear	26.52	27.00	-4.56	1.117	0.007	0.008	Plot 4			
512	1850.2	3Txslots	Left	26.52	27.00	0.11	1.117	0.003	0.003				
512	1850.2	3Txslots	Bottom	26.52	27.00	0.85	1.117	0.004	0.004				
Rema	rk.												

..... 10011 (0001

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AX4Y-S59PRO	Report No.: LCS210305004AEB

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

	SAR Values [WCDMA Band V]											
Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results		
			meas	sured / reported	SAR numbers	– Head <	SIM1>					
4182	836.4	RMC*	Left Cheek	22.98	23.00	-1.24	1.005	0.512	0.514	Plot 5		
4182	836.4	RMC*	Left Tilt	22.98	23.00	0.57	1.005	0.287	0.288			
4182	836.4	RMC*	Right Chee	k 22.98	23.00	1.69	1.005	0.472	0.474			
4182	836.4	RMC*	Right Tilt	22.98	23.00	1.50	1.005	0.250	0.251			
		meas	ured / reported	SAR numbers -	Body (hotspot	open, dis	tance 10m	m) <sim1></sim1>				
4182	836.4	RMC*	Front	22.98	23.00	1.70	1.005	0.104	0.104			
4182	836.4	RMC*	Rear	22.98	23.00	0.13	1.005	0.210	0.211	Plot 6		
4182	836.4	RMC*	Left	22.98	23.00	1.04	1.005	0.098	0.098			
4182	836.4	RMC*	Bottom	22.98	23.00	-0.47	1.005	0.140	0.141			

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

SAR Values [WCDMA Band IV]

		Chan		Condu	Maximum	Power		SAR _{1-g} res	ults(W/kg)		
Ch.	Freq.	nel	Test	cted	Allowed	Drift	Scaling			Graph	
011.	(MHz)	Type	Position	Power	Power	(%)	Factor	Measured	Reported	Results	
		Type		(dBm)	(dBm)	(70)					
			measu	red / reporte	d SAR numbers	s – Head<	SIM1>				
1513	1752.6	RMC	Left Cheek	23.33	23.50	-0.09	1.040	0.675	0.702	Plot 7	
1513	1752.6	RMC	Left Tilt	23.33	23.50	0.41	1.040	0.320	0.333		
1513	1752.6	RMC	Right Cheek	23.33	23.50	2.35	1.040	0.651	0.677		
1513	1752.6	RMC	Right Tilt	23.33	23.50	1.42	1.040	0.302	0.314		
		mea	asured / reported S/	AR numbers	- Body (hotspo	ot open, dis	tance 10m	m) <sim1></sim1>			
1513	1752.6	RMC	Front	23.33	23.50	3.61	1.040	0.314	0.327		
1513	1752.6	RMC	Rear	23.33	23.50	-0.13	1.040	0.456	0.474	Plot 8	
1513	1752.6	RMC	Left	23.33	23.50	-0.20	1.040	0.245	0.255		
1513	1752.6	RMC	Bottom	23.33	23.50	4.02	1.040	0.123	0.128		

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values IWCDMA Rend III

3. RMC* - RMC 12.2kbps mode;

				SAR value	es [wcdivia i	Band IIJ				
Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} rest Measured	ults(W/kg) Reporte d	Graph Results
			mea	sured / reported	d SAR numbers	s – Head <	SIM1>			
9538	1907.6	RMC*	Left Cheek	23.34	23.50	-0.09	1.038	0.712	0.739	Plot 9
9538	1907.6	RMC*	Left Tilt	23.34	23.50	0.61	1.038	0.368	0.382	
9538	1907.6	RMC*	Right Cheek	23.34	23.50	0.02	1.038	0.658	0.683	
9538	1907.6	RMC*	Right Tilt	23.34	23.50	1.52	1.038	0.310	0.322	
		mea	sured / reported	SAR numbers	- Body (hotspo	t open, dis	tance 10m	m) <sim1></sim1>		
9538	1907.6	RMC*	Front	23.34	23.50	3.27	1.038	0.314	0.326	
9538	1907.6	RMC*	Rear	23.34	23.50	0.32	1.038	0.579	0.601	Plot 10
9538	1907.6	RMC*	Left	23.34	23.50	2.58	1.038	0.314	0.326	
9538			Bottom	23.34	23.50	-4.44	1.038	0.195	0.202	
Rema	rk:									

1. The value with black color is the maximum SAR Value of each test band.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 24	AX4Y-S59PRO Report No.: LCS210305004AEB
--	---

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 3. RMC* - RMC 12.2kbps mode;

						SAR Val	ues [LTE Ba	nd 2]				
	_	Cł	hannel	_	Con	ducted	Maximum	Power	_	SAR1-g res	sults(W/kg)	
Ch.	Freq.	-	Туре	Test		ower	Allowed	Drift	Scaling			Graph
	(MHz)		10M)	Position	(d	Bm)	Power	(%)	Factor	Measured	Reported	Results
			,	m	•		(dBm) I SAR numbers	. ,			<u> </u>	
10700	1960		100							0 700	0.769	Diat 11
18700			1RB	Left Ch		23.54	24.00	-0.63	1.112	0.723	0.768	Plot 11
18700			1RB	Left 7		23.54	24.00	3.61	1.112	0.420	0.467	
18700	1860		1RB	Right C		23.54	24.00	-0.10	1.112	0.652	0.725	
18700	1860		1RB	Right		23.54	24.00	1.36	1.112	0.318	0.354	
18700	1860		50%RB	Left Ch		22.58	23.00	1.68	1.102	0.655	0.722	
18700	1860	.0	50%RB	Left 7	Tilt	22.58	23.00	2.68	1.102	0.387	0.426	
18700	1860	.0	50%RB	Right C	heek	22.58	23.00	1.54	1.102	0.620	0.683	
18700	1860	.0	50%RB	Right	Tilt	22.58	23.00	1.52	1.102	0.292	0.322	
			measu	ired / report	ed SAF	R numbers	- Body (hotspo	t open, dis	stance 10m	nm) <sim1></sim1>		•
18700	1860	.0	1RB	Fro		23.54	24.00	2.80	1.112	0.314	0.349	
18700	1860		1RB	Rea		23.54	24.00	-0.58	1.112	0.760	0.798	Plot 12
18700	1860		1RB	Le		23.54	24.00	0.24	1.112	0.256	0.285	
18700	1860		1RB	Botte		23.54	24.00	2.30	1.112	0.402	0.203	
18700	1860		50%RB	Fro		23.54	23.00	4.02	1.102	0.402	0.447	
						22.58						
18700	1860		50%RB	Rea			23.00	1.07	1.102	0.721	0.794	
18700	1860		50%RB	Le		22.58	23.00	4.30	1.102	0.223	0.246	
18700	1860	.0	50%RB	Bott	om	22.58	23.00	1.14	1.102	0.334	0.368	
						SAR Val	ues [LTE Ba	nd 41				
					_		Maximum	-		SAR1-g res	sults(W/ka)	
	Freq.		hannel	Test		ducted	Allowed	Power	Scaling	On the grou	suns(W/Ng)	Graph
Ch.	(MHz)		Туре	Position		ower	Power	Drift	Factor	Measured	Reported	Result
	((10M)		(d	Bm)	(dBm)	(%)		modeured	rioportou	
				m	easure	d / reported	SAR numbers	s - Head<	SIM1>			
20175	1732	.5	1RB	Left Ch		22.06	22.50	-1.54	1.107	0.544	0.602	Plot 13
20175	1732		1RB	Left 7		22.06	22.50	2.52	1.107	0.301	0.333	
20175	1732		1RB	Right C		22.06	22.50	0.25	1.107	0.502	0.556	
20175	1732		1RB	Right		22.06	22.50	1.04	1.107	0.271	0.300	
20175	1732		50%RB	Left Ch		21.16	21.50	4.12	1.081	0.520	0.562	
20175	1732		50%RB	Left 7		21.10		3.65	1.081	0.320	0.302	
						21.16	21.50					
20175	1732		50%RB	Right C			21.50	1.14	1.081	0.485	0.524	-
20175	1732	.5	50%RB	Right		21.16	21.50	2.15	1.081	0.251	0.271	
	1-1-00						- Body (hotspo					
20175	1732		1RB	Fro		22.06	22.50	2.01	1.107	0.250	0.277	
20175			1RB	Rea		22.06	22.50	-0.10	1.107	0.712	0.788	Plot 14
20175	1732	.5	1RB	Le	ft	22.06	22.50	0.10	1.107	0.315	0.349	
20175	1732	.5	1RB	Bott	om	22.06	22.50	3.02	1.107	0.187	0.207	
20175	1732	.5	50%RB			21.16	21.50	2.10	1.081	0.225	0.243	
20175			50%RB			21.16	21.50	1.01	1.081	0.674	0.729	
20175			50%RB			21.16	21.50	1.05	1.081	0.284	0.307	1
20175			50%RB			21.16	21.50	1.25	1.081	0.150	0.162	
		<u> </u>					ues [LTE Ba	<u> </u>				<u>.</u>
		-					Maximum	-		SAR1-g res	sults(W/ka)	
~	Freq.		hannel	Test		ducted	Allowed	Power	Scaling	<i>c</i>		Graph
Ch.	(MHz)		Type	Position		ower	Power	Drift	Factor	Measured	Reported	Result
	. ,	(10M)		(d	Bm)	(dBm)	(%)				
				т	easure	d / reported	SAR numbers	s - Head<	SIM1>			
20407	829.	0	1RB	Left Ch		22.80	23.00	-0.35	1.047	0.729	0.763	Plot 1
20407	829.		1RB	Left 7		22.80	23.00	1.52	1.047	0.365	0.382	
20407	829.		1RB	Right C		22.80	23.00	-0.10	1.047	0.685	0.717	
_0+07	020.	5		Tight O		22.00	20.00	0.10	1.0-11	0.000	0.717	I
This	s report s	hall r	iot be repro	duced excep	t in full,		e written approv age 53 of 174	al of Shenz	hen LCS Co	ompliance Tes	ting Laborato	r y Ltd.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AX4Y-S59PRO Report No.: LCS 20407 829.0 1RB Right Tilt 22.80 23.00 1.47 1.047 0.305 0.31 20407 829.0 50%RB Left Cheek 21.87 22.00 1.35 1.030 0.700 0.72 20407 829.0 50%RB Left Tilt 21.87 22.00 -1.31 1.030 0.342 0.35 20407 829.0 50%RB Right Tilt 21.87 22.00 -1.31 1.030 0.641 0.66 20407 829.0 50%RB Right Tilt 21.87 22.00 2.41 1.030 0.283 0.29 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20407 829.0 1RB Front 22.80 23.00 1.03 1.047 0.178 0.18 20407 829.0 1RB Rear 22.80 23.00 1.031 0.47 0.123 0</sim1>	Plot 16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Plot 16
20407 829.0 50%RB Left Tilt 21.87 22.00 -1.31 1.030 0.342 0.35 20407 829.0 50%RB Right Cheek 21.87 22.00 1.02 1.030 0.641 0.66 20407 829.0 50%RB Right Tilt 21.87 22.00 2.41 1.030 0.283 0.29 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20407 829.0 1RB Front 22.80 23.00 1.03 1.047 0.178 0.18 20407 829.0 1RB Rear 22.80 23.00 -0.29 1.047 0.123 0.12 20407 829.0 1RB Left 22.80 23.00 1.41 1.047 0.123 0.12 20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.0</sim1>	Plot 16
20407 829.0 50%RB Right Cheek 21.87 22.00 1.02 1.030 0.641 0.66 20407 829.0 50%RB Right Tilt 21.87 22.00 2.41 1.030 0.283 0.29 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20407 829.0 1RB Front 22.80 23.00 1.03 1.047 0.178 0.18 20407 829.0 1RB Rear 22.80 23.00 -0.29 1.047 0.178 0.18 20407 829.0 1RB Left 22.80 23.00 -0.29 1.047 0.123 0.12 20407 829.0 1RB Bottom 22.80 23.00 1.41 1.047 0.123 0.12 20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030<!--</td--><td>Plot 16</td></sim1>	Plot 16
20407 829.0 50%RB Right Tilt 21.87 22.00 2.41 1.030 0.283 0.29 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20407 829.0 1RB Front 22.80 23.00 1.03 1.047 0.178 0.18 20407 829.0 1RB Rear 22.80 23.00 -0.29 1.047 0.1250 0.266 20407 829.0 1RB Rear 22.80 23.00 -0.29 1.047 0.123 0.12 20407 829.0 1RB Left 22.80 23.00 1.41 1.047 0.123 0.12 20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Left 21.87 22.00 1.03 1.030</sim1>	Plot 16
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 20407 829.0 1RB Front 22.80 23.00 1.03 1.047 0.178 0.18 20407 829.0 1RB Rear 22.80 23.00 -0.29 1.047 0.250 0.26 20407 829.0 1RB Left 22.80 23.00 -0.29 1.047 0.123 0.12 20407 829.0 1RB Left 22.80 23.00 1.41 1.047 0.123 0.12 20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Left 21.87 22.00 1.87 1.030 <td< td=""><td>Plot 16</td></td<></sim1>	Plot 16
20407 829.0 1RB Front 22.80 23.00 1.03 1.047 0.178 0.18 20407 829.0 1RB Rear 22.80 23.00 -0.29 1.047 0.250 0.26 20407 829.0 1RB Left 22.80 23.00 -0.29 1.047 0.123 0.12 20407 829.0 1RB Left 22.80 23.00 1.41 1.047 0.123 0.12 20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 Sageood 50%RB<	Plot 16
20407 829.0 1RB Rear 22.80 23.00 -0.29 1.047 0.250 0.26 20407 829.0 1RB Left 22.80 23.00 1.41 1.047 0.123 0.12 20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Left 21.87 22.00 1.87 1.030 0.106 0.10 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 Ch. Test	Plot 16
20407 829.0 1RB Left 22.80 23.00 1.41 1.047 0.123 0.12 20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Left 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Left 21.87 22.00 0.10 1.030 0.106 0.10 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 Image: Condumeret (MHz) <td></td>	
20407 829.0 1RB Bottom 22.80 23.00 4.02 1.047 0.106 0.11 20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Left 21.87 22.00 0.10 1.030 0.106 0.10 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 Ch. I I	
20407 829.0 50%RB Front 21.87 22.00 1.52 1.030 0.154 0.15 20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Left 21.87 22.00 0.10 1.030 0.106 0.10 20407 829.0 50%RB Left 21.87 22.00 0.10 1.030 0.106 0.10 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 SAR Values [LTE Band 7] Channe Test Condu Maximum Power Scaling SAR _{1-g} results(W/k Measured Power (dBm) (dBm) Power Scaling Measured Repo	
20407 829.0 50%RB Rear 21.87 22.00 1.03 1.030 0.224 0.23 20407 829.0 50%RB Left 21.87 22.00 0.10 1.030 0.106 0.10 20407 829.0 50%RB Bottom 21.87 22.00 0.10 1.030 0.106 0.10 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 SAR Values [LTE Band 7] Ch. Freq. I Test Type (20M) Condu restion Maximum Allowed Power (dBm) Power Drift (%) Scaling Factor SAR _{1-g} results(W/k Measured	
20407 829.0 50%RB Left 21.87 22.00 0.10 1.030 0.106 0.10 20407 829.0 50%RB Bottom 21.87 22.00 1.87 1.030 0.091 0.09 SAR Values [LTE Band 7] Channe Channe Condu Maximum Power SAR1/second Scaling SAR1_second Report Ch. Freq. (MHz) I Test Type (20M) Test Position Condu 	
20407829.050%RBBottom21.8722.001.871.0300.0910.09SAR Values [LTE Band 7]Ch.Freq.ITest Type (20M)Condu Power PositionMaximum Allowed Power (dBm)Power (MBm)Power Drift (%)Scaling FactorSAR 1.g results(W/k Measured Report d	
SAR Values [LTE Band 7] Ch. Channe (MHz) Channe I Test Position Condu Cted Maximum Allowed Power Power Drift (%) Scaling Factor SAR _{1-g} results(W/k Measured	
Ch. Freq. I Test Cted Allowed Power Condu (MHz) Type Position (dBm) (dBm) (dBm) Scaling Factor Measured d)
Ch. Freq. I Test Cted Allowed Power Condu (MHz) Type Position (dBm) (dBm) (dBm) Scaling Factor Measured d)
Ch. Freq. I Test cted Allowed Drift (MHz) Type Position Power Ower Ower (20M) (20M) (dBm) (dBm) (dBm)	
Ch. (MHz) Type Position Power Power C(%) Factor Measured d	
(20M) (dBm) (dBm) (%) Factor Measured d	e Graph
	Results
21100 2535.0 1RB Left Cheek 25.65 26.00 -4.20 1.084 0.713 0.77	Plot 17
21100 2535.0 1RB Left Tilt 25.65 26.00 2.52 1.084 0.402 0.43	
21100 2535.0 1RB Right Tilt 25.65 26.00 1.20 1.084 0.385 0.41	
21100 2535.0 50%RB Left Cheek 24.36 24.50 0.11 1.033 0.692 0.71	
21100 2535.0 50%RB Left Tilt 24.36 24.50 2.52 1.033 0.387 0.40	
21100 2535.0 50%RB Right Cheek 24.36 24.50 0.01 1.033 0.634 0.65	
21100 2535.0 50%RB Right Tilt 24.36 24.50 0.74 1.033 0.350 0.36	
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1></sim1>	-
21100 2535.0 1RB Front 25.65 26.00 1.74 1.084 0.296 0.32	
21100 2535.0 1RB Rear 25.65 26.00 0.44 1.084 0.700 0.75	
21100 2535.0 1RB Left 25.65 26.00 0.11 1.084 0.488 0.52	
21100 2535.0 1RB Bottom 25.65 26.00 -1.58 1.084 0.129 0.14	
21100 2535.0 50%RB Front 24.36 24.50 0.41 1.033 0.254 0.26	
21100 2535.0 50%RB Rear 24.36 24.50 3.51 1.033 0.621 0.64	
21100 2535.0 50%RB Left 24.36 24.50 0.47 1.033 0.439 0.45	
21100 2535.0 50%RB Bottom 24.36 24.50 -1.10 1.033 0.107 0.11	
SAR Values [LTE Band 12]	
Channe Condu Maximum Power SAR1-g results(W/k) Graph
Ch. (MHz) Type Position Power Power Dhit Factor Measured Repo	e Results
(20M) (dBm) (dBm) (%) racior measured d	Results
measured / reported SAR numbers – Head <sim1></sim1>	
23060 704.0 1RB Left Cheek 22.70 23.00 -1.40 1.072 0.460 0.49	Plot 19
23060 704.0 1RB Left Tilt 22.70 23.00 4.14 1.072 0.268 0.28	
23060 704.0 1RB Right Cheek 22.70 23.00 4.01 1.072 0.427 0.45	
23060 704.0 1RB Right Tilt 22.70 23.00 1.11 1.072 0.239 0.25	
23060 704.0 50%RB Left Cheek 21.74 22.00 1.33 1.062 0.438 0.46	
23060 704.0 50%RB Left Tilt 21.74 22.00 1.52 1.062 0.241 0.25	
23060 704.0 50%RB Right Cheek 21.74 22.00 4.32 1.062 0.241 0.25	
23060 704 0 50% RB Right Tilt 21 74 22 00 274 1062 0200 020	
23060 704.0 50%RB Right Tilt 21.74 22.00 2.74 1.062 0.209 0.22 measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1></sim1>	
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1></sim1>	
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13</sim1>	
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32</sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10</sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 1.31 1.072 0.247 0.26</sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 1.31 1.072 0.247 0.26 23060 704.0 50%RB Front 21.74 22.00 1.51 1.062 0.106 0.11</sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.095 0.10 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Bottom 22.70 23.00 2.05 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 2.05 1.072 0.247 0.26 23060 704.0 50%RB Front 21.74 22.00 1.51 1.062 0.106 0.11 23060 704.0 50%RB Rear 21.74 22.00 3.65 1.062 <td< td=""><td>Plot 20</td></td<></sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.095 0.10 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Bottom 22.70 23.00 1.31 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 1.51 1.062 0.106 0.11 23060 704.0 50%RB Front 21.74 22.00 3.65 1.062 0.274 0.29 23060 704.0 50%RB Left 21.74 22.00 -2.11 1.062 <t< td=""><td>Plot 20</td></t<></sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.095 0.10 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Bottom 22.70 23.00 2.05 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 2.05 1.072 0.247 0.26 23060 704.0 50%RB Front 21.74 22.00 1.51 1.062 0.106 0.11 23060 704.0 50%RB Rear 21.74 22.00 3.65 1.062 <td< td=""><td>Plot 20</td></td<></sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 2.05 1.072 0.247 0.26 23060 704.0 50%RB Front 21.74 22.00 1.51 1.062 0.106 0.11 23060 704.0 50%RB Rear 21.74 22.00 3.65 1.062 0.</sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Bottom 22.70 23.00 1.31 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 2.05 1.072 0.247 0.26 23060 704.0 50%RB Front 21.74 22.00 1.51 1.062 0.106 0.11 23060 704.0 50%RB Rear 21.74 22.00 -2.11 1.062 <t< td=""><td>Plot 20</td></t<></sim1>	Plot 20
measured / reported SAR numbers - Body (hotspot open, distance 10mm) <sim1> 23060 704.0 1RB Front 22.70 23.00 1.74 1.072 0.121 0.13 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.302 0.32 23060 704.0 1RB Rear 22.70 23.00 -0.69 1.072 0.095 0.10 23060 704.0 1RB Left 22.70 23.00 1.31 1.072 0.095 0.10 23060 704.0 1RB Bottom 22.70 23.00 1.31 1.072 0.247 0.26 23060 704.0 1RB Bottom 22.70 23.00 2.05 1.072 0.247 0.26 23060 704.0 50%RB Front 21.74 22.00 1.51 1.062 0.106 0.11 23060 704.0 50%RB Rear 21.74 22.00 3.65 1.062 <td< td=""><td>Plot 20</td></td<></sim1>	Plot 20

<u>SHENZ</u>	ZHEN LCS	CON	MPLIANCE	TESTING LA	ABORAT	TORY LTD.	FCC	D: 2AX4Y-	S59PRO	Report	No.: LCS2103	305004AEB
						SAR Valu	ies [LTE Bar	nd 17]				
			Channe			Condu	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq		_/	Test		cted	Allowed	Drift	Scaling		Reporte	Graph
•	(MHz	<u>z)</u>	Type	Positi	on	Power	Power	(%)	Factor	Measured	d	Results
			(20M)			(dBm)	(dBm) SAR numbers					
23780) 709.		1RB	Left Ch		23.14	23.50	-0.40	1.086	0.441	0.479	Plot 21
		-		Left 7		23.14				0.225		FIOL 21
23780			1RB				23.50	3.25	1.086		0.244	
23780			1RB	Right C		23.14	23.50	1.78	1.086	0.412	0.448	
23780			1RB	Right		23.14	23.50	0.30	1.086	0.203	0.221	
23780			50%RB	Left Ch		22.29	22.50	1.52	1.050	0.414	0.435	
23780			50%RB	Left 7		22.29	22.50	0.58	1.050	0.198	0.208	
23780			50%RB	Right C		22.29	22.50	4.65	1.050	0.387	0.406	
23780) 709.	0	50%RB	Right		22.29	22.50	1.87	1.050	0.174	0.183	
	-						- Body (hotspo				-	
23780			1RB	Fror		23.14	23.50	1.63	1.086	0.125	0.136	
23780) 709.	0	1RB	Rea	ır	23.14	23.50	-2.69	1.086	0.277	0.301	Plot 22
23780) 709.	0	1RB	Lef	t	23.14	23.50	0.13	1.086	0.103	0.112	
23780) 709.	0	1RB	Botto	m	23.14	23.50	-1.37	1.086	0.145	0.158	
23780			50%RB	Fror		22.29	22.50	1.40	1.050	0.105	0.110	
23780			50%RB	Rea		22.29	22.50	1.05	1.050	0.247	0.259	
23780			50%RB	Lef		22.29	22.50	-3.64	1.050	0.085	0.089	
23780			50%RB	Botto		22.29	22.50	-1.58	1.050	0.062	0.065	
20100	, 109.	U	0070IND		/11	22.2J	22.00	-1.00	1.000	0.002	0.000	
							ies [LTE Bar	NG 381				
			Channe			Condu	Maximum			SAR _{1-g} res	ults/W/ka)	
	Freq		l	Test		cted	Allowed	Power	Scaling	SAM1-g les		Graph
Ch.	(MHz		, Type	Positi		Power	Power	Drift	Factor	Measured	Reporte	Results
	(-/	(20M)	1 0010	011	(dBm)	(dBm)	(%)	, actor	modeliou	d	rioouno
			(= • • • •)	me	easured		SAR numbers	- Head <	SIM1>		1	
37850) 2580	.0	1RB	Left Ch		23.48	23.50	-2.03	1.005	0.349	0.351	Plot 23
37850			1RB	Left 7		23.48	23.50	0.54	1.005	0.178	0.179	
37850		-	1RB	Right C		23.48	23.50	3.11	1.005	0.305	0.306	
37850		-	1RB	Right		23.48	23.50	0.52	1.005	0.124	0.125	
38150			50%RB	Left Ch		22.19	22.50	0.41	1.074	0.325	0.349	
38150			50%RB	Left 7		22.19	22.50	2.31	1.074	0.323	0.161	
38150			50%RB	Right C		22.19	22.50	0.41	1.074	0.130	0.295	
				0			22.50	3.10				
38150	2610	.0	50%RB	Right		22.19	· Body (hotspo		1.074	0.098 m) <sim1></sim1>	0.105	
37850	2580		1RB	Fror		23.48	23.50	0.58	1.005	0.147	0.148	
		-	1RB							0.147	0.148 0.677	Plot 24
37850				Rea		23.48	23.50	-0.01	1.005			PIOT 24
37850		-	1RB	Lef		23.48	23.50	2.22	1.005	0.268	0.269	
37850			1RB	Botto		23.48	23.50	3.01	1.005	0.102	0.102	
38150			50%RB	Fror		22.19	22.50	1.20	1.074	0.113	0.121	
38150		-	50%RB	Rea		22.19	22.50	0.74	1.074	0.594	0.638	
38150			50%RB	Lef		22.19	22.50	1.04	1.074	0.215	0.231	
38150	2610	.0	50%RB	Botto	m	22.19	22.50	3.20	1.074	0.076	0.082	
						SAR Valu	ies [LTE Bar	nd 41]				
		C	hannel		Con	ducted	Maximum	Power		SAR1-g res	sults(W/kg)	
Ch.	Freq.		Туре	Test		ower	Allowed	Drift	Scaling			Graph
011.	(MHz)		(10M)	Position		Bm)	Power	(%)	Factor	Measured	Reported	Results
		'	,			-	(dBm)		0114			
007-		<u> </u>	100				SAR numbers			0.554	0.500	Distat
39750			1RB	Left Ch		24.80	25.00	0.04	1.047	0.554	0.580	Plot 25
39750			1RB	Left		24.80	25.00	0.58	1.047	0.302	0.316	
39750			1RB	Right C		24.80	25.00	1.58	1.047	0.520	0.545	
39750			1RB	Right		24.80	25.00	1.21	1.047	0.265	0.277	
39750	2506	.0	50%RB	Left Ch	neek	23.64	24.00	3.63	1.086	0.512	0.556	
39750	2506	.0	50%RB	Left 7	⊺ilt	23.64	24.00	-1.17	1.086	0.275	0.299	
39750			50%RB	Right C		23.64	24.00	2.81	1.086	0.482	0.524	
39750			50%RB	Right		23.64	24.00	4.63	1.086	0.231	0.251	
20700		-					Body (hotspo				01201	
39750	2506	0	1RB	Fro		24.80	25.00	2.15	1.047	0.405	0.424	
	This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.											
Thi	is report si	hall r	not be repro	duced excep	t in full,			al of Shenz	hen LCS \overline{C}	ompliance Test	ting Laborate	or y Ltd.
						P_{i}	age 55 of 174					

SHENZH	EN LCS CO	MPLIANCE TE	STING LABORA	TORY LTD.	FCC	ID: 2AX4Y	S59PRO	Report	No.: LCS210.	305004AEB
39750	2506.0	1RB	Rear	24.80	25.00	0.18	1.047	0.750	0.785	Plot 26
39750	2506.0	1RB	Left	24.80	25.00	0.70	1.047	0.245	0.257	
39750	2506.0	1RB	Bottom	24.80	25.00	1.02	1.047	0.556	0.582	
39750	2506.0	50%RB	Front	23.64	24.00	1.98	1.086	0.359	0.390	
39750	2506.0	50%RB	Rear	23.64	24.00	4.63	1.086	0.638	0.693	
39750	2506.0	50%RB	Left	23.64	24.00	1.42	1.086	0.215	0.234	
39750	2506.0	50%RB	Bottom	23.64	24.00	1.36	1.086	0.503	0.546	

SAR Values [WIFI2.4G]

Ch.	Freq. (MHz)	Service	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		- I	mea	sured / repor	ted SAR numbers	- Head<	SIM1>			
6	2437.0	802.11b	Left Chee	ek 15.42	15.50	2.45	1.019	0.142	0.145	
6	2437.0	802.11b	Left Tilt	t 15.42	15.50	1.74	1.019	0.162	0.165	
6	2437.0	802.11b	Right Che	ek 15.42	15.50	0.46	1.019	0.219	0.223	Plot 27
6	2437.0	802.11b	Right Ti	lt 15.42	15.50	3.61	1.019	0.065	0.066	
		meas	ured / reported	l SAR numbe	rs - Body (hotspo	t open, dis	tance 10m	m) <sim1></sim1>		
6	2437.0	802.11b	Front	15.42	15.50	4.25	1.019	0.048	0.145	
6	2437.0	802.11b	Rear	15.42	15.50	-0.32	1.019	0.104	0.165	Plot 28
6	2437.0	802.11b	Right	15.42	15.50	1.02	1.019	0.075	0.223	
6	2437.0	802.11b	Тор	15.42	15.50	3.10	1.019	0.088	0.066	

Remark:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

4.3.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is \leq 1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$(SAR_{1} + SAR_{2})^{1.5}$$

Ratio= $\frac{(contraction 2)}{(peak location separation,mm)} < 0.04$

		Estimated sta	nd alone SAR		
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)
Bluetooth*	2450	Head	5.00	5	0.132
Bluetooth*	2450	Hotspot	5.00	10	0.066
Bluetooth*	2450	Body-worn	5.00	10	0.066

Remark:

1. Bluetooth*- Including Lower power Bluetooth

2. Maximum average power including tune-up tolerance;

- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Body as body use distance is 10mm from manufacturer declaration of user manual

4.4 Simultaneous TX SAR Considerations

4.4.1 Introduction

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna. The device has 4 antennas, WWAN main antenna, WWAN diversity antenna(RX only), NFC antenna(RX only) and WiFi/BT antenna supports 2.4Wi-Fi, 5.2GWi-Fi , 5.8GWi-Fi and BT.The 2 TX antennas can always transmit simultaneously. The work mode combination is showed as below table.;

Application Simultaneous Transmission information:

Combination No.	Mode
1	WWAN+WIFI
2	WWAN+BT

4.4.2 Evaluation of Simultaneous SAR

Head Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.096	0.022	0.145	0.241	1.6	no	no
Left Tilt	0.046	0.012	0.165	0.211	1.6	no	no
Right Cheek	0.073	0.017	0.223	0.296	1.6	no	no
Right Tilt	0.039	0.008	0.066	0.105	1.6	no	no

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR1-g	UMTS Band IV Reported SAR1-g	UMTS Band II Reported SAR1-g	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
------------------	--------------------------------------	---------------------------------------	---------------------------------------	--	---------------------------	----------------------------	---	----------------------------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 174

<u>SH</u>	ENZHEN LCS COM	PLIANCE TES	TING LABORAT	FORY LTD.	FCC ID: 2	2AX4Y-S59PRO	K	Report No.: LC	S210305004AEE
		(W/kg)	(W/kg)	(W/kg)					
	Left Cheek	0.514	0.702	0.739	0.145	0.884	1.6	no	no
	Left Tilt	0.288	0.333	0.382	0.165	0.547	1.6	no	no
	Right Cheek	0.474	0.677	0.683	0.223	0.906	1.6	no	no
1	Right Tilt	0.251	0.314	0.322	0.066	0.388	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Popertod SAR1 g(M//kg)		Te	st Position	
Reported SAR1-g(W/kg)	Left Cheek	Left Tilt	Right Cheek	Right Tilt
LTE Band2	0.768	0.467	0.725	0.354
LTE Band4	0.602	0.333	0.556	0.300
LTE Band5	0.763	0.382	0.717	0.319
LTE Band7	0.773	0.436	0.735	0.417
LTE Band12	0.493	0.287	0.458	0.256
LTE Band17	0.479	0.244	0.448	0.221
LTE Band38	0.351	0.179	0.306	0.125
LTE Band41	0.580	0.316	0.545	0.277
WiFi2.4G	0.145	0.165	0.223	0.066
MAX. ΣSAR1-g (W/kg)	0.918	0.632	0.958	0.483
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no
Simut Meas. Required	no	no	no	no

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.096	0.022	0.132	0.228	1.6	no	no
LeftTilt	0.046	0.012	0.132	0.178	1.6	no	no
Right Cheek	0.073	0.017	0.132	0.205	1.6	no	no
Right Tilt	0.039	0.008	0.132	0.171	1.6	no	no

Simultaneous transmission SAR for BT and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band IV Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.514	0.702	0.739	0.132	0.871	1.6	no	no
LeftTilt	0.288	0.333	0.382	0.132	0.514	1.6	no	no
RightChek	0.474	0.677	0.683	0.132	0.815	1.6	no	no
Right Tilt	0.251	0.314	0.322	0.132	0.454	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Benerical SAD1 a/M//ka)		Те	st Position	
Reported SAR1-g(W/kg)	Left Cheek	Left Tilt	Right Cheek	Right Tilt
LTE Band2	0.768	0.467	0.725	0.354
LTE Band4	0.602	0.333	0.556	0.300
LTE Band5	0.763	0.382	0.717	0.319
LTE Band7	0.773	0.436	0.735	0.417
LTE Band12	0.493	0.287	0.458	0.256
LTE Band17	0.479	0.244	0.448	0.221
LTE Band38	0.351	0.179	0.306	0.125
LTE Band41	0.580	0.316	0.545	0.277
BT Estimated SAR1-g (W/kg)	0.132	0.132	0.132	0.132
MAX. ΣSAR1-g (W/kg)	0.905	0.599	0.867	0.549
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no
Simut Meas. Required	no	no	no	no

Body Hotspot Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM

	-					-	
Test	GSM850	GSM1900	WiFi2.4G	MAX.	SAR1-	Peak	Simut
Position	Reported	Reported	Reported	ΣSAR1-g	g Limit	location	Meas.
Position	SAR1-g	SAR1-g	SAR1-g	(W/kg)	(W/kg)	separation	Required

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 174

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID	D: 2AX4Y-S59PRO Report No.: LCS210305004AEB
--	---

	(W/kg)	(W/kg)	(W/kg)			ratio	
Front	0.019	0.006	0.145	0.164	1.6	no	no
Rear	0.032	0.008	0.165	0.197	1.6	no	no
Left	0.020	0.003	/	0.020	1.6	no	no
Right	1	/	0.223	0.223	1.6	no	no
Тор	1	/	0.066	0.066	1.6	no	no
Bottom	0.011	0.004	/	0.011	1.6	no	no

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band IV Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.104	0.327	0.326	0.145	0.471	1.6	no	no
Rear	0.211	0.474	0.601	0.165	0.766	1.6	no	no
Left	0.098	0.255	0.326	1	0.326	1.6	no	no
Right	/	/	1	0.223	0.223	1.6	no	no
Тор			1	0.066	0.066	1.6	no	no
Bottom	0.141	0.128	0.202	1	0.202	1.6	no	no

SAR for WiFi and LTE

Reported SAR1-g(W/kg)	Test Position							
Reported SAR I-g(W/Kg)	Front	Rear	Left	Right	Тор	Bottom		
LTE Band2	0.349	0.798	0.285	1	1	0.447		
LTE Band4	0.277	0.788	0.349	1	1	0.207		
LTE Band5	0.186	0.262	0.129	1	1	0.111		
LTE Band7	0.321	0.759	0.529	1	1	0.140		
LTE Band12	0.130	0.324	0.102	1	1	0.265		
LTE Band17	0.136	0.301	0.112	1	1	0.158		
LTE Band38	0.148	0.677	0.269	1	1	0.102		
LTE Band41	0.424	0.785	0.257	1	1	0.582		
WiFi2.4G	0.145	0.165	1	0.223	0.066	/		
MAX. ΣSAR1-g (W/kg)	0.569	0.963	0.529	0.223	0.066	0.582		
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6		
Peak location separation ratio	no	no	no	no	no	no		
Simut Meas. Required	no	no	no	no	no	no		

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.019	0.006	0.132	0.151	1.6	no	no
Rear	0.032	0.008	0.132	0.164	1.6	no	no
Left	0.020	0.003	1	0.020	1.6	no	no
Right	1	/	0.132	0.132	1.6	no	no
Тор	/	/	0.132	0.132	1.6	no	no
Bottom	0.011	0.004	1	0.011	1.6	no	no

Simultaneous transmission SAR for BT and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band IV Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.104	0.327	0.326	0.132	0.458	1.6	no	no
Rear	0.211	0.474	0.601	0.132	0.733	1.6	no	no
Left	0.098	0.255	0.326	1	0.326	1.6	no	no
Right	/	/	1	0.132	0.132	1.6	no	no
Тор	/	/	1	0.132	0.132	1.6	no	no
Bottom	0.141	0.128	0.202	1	0.202	1.6	no	no

Simultaneous transmission SAR for BT and LTE

Reported SAR1-g(W/kg)	Test Position							
Reported SAR I-g(W/kg)	Front	Rear	Left	Right	Тор	Bottom		
LTE Band2	0.349	0.798	0.285	/	/	0.447		
LTE Band4	0.277	0.788	0.349	/	/	0.207		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 174

								_
SH.	ENZHEN LCS COMPLIANCE TESTING	LABORATORY LT	TD.	FCC ID: 2AX4Y-	S59PRO	Report No.: L	CS210305004A1	ΞB
	LTE Band5	0.186	0.262	0.129	/	/	0.111	
	LTE Band7	0.321	0.759	0.529	1	1	0.140	
	LTE Band12	0.130	0.324	0.102	/	/	0.265	
	LTE Band17	0.136	0.301	0.112	/	/	0.158	
	LTE Band38	0.148	0.677	0.269	/	/	0.102	
	LTE Band41	0.424	0.785	0.257	/	/	0.582	
	BT Estimated SAR1-g (W/kg)	0.132	0.132	1	0.132	0.132	/	
	MAX. ΣSAR1-g (W/kg)	0.556	0.930	0.529	0.132	0.132	0.582	
	SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6	
	Peak location separation ratio	no	no	no	no	no	no	
	Simut Meas. Required	no	no	no	no	no	no	

Note:

1. The WiFi and BT share same antenna, so cannot transmit at same time.

2. The value with **block** color is the maximum values of standalone

3. The value with blue color is the maximum values of ΣSAR_{1-g}

4.5 SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Frequency		RF		Repeated	Highest	First Re	epeated
Frequency Band (MHz)	Air Interface	Exposure Configuration	Test Position	SAR (yes/no)	Measured SAR _{1-g} (Wkg)	Measued SAR _{1-g} (W/kg)	Largest to Smallest SAR Ratio
750	LTE Band 12	Standalone	Cheek-Left	no	0.460	n/a	n/a
750	LTE Band17	Standalone	Cheek-Left	no	0.441	n/a	n/a
	GSM850	Standalone	Cheek-Left	no	0.096	n/a	n/a
835	WCDMA Band V	Standalone	Cheek-Left	no	0.512	n/a	n/a
	LTE Band 5	Standalone	Cheek-Left	no	0.729	n/a	n/a
1800	LTE Band 4	Standalone	Body-Rear	no	0.712	n/a	n/a
1000	WCDMA Band IV	Standalone	Cheek-Left	no	0.675	n/a	n/a
	GSM1900	Standalone	Cheek-Left	no	0.022	n/a	n/a
1900	WCDMA Band II	Standalone	Body-Rear	no	0.712	n/a	n/a
	LTE Band 2	Standalone	Body-Rear	no	0.760	n/a	n/a
2450	2.4GWLAN	Standalone	Cheek-Right	no	0.219	n/a	n/a
	LTE Band 7	Standalone	Cheek-Left	no	0.713	n/a	n/a
2600	LTE Band 38	Standalone	Body-Rear	no	0.674	n/a	n/a
	LTE Band 41	Standalone	Body-Rear	no	0.750	n/a	n/a

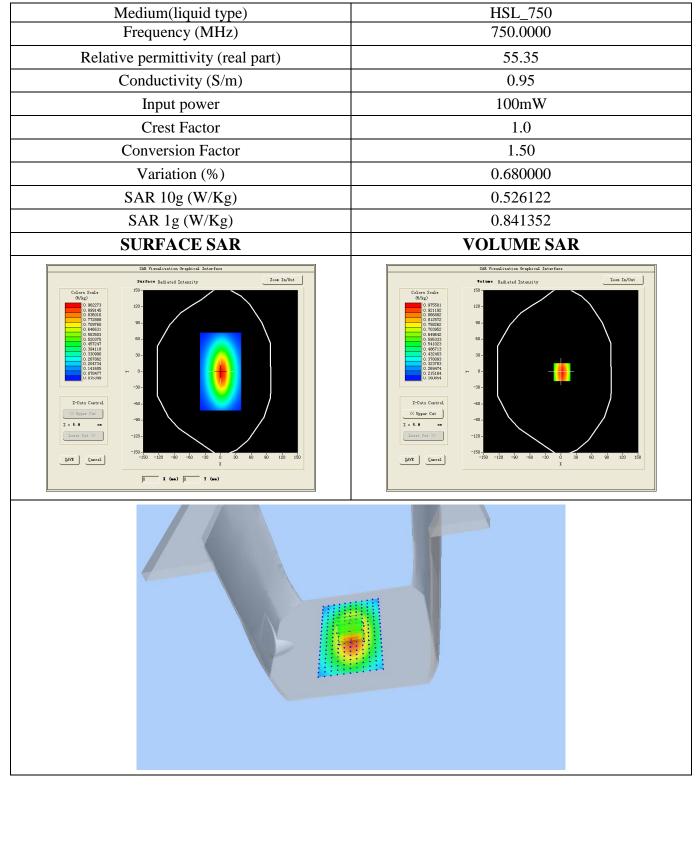
Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 174

4.6 General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- WiFi was tested in 802.11b/g/n mode with 1 Mbit/s and 6 Mbit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 7. Required WiFi test channels were selected according to KDB 248227
- 8. According to FCC KDB pub 248227 D01, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement and when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 9. According to FCC KDB pub 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WiFi hot spot mode.
- 10. Per FCC KDB pub 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WiFi hot spot function.
- 11. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 12. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - \bullet \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 13. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band.
- 14. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.
- 15. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
- 16. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.
- 17. Per KDB648474 D04 require for phablet SAR test considerations, For 3G/4G Smart Phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 18. 10-g extremity $\tilde{S}AR$ is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.


4.7 Measurement Uncertainty (450MHz-6GHz)

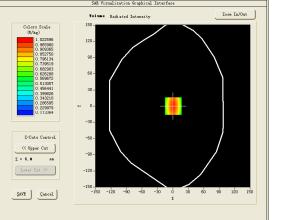
Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

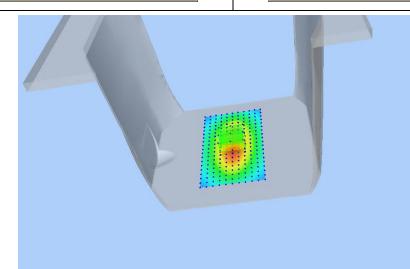
Report No.: LCS210305004AEB

4.8 System Check Results

Test mode:750MHz(Head) Product Description:Validation Model:Dipole SID750 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: March 10, 2021

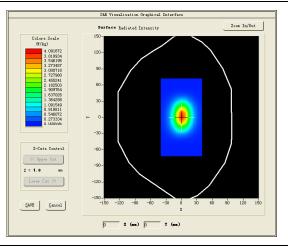


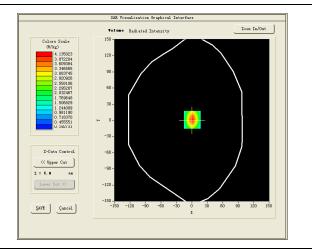

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 174

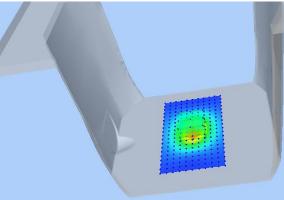

Report No.: LCS210305004AEB

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: March 12, 2021

Variation (%) SAR 10g (W/Kg) SAR 1g (W/Kg) SURFACE SAR	2.100000 0.612431 0.901150 VOLUME SAR
Crest Factor	1.0
Conductivity (S/m) Input power	0.92 100mW
Relative permittivity (real part)	42.82
Frequency (MHz)	835.0000
Medium(liquid type)	HSL_850

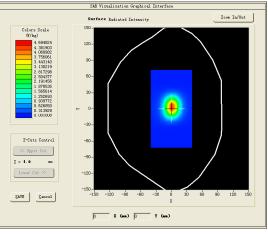


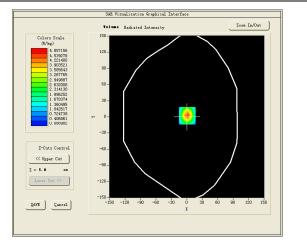

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 174

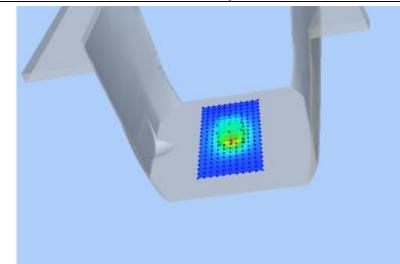

Report No.: LCS210305004AEB

Test mode:1800MHz(Head) Product Description:Validation Model :Dipole SID1800 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: March 16, 2021

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	3.705458
SAR 10g (W/Kg)	1.243284
Variation (%)	2.010000
Conversion Factor	1.68
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.56
Relative permittivity (real part)	53.45
Frequency (MHz)	1800.0000
Medium(liquid type)	HSL_1800

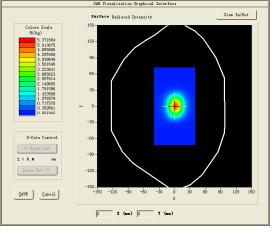


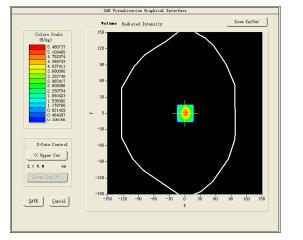

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 174

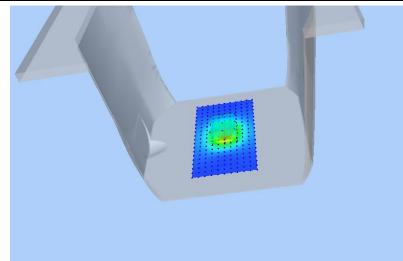

Report No.: LCS210305004AEB

Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: March 18, 2021

SURFACE SAR	VOLUME SAR		
SAR 1g (W/Kg)	3.901080		
SAR 10g (W/Kg)	2.023152		
Variation (%)	-1.200000		
Conversion Factor	1.86		
Crest Factor	1.0		
Input power	100mW		
Conductivity (S/m)	1.37		
Relative permittivity (real part)	38.56		
Frequency (MHz)	1900.0000		
Medium(liquid type)	HSL_1900		

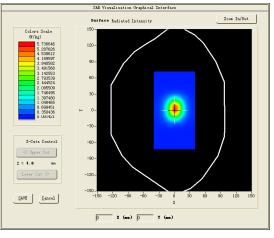


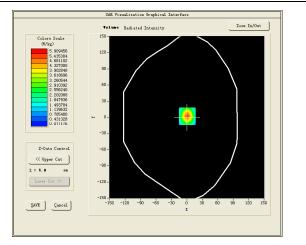

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 174

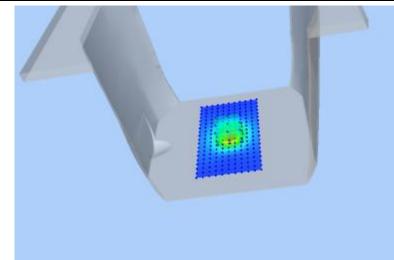

Report No.: LCS210305004AEB

Test mode:2450MHz(Head) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: March 25, 2021

HSL_2450		
2450.0000		
39.70		
1.84		
100mW		
1.0		
1.91		
-0.080000		
2.501150		
5.417144		
VOLUME SAR		




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 174

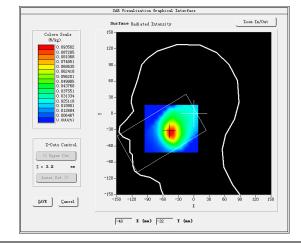

Report No.: LCS210305004AEB

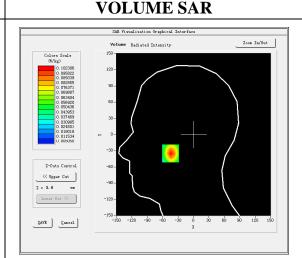
Test mode:2600MHz(Head) Product Description:Validation Model:Dipole SID2600 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: March 31, 2021

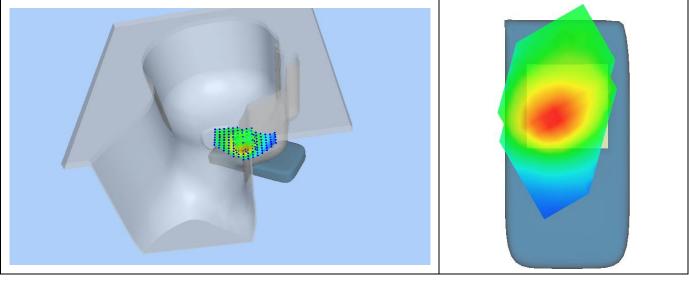
SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	5.632264
SAR 10g (W/Kg)	2.241034
Variation (%)	3.240000
Conversion Factor	1.89
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.92
Relative permittivity (real part)	38.43
Frequency (MHz)	2600.0000
Medium(liquid type)	HSL_2600

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 174

4.9 SAR Test Graph Results

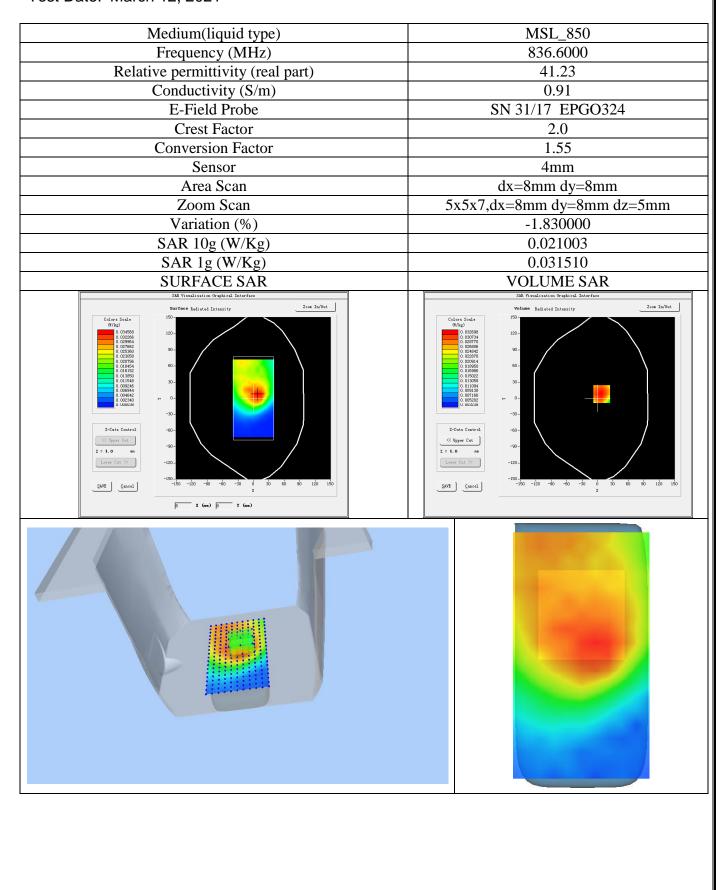

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02;


#1


Test Mode:GSM 850MHz,Low channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 12, 2021

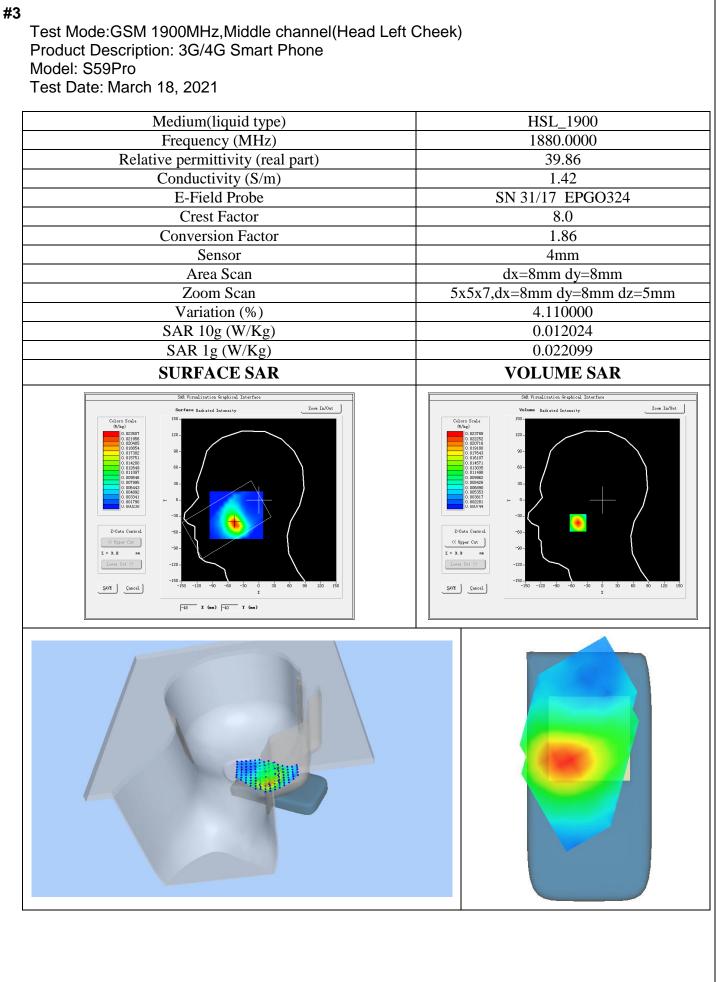
Medium(liquid type)	HSL_850
Frequency (MHz)	824.2000
Relative permittivity (real part)	42.20
Conductivity (S/m)	0.88
E-Field Probe	SN 31/17 EPGO324
Crest Factor	8.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.950000
SAR 10g (W/Kg)	0.055099
SAR 1g (W/Kg)	0.095990

SURFACE SAR



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 174

Report No.: LCS210305004AEB


#2

Test Mode: Hotspot GSM850MHz,Middle channel(Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 12, 2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 174

Report No.: LCS210305004AEB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laborator y Ltd. Page 70 of 174

Report No.: LCS210305004AEB

#4 Test Mode: Hotspot GPRS1900MHz, Middle channel (Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 18, 2021 Medium(liquid type) MSL_1900 1880.0000 Frequency (MHz) 40.75 Relative permittivity (real part) 1.42 Conductivity (S/m) **E-Field Probe** SN 31/17 EPGO324 Crest Factor 2.0 **Conversion Factor** 1.86 Sensor 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) -4.560000 SAR 10g (W/Kg) 0.004328 SAR 1g (W/Kg) 0.007355 **SURFACE SAR VOLUME SAR** Zoon In/Out Zoom In/Out Surface Radiated Intensit Colors Scale 00563 004654 004164 003673 003183 002693 Z-Cuts Control Z-Cuts Contro . = 1.0 Z = 1.0 Lower Cut \gg -150 -60 90 120 60 90 120 SAVE Cancel SAVE Cancel 8 X (mm) 8 Y (mm)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 174

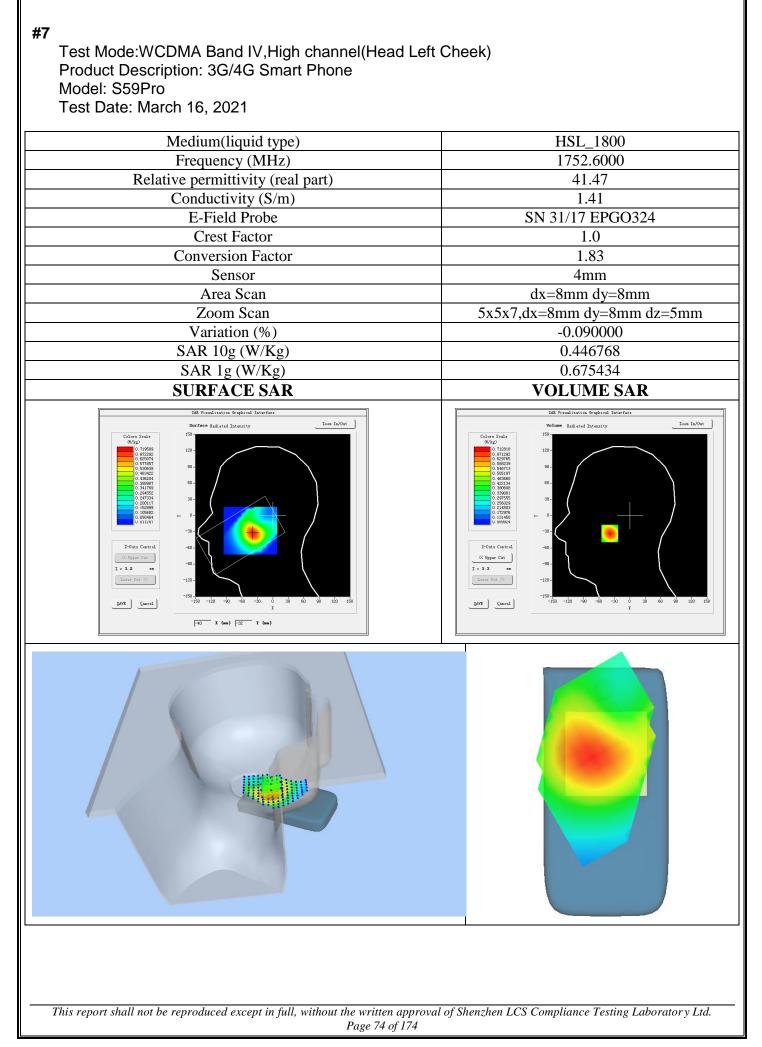
Report No.: LCS210305004AEB

#5

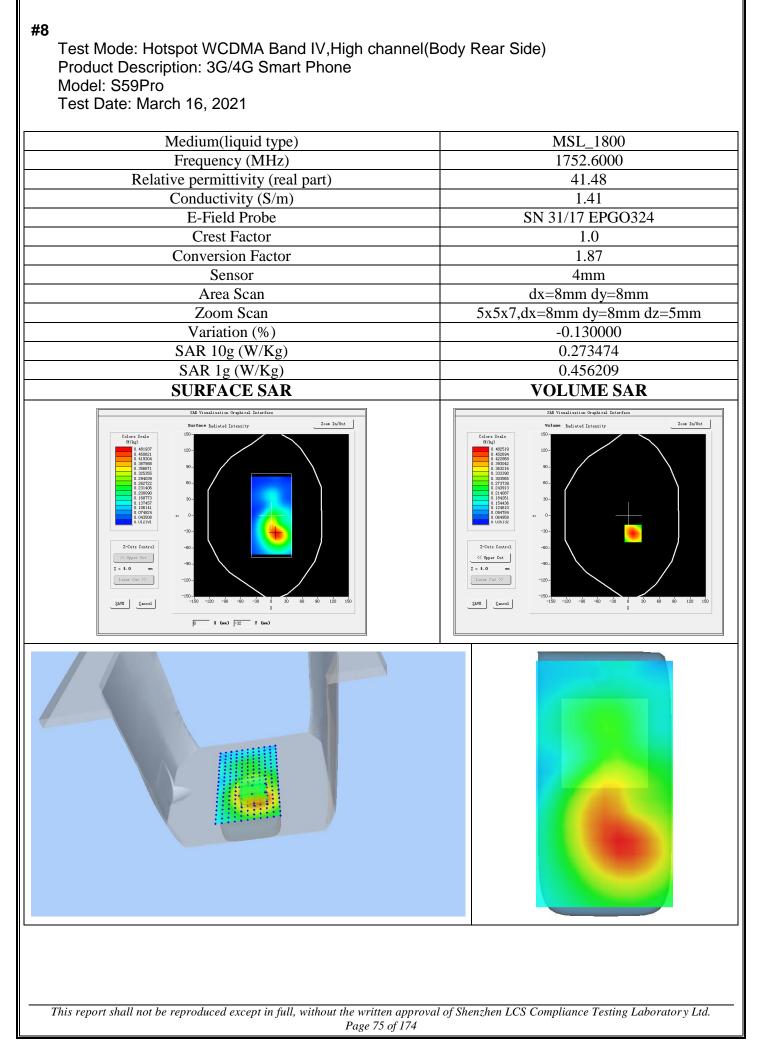
Test Mode:WCDMA Band V,Low channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 12, 2021

Madium (liquid type)	
Medium(liquid type) Frequency (MHz)	HSL_850 826.4000
Frequency (MHz) Relative permittivity (real part)	41.36
Conductivity (S/m)	0.93
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.240000
SAR 10g (W/Kg)	0.312271
SAR 1g (W/Kg)	0.512099
SURFACE SAR	VOLUME SAR
SMR Wirwalisation Graphical Interface	SAE Visualisation Graphical Interface
$ \begin{array}{c} \text{Colars Scale} \\ (7, 2) \\ (7, $	Volume Redisted fatentity Zent In/Ott 0/162 0.55544 0.05574 0.05574 0.055764 0.055764 0.055764 0.055764 0.055765 0.055764 0.055764 0.055764 0.055765 0.055764 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.055765 0.055765 0.055764 0.055764 0.0557765 0.055764 0.055764 0.055764 0.0557765 0.0557764 0.055764 0.055764 0.0557765 0.0557764 0.0557764

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 72 of 174 #6

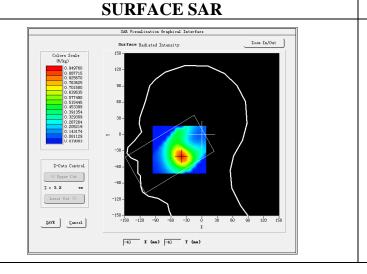

FCC ID: 2AX4Y-S59PRO

Report No.: LCS210305004AEB


Test Mode: Hotspot WCDMA Band V,Low channel(Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 12, 2021 Medium(liquid type) MSL_850 Frequency (MHz) 826.4000 Relative permittivity (real part) 41.62 Conductivity (S/m) 0.87 SN 31/17 EPGO324 **E-Field Probe Crest Factor** 1.0 **Conversion Factor** 1.55 Sensor 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) 0.130000 SAR 10g (W/Kg) 0.136034 SAR 1g (W/Kg) 0.209611 **SURFACE SAR VOLUME SAR** Zoon In/Out Zoon In/Out Surface Radiated Intensity Radiated Intensity 120 59566 45173 30779 16386 01995 Z-Cuts Control Z-Cuts Control << Upper Cut z = 1.0 z = 1.0 Lower Cut >> SAVE Cancel 90 SAVE Cancel X (mm) -24 Y (mm) 0 This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 73 of 174

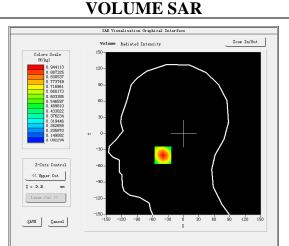
Report No.: LCS210305004AEB



Report No.: LCS210305004AEB

Report No.: LCS210305004AEB

#9 Test Mode:WCDMA Band II,Low channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 18, 2021 Medium(liquid type) HSL_1900 Frequency (MHz) 1852.4000 Relative permittivity (real part) 40.22 Conductivity (S/m) 1.38 **E-Field Probe** SN 31/17 EPGO324 Crest Factor 1.0 **Conversion Factor** 1.86 Sensor 4mm Area Scan dx=8mm dy=8mm

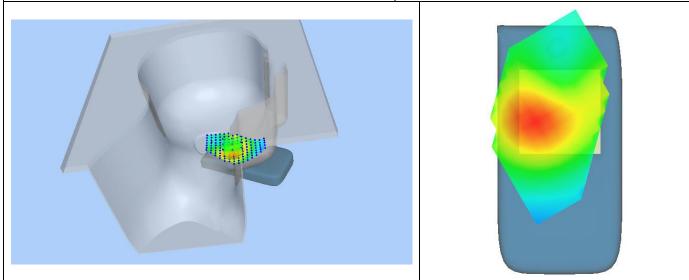


Zoom Scan

Variation (%)

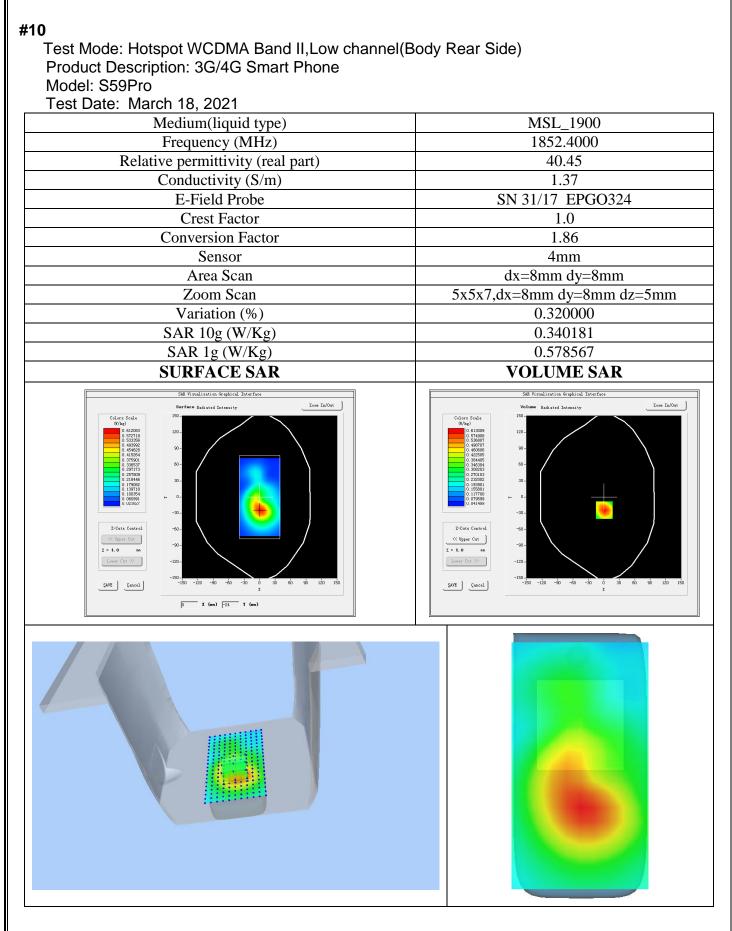
SAR 10g (W/Kg)

SAR 1g (W/Kg)



5x5x7,dx=8mm dy=8mm dz=5mm

-0.090000


0.573073

0.712016

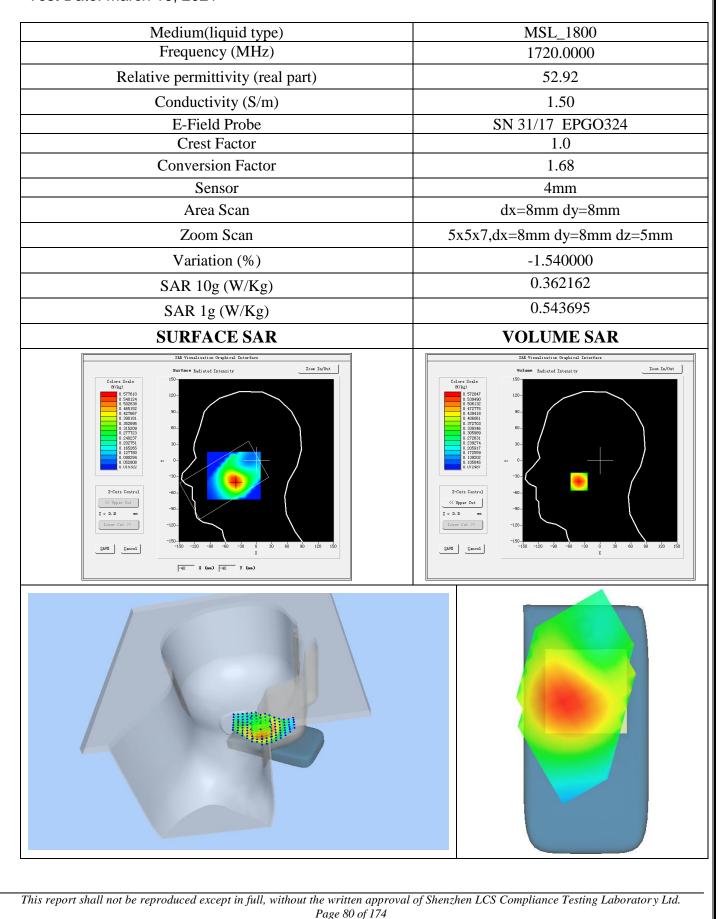
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 174

Report No.: LCS210305004AEB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 77 of 174

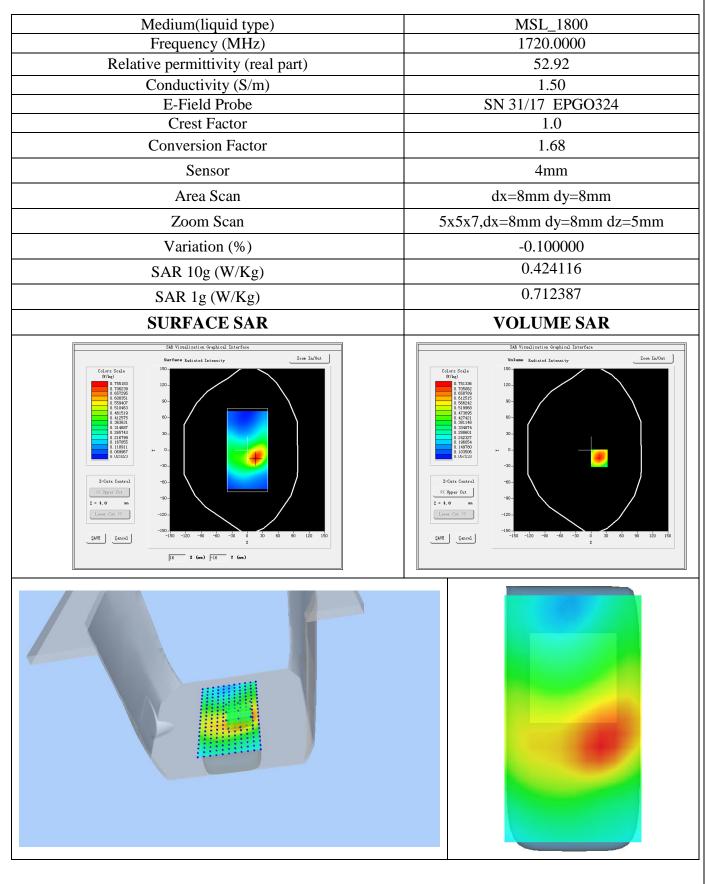
Report No.: LCS210305004AEB

#11 Test Mode: LTE Band 2, 1RB,Low channel(Head Left Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 18, 2021	Cheek)
Medium(liquid type)	MSL_1900
Frequency (MHz)	1860.0000
Relative permittivity (real part)	53.62
	1.51
Conductivity (S/m) E-Field Probe	1.51 SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.93
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.630000
SAR 10g (W/Kg)	0.566971
SAR 1g (W/Kg)	0.723058
SURFACE SAR	VOLUME SAR
SAE Translitution Graphical Interfees Surface Exclated In	SRE Translitestim Graphical Interface Volum Edited In
This report shall not be reproduced except in full, without the written approva Page 78 of 174	l of Shenzhen LCS Compliance Testing Laborator y Ltd.


Report No.: LCS210305004AEB

Report No.: LCS210305004AEB

#13


Test Mode: LTE Band 4, 1RB,Low channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 16, 2021

Report No.: LCS210305004AEB

#14

Test Mode: Hotspot LTE Band 4, 1RB, Low channel(Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 16, 2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 81 of 174

Report No.: LCS210305004AEB

#15

Test Mode: LTE Band 5, 1RB, Middle channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 12, 2021

Medium(liquid type)	HSL_835
Frequency (MHz)	836.5000
Relative permittivity (real part)	41.68
Conductivity (S/m)	0.89
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.350000
SAR 10g (W/Kg)	0.465924
SAR 1g (W/Kg)	0.729051
SURFACE SAR	VOLUME SAR
SAR Visculisation Graphical Interface	SAR Virualisation Graphical Interface
Surface Redisted Intensity Zoon In/Out	Volume Radiated Intensity Zoon In/Out
C-Cars Scale 100-0 1 : 000500 0 : 000500 0 : 000500 0 :	Colors Scale 0 (Stabl) 1 (223) 1 (1453) 0 (Stabl) 0 (Stabl)
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 82 of 174	

#16

Test Mode: Hotspot LTE Band 5, 1RB,Middle channel(Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 12, 2021

Medium(liquid type)	MSL_835
Frequency (MHz)	836.5000
Relative permittivity (real part)	41.68
Conductivity (S/m)	0.90
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.290000
SAR 10g (W/Kg)	0.161227
SAR 1g (W/Kg)	0.250240
SURFACE SAR	VOLUME SAR
SAR Virualization Graphical Interface	SAE Visualisation Graphical Interface
Surface Rediated Intensity Zoom In/Out	Volume Esdiated Intensity Zoom In/Out
$\begin{bmatrix} 0/k_{2} \\ 0.55011 \\ 0.65712 \\ 0.057762 \\$	0 0 2000 0 2000 0 0 2000 0 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 000 0

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 83 of 174

Report No.: LCS210305004AEB

#17

Test Mode: LTE Band 7, 1RB, Middle channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 31, 2021

Medium(liquid type)	HSL_2600
Frequency (MHz)	2535.0000
Relative permittivity (real part)	39.62
Conductivity (S/m)	1.93
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-4.200000
SAR 10g (W/Kg)	0.428512
SAR 1g (W/Kg)	0.713206
SURFACE SAR	VOLUME SAR
SAR Virculisation Graphical Interface Surface Exclated Intentity Zoom In/Out	SAR Virualization Graphical Interface Volume Redicted Internity Zoom In/Out
Celers Scale 150- (0/kg)	Colors Scale 150-
0.93949 0.079790 0.019661 0.019653 0.000	0.947124 0.947840 0.646941 0.646941
0.659273	0.0730559 80-
0.457865 0.377559 20	0.489965 0.434653 0.37512 20
0.277697 0.277509 0.077509 0.000000 P = 0-	
-30-	-30-
Z-Cuts Control -80-	Z-Cuts Centrol -60-
<	Z = 0.5 mn
Lover Cut >>> -120-	Lover Cat >> -120-
SAVE Cuncel -150 -120 -90 -60 -30 0 30 60 90 120 150 x	
This report shall not be reproduced except in full, without the written appro	val of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 84 of 174	

Report No.: LCS210305004AEB

#18

Test Mode: Hotspot LTE Band 7, 1RB, Middle channel(Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 31, 2021

Medium(liquid type)	MSL_2600
Frequency (MHz)	2535.0000
Relative permittivity (real part)	<u>39.49</u> 1.92
Conductivity (S/m)	
E-Field Probe	SN 31/17 EPGO324
Crest Factor Conversion Factor	1.0 1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%) $\sum A P_{1} \log (W/K_{a})$	0.440000
$\frac{\text{SAR 10g (W/Kg)}}{\text{SAR 1c (W/Kg)}}$	0.484215
SAR 1g (W/Kg)	0.700497
SURFACE SAR	VOLUME SAR
$\begin{bmatrix} Calars Scale \\ 0/5a^{-1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	Volume Raited Intensity Zear Seal (7.2) (

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 85 of 174

Report No.: LCS210305004AEB

#19

Test Mode: LTE Band 12, 1RB, Middle channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 10, 2021

Medium(liquid type)	MSL_750
Frequency (MHz)	707.5000
Relative permittivity (real part)	55.40
Conductivity (S/m)	0.97
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.50
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.400000
SAR 10g (W/Kg)	0.286251
SAR 1g (W/Kg)	0.459725
SURFACE SAR	VOLUME SAR
SAR Visculization Graphical Interface	SAR Virualization Graphical Interface
	Volume Redistel Intenity Zemi AD/04 0 0.07740 0.017104 0

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 86 of 174

Report No.: LCS210305004AEB

#20

Test Mode: Hotspot LTE Band 12, 1RB, Low channel (Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 10, 2021

Medium(liquid type)	MSL_750
Frequency (MHz)	704.0000
Relative permittivity (real part)	55.40
Conductivity (S/m)	0.97
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.50
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.690000
SAR 10g (W/Kg)	0.235920
SAR 1g (W/Kg)	0.302376
SURFACE SAR	VOLUME SAR
$SATZ (and C \ box) = Calculation (b) = Calculation (c) = Calcu$	$\begin{array}{c} \text{Volume field laterativ} \\ \hline \\ $

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 87 of 174

Report No.: LCS210305004AEB

#21

Test Mode: LTE Band 17, 1RB, Low channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 10, 2021

	1
Medium(liquid type)	MSL_750
Frequency (MHz)	709.0000
Relative permittivity (real part)	55.69
Conductivity (S/m)	0.93
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.50
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.400000
SAR 10g (W/Kg)	0.275406
SAR 1g (W/Kg)	0.441339
SURFACE SAR	VOLUME SAR
SAU Tradition 6 replical Interface Surface Exclasted Intentity Colors Suit 0 451796 0 451796 0 55507 0 50507 0 50	Ski Virualization Graphical Interface Volume Excited Intensity Zeex In/Dut Colore Scale 0.67620 0.67620 0.0156

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 88 of 174

Report No.: LCS210305004AEB

#22

Test Mode: Hotspot LTE Band 17, 1RB, Low channel (Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 10, 2021

MSL_750
709.0000
55.69
0.93
SN 31/17 EPGO324
1.0
1.50
4mm
dx=8mm dy=8mm
5x5x7,dx=8mm dy=8mm dz=5mm
-2.690000
0.214423
0.318721
VOLUME SAR
$\begin{array}{c} \textbf{Values Exdited Latentity} \\ \hline \textbf{Calver State} \\ \hline Calve$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 89 of 174

Report No.: LCS210305004AEB

#23

Test Mode: LTE Band 38, 1RB, Middle channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 31, 2021

1 11 211 11 1	
Medium(liquid type)	HSL_2600
Frequency (MHz)	2595.0000
Relative permittivity (real part)	40.33
Conductivity (S/m) E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.89
Sensor	4mm
Area Scan Zoom Scan	dx=8mm dy=8mm
	5x5x7,dx=8mm dy=8mm dz=5mm
$\frac{\text{Variation (\%)}}{\sum A P_{1} \log (W/W_{C})}$	-2.030000 0.267402
$\frac{\text{SAR 10g (W/Kg)}}{\text{SAR 1c (W/Kg)}}$	
SAR 1g (W/Kg)	0.349345
SURFACE SAR	VOLUME SAR
SAR Virualization & ophical Interface	SAE Visualisation Graphical Interface
Surface Redicted Intensity Zoon In/Out	Volume Rediated Intensity Zoom In/Out Colory Scale (7/2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (
0 (/kg) 0. 327964 0. 327964 120 -	0(hz) 0.35519 0.34661 0.34661 120-
0 200500 0 0.569848 0 0.269647 0 0.219758	0 39564 90- 0 21188 90- 0 274250 0 256573 50-
0, 199896 00- 0, 145382 0, 145382 0, 22333 30-	0 229915 60- 0 22127 0 220599 0 159942 30-
	0.156054 0.155059 0.115013 == 0-
-30-	-30-
Z-Cuts General Hopper Cut</td <td>Z-Cuts Control. -60-</td>	Z-Cuts Control. -60-
Z = 0.2 nn	Z = 0.4 nn
-120	-120-
	SAVZ Cancel Cancel -150 -120 -90 -90 -90 90 90 90 120 150
55 X (m) 32 X (m)	
This report shall not be reproduced except in full, without the written appr Page 90 of 174	
rage 90 0J 174	

Report No.: LCS210305004AEB

#24

Test Mode: Hotspot LTE Band 38, 1RB, Middle channel(Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 31, 2021

Medium(liquid type)	HSL_2600
Frequency (MHz)	2595.0000 40.38
Relative permittivity (real part)	1.92
Conductivity (S/m) E-Field Probe	1.92 SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	$\frac{dx=5mm}{5x5x7,dx=8mm} dy=8mm dz=5mm$
Variation (%)	-0.010000
SAR 10g (W/Kg)	0.395364
SAR 10g (W/Kg)	0.674542
SURFACE SAR	VOLUME SAR
SURFACE SAR	SAE Virsulisation Graphical Interface
$\begin{array}{c} \text{Surface Raixed Intensity} \\ \hline \\ \text{Calers Scale} \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{O SWR5} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \ \\ \ \\ \hline \\ \hline \\ \hline$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $

Report No.: LCS210305004AEB

#25

Test Mode: LTE Band 41, 1RB, Middle channel(Head Left Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 31, 2021

Medium(liquid type)	MSL_2600
Frequency (MHz)	2680.0000 39.68
Relative permittivity (real part)	<u> </u>
Conductivity (S/m) E-Field Probe	1.89 SN 31/17 EPGO324
Crest Factor	1.58
Crest Factor Conversion Factor	1.38
Sensor	4mm
Area Scan	
Zoom Scan	$\frac{dx=8mm}{5x5x7}\frac{dy=8mm}{dy=8mm}\frac{dz=5mm}{dz=5mm}$
Variation (%)	5x5x7,dx=8mm dy=8mm dz=5mm 0.040000
SAR 10g (W/Kg)	0.317223
SAR 1g (W/Kg)	0.554211
SURFACE SAR	VOLUME SAR
SAR Virualization Graphical Interface	SAE Visualisation Graphical Interface
Surface Endiated Intensity Zoom In/Out Culture Scale (Mar)	Volume Redisted Intensity Zoom In/Out
0/kp) 0.5703 0.57030 0.57030 120-	0.551216 0.555804 0.555852
0. 481099 0. 2374 0. 385099 0. 341133	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
0.309018 80- 0.271133 82344	0.230992 80- 0.230560 0.255228
0.15/137 0.15/137 0.010/02 0.000007 == 0-	0 0 27896 0 105960 0 105960 → 0 -
	0.066588 U.U.01236
Z-Cuts Control -60-	Z-Cuts Control -60-
(≪ Vipper Dat <u>Z</u> = 0.2 nn -90-	
	Lover Cat >>> -120 -
Intilities	
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.	
Page 92 of 174	

Report No.: LCS210305004AEB

#26

Test Mode: Hotspot LTE Band 41, 1RB, Middle channel(Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 31, 2021

Medium(liquid type)	MSL_2600		
Frequency (MHz)	2680.0000		
Relative permittivity (real part)	39.68		
Conductivity (S/m)	1.89 SN 21/17_EDC0224		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor Conversion Factor	1.58 1.89		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.180000		
SAR 10g (W/Kg)	0.498210		
SAR 1g (W/Kg)	0.750238		
SURFACE SAR	VOLUME SAR		
SAE Virualization Gruphical Interface Surface Rediated Intensity Zoom In/Out	SAE Virualization Graphical Interface Volume Redicted Intensity Zeom In/Out		
$ \begin{array}{c} Calver S Calve \\ (Y \times 2) \\ (Y \times 2)$	Colars Scale 100 0 % Ed 100 1 0.00507 100 1 0.00507 100 0 0.00508 00 </td		

Report No.: LCS210305004AEB

#27

Test Mode:802.11b(WiFi2.4G), Low channel (Head Right Cheek) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 25, 2021

Medium(liquid type)	HSL_2450		
Frequency (MHz)	2412.0000		
Relative permittivity (real part)	39.67		
Conductivity (S/m)	1.81		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor	1.0		
Conversion Factor	1.91		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.460000		
SAR 10g (W/Kg)	0.095862		
SAR 1g (W/Kg)	0.218844		
SURFACE SAR	VOLUME SAR		
SAR Virtualization Graphical Interface	SAR Virmalization Graphical Interface		
$\begin{array}{c c} \hline \\ \hline $	Colors Scale Volume Rediated Intensity Zeem Lu/Out 0 200772 0 0 200772 0 0 100570 0 0 100570 0 0 100570 0 0 100570 0 0 000570 0 0 0 0 000570 0 0 0 0 000570 0 0 0 0 000570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 94 of 174

Report No.: LCS210305004AEB

#28

Test Mode: Hotspot 802.11b(WiFi2.4G), Low channel (Body Rear Side) Product Description: 3G/4G Smart Phone Model: S59Pro Test Date: March 25, 2021

Medium(liquid type)	MSL_2450		
Frequency (MHz)	2412.0000		
Relative permittivity (real part)	38.92		
Conductivity (S/m)	1.83		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor	1.0		
Conversion Factor	1.91		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.320000		
SAR 10g (W/Kg)	0.050818		
SAR 1g (W/Kg)	0.103905		
SURFACE SAR	VOLUME SAR		
SAE Vizualization Graphical Interface	SAE Virualization Graphical Interface		
$\begin{bmatrix} C_{01} r r s_{01} r s_{01}$	Volume Existed Intensity Zein In/Ont 0 / Ind) 0 / Original 100		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 95 of 174

5. ALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 96 of 174

Report No.: LCS210305004AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/7/2020	JES
Checked by :	Jérôme LUC	Product Manager	10/7/2020	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	10/7/2020	Jum Putthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
А	10/7/2020	Initial release

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 97 of 174