

TEST REPORT

Report No.:	BCTC2212623540E
Applicant:	Hoco technology development (SHENZHEN) co.,Ltd
Product Name:	Wireless earphone
Model/Type Ref.:	ES63
Tested Date:	2022-12-02 to 2022-12-07
Issued Date:	2022-12-09

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005

Page 1 of 67

Edition: A.5

FCC ID:2AX2T-ES63

Product Name:

Wireless earphone

Trademark:

hoco.

Model/Type Ref.:	ES63 ES11, ES21, ES50, ES51, ES53, ES58, ES61, ES62, ES64, ES65, ES66, ES67, ES68, ES69, ES70, ES71, ES72, ES73, ES74			
Prepared For:	Hoco technology development (SHENZHEN) co.,Ltd			
Address:	Rm 408, Block A, Weidonglong Business Building, 2125 Meilong Road, Tsinghua Community, Longhua Street, Longhua District, Shenzhen, P. R. China			
Manufacturer:	Hoco technology development (SHENZHEN) co.,Ltd			
Address:	Rm 408, Block A, Weidonglong Business Building, 2125 Meilong Road, Tsinghua Community, Longhua Street, Longhua District, Shenzhen, P. R. China			
Prepared By:	Shenzhen BCTC Testing Co., Ltd.			
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China			
Sample Received Date:	2022-12-02			
Sample tested Date:	2022-12-02 to 2022-12-07			
Issue Date:	2022-12-09			
Report No.:	BCTC2212623540E			
Test Standards:	FCC Part15.247 ANSI C63.10-2013			
Test Results:	PASS			
Remark:	This is Bluetooth Classic radio test report.			

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test Report Declaration	Page
1. Version	5
2. Test Summary	6
3. Measurement Uncertainty	7
4. Product Information And Test Setup	
4.1 Product Information	
4.2 Test Setup Configuration	8
4.3 Support Equipment	
4.4 Channel List	
4.5 Test Mode	
4.6 table of parameters of text software setting	
5. Test Facility And Test Instrument Used	
5.1 Test Facility	
5.2 Test Instrument Used	
6. Conducted Emissions	
6.1 Block Diagram Of Test Setup	
6.2 Limit	
6.3 Test Procedure	
6.4 EUT Operating Conditions	
6.5 Test Result	
7. Radiated Emissions	
7.1 Block Diagram Of Test Setup	
7.2 Limit	
7.3 Test Procedure	
7.4 EUT Operating Conditions	
7.5 Test Result	
8. Radiated Band Emission Measurement And Re	stricted Bands Of Operation23
8.1 Block Diagram Of Test Setup	
 8.1 Block Diagram Of Test Setup 8.2 Limit 8.3 Test Procedure	
8.3 Test Procedure	
8.4 EUT Operating Conditions	24
8.5 Test Result	
9. Conducted Emission	
 9. Conducted Emission 9.1 Block Diagram Of Test Setup 	
9.2 Limit9.3 Test Procedure9.4 Test Result	
9.3 Test Procedure	
9.4 Test Result	
10. 20 dB Bandwidth	
10.1 Block Diagram Of Test Setup 10.2 Limit	
10.2 Limit	,
10.3 Test Procedure	
10.4 Test Result	,
11. Maximum Peak Output Power	
11.1 Block Diagram Of Test Setup	

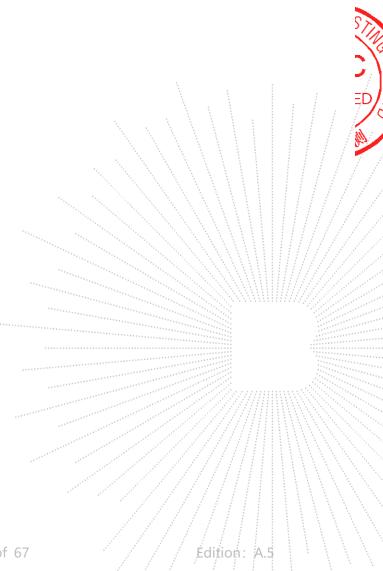
PPR

11.2 Limit	
11.3 Test Procedure	
11.4 Test Result	47
12. Hopping Channel Separation	51
12.1 Block Diagram Of Test Setup	51
12.2 Limit	51
12.3 Test Procedure	51
12.4 Test Result	52
13. Number Of Hopping Frequency	56
13.1 Block Diagram Of Test Setup	56
13.2 Limit	56
13.3 Test Procedure	56
13.4 Test Result	57
14. Dwell Time	
14.1 Block Diagram Of Test Setup	
14.2 Limit	
14.3 Test Procedure	
14.4 Test Result	59
15. Antenna Requirement	63
15.1 Limit	63
15.2 Test Result	63
16. EUT Photographs	64
17. EUT Test Setup Photographs	
· • • ·	

(Note: N/A Means Not Applicable)

TE,

T(


检

Edition: A.5

1. Version

Report No.	Issue Date	Description	Approved
BCTC2212623540E	2022-12-09	Original	Valid

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

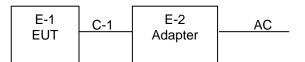
3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

ENZ

4. Product Information And Test Setup


4.1 Product Information

Model/Type reference:	ES63 ES11, ES21, ES50, ES51, ES53, ES58, ES61, ES62, ES64, ES65, ES66, ES67, ES68, ES69, ES70, ES71, ES72, ES73, ES74
Model differences:	All the model are the same circuit and RF module, except model names.
Bluetooth version:	5.3
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/4DQPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna
Antenna Gain:	2.7 dBi
Ratings:	USB:DC 5V Battery: DC 3.7V

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

A

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Wireless earphone	hoco.	ES63	N/A	EUT
E-2	Adapter	N/A	BCTC001	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.5M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74		75	2477
76	2478	77	2479	78	2480	79	/

ТC PPR

泇

Edition: A.5

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/4DQPSK)	2402MHz	2441MHz	2480MHz		
3	Charging(Conducted emission)					
4	Trar	Transmitting (Radiated emission)				

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Fully-charged battery is used during the test

4.6 table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT				
Frequency	2402 MHz	2441 MHz	2480 MHz		
Parameters	DEF	DEF	DEF		

OV

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583 FCC Designation No.: CN1212

	Conducted Emissions Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023			
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023			
Software	Frad	EZ-EMC	EMC-CON 3A1	١	١			
Attenuator	/	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023			

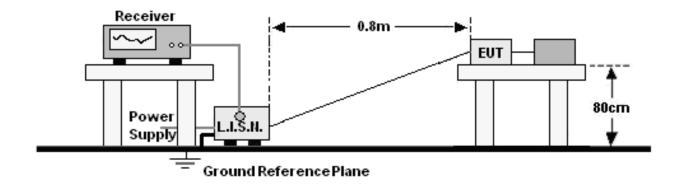
5.2 Test Instrument Used

	RF Conducted Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Power Metter	Keysight	E4419	V	May 24, 2022	May 23, 2023		
Power Sensor (AV)	Keysight	E9300A	·· <i>\</i>	May 24, 2022	May 23, 2023		
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40		May 24, 2022	May 23, 2023		

Edition: A5

Radiated Emissions Test (966 Chamber01)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023	
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023	
Receiver	R&S	ESRP	101154	May 24, 2022	May 23, 2023	
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023	
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 24, 2022	May 23, 2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 26, 2022	May 25, 2023	
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 06, 2022	Jun. 05, 2023	
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 06, 2022	Jun. 05, 2023	
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 26, 2022	May 25, 2023	
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 26, 2022	May 25, 2023	
Power Metter	Keysight	E4419	١	May 26, 2022	May 25, 2023	
Power Sensor (AV)	Keysight	E9300A	\	May 26, 2022	May 25, 2023	
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 26, 2022	May 25, 2023	
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	<i>ا</i>	May 26, 2022	May 25, 2023	
Software	Frad	EZ-EMC	FA-03A2 RE	**************************************		

30.,LTA


Edition: A 5

Page 12 of 67

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

FREQUENCY (MHz)	Limit (dBuV)
	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

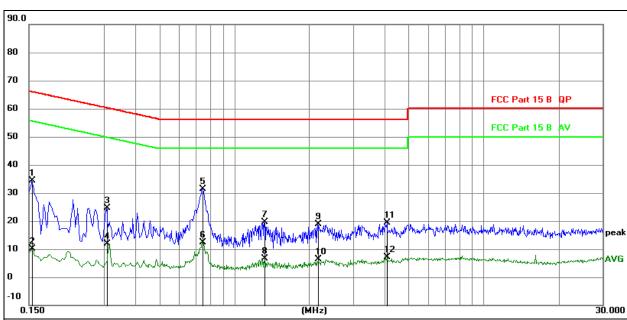
6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 3

Remark:

1. All readings are Quasi-Peak and Average values.

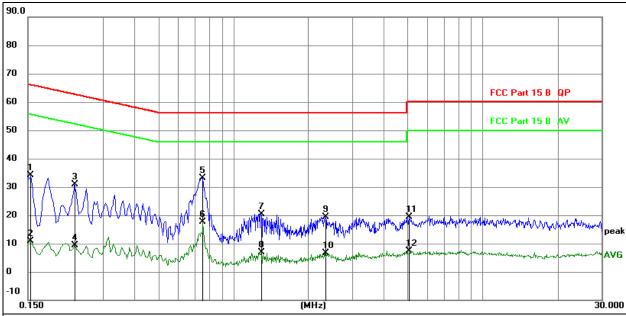
2. Factor = Insertion Loss + Cable Loss.

3. Measurement=Reading Level+ Correct Factor

4. Over=Measurement-Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1545	14.74	19.68	34.42	65.75	-31.33	QP
2	0.1545	-9.64	19.68	10.04	55.75	-45.71	AVG
3	0.3075	4.81	19.77	24.58	60.04	-35.46	QP
4	0.3075	-7.99	19.77	11.78	50.04	-38.26	AVG
5 *	0.7440	11.62	19.74	31.36	56.00	-24.64	QP
6	0.7440	-7.24	19.74	12.50	46.00	-33.50	AVG
7	1.3200	-0.22	19.80	19.58	56.00	-36.42	QP
8	1.3200	-13.26	19.80	6.54	46.00	-39.46	AVG
9	2.1660	-1.02	19.90	18.88	56.00	-37.12	QP
10	2.1660	-13.60	19.90	6.30	46.00	-39.70	AVG
11	4.0920	-0.70	20.10	19.40	56.00	-36.60	QP
12	4.0920	-13.01	20.10	7.09	46.00	-38.91	AVG

No.: BCTC/RF-EMC-005


Page 14 of 67

Edition: A 5

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 3

Remark:

1. All readings are Quasi-Peak and Average values.

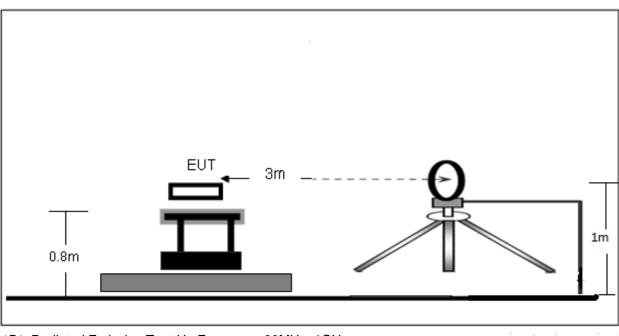
2. Factor = Insertion Loss + Cable Loss.

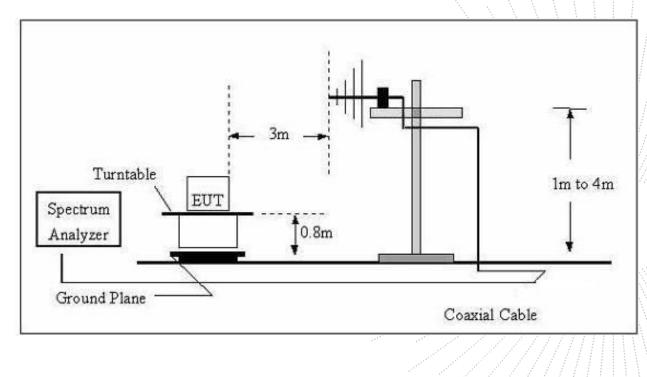
3. Measurement=Reading Level+ Correct Factor

4. Over=Measurement-Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1539	14.45	19.68	34.13	65.79	-31.66	QP
2	0.1539	-8.82	19.68	10.86	55.79	-44.93	AVG
3	0.2304	11.08	19.79	30.87	62.44	-31.57	QP
4	0.2304	-10.47	19.79	9.32	52.44	-43.12	AVG
5 *	0.7549	13.43	19.74	33.17	56.00	-22.83	QP
6	0.7549	-2.23	19.74	17.51	46.00	-28.49	AVG
7	1.2892	0.66	19.79	20.45	56.00	-35.55	QP
8	1.2892	-12.99	19.79	6.80	46.00	-39.20	AVG
9	2.3336	-0.44	19.92	19.48	56.00	-36.52	QP
10	2.3336	-13.26	19.92	6.66	46.00	-39.34	AVG
11	5.0580	-0.72	20.13	19.41	60.00	-40.59	QP
12	5.0580	-12.66	20.13	7.47	50.00	-42.53	AVG

PPR


测

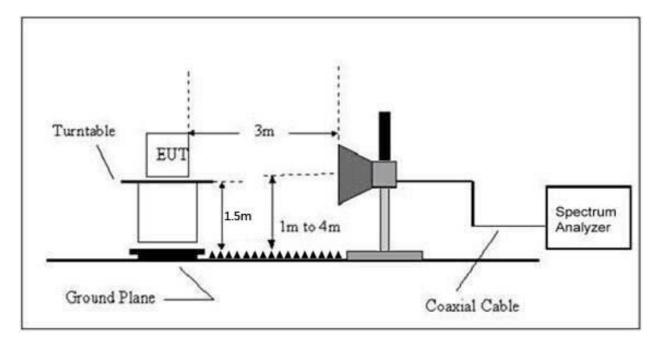

7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

ΤE,


T(

OVI

检

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Li	mit at 3m Distance
(MHz)	uV/m	(m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY		Limit (dBuV/m) (at 3M)
(MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

) ED

7.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

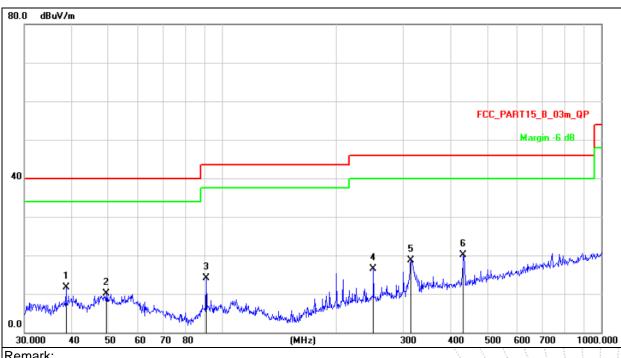
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

				PASS
			<u> </u>	PASS
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
Freq.	Reading	Limit	Margin	State
Test Mode :		Polariza		\ \ \
Test Mode :	Mode 4	Polariza	-	
Pressure:	101 kPa	Test Vo	ltage :	DC 3.7V
Temperature:	26 ℃	Relative	e Humidity:	24%

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

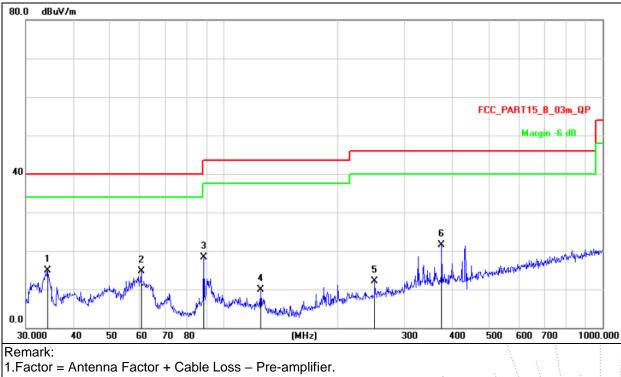
Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Remark:	N/A

Remark:

1.Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement=Reading Level+ Correct Factor


3. Over=Measurement-Limit

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		38.6160	28.60	-16.95	11.65	40.00	-28.35	QP
2		49.3594	25.83	-15.66	10.17	40.00	-29.83	QP
3		90.5374	33.23	-19.15	14.08	43.50	-29.42	QP
4		250.3012	32.24	-15.82	16.42	46.00	-29.58	QP
5		314.3765	32.75	-14.07	18.68	46.00	-27.32	QP
6	*	432.5457	31.91	-11.74	20.17	46.00	-25.83	QP

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Remark:	N/A

2. Measurement=Reading Level+ Correct Factor

3. Over=Measurement-Limit

			Deeding	Correct	Magazira			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		34.2760	32.51	-17.67	14.84	40.00	-25.16	QP
2		60.4919	31.85	-17.23	14.62	40.00	-25.38	QP
3		88.3421	37.94	-19.62	18.32	43.50	-25.18	QP
4		125.0066	29.33	-19.41	9.92	43.50	-33.58	QP
5	:	250.3011	27.93	-15.82	12.11	46.00	-33.89	QP
6	*	375.9384	34.05	-12.49	21.56	46.00	-24.44	QP

,TC 3C

测

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz) (dBuV/m) (dB) (dBuV/m)		(dBuV/ m)	(dB)	Туре		
			GFSK Low ch	annel			
V	4804.00	53.22	-0.43	52.79	74.00	-21.21	PK
V	4804.00	43.26	-0.43	42.83	54.00	-11.17	AV
V	7206.00	45.62	8.31	53.93	74.00	-20.07	PK
V	7206.00	34.97	8.31	43.28	54.00	-10.72	AV
Н	4804.00	48.43	-0.43	48.00	74.00	-26.00	PK
Н	4804.00	37.82	-0.43	37.39	54.00	-16.61	AV
Н	7206.00	42.83	8.31	51.14	74.00	-22.86	PK
Н	7206.00	34.05	8.31	42.36	54.00	-11.64	AV
		G	FSK Middle c	hannel			
V	4882.00	51.92	-0.38	51.54	74.00	-22.46	PK
V	4882.00	43.94	-0.38	43.56	54.00	-10.44	AV
V	7323.00	42.15	8.83	50.98	74.00	-23.02	PK
V	7323.00	32.67	8.83	41.50	54.00	-12.50	AV
Н	4882.00	47.45	-0.38	47.07	74.00	-26.93	PK
Н	4882.00	37.65	-0.38	37.27	54.00	-16.73	AV
Н	7323.00	40.19	8.83	49.02	74.00	-24.98	PK
Н	7323.00	33.00	8.83	41.83	54.00	-12.17	AV
		(GFSK High ch	nannel			
V	4960.00	53.87	-0.32	53.55	74.00	-20.45	PK
V	4960.00	43.37	-0.32	43.05	54.00	-10.95	AV
V	7440.00	46.97	9.35	56.32	74.00	-17.68	PK
V	7440.00	37.60	9.35	46.95	54.00	-7.05	AV
Н	4960.00	51.16	-0.32	50.84	74.00	-23.16	PK
Н	4960.00	41.94	-0.32	41.62	54.00	-12.38	AV
Н	7440.00	44.13	9.35	53.48	74.00	-20.52	PK
Н	7440.00	35.64	9.35	44.99	54.00	-9.01	AV

Between 1GHz – 25GHz

Remark:

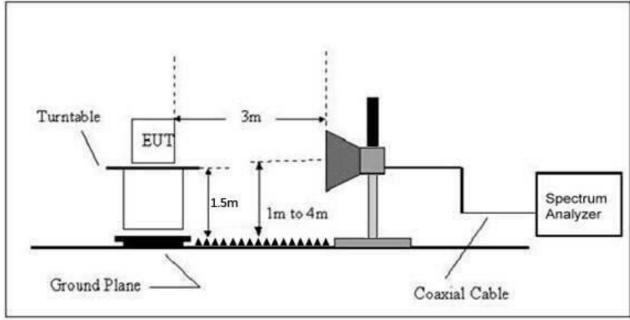
1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)		
(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1/T Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result
	(147)	(11112)	(dBuV/m)	(dB)	РК	РК	AV	
	Low Channel 2402MHz							
	Н	2390.00	54.42	-6.70	47.72	74.00	54.00	PASS
	Н	2400.00	57.54	-6.71	50.83	74.00	54.00	PASS
	V	2390.00	54.38	-6.70	47.68	74.00	54.00	PASS
GFSK	V	2400.00	58.57	-6.71	51.86	74.00	54.00	PASS
GFSN			High	h Channel 2	480MHz			
	Н	2483.50	57.91	-6.79	51.12	74.00	54.00	PASS
	Н	2500.00	52.39	-6.81	45.58	74.00	54.00	PASS
	V	2483.50	56.49	-6.79	49.70	74.00	54.00	PASS
	V	2500.00	52.50	-6.81	45.69	74.00	54.00	PASS
			Low	Channel 24	402MHz			
	Н	2390.00	53.03	-6.70	46.33	74.00	54.00	PASS
	Н	2400.00	56.15	-6.71	49.44	74.00	54.00	PASS
	V	2390.00	53.16	-6.70	46.46	74.00	54.00	PASS
π/4DQPSK	V	2400.00	57.35	-6.71	50.64	74.00	54.00	PASS
			High	Channel 2	480MHz			
	Н	2483.50	55.64	-6.79	48.85	74.00	54.00	PASS
	Н	2500.00	51.94	-6.81	45.13	74.00	54.00	PASS
	V	2483.50	56.34	-6.79	49.55	74.00	54.00	PASS
	V	2500.00	52.87	-6.81	46.06	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Conducted Emission

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

9.3 Test Procedure

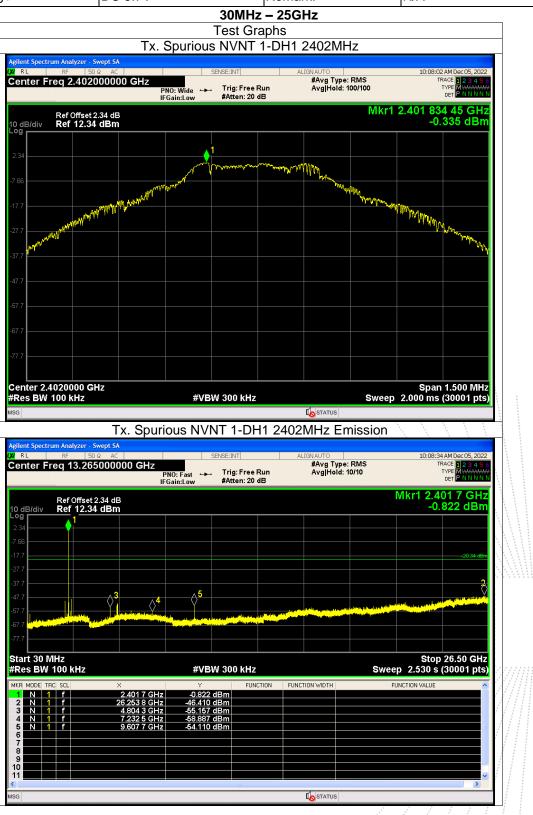
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: Below 1GHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 1GHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

Page 26 of 67

Edition: A.5

,TC 3C

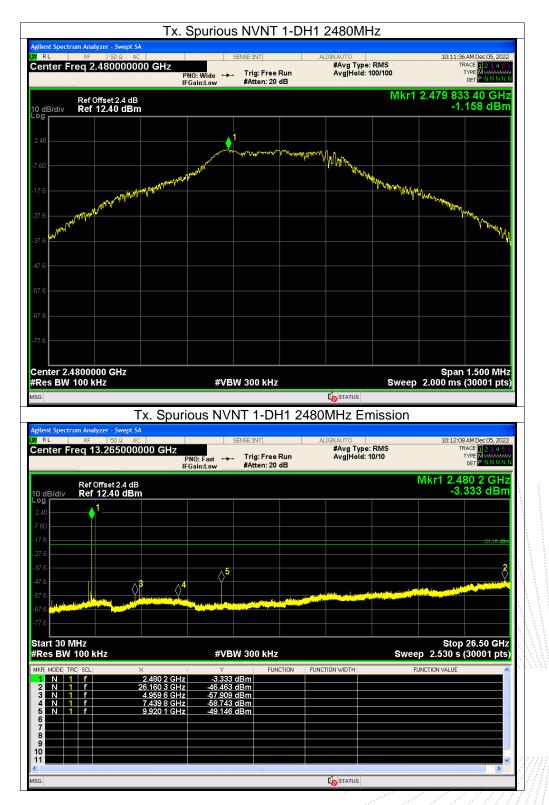

PR

* 测

Edition: A 5

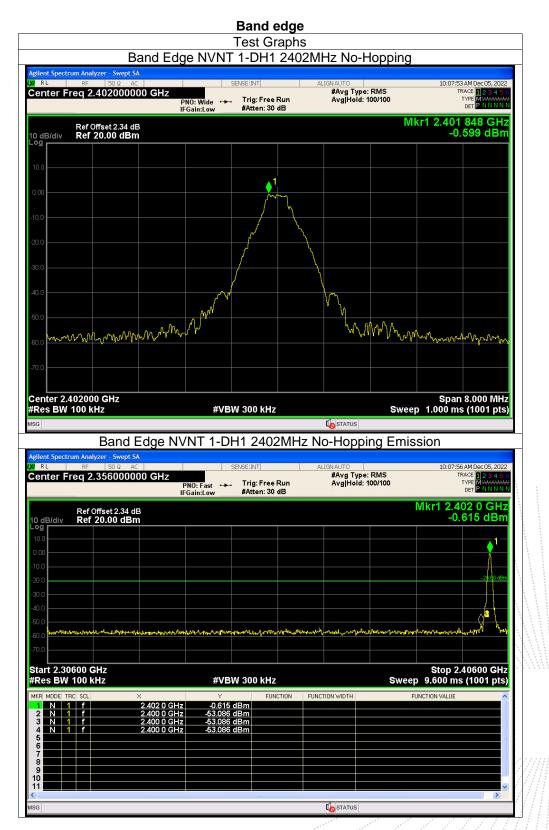
9.4 Test Result

Temperature :	26 ℃	Relative Humidity:	54%
Test Voltage :	DC 3.7V	Remark:	N/A

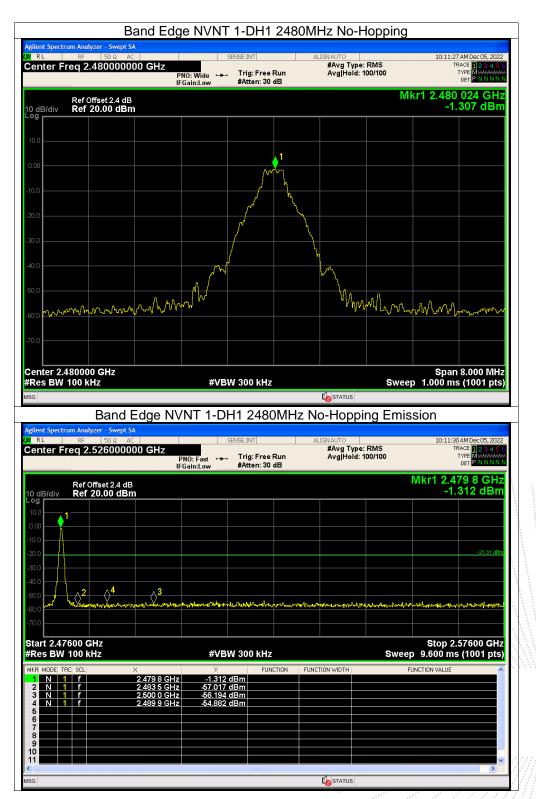


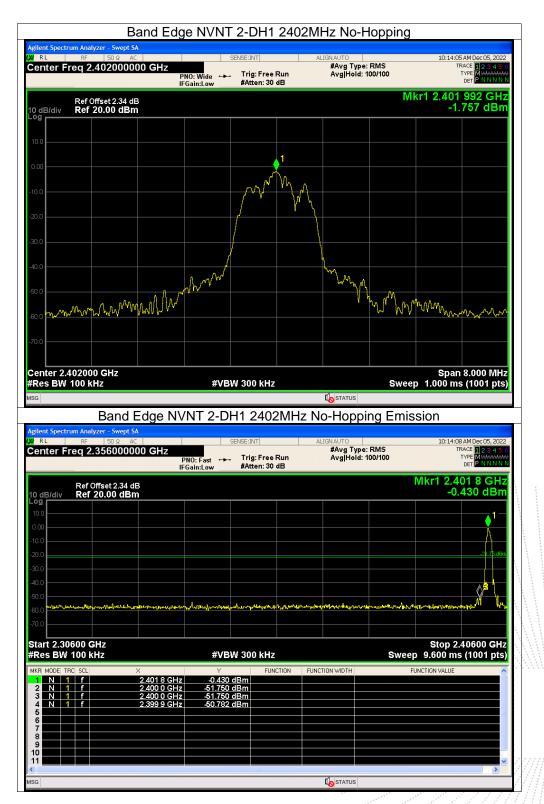
No.: BCTC/RF-EMC-005

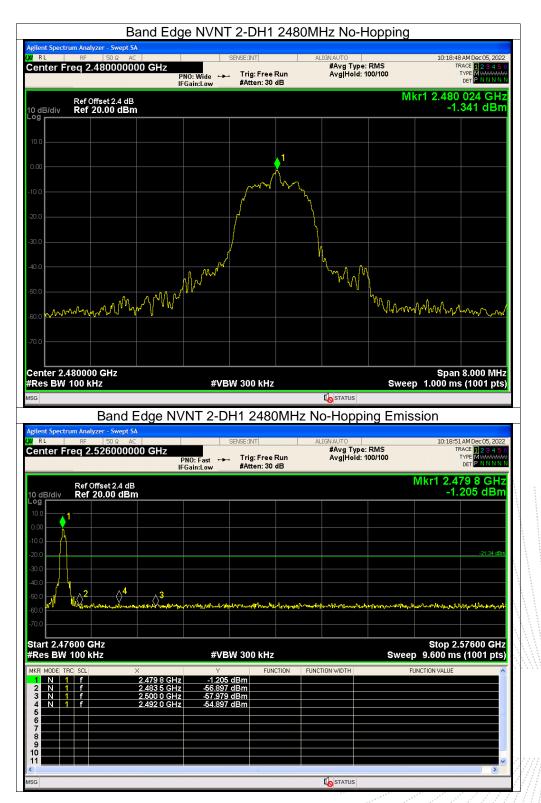
ilent Spectrum Ana R L RF	50 Ω AC		SENSE:INT	ALIGNAUTO	PMC	10:14:14 AM Dec 05, 2022
enter Freq 2	.402000000 GHz	PNO: Wide ↔ IFGain:Low	 Trig: Free Run #Atten: 20 dB 	#Avg Type Avg Hold:	: RMS 100/100	TRACE 12345 TYPE MWWWW DET PNNNN
	Offset 2.34 dB				Mkr1 2.	401 833 40 GH: -0.388 dBn
dB/div Ref	12.34 dBm					-0.000 abii
.34			1			
.66	. Millithe mark from an off	HAMPARAMAN VV	Mallar	Manardala Andrewski and a start an	U.Annoving providential	JMW.
7.7	and and a line of the second se					Marx
7.7 Winning						W. W. W.
						v
7.7						
7.7						
7.7						
7.7						
7.7						
enter 2.40200 Res BW 100 k		#V	BW 300 kHz		Sweep 2	Span 1.500 MH: 000 ms (30001 pts)
G				I STATUS		
	Tx. Sp	ourious N∖	/NT 2-DH1	2402MHz Er	nission	
ilent Spectrum Ana R L RF	lyzer - Swept SA 50 Ω AC		SENSE:INT			
				ALIGNAUTO	DMC	10:14:46 AM Dec 05, 2022
enter Freq 1	3.265000000 GH	IZ PNO: Fast ↔ IFGain:Low	⊷ Trig: Free Run #Atten: 20 dB	#Avg Type		10:14:46 AM DEC05, 2022 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref	3.265000000 GH Offset 2.34 dB	PNO: Fast ↔		#Avg Type	10/10	TRACE 12345 TYPE MWWWW DET PNNNN
Ref dB/div Ref	3.265000000 GH	PNO: Fast ↔		#Avg Type	10/10	TRACE 12345 TYPE MWWWW DET PNNNN
Ref 0 dB/div Ref 9 2.34	3.265000000 GH Offset 2.34 dB	PNO: Fast ↔		#Avg Type	10/10	TRACE 12345 TYPE MWWWW DET PNNNN
Ref 0 dB/div Ref 2 d 2 dB/div Ref 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d	3.265000000 GH Offset 2.34 dB	PNO: Fast ↔		#Avg Type	10/10	TRACE 12345 TYPE MWWWW DET PNNNN
Ref odB/div Ref 9 334 .66 7.7 7.7 7.7	3.265000000 GH Offset 2.34 dB	PN0: Fast → IFGain:Low		#Avg Type	10/10	TRACE 12345 TYPE MWWWW DET PNNNN
Ref 0 dB/div Ref 9 334 66 7.7 7.7 7.7 7.7 7.7	3.265000000 GH Offset 2.34 dB	PNO: Fast ↔		#Avg Type	10/10	TRACE 12345 TYPE MWWWW DET PNNNN
Ref 0 dB/div Ref 0 d	3.265000000 GH Offset 2.34 dB	PN0: Fast → IFGain:Low		#Avg Type	10/10	10:14:46 AM Dec 05, 2022 TRACE [] 2 3 4 5 TYPE MANNAN Kr1 2.401 7 GH2 -5.106 dBm -20:30 48m 2
Ref 0 dB/div Ref 0 g	3.265000000 GH Offset 2.34 dB	PN0: Fast → IFGain:Low		#Avg Type	10/10	TRACE 12 3 4 5 TYPE MANNAU OFF P NNNN Kr1 2.401 7 GH2 -5.106 dBm
Ref 0 dB/div Ref 9g 134 66 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	3.265000000 GH	PN0: Fast H IFGain:Low		#Avg Type		TRACE 12 3 4 5 TYPE M WWWWPE P N N NN Kr1 2.401 7 GHz -5.106 dBm -20 30 dBm -20 30 dBm -20 50 dBm -20 50 dBm
Ref 0 dB/div 9 9 9 9 9 9 9 9 9 9 9 9 9	3.265000000 GH	PN0: Fast H IFGain:Low H	#Atten: 20 dB	#Avg Type Avg Hold:	10/10	TRACE 12345 TYPE MWWWW DET PNNNN Kr1 2.401 7 GHz
Ref 0 dB/div Ref 7 Ref 8 MODE 1 N 2 N 1 N	3.265000000 GH	PN0: Fast H IFGain:Low 4 4 5 4 4 4 4 5 8 4 4 4 4 7 6 17 5.28	#Atten: 20 dB	#Avg Type Avg Hold:	10/10	TRACE II 2 3 4 5 TYPE M MINIMUM PET P NNNN (r1 2.401 7 GHz -5.106 dBm -20 30 dBm -20 30 dBm -20 50
Ref 0 dB/div Ref 7.7 Ref 7.7 Res 7.7 Res 7.7 Res 8 M 100 H 1 N 1 f 2 N 1 f 4 N 1 f 5 N 1 f 4 N 1 f	3.265000000 GH	PN0: Fast H IFGain:Low #VI	#Atten: 20 dB	#Avg Type Avg Hold:	10/10	TRACE II 2 3 4 5 TYPE M MINIMUM PET P NNNN (r1 2.401 7 GHz -5.106 dBm -20 30 dBm -20 30 dBm -20 50
Ref 0 B/div Ref 0 B/div Ref 0 G G 134	3.265000000 GH	PN0: Fast H IFGain:Low #VI	#Atten: 20 dB	#Avg Type Avg Hold:	10/10	TRACE II 2 3 4 5 TYPE M MINIMUM PET P NNNN (r1 2.401 7 GHz -5.106 dBm -20 30 dBm -20 30 dBm -20 50
Ref 0 dB/div Ref 0 g	3.265000000 GH	PN0: Fast H IFGain:Low #VI	#Atten: 20 dB	#Avg Type Avg Hold:	10/10	TRACE II 2 3 4 5 TYPE M MINIMUM PET P NNNN (r1 2.401 7 GHz -5.106 dBm -20 30 dBm -20 30 dBm -20 50



CHENZHE




TC 3C PPR



Edition: A5

Band Edge(Hopping)

Edition: A5

Edition: A5

E

A

1

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test Procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

No.: BCTC/RF-EMC-005

Page 41 of 67

Edition: A 5

10.4 Test Result

Temperature :	26 °C		Relative Humidit	ty :	54%
Test Voltage :	DC 3.7	V	Remark:		N/A
Modulation		Test Cha	innel		Bandwidth(MHz)
GFSK		Low			0.941
GFSK		Middl	e		0.927
GFSK		High			0.926
π/4DQPSK		Low			1.278
π/4DQPSK		Middl	e		1.262
π/4DQPSK		High			1.235

E

No.: BCTC/RF-EMC-005

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

11.2 Limit

		FCC Part15 (15.247),	Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

11.3 Test Procedure

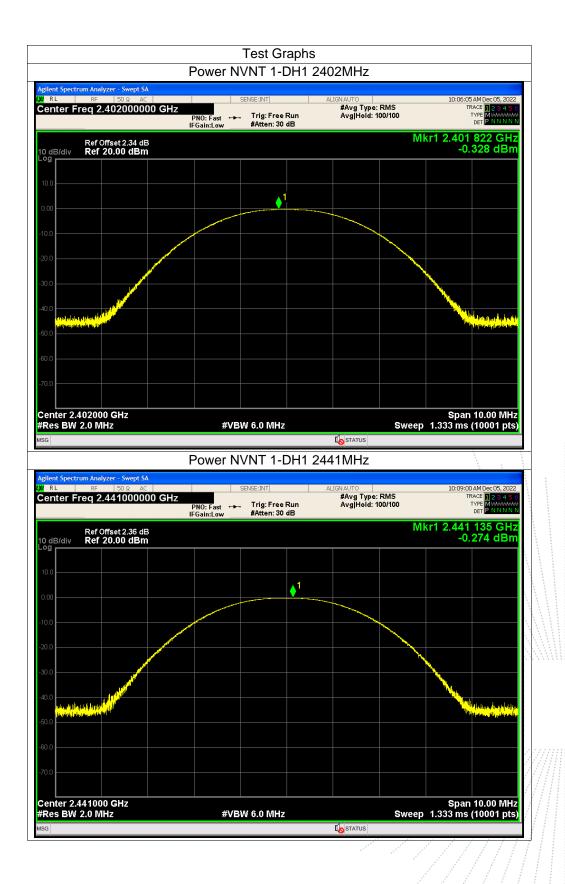
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

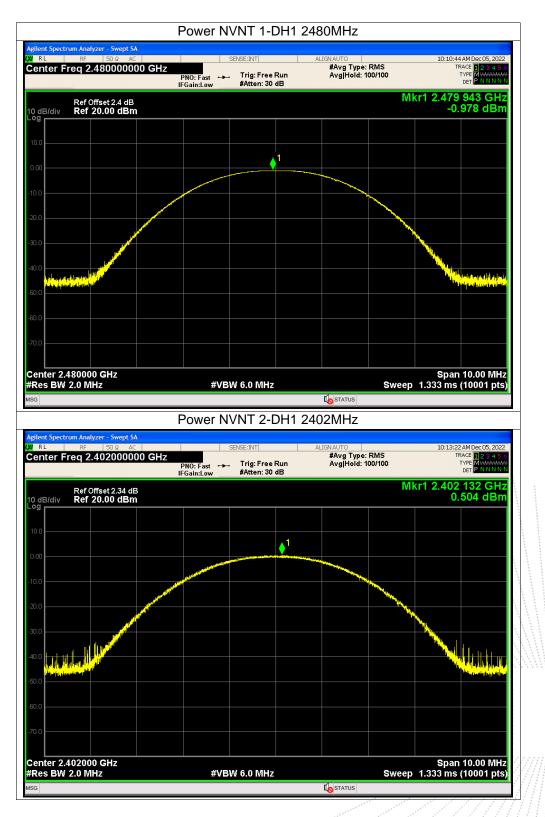
No.: BCTC/RF-EMC-005

Page 46 of 67

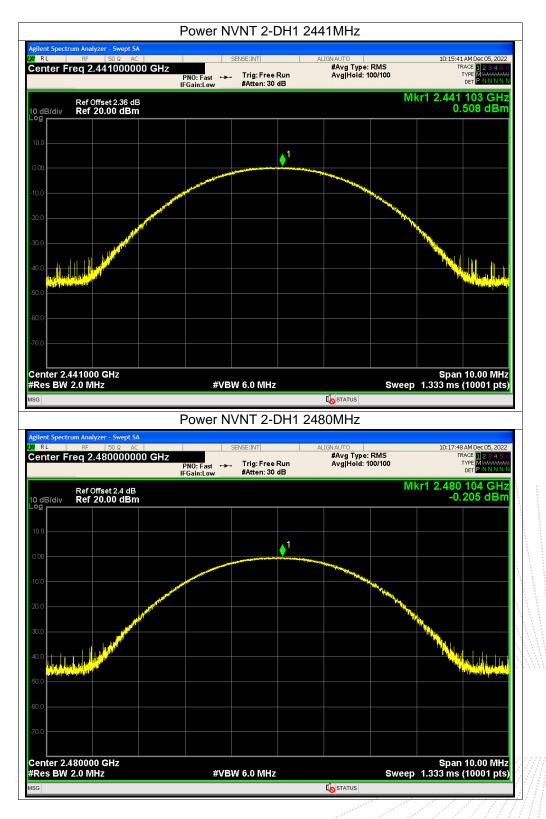
Edition: A.5


11.4 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Test Voltage :	DC 3.7V	Remark:	N/A
	ſ		1
Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	-0.33	21
GFSK	Middle	-0.27	21
GFSK	High	-0.98	21
π/4DQPSK	Low	0.5	21
π/4DQPSK	Middle	0.51	21
π/4DQPSK	High	-0.21	21


No.: BCTC/RF-EMC-005

ΞD



ALENZHS

No.

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test Procedure

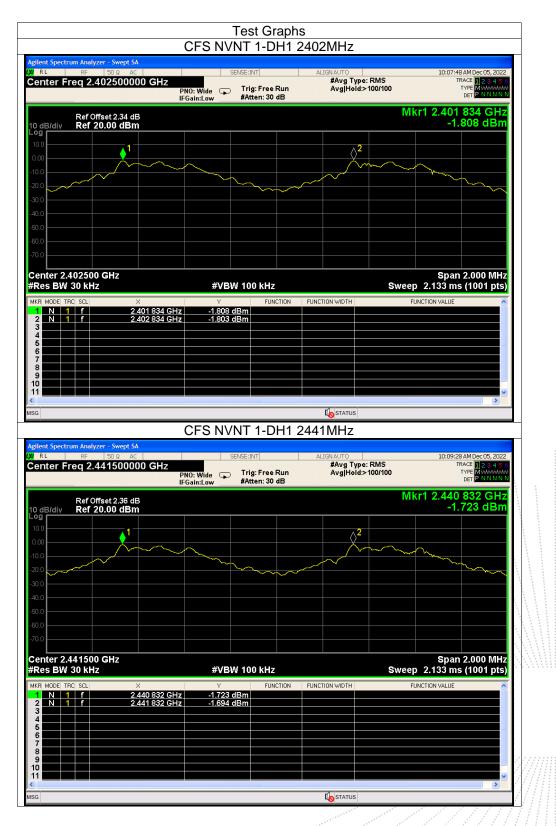
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

٩PF

12.4 Test Result


Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	1	0.941	PASS
GFSK	Middle	1	0.927	PASS
GFSK	High	1.002	0.926	PASS
π/4DQPSK	Low	1	0.852	PASS
π/4DQPSK	Middle	1	0.841	PASS
π/4DQPSK	High	1	0.823	PASS

No.: BCTC/RF-EMC-005

Edition: A 5

i <mark>lent Spectrum Analyzer</mark> R L RF		oraion -	DIT.	NICH NITO		10:11:0	LIM Dec 05, 2022
enter Freq 2.47	9500000 GHz		g: Free Run ten: 30 dB	ALIGN AUTO #Avg Type Avg Hold:>			3 AM Dec 05, 2022 RACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN
dB/div Ref 20.	et 2.4 dB .00 dBm				Μ	kr1 2.478 -2.	830 GHz 489 dBm
2 9 2.0							
00							
1.0 1.0							
D.O							
).0							
0.0							
enter 2.479500 G Res BW 30 kHz	GHz	#VBW 10	0 kHz		Swee	Span p 2.133 ms	2.000 MHz s (1001 pts)
R MODE TRC SCL	× 2.478 830 GHz	۲ -2.489 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	^
2 N 1 f	2.479 832 GHz	-2.457 dBm					
							E
1							>
3				I STATUS			
last Carataura Arabara		FS NVNT	2-DH1 2	2402MHz			
	50 Ω AC	SENSE:	NT	ALIGN AUTO #Avg Type	DMC	10:14:0	1 AM Dec 05, 2022
enter Freq 2.40			g: Free Run				
	IFG		ten: 30 dB	Avg Hold:>	- 100/100		RACE 123456 TYPE MWWWWWW DET PNNNNN
Ref Offs	et 2.34 dB	ain:Low #At	ten: 30 dB	Avginoid.>		kr1 2.401	834 GHz
dB/div Ref 20.			ten: 30 dB			kr1 2.401	
dB/div Ref 20.	et 2.34 dB		ten: 30 dB			kr1 2.401	834 GHz
0 dB/div Ref 20.	et 2.34 dB		ten: 30 dB			kr1 2.401	834 GHz
dB/div Ref 20. 20	et 2.34 dB		ten: 30 dB			kr1 2.401	834 GHz
b dB/div Ref 20.	et 2.34 dB					kr1 2.401	834 GHz
dB/div Ref 20.	et 2.34 dB		ten: 30 dB			kr1 2.401	834 GHz
a B/div Ref 20.	et 2.34 dB					kr1 2.401	834 GHz
All Adiv Ref 20. 9 0 0 0 0 0 0 0 0 0 0 0 0 0	et 2.34 dB 00 dBm					kr1 2.401 -1.	834 GHz 874 dBm
Ref 20. 9 9 9 9 9 9 9 9 9 9 9 9 9	et 2.34 dB 00 dBm	#VBW 10	0 KHz		Swee	kr1 2.401 -1.	834 GHz 874 dBm
dB/div Ref 20. 9	et 2.34 dB .00 dBm	#VBW 10	0 kHz FUNCTION		Swee	kr1 2.401 -1.	834 GHz 874 dBm
Ref 20. Ref	et 2.34 dB 0.0 dBm	#VBW 10	0 kHz FUNCTION		Swee	kr1 2.401 -1.	834 GHz 874 dBm
dB/div Ref 20. 9	et 2.34 dB .00 dBm	#VBW 10	0 kHz FUNCTION		Swee	kr1 2.401 -1.	834 GHz 874 dBm
dB/div Ref 20. 9	et 2.34 dB 00 dBm	#VBW 10	0 kHz FUNCTION		Swee	kr1 2.401 -1.	834 GHz 874 dBm
deB/div Ref 20. 99	et 2.34 dB 00 dBm	#VBW 10	0 kHz		Swee	kr1 2.401 -1.	834 GHz 874 dBm

RL RF 5 enter Freq 2.441		SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	10:16:56 AM Dec 05, 2022 TRACE 1 2 3 4 5 6 TYPE MUMANANA
	IFGa	n:Low #Atten: 30 dB	M	bet PINNNNN kr1 2.440 832 GHz
Ref Offset dB/div Ref 20.0	12.36 dB 10 dBm			-1.698 dBm
0.0	1			
	\wedge	\sim		
).0 .0				
).0				
).0).0				
).0				
enter 2.441500 Gł Res BW 30 kHz	Hz	#VBW 100 kHz	Swoo	Span 2.000 MHz p 2.133 ms (1001 pts)
R MODE TRC SCL	X	Y FUNCTION		
N 1 f 2 N 1 f	2.440 832 GHz 2.441 832 GHz	-1.698 dBm -1.717 dBm		
				=
6 7 3				
9 D 1				
		lini	STATUS	> >
	-			
	C	FS NVNT 2-DH1 2	2480MHz	
	Swept SA	FS NVNT 2-DH1 2		10-10-10-00 00-00-0000
RL RF 5	Swept SA 50 Ω AC 9500000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	10:18:43 AM Dec 05, 2022 TRACE 1 2 3 4 5 6 TYPE MANNAN
RL RF 5 enter Freq 2.479	Swept SA 10 Ω AC 0500000 GHz PNO; IFGa	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWW Det PNNNNN kr1 2.478 832 GHz
RL RF 5 enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 50 Ω AC 5500000 GHz PNO: IFGa t2.4 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	10:18:43AM Dec 05, 2022 TRACE 2 3 4 5 6 TYPE MWWWWW DET PNNNNN kr1 2.478 832 GHz -2.486 dBm
RL RF 5 enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 50 Ω AC 5500000 GHz PNO: IFGa t2.4 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWW Det PNNNNN kr1 2.478 832 GHz
RL RF S enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 100 AC 1500000 GHz IFGa 12.4 dB 10 dBm	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWW Det PNNNNN kr1 2.478 832 GHz
RL RF S	Swept SA 100 AC 1500000 GHz IFGa 12.4 dB 10 dBm	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWW Det PNNNNN kr1 2.478 832 GHz
RL RF S S enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 100 AC 1500000 GHz IFGa 12.4 dB 10 dBm	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWW Det PNNNNN kr1 2.478 832 GHz
RL RF S	Swept SA 100 AC 1500000 GHz IFGa 12.4 dB 10 dBm	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWW Det PNNNNN kr1 2.478 832 GHz
RL RF S S enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 100 AC 1500000 GHz IFGa 12.4 dB 10 dBm	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWW Det PNNNNN kr1 2.478 832 GHz
enter 2.479500 G	Swept SA IDD AC IDD AC IDD AC IFGa IDD AB IDD AB IDD AB IDD AC IFGA IDD AC IFGA IDD AC IFGA IDD AC IFGA IFGA	Vide Frig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 12.3 4 5 6 TYPE MYNE kr1 2.478 832 GHz -2.486 dBm
RL R5 IS enter Freq 2.479 Ref Offset Bender State dB/div Ref 20.0 Ref 20.0 00 Ref 20.0 Ref 20.0	Swept SA ID R AC PRO- ID D D D D D D D D D D D D D D D D D D	Wide Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100 M	kr1 2.478 832 GHz -2.486 dBm
RL RE S enter Freq 2.479 Ref Offset dB/div Ref 20.0 9	Swept SA DD AC D500000 GHz PNO: IFGa t2.4 dB 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Wide Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100 M	TRACE 12.3 4 5 6 TYPE MININA kr1 2.478 832 GHz -2.486 dBm -2.486 dBm -2.486 dBm Span 2.000 MHz -2.133 ms (1001 pts)
RL RE S enter Freq 2.479 Ref Offset dB/div Ref 20.0 00	Swept 5A 102 AC 1500000 GHz PN0: IFGa 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Wide Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100 M	TRACE 12.3 4 5 6 TYPE MININA kr1 2.478 832 GHz -2.486 dBm -2.486 dBm -2.486 dBm Span 2.000 MHz -2.133 ms (1001 pts)
RL RE IS enter Freq 2.479 Ref Offset dB/div Ref 20.0 99	Swept 5A 102 AC 1500000 GHz PN0: IFGa 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Wide Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100 M	TRACE 12.3 4 5 6 TYPE MININA kr1 2.478 832 GHz -2.486 dBm -2.486 dBm -2.486 dBm Span 2.000 MHz -2.133 ms (1001 pts)
RL RF SCL Ref Offset B/div Ref 20.0 Ref Offset B/div Ref 20.0 Comparison Ref Offset B/div Ref 20.0 Comparison Ref Offset Ref Off	Swept 5A 102 AC 1500000 GHz PN0: IFGa 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Wide Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100 M	trace 12 04 9 6 ver NNNNN kr1 2.478 832 GHz -2.486 dBm -2.486 dBm -2.486 dBm Span 2.000 MHz -2.133 ms (1001 pts)

2 CO..L72