# **TEST REPORT** FCC ID: 2AX2R-TWS04K **Product: Bluetooth earphone** Model No.: AG-TWS04K Additional Model No.: AG-TWS04K-WH Trade Mark: ag Report No.: TCT201029E017 Issued Date: Nov. 04, 2020 Issued for: final Inc. 3-12-7 Kitakase, Saiwai-ku, Kawasaki-shi Kanagawa 212-0057, Japan Issued By: Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339 FAX: +86-755-27673332 **Note:** This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample. Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com # **TABLE OF CONTENTS** | 1. Test Certification | | |-----------------------------------------------|----| | 2. Test Result Summary | 4 | | 3. EUT Description | | | 4. General Information | 7 | | 4.1. Test environment and mode | 7 | | 4.2. Description of Support Units | | | 5. Facilities and Accreditations | 8 | | 5.1. Facilities | 8 | | 5.2. Location | | | 5.3. Measurement Uncertainty | 8 | | 6. Test Results and Measurement Data | 9 | | 6.1. Antenna requirement | | | 6.2. Conducted Emission | 10 | | 6.3. Conducted Output Power | | | 6.4. 20dB Occupy Bandwidth | 19 | | 6.5. Carrier Frequencies Separation | 24 | | 6.6. Hopping Channel Number | | | 6.7. Dwell Time | | | 6.8. Pseudorandom Frequency Hopping Sequence | 37 | | 6.9. Conducted Band Edge Measurement | | | 6.10. Conducted Spurious Emission Measurement | 42 | | 6.11. Radiated Spurious Emission Measurement | 46 | | Appendix A: Photographs of Test Setup | | | Appendix B: Photographs of EUT | | 1. Test Certification Report No.: TCT201029E017 | Product: | Bluetooth earphone | |--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Model No.: | AG-TWS04K | | Additional<br>Model No.: | AG-TWS04K-WH | | Trade Mark: | ag (S) | | Applicant: | final Inc. | | Address: | 3-12-7 Kitakase, Saiwai-ku, Kawasaki-shi Kanagawa 212-0057, Japan | | Manufacturer: | SHENZHEN SHI KISB ELECTRONIC CO., LTD. | | Address: | F4, 5, BlockB, F3, Building A, Shanghe Industrial Park, Nanchang Village, Hangcheng Avenue, Xixiang Town, Bao'an District, Shenzhen City, Guangdong Province, China. (Zip Code: 518000) | | Date of Test: | Oct. 30, 2020 – Nov. 03, 2020 | | Applicable<br>Standards: | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10:2013 | The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. | Tested By: | Brane. Leng. | Date: | Nov. 03, 2020 | |--------------|--------------|-------|---------------| | | Brave Zeng | ) | | | Reviewed By: | Bery zhao | Date: | Nov. 04, 2020 | | Approved By: | Beryl Zhao | Date: | Nov. 04, 2020 | | | Tomsin | | | # 2. Test Result Summary | Requirement | CFR 47 Section | Result | |-----------------------------------|---------------------|--------| | Antenna Requirement | §15.203/§15.247 (c) | PASS | | AC Power Line Conducted Emission | §15.207 | PASS | | Conducted Peak Output<br>Power | §15.247 (b)(1) | PASS | | 20dB Occupied Bandwidth | §15.247 (a)(1) | PASS | | Carrier Frequencies<br>Separation | §15.247 (a)(1) | PASS | | Hopping Channel Number | §15.247 (a)(1) | PASS | | Dwell Time | §15.247 (a)(1) | PASS | | Radiated Emission | §15.205/§15.209 | PASS | | Band Edge | §15.247(d) | PASS | #### Note: - 1. PASS: Test item meets the requirement. - 2. Fail: Test item does not meet the requirement. - 3. N/A: Test case does not apply to the test object. - 4. The test result judgment is decided by the limit of test standard. Page 4 of 74 # 3. EUT Description | Product: | Bluetooth earphone | |------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------| | Model No.: | AG-TWS04K | | Additional Model No.: | AG-TWS04K-WH | | Trade Mark: | ag | | Bluetooth Version: | V5.0 | | Operation Frequency: | 2402MHz~2480MHz | | Transfer Rate: | 1/2/3 Mbits/s | | Number of Channel: | 79 | | Modulation Type: | GFSK, π/4-DQPSK, 8DPSK | | Modulation Technology: | FHSS | | Antenna Type: | Ceramic Antenna | | Antenna Gain: | 5.22dBi | | Power Supply: | Rechargeable Li-ion Battery DC 3.7V | | Remark: | All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement. | **Note:** The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter. ### Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | |-----------|-----------|---------|-----------|---------|-----------|---------|-----------| | 0 | 2402MHz | 20 | 2422MHz | 40 | 2442MHz | 60 | 2462MHz | | <u> 1</u> | 2403MHz | 21 | 2423MHz | 41 | 2443MHz | 61 | 2463MHz | | | | | | | | | | | 10 | 2412MHz | 30 | 2432MHz | 50 | 2452MHz | 70 | 2472MHz | | 11 | 2413MHz | 31 | 2433MHz | 51 | 2453MHz | 71 | 2473MHz | | | | | | | | | | | 18 | 2420MHz | 38 | 2440MHz | 58 | 2460MHz | 78 | 2480MHz | | 19 | 2421MHz | 39 | 2441MHz | 59 | 2461MHz | | - | Remark: Channel 0, 39 &78 have been tested for GFSK, $\pi$ /4-DQPSK, 8DPSK modulation mode. TESTING CENTRE TECHNOLOGY Report No.: TCT201029E017 ## 4. General Information #### 4.1. Test environment and mode | Operating Environment: | | | | | |------------------------|------------------------------------------------------------------------------------------------------|-------------------|--|--| | Condition | Conducted Emission | Radiated Emission | | | | Temperature: | 25.0 °C | 25.0 °C | | | | Humidity: | 55 % RH | 55 % RH | | | | Atmospheric Pressure: | 1010 mbar | 1010 mbar | | | | Test Mode: | | | | | | Engineering mode: | Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery | | | | The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case( Z axis) are shown in Test Results of the following pages. # 4.2. Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | Equipment | Model No. | Serial No. | FCC ID | Trade Name | |-----------|-----------|----------------------|--------|------------| | Adapter | JD-050200 | 20120109075767<br>35 | | | #### Note: - 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. - 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use. - 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments. Page 7 of 74 5. Facilities and Accreditations #### 5.1. Facilities The test facility is recognized, certified, or accredited by the following organizations: • FCC - Registration No.: 645098 Shenzhen Tongce Testing Lab. The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. • IC - Registration No.: 10668A-1 The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing #### 5.2. Location Shenzhen Tongce Testing Lab. Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China Tel: 86-755-27673339 ## 5.3. Measurement Uncertainty The reported uncertainty of measurement $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %. | No. | Item | MU | |-----|-------------------------------|---------| | 1 | Conducted Emission | ±2.56dB | | 2 | RF power, conducted | ±0.12dB | | 3 | Spurious emissions, conducted | ±0.11dB | | 4 | All emissions, radiated(<1G) | ±3.92dB | | 5 | All emissions, radiated(>1G) | ±4.28dB | | 6 | Temperature | ±0.1°C | | 7 | Humidity | ±1.0% | Report No.: TCT201029E017 ### Test Results and Measurement Data ## 6.1. Antenna requirement ## **Standard requirement:** FCC Part15 C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. #### **E.U.T Antenna:** The Bluetooth antenna is ceramic antenna which permanently attached, and the best case gain of the antenna is 5.22dBi. ## 6.2. Conducted Emission # 6.2.1. Test Specification | Test Requirement: | FCC Part15 C Section | 15.207 | No. | | | | |-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | Test Method: | ANSI C63.10:2013 | ANSI C63.10:2013 | | | | | | Frequency Range: | 150 kHz to 30 MHz | (C) | (C) | | | | | Receiver setup: | RBW=9 kHz, VBW=30 | kHz, Sweep time | e=auto | | | | | | Frequency range | Limit ( | dBuV) | | | | | | (MHz) | Quasi-peak | Average | | | | | Limits: | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | | 0.5-5 | 56 | 46 | | | | | | 5-30 | 60 | 50 | | | | | | Referenc | e Plane | 701 | | | | | Test Setup: | Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No. Test table height=0.8m | EMI<br>Receiver | — AC power | | | | | Test Mode: | Refer to item 4.1 | | | | | | | Test Procedure: | <ol> <li>The E.U.T is conner impedance stabilize provides a 500hm/s measuring equipme</li> <li>The peripheral device power through a Licoupling impedance refer to the block photographs).</li> <li>Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10:2013 of the conducted interface.</li> </ol> | ration network 50uH coupling im nt. ces are also connects are also connects with 50ohm terror diagram of the line are checkence. In order to five positions of equality must be changed. | (L.I.S.N.). This appedance for the ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum and the maximum aipment and all of according to | | | | | Test Result: | PASS | | | | | | | | | | | | | | #### 6.2.2. Test Instruments | Conducted Emission Shielding Room Test Site (843) | | | | | | |---------------------------------------------------|-----------------------|-----------|---------------|-----------------|--| | Equipment | Manufacturer | Model | Serial Number | Calibration Due | | | Test Receiver | R&S | ESCI3 | 100898 | Jul. 27, 2021 | | | LISN-2 | Schwarzbeck | NSLK 8126 | 8126453 | Sep. 11, 2021 | | | Line-5 | TCT | CE-05 | N/A | Sep. 02, 2021 | | | EMI Test Software | Shurple<br>Technology | EZ-EMC | N/A | N/A | | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). #### 6.2.3. Test data ## Please refer to following diagram for individual #### Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz) | Site | Phase: L1 | remperature. | 25 (C) | |------------------------------------|-----------|--------------|--------| | Limit: FCC Part 15C Conduction(QP) | Power: | Humidity: 55 | 5 %RH | | No. | Mk. | Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.2580 | 23.10 | 10.13 | 33.23 | 61.50 | -28.27 | QP | | | 2 | | 0.2580 | 8.66 | 10.13 | 18.79 | 51.50 | -32.71 | AVG | | | 3 | | 0.6500 | 12.30 | 10.12 | 22.42 | 56.00 | -33.58 | QP | | | 4 | | 0.6500 | 1.87 | 10.12 | 11.99 | 46.00 | -34.01 | AVG | | | 5 | | 5.0739 | 10.58 | 10.13 | 20.71 | 60.00 | -39.29 | QP | | | 6 | | 5.0739 | 2.67 | 10.13 | 12.80 | 50.00 | -37.20 | AVG | | | 7 | | 8.8820 | 11.69 | 10.15 | 21.84 | 60.00 | -38.16 | QP | | | 8 | | 8.8820 | 3.14 | 10.15 | 13.29 | 50.00 | -36.71 | AVG | | | 9 | | 17.7620 | 16.06 | 10.19 | 26.25 | 60.00 | -33.75 | QP | | | 10 | | 17.7620 | 11.30 | 10.19 | 21.49 | 50.00 | -28.51 | AVG | | | 11 | | 27.9100 | 21.79 | 10.24 | 32.03 | 60.00 | -27.97 | QP | | | 12 | * | 27.9100 | 16.13 | 10.24 | 26.37 | 50.00 | -23.63 | AVG | | #### Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB) $Limit (dB\mu V) = Limit stated in standard$ $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ Q.P. =Quasi-Peak AVG =average Report No.: TCT201029E017 <sup>\*</sup> is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz #### Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) Site Phase: N Temperature: 25 (C) Limit: FCC Part 15C Conduction(QP) Power: Humidity: 55 %RH | No. Mk. | Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over | | | |---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | 0.1565 | 27.77 | 10.22 | 37.99 | 65.65 | -27.66 | QP | | | 2 | 0.1565 | 12.62 | 10.22 | 22.84 | 55.65 | -32.81 | AVG | | | 3 | 0.6660 | 11.11 | 10.23 | 21.34 | 56.00 | -34.66 | QP | | | 4 | 0.6660 | 2.86 | 10.23 | 13.09 | 46.00 | -32.91 | AVG | | | 5 | 2.8380 | 6.62 | 10.46 | 17.08 | 56.00 | -38.92 | QP | | | 6 | 2.8380 | -2.46 | 10.46 | 8.00 | 46.00 | -38.00 | AVG | | | 7 | 8.8780 | 8.97 | 10.55 | 19.52 | 60.00 | -40.48 | QP | | | 8 | 8.8780 | 3.54 | 10.55 | 14.09 | 50.00 | -35.91 | AVG | | | 9 | 17.7580 | 13.15 | 10.95 | 24.10 | 60.00 | -35.90 | QP | | | 10 | 17.7580 | 9.02 | 10.95 | 19.97 | 50.00 | -30.03 | AVG | | | 11 | 26.6340 | 18.62 | 11.09 | 29.71 | 60.00 | -30.29 | QP | | | 12 * | 26.6340 | 12.97 | 11.09 | 24.06 | 50.00 | -25.94 | AVG | | #### Note1: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB) $Limit (dB\mu V) = Limit stated in standard$ $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ Q.P. =Quasi-Peak AVG =average \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz. #### Note2: Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Middle channel and GFSK) was submitted only. # 6.3. Conducted Output Power # 6.3.1. Test Specification | A1 / A1 | | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Test Requirement: | FCC Part15 C Section 15.247 (b)(1) | | | | Test Method: | KDB 558074 D01 v05r02 | | | | Limit: | Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. | | | | Test Setup: | Spectrum Analyzer EUT | | | | Test Mode: | Transmitting mode with modulation | | | | Use the following spectrum analyzer setting Span = approximately 5 times the 20 dl centered on a hopping channel RBW > the 20 dB bandwidth of the emission measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the repeak of the emission. | | | | | Test Result: | PASS | | | # 6.3.2. Test Instruments | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |----------------------------|--------------|--------|---------------|-----------------| | Spectrum Analyzer | R&S | FSU | 200054 | Sep. 11, 2021 | | RF cable<br>(9kHz-26.5GHz) | тст | RE-06 | N/A | Sep. 11, 2021 | | Antenna Connector | TCT | RFC-01 | N/A | Sep. 11, 2021 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). 6.3.3. Test Data | GFSK mode | | | | |--------------|-------------------------|-------------|--------| | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result | | Lowest | 3.07 | 30.00 | PASS | | Middle | 3.17 | 30.00 | PASS | | Highest | 2.98 | 30.00 | PASS | | Pi/4DQPSK mode | | | | |----------------|-------------------------|-------------|--------| | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result | | Lowest | 2.18 | 21.00 | PASS | | Middle | 2.25 | 21.00 | PASS | | Highest | 2.08 | 21.00 | PASS | | 8DPSK mode | | | | | | |--------------|-------------------------|-------------|--------|--|--| | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result | | | | Lowest | 2.24 | 21.00 | PASS | | | | Middle | 2.35 | 21.00 | PASS | | | | Highest | 2.13 | 21.00 | PASS | | | Test plots as follows: Report No.: TCT201029E017 #### Lowest channel Date: 3.NOV.2020 09:58:18 #### Middle channel Date: 3.NOV.2020 09:58:38 ## Highest channel Date: 3.NOV.2020 09:58:56 #### Lowest channel #### Middle channel #### Date: 3.NOV.2020 09:59:32 ## Highest channel Date: 3.NOV.2020 09:59:48 #### Lowest channel #### Middle channel #### Date: 3.NOV.2020 10:00:23 ## Highest channel Date: 3.NOV.2020 10:00:38 # 6.4. 20dB Occupy Bandwidth ## 6.4.1. Test Specification | Toot Boguiroment | ECC Part1E C Section 15 | 247 (2)(1) | | | |-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--| | Test Requirement: | FCC Part15 C Section 15 | .247 (a)(1) | | | | Test Method: | KDB 558074 D01 v05r02 | | | | | Limit: | N/A | | | | | Test Setup: | Spectrum Analyzer | EUT | | | | Test Mode: | Transmitting mode with modulation | | | | | Test Procedure: | <ol> <li>The RF output of EUT was connected to the spectro analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Use the following spectrum analyzer settings for 200 Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBN Sweep = auto; Detector function = peak; Trace = measurement hold. </li> <li>Measure and record the results in the test report.</li> </ol> | | | | | Test Result: | PASS | | | | #### 6.4.2. Test Instruments | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |----------------------------|--------------|--------|---------------|-----------------| | Spectrum Analyzer | R&S | FSU | 200054 | Sep. 11, 2021 | | RF cable<br>(9kHz-26.5GHz) | TCT | RE-06 | N/A | Sep. 11, 2021 | | Antenna Connector | TCT | RFC-01 | N/A | Sep. 11, 2021 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). Page 19 of 74 6.4.3. Test data | Report No.: | TCT201029E017 | |-------------|---------------| |-------------|---------------| | Test channel | 20dB Occupy Bandwidth (kHz) | | | | | |--------------|-----------------------------|-----------|---------|------------|--| | rest channel | GFSK | π/4-DQPSK | 8DPSK | Conclusion | | | Lowest | 908.65 | 1139.42 | 1163.46 | PASS | | | Middle | 918.27 | 1139.42 | 1163.46 | PASS | | | Highest | 908.65 | 1139.42 | 1168.27 | PASS | | #### Test plots as follows: #### Lowest channel Date: 3.NOV.2020 10:02:07 #### Middle channel Date: 3.NOV.2020 10:02:58 ## Highest channel Date: 3.NOV.2020 10:05:22 #### Lowest channel Date: 3.NOV.2020 10:06:50 #### Middle channel Date: 3.NOV.2020 10:09:51 #### Highest channel Date: 3.NOV.2020 10:11:02 #### Lowest channel Date: 3.NOV.2020 10:12:13 #### Middle channel Date: 3.NOV.2020 10:13:16 #### Highest channel Date: 3.NOV.2020 10:14:33 # 6.5. Carrier Frequencies Separation # 6.5.1. Test Specification | FCC Part15 C Section 15.247 (a)(1) | | | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | KDB 558074 D01 v05r02 | | | | | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. | | | | | Spectrum Analyzer EUT | | | | | Hopping mode | | | | | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.</li> </ol> | | | | | PASS | | | | | | | | | # 6.5.2. Test Instruments | | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |---|----------------------------|--------------|--------|---------------|-----------------| | | Spectrum Analyzer | R&S | FSU | 200054 | Sep. 11, 2021 | | | RF cable<br>(9kHz-26.5GHz) | тст | RE-06 | N/A | Sep. 11, 2021 | | 7 | Antenna Connector | TCT | RFC-01 | N/A | Sep. 11, 2021 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). # 6.5.3. Test data | GFSK mode | | | | | | |--------------|--------------------------------------|-------------|--------|--|--| | Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result | | | | Lowest | 1000.00 | 918.27 | PASS | | | | Middle | 1003.21 | 918.27 | PASS | | | | Highest | 1003.21 | 918.27 | PASS | | | | | Pi/4 DQPSK mode | | | | | |--------------|-----------------------------------------|-------------|--------|--|--| | Test channel | Carrier Frequencies<br>Separation (kHz) | Limit (kHz) | Result | | | | Lowest | 1000.00 | 759.61 | PASS | | | | Middle | 1003.21 | 759.61 | PASS | | | | Highest | 1000.00 | 759.61 | PASS | | | | | ode | | | |--------------|-----------------------------------------|-------------|--------| | Test channel | Carrier Frequencies<br>Separation (kHz) | Limit (kHz) | Result | | Lowest | 1003.21 | 778.85 | PASS | | Middle | 1003.21 | 778.85 | PASS | | Highest | 1000.00 | 778.85 | PASS | Note: According to section 6.4 | Mode | 20dB bandwidth (kHz)<br>(worse case) | Limit (kHz)<br>(Carrier Frequencies<br>Separation) | | |-----------|--------------------------------------|----------------------------------------------------|--| | GFSK | 918.27 | 918.27 | | | π/4-DQPSK | 1139.42 | 759.61 | | | 8DPSK | 1168.27 | 778.85 | | Test plots as follows: #### Lowest channel Date: 3.NOV.2020 10:19:41 #### Middle channel Date: 3.NOV.2020 10:21:12 ## Highest channel Date: 3.NOV.2020 10:22:20 #### Lowest channel Date: 3.NOV.2020 10:23:13 #### Middle channel Date: 3.NOV.2020 10:24:22 ## Highest channel Date: 3.NOV.2020 10:25:33 #### Lowest channel Date: 3.NOV.2020 10:26:51 #### Middle channel Date: 3.NOV.2020 10:27:56 ## Highest channel Date: 3.NOV.2020 10:29:53 # 6.6. Hopping Channel Number # 6.6.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.247 (a)(1) | |-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Test Method: | KDB 558074 D01 v05r02 | | Limit: | Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. | | Test Setup: | Spectrum Anabura EUT | | Test Mode: | Spectrum Analyzer Hopping mode | | Test Procedure: | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>The number of hopping frequency used is defined as the number of total channel.</li> <li>Record the measurement data in report.</li> </ol> | | Test Result: | PASS | | 1.77.3 | | #### 6.6.2. Test Instruments | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |----------------------------|--------------|--------|---------------|-----------------| | Spectrum Analyzer | R&S | FSU | 200054 | Sep. 11, 2021 | | RF cable<br>(9kHz-26.5GHz) | тст | RE-06 | N/A | Sep. 11, 2021 | | Antenna Connector | TCT | RFC-01 | N/A | Sep. 11, 2021 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). 6.6.3. Test data Report No.: TCT201029E017 | Mode | Hopping channel Limit | | Result | |------------------------|-----------------------|----|--------| | GFSK, Pi/4DQPSK, 8DPSK | 79 | 15 | PASS | #### Test plots as follows: # Pi/4DQPSK #### Date: 3.NOV.2020 10:38:03 #### 8DPSK Date: 3.NOV.2020 10:41:54 ## 6.7. Dwell Time # 6.7.1. Test Specification | | / A) | | | |-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Test Requirement: | FCC Part15 C Section 15.247 (a)(1) | | | | Test Method: | KDB 558074 D01 v05r02 | | | | Limit: | The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. | | | | Test Setup: | Spectrum Analyzer EUT | | | | Test Mode: | Hopping mode | | | | Test Procedure: | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.</li> <li>Measure and record the results in the test report.</li> </ol> | | | | Test Result: | PASS | | | | Test Result: | should be set >> 1 / T, where T is the expected dwe time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. 5. Measure and record the results in the test report. | | | #### 6.7.2. Test Instruments | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |----------------------------|--------------|--------|---------------|-----------------| | Spectrum Analyzer | R&S | FSU | 200054 | Sep. 11, 2021 | | RF cable<br>(9kHz-26.5GHz) | TCT | RE-06 | N/A | Sep. 11, 2021 | | Antenna Connector | TCT | RFC-01 | N/A | Sep. 11, 2021 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). #### 6.7.3. Test Data | Mode | Packet | Hops Over<br>Occupancy<br>Time (hops) | Package<br>Transfer<br>Time (ms) | Dwell time (second) | Limit<br>(second) | Result | |---------------|--------|---------------------------------------|----------------------------------|---------------------|-------------------|--------| | GFSK | DH1 | 320 | 0.388 | 0.124 | 0.4 | PASS | | GFSK | DH3 | 160 | 1.671 | 0.267 | 0.4 | PASS | | GFSK | DH5 | 106.67 | 2.941 | 0.314 | 0.4 | PASS | | Pi/4<br>DQPSK | 2-DH1 | 320 | 0.397 | 0.127 | 0.4 | PASS | | Pi/4<br>DQPSK | 2-DH3 | 160 | 1.657 | 0.265 | 0.4 | PASS | | Pi/4<br>DQPSK | 2-DH5 | 106.67 | 2.933 | 0.313 | 0.4 | PASS | | 8DPSK | 3-DH1 | 320 | 0.399 | 0.128 | 0.4 | PASS | | 8DPSK | 3-DH3 | 160 | 1.662 | 0.266 | 0.4 | PASS | | 8DPSK | 3-DH5 | 106.67 | 2.934 | 0.313 | 0.4 | PASS | Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops For DH3, With channel hopping rate (1600/4/79) in Occupancy Time Limit $(0.4 \times 79)$ (s), Hops Over Occupancy Time comes to $(1600/4/79) \times (0.4 \times 79) = 160$ hops For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit $(0.4 \times 79)$ (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops 2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time #### Test plots as follows: Report No.: TCT201029E017 ## 6.8. Pseudorandom Frequency Hopping Sequence ### Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. ### **EUT Pseudorandom Frequency Hopping Sequence** The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones. - Number of shift register stages: 9 - Length of pseudo-random sequence: 29-1 = 511 bits - Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals. # 6.9. Conducted Band Edge Measurement # 6.9.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.247 (d) | | | | | |-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Test Method: | KDB 558074 D01 v05r02 | | | | | | Limit: | In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fa in the restricted bands must also comply with the radiated emission limits. | | | | | | Test Setup: | Spectrum Analyzer EUT | | | | | | Test Mode: | Transmitting mode with modulation | | | | | | Test Procedure: | <ol> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.</li> <li>Enable hopping function of the EUT and then repeat step 2 and 3.</li> <li>Measure and record the results in the test report.</li> </ol> | | | | | | Test Result: | PASS | | | | | #### 6.9.2. Test Instruments | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |----------------------------|--------------|--------|---------------|-----------------| | Spectrum Analyzer | R&S | FSU | 200054 | Sep. 11, 2021 | | RF cable<br>(9kHz-26.5GHz) | тст | RE-06 | N/A | Sep. 11, 2021 | | Antenna Connector | TCT | RFC-01 | N/A | Sep. 11, 2021 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). 6.9.3. Test Data #### Pi/4DQPSK Modulation #### **8DPSK Modulation** # **6.10. Conducted Spurious Emission Measurement** ## 6.10.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.247 (d) | | | | | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Test Method: | KDB 558074 D01 v05r02 | | | | | | Limit: | In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits. | | | | | | Test Setup: | Spectrum Analyzer EUT | | | | | | Test Mode: | Transmitting mode with modulation | | | | | | Test Procedure: | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded against the limit line in the operating frequency band.</li> </ol> | | | | | | Test Result: | PASS | | | | | | est Result: | | | | | | #### 6.10.2. Test Instruments | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |----------------------------|-------------------|--------|---------------|-----------------| | Spectrum Analyzer | R&S | FSU | 200054 | Sep. 11, 2021 | | Spectrum Analyzer | ROHDE&SCH<br>WARZ | FSQ40 | 200061 | Sep. 11, 2021 | | RF Cable<br>(9KHz-26.5GHz) | TCT | RE-06 | N/A | Sep. 11, 2021 | | Antenna Connector | TCT | RFC-01 | N/A | Sep. 11, 2021 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). # 6.10.3. Test Data #### GFSK mode #### **Lowest Channel** # Middle Channel # Highest Channel Date: 3.NOV.2020 11:21:05 #### Pi/4DQPSK mode #### **Lowest Channel** Date: 3.NOV.2020 11:26:29 ### **Highest Channel** Date: 3.NOV.2020 11:28:19 #### 8DPSK mode #### **Lowest Channel** # Middle Channel ## Date: 3.NOV.2020 11:33:43 # Highest Channel Date: 3.NOV.2020 11:35:28 # **6.11. Radiated Spurious Emission Measurement** # 6.11.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.209 | | | | | | | |-----------------------|------------------------------------|------------------------------------------|-----------|-----------------------------------|------------------|-------------------------------|--| | Test Method: | ANSI C63.10:2013 | | | | | | | | Frequency Range: | 9 kHz to 25 GHz | | | | | | | | Measurement Distance: | 3 m | | | | | | | | Antenna Polarization: | Horizontal & Vertical | | | | | | | | | Frequency Detector | | r RBW | VBW | | Remark | | | | 9kHz- 150kHz | Quasi-pe | ak 200Hz | 1kHz | Quas | si-peak Value | | | Receiver Setup: | 150kHz-<br>30MHz | 150kHz- Quasi-peak | | 30kHz | Quasi-peak Value | | | | · | 30MHz-1GHz | Quasi-pe | ak 120KHz | 300KHz | Quas | i-peak Value | | | | , C. `) | Peak | 1MHz | 3MHz | P | eak Value | | | | Above 1GHz | Peak | 1MHz | 10Hz | | rage Value | | | | Frequency | | | Field Strength (microvolts/meter) | | Measurement Distance (meters) | | | | 0.009-0.490 | | 2400/F | (KHz) | | 300 | | | | 0.490-1.705 | | 1 | 24000/F(KHz) | | 30 | | | | 1.705-30 | | 30 | | 30 | | | | | 30-88 | | 100 | | 3 | | | | | 88-216 | | 150 | | 3 | | | | Limit: | 216-960 | | 200 | | 3 | | | | | Above 960 | | 500 | | | 3 | | | | Frequency | Frequency Field Strength (microvolts/met | | (mete | ice | Detector | | | | Above 1GHz | | 500 | 3 | | Average | | | | | | 5000 | 3 Peak | | Peak | | | | For radiated emissions below 30MHz | | | | | | | | | Distance = 3m | | | | Computer | | | | Test setup: | Pre-Amplifier O.Sm Turn table | | | | | | | | | 30MHz to 1GHz | Grou | und Plane | <u> </u> | Receiver | <u> </u> | | | TCT通测检测 | | |---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | TESTING CENTRE TECHNOLOGY | Report No.: TCT201029E017 | | | and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Set to the maximum power setting and enable the EUT transmit continuously. | | | <ul> <li>4. Use the following spectrum analyzer settings: <ul> <li>(1) Span shall wide enough to fully capture the emission being measured;</li> <li>(2) Set RBW=120 kHz for f &lt; 1 GHz, RBW=1MHz for f&gt;1GHz; VBW≥RBW;</li> <li>Sweep = auto; Detector function = peak; Trace</li> </ul> </li> </ul> | | | = max hold for peak (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*Ln | | | Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle) Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level | | Test results: | PASS | ## 6.11.2. Test Instruments | Radiated Emission Test Site (966) | | | | | | |-----------------------------------|------------------------------------------|--------------|------------------|-----------------|--| | Name of<br>Equipment | Manufacturer | Model | Serial<br>Number | Calibration Due | | | Test Receiver | ROHDE&SCHW<br>ARZ | ESIB7 | 100197 | Jul. 27, 2021 | | | Spectrum Analyzer | ROHDE&SCHW<br>ARZ | FSQ40 | 200061 | Sep. 11, 2021 | | | Pre-amplifier | EM Electronics<br>Corporation<br>CO.,LTD | EM30265 | 07032613 | Sep. 02, 2021 | | | Pre-amplifier | HP | 8447D | 2727A05017 | Sep. 02, 2021 | | | Loop antenna | ZHINAN | ZN30900A | 12024 | Sep. 05, 2022 | | | Broadband Antenna | Schwarzbeck | VULB9163 | 340 | Sep. 04, 2022 | | | Horn Antenna | Schwarzbeck | BBHA 9120D | 631 | Sep. 04, 2022 | | | Horn Antenna | A-INFO | LB-180400-KF | J211020657 | Sep. 04, 2022 | | | Antenna Mast | Keleto | RE-AM | N/A | N/A | | | Line-4 | RE-high-04 | TCT | N/A | Sep. 02, 2021 | | | Line-8 | RE-01 | TCT | N/A | Jul. 27, 2021 | | | EMI Test Software | Shurple<br>Technology | EZ-EMC | N/A | N/A | | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). #### **6.11.3.** Test Data #### Duty cycle correction factor for average measurement DH5 on time (One Pulse) Plot on Channel 00 Date: 3.NOV.2020 10:44:24 #### DH5 on time (Count Pulses) Plot on Channel 00 #### Note: - 1. Worst case Duty cycle = on time/100 milliseconds = (2.941\*26+2.083)/100= 0.7855 - 2. Worst case Duty cycle correction factor = 20\*log (Duty cycle) = -2.10dB - 3. DH5 has the highest duty cycle worst case and is reported. Date: 3.NOV.2020 10:47:39 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-2.10dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.