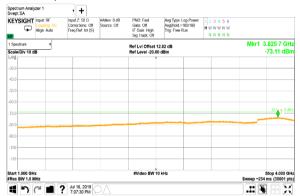

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			

Plot 7.4.112 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

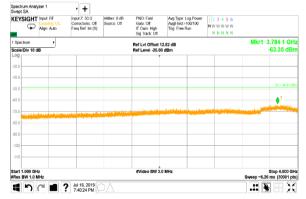
CHANNEL BANDWIDTH: **CONFIGURATION:**


ANTENNA PORT:

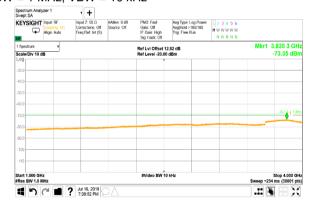
RBW = 1 MHz; VBW = 3 MHz

5 MHz ONE BEAM #6

RBW = 1 MHz; VBW = 10 kHz


Plot 7.4.113 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

CHANNEL BANDWIDTH:


CONFIGURATION:

ANTENNA PORT:

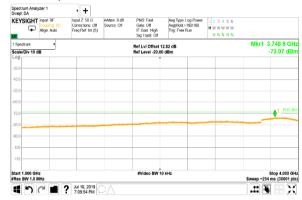
RBW = 1 MHz; VBW = 3 MHz

5 MHz ONE BEAM #6

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	•			

Plot 7.4.114 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION:

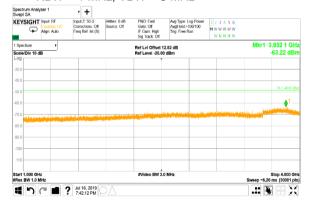

ANTENNA PORT: RBW = 1 MHz; VBW = 3 MHz

Special Analyses 1

| The control of the control of

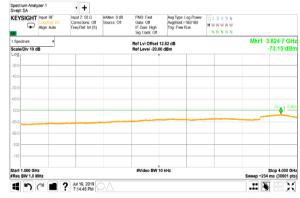
5 MHz ONE BEAM #6

RBW = 1 MHz; VBW = 10 kHz


Plot 7.4.115 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

CHANNEL BANDWIDTH:

CONFIGURATION:

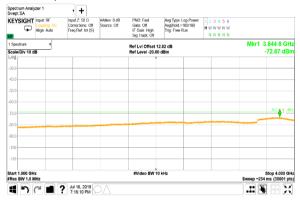

ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

5 MHz ONE BEAM

#7

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			

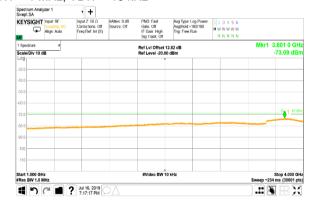

Plot 7.4.116 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

5 MHz ONE BEAM #7

RBW = 1 MHz; VBW = 10 kHz

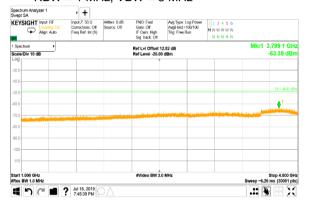

Plot 7.4.117 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency

CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

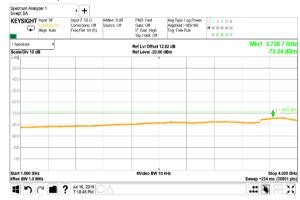
RBW = 1 MHz; VBW = 3 MHz

 5 MHz ONE BEAM #7



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			

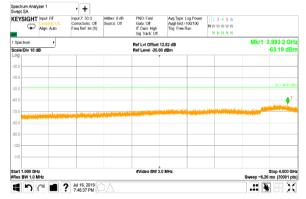
Plot 7.4.118 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency


CHANNEL BANDWIDTH: CONFIGURATION:

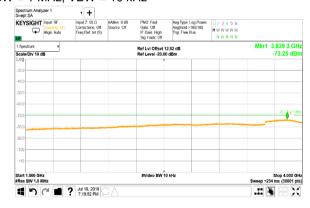
ANTENNA PORT: RBW = 1 MHz; VBW = 3 MHz

5 MHz ONE BEAM #8

RBW = 1 MHz; VBW = 10 kHz


Plot 7.4.119 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

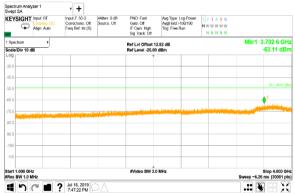
CHANNEL BANDWIDTH:


CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

5 MHz ONE BEAM #8


Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict: PASS			
Date(s):	28-Jul-19	verdict: PASS			
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.4.120 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: **CONFIGURATION:**


ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

5 MHz ONE BEAM #8

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.121 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

CHANNEL BANDWIDTH:


CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

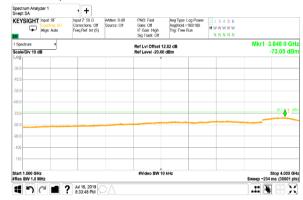
Spectrum Analyzer 1
Swept SA

KEYSIGHT Input RF
Coupling DC
Align: Auto 1 Spectrum
Scale/Div 10 dB 41 #Video BW 3.0 MHz 4 5 C 2019 7.49.25 PM 10 MHz ONE BEAM

#1

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			

Plot 7.4.122 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

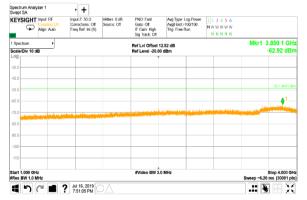

CHANNEL BANDWIDTH: **CONFIGURATION:** ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

Input 2: 50 0 Corrections: Off Freq Ref. Int (S) Spectrum Analyzer 1 Swept SA KEYSIGHT Input RF Align: Auto kr1 3.729 6 GHz Ref Lvi Offset 12.82 dB Ref Level -20.00 dBm Scale/Div 10 dB -63.79 dl **\$**1 Start 1.000 GHz #Res BW 1.0 MHz #Video BW 3.0 MHz 1 5 C 1 ? Jul 16, 2019

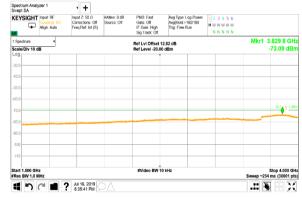
10 MHz ONE BEAM

RBW = 1 MHz; VBW = 10 kHz



Plot 7.4.123 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency

CHANNEL BANDWIDTH:

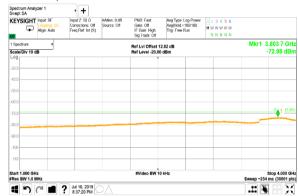

CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

10 MHz ONE BEAM

#1

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			


Plot 7.4.124 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

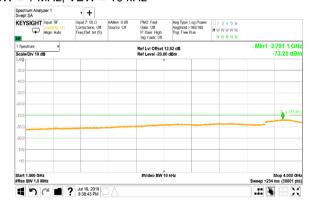
CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

10 MHz ONE BEAM #2

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.125 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

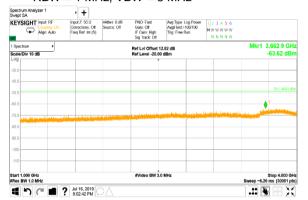

CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

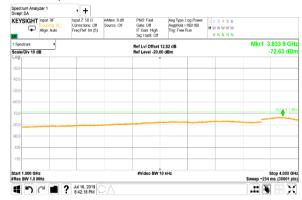
| Spectrum | New York | New York

10 MHz ONE BEAM #2



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			

Plot 7.4.126 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency

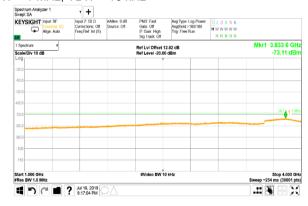

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

10 MHz ONE BEAM #2

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.127 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency


CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

	Input: RF Coupling: DC Align: Auto	Input Z: 50 O Corrections: Off Freq Ref: Int (S)	AAtten: 0 dB Source: Off	PNO: Fast Gate: Off IF Gain: High Sig Track: Off	Avg Type: Log-Power Avg Hold>100/100 Trig: Free Run	1 2 3 4 5 6 M W W W W W N N N N N		
1 Spectrum	•			Ref Lvi Offset 1				3.767 7 GH
Scale/Div 10 d	3			Ref Level -20.00	dBm			-63.62 dBn
Log				1				
30.0								
40.0								
50.0								DL1 48.61 dDn
60.0								∆ 1
70.0				a and a solution		والمرابع المرابع	1	CHARLES
Advantage	desired to the second	all and the late of the same	A The state of the state of	Charles and the same	and the second	in other protect facts as a sec-	make deposits of	
80.0								
90.0								-
-100								
-110								
Res BW 1.0 M				#Video BW 3.0	MHz		Sweep ~6.26	Stop 4.000 GH: 6 ms (30001 pts

10 MHz ONE BEAM #3

Test specification: Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions

Test procedure: ANSI C63.10 section 11.12.2

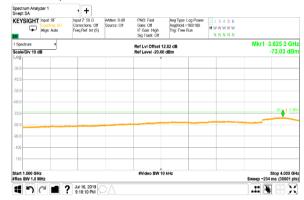
Test mode: Compliance Verdict: PASS

Date(s): 28-Jul-19

Temperature: 24 °C Relative Humidity: 44 % Air Pressure: 1004 hPa Power: 48 VDC

Remarks:

Plot 7.4.128 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency


CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

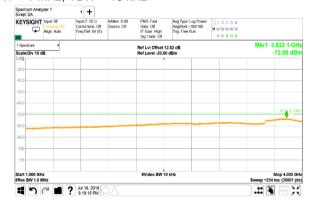
RBW = 1 MHz: VBW = 3 MHz

| Spectrum Assignant | Spectru

10 MHz ONE BEAM #3

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.129 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency


CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

| Specific Market | Specific M

10 MHz ONE BEAM #3

Test specification: Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions

Test procedure: ANSI C63.10 section 11.12.2

Test mode: Compliance Verdict: PASS

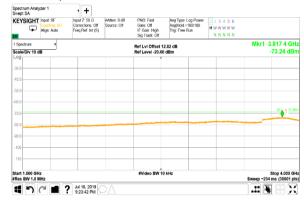
Date(s): 28-Jul-19

Temperature: 24 °C Relative Humidity: 44 % Air Pressure: 1004 hPa Power: 48 VDC

Remarks:

Plot 7.4.130 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

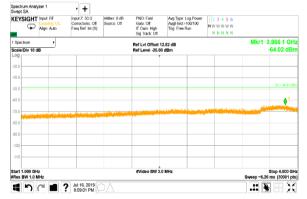

RBW = 1 MHz; VBW = 3 MHz

Section Analyses 1

| T |
| T |
| New York | No. | No.

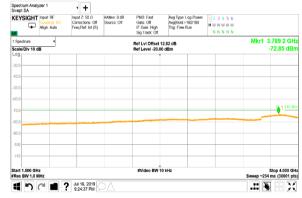
10 MHz ONE BEAM #4

RBW = 1 MHz; VBW = 10 kHz


Plot 7.4.131 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

CHANNEL BANDWIDTH:

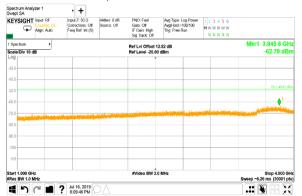
CONFIGURATION:


ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

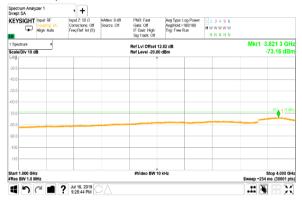
10 MHz ONE BEAM

#4



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			

Plot 7.4.132 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency


CHANNEL BANDWIDTH: **CONFIGURATION:** ANTENNA PORT:

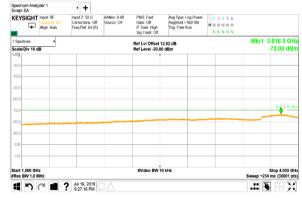
RBW = 1 MHz; VBW = 3 MHz

10 MHz ONE BEAM #4

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.133 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

CHANNEL BANDWIDTH:

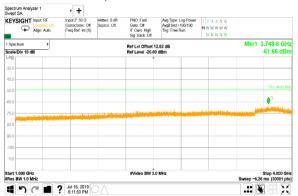

CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

KEYSIGHT Input Coupl Align:	ing DC Correction	s: Off Source: Off	PNO: Fast Gate: Off IF Gain: High Sig Track: Off	Avg Type: Log-Power Avg Hold>100/100 Trig: Free Run	1 2 3 4 5 6 M W W W W W N N N N N		
Spectrum Scale/Div 10 dB	•		Ref Lvi Offset 12 Ref Level -20.00				795 3 GH: i3.15 dBn
.og							
30.0							
40.0							
50.0							DL1 48.61 dB
60.0							_ 6 1
70.0	A transaction of the		A Company of the Land of the L	وحملها المساولة والا	ورسايا ومناواتها	and the same	
80.0		era andreas annes established	1 mariantini			Anjunites.	
90.0							
-100							
.110							
Start 1.000 GHz Res BW 1.0 MHz			#Video BW 3.0	MHz		Sweep ~6.26 m	top 4.000 GH

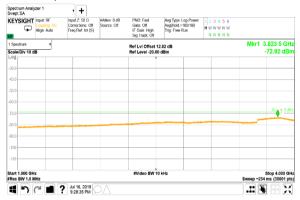
10 MHz ONE BEAM

#5



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:	-			

Plot 7.4.134 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency


CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

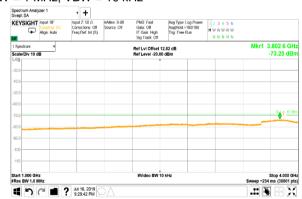
10 MHz ONE BEAM #5

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.135 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency

CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:


RBW = 1 MHz; VBW = 3 MHz

Section Analyses 1

Page 250

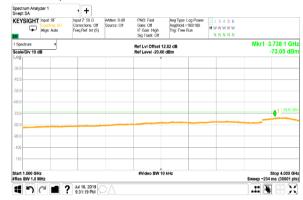
Mage Add Color Precision (St. Color Color

10 MHz ONE BEAM #5

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:	-				

Plot 7.4.136 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:


RBW = 1 MHz; VBW = 3 MHz

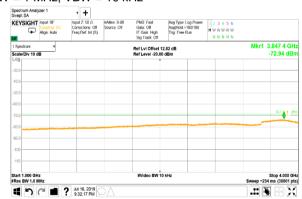
Spectrum Analyser 1

| The Control of Contro

10 MHz ONE BEAM #6

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.137 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency


CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

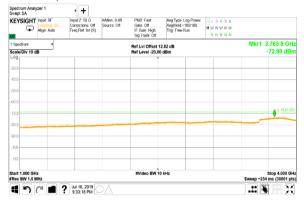
RBW = 1 MHz; VBW = 3 MHz

| Spectrum | November | November

10 MHz ONE BEAM #6

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:	-				

Plot 7.4.138 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency

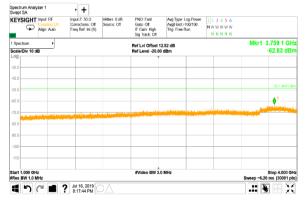

CHANNEL BANDWIDTH: **CONFIGURATION:** ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

Spectrum Analyzer 1 Swept SA KEYSIGHT Input RF Input 2: 50 0 Corrections: Off Freq Ref. Int (S) Align: Auto kr1 3.825 2 GHz Ref Lvi Offset 12.82 dB Ref Level -20.00 dBm Scale/Div 10 dB Start 1.000 GHz #Res BW 1.0 MHz #Video BW 3.0 MHz ■ 7 M ■ ? Jul 16, 2019

10 MHz ONE BEAM #6

RBW = 1 MHz; VBW = 10 kHz


Plot 7.4.139 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency

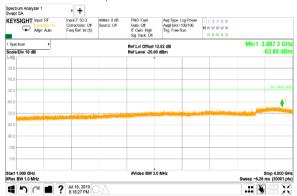
CHANNEL BANDWIDTH:


CONFIGURATION:

ANTENNA PORT:

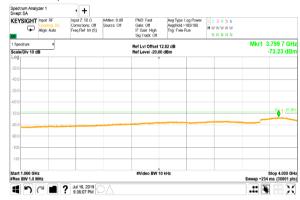
RBW = 1 MHz; VBW = 3 MHz

10 MHz ONE BEAM #7



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:	-				

Plot 7.4.140 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

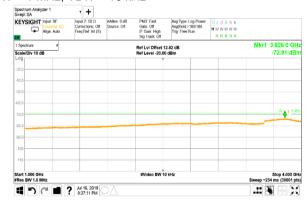

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

10 MHz ONE BEAM #7

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.141 Spurious emission measurements in 1 - 4 GHz range at high carrier frequency


CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

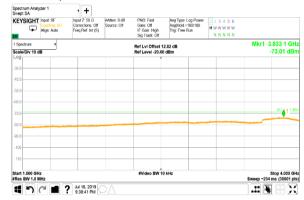
RBW = 1 MHz; VBW = 3 MHz

KEY	SIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 0 Corrections: Off Freq Ref: Int (S)	#Atten: 0 dB Source: Off	PNO: Fast Gate: Off IF Gain: High Sig Track: Off	Avg Type: Log-Power Avg Hold>100/100 Trig: Free Run	1 2 3 4 5 6 M W W W W W N N N N N		
Scale	ctrum /Div 10 d	,			Ref Lvi Offset 1: Ref Level -20.00				.865 0 GH 62.90 dBn
Log					Y				
-30.0									
40.0									
50.0									DL1 48.61 dB
-60.0									61_
-70.0			and the second stage of the second second	Assessed		ndished in a continu	ALL PROPERTY OF STREET	and the last	
80 D	t killer teet.	randries was bli		and the second	The second second	and the state of t			
-90.0									
-100									
-110									
	1.000 GH				#Video BW 3.0) MHz		Sweep ~6.26	Stop 4.000 GH
	BW 1.0 M	IHZ							

10 MHz ONE BEAM #7

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:	-				

Plot 7.4.142 Spurious emission measurements in 1 - 4 GHz range at low carrier frequency


CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3 MHz

| Speciment Assignant | Speciment Assignant | Speciment Assignant Assignant | Speciment Assignant Assignan

10 MHz ONE BEAM #8

RBW = 1 MHz; VBW = 10 kHz

Plot 7.4.143 Spurious emission measurements in 1 - 4 GHz range at mid carrier frequency

CHANNEL BANDWIDTH:


CONFIGURATION: ANTENNA PORT:

4 5 C 2019 0 A

RBW = 1 MHz; VBW = 3 MHz

#Video BW 3.0 MHz

10 MHz ONE BEAM #8

