

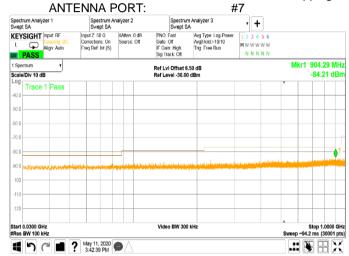
Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.91 Spurious emission measurements in 30 - 1000 MHz range at low carrier frequency

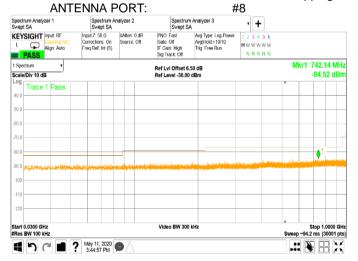
CHANNEL BANDWIDTH: 10 MHz
CONFIGURATION: 3 Non-Overlapping Beams
ANTENNA PORT: #7

Plot 7.5.92 Spurious emission measurements in 30 - 1000 MHz range at mid carrier frequency

CHANNEL BANDWIDTH: 10 MHz
CONFIGURATION: 3 Non-Overlapping Beams
ANTENNA PORT: #7


Spectrum Analyzer 3
Swept SA
S

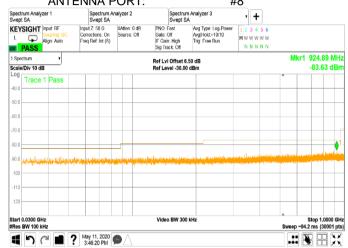
Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict: PASS			
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					


Plot 7.5.93 Spurious emission measurements in 30 - 1000 MHz range at high carrier frequency

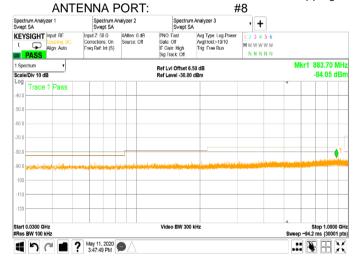
CHANNEL BANDWIDTH: 10 MHz
CONFIGURATION: 3 Non-Overlapping Beams

Plot 7.5.94 Spurious emission measurements in 30 - 1000 MHz range at low carrier frequency

CHANNEL BANDWIDTH: 10 MHz
CONFIGURATION: 3 Non-Overlapping Beams



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	- Verdict: PASS			
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					


Plot 7.5.95 Spurious emission measurements in 30 - 1000 MHz range at mid carrier frequency

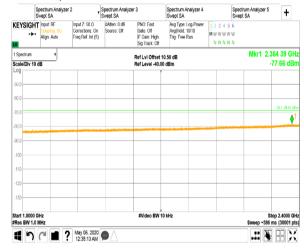
CHANNEL BANDWIDTH: 10 MHz **CONFIGURATION:** 3 Non-Overlapping Beams ANTENNA PORT: #8

Plot 7.5.96 Spurious emission measurements in 30 - 1000 MHz range at high carrier frequency

CHANNEL BANDWIDTH: 10 MHz **CONFIGURATION:** 3 Non-Overlapping Beams

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.97 Spurious emission measurements in 1 – 2.4 GHz range at low carrier frequency

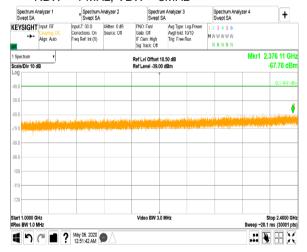

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz: VBW = 3MHz

Spectrum Analyzer 1
Sheets A
S

5 MHz 3 Non-Overlapping Beams #1

RBW = 1 MHz; VBW = 10 kHz


Plot 7.5.98 Spurious emission measurements in 1 – 2.4 GHz range at mid carrier frequency

CHANNEL BANDWIDTH:

CONFIGURATION:

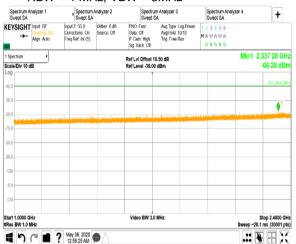
ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

5 MHz
3 Non-Overlapping Beams
#1

RBW = 1 MHz; VBW = 10 kHz

Spectrum Analyzer 3 Swept SA Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA + Input 2: 50 0 4Atten: 0 dB Corrections: On Freq Ref: Int (S) KEYSIGHT Input RF PNO: Fast Gate: Off IF Gain: High Sig Track: Off Avg Type: Log-Power Avg|Hold: 10/10 Trig: Free Run Align: Auto Mkr1 2 386 28 GHz Ref Lvi Offset 10.50 dB Ref Level -40.00 dBm Scale/Div 10 dB Start 1.0000 GHz #Res BW 1.0 MHz #Video BW 10 kHz Stop 2.4000 GHz Sweep ~386 ms (30001 pts) 1 9 P 12:52:42 AM


Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict: PASS			
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.99 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION:


ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

5 MHz 3 Non-Overlapping Beams #1

RBW = 1 MHz; VBW = 10 kHz

Plot 7.5.100 Spurious emission measurements in 1 - 2.4 GHz range at low carrier frequency

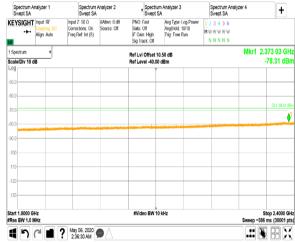
CHANNEL BANDWIDTH: CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

Spectrum Analyzer 3 Swept SA

PNO: Fast Avg Typer Log-Power
Gala: Off Avglifold-10/10

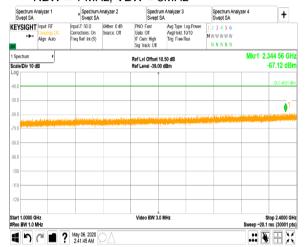

If Gain: High Trig: Free Run
Sig Track: Off Spectrum Analyzer 2 Swept SA Input 7: 50 0 Corrections: On Freq Ref: Int (S) Spectrum Analyzer 1 Swept SA Spectrum Analyzer 4 Swept SA + KEYSIGHT Input RF Align: Auto Mkr1 2.304 29 GHz Scale/Div 10 dB -67.51 dBm **§**1 Video BW 3.0 MHz Start 1.0000 GHz #Res BW 1.0 MHz Stop 2.4000 GHz Sweep ~20.1 ms (30001 pts) May 06, 2020 9 2:35:38 AM

5 MHz

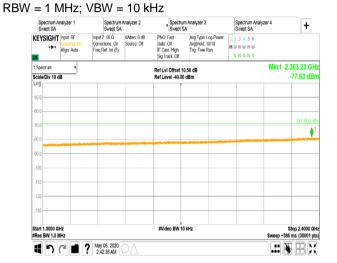
3 Non-Overlapping Beams

#2

RBW = 1 MHz; VBW = 10 kHz


Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict: PASS			
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.101 Spurious emission measurements in 1 - 2.4 GHz range at mid carrier frequency


CHANNEL BANDWIDTH: CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

5 MHz 3 Non-Overlapping Beams #2

Plot 7.5.102 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

	ctrum Ar ept SA	nalyzer 1	Spectrum Swept SA	Analyzer 2		ectrum A rept SA	nalyzer 3	Spectrum Analy Swept SA	zer 4	+
KEYS		Input: RF Coupling: DC Align: Auto	Input Z: 50 0 Corrections: On Freq Ref: Int (S)	#Affen: 0 dB Source: Off	PNO: Fast Gate: Off IF Gain: Hi Sig Track:	igh ,	lvg Type: Log-Power lvg Hold: 10/10 frig: Free Run	1 2 3 4 5 6 MWWWWW N N N N N		
	rum Div 10 di	В.			Ref Lvi Off Ref Level -					386 51 GH -67.10 dB
Log						*				
-49.0										DL1-48.61 dB
59.0						-				<u> </u>
69.0									Calcinor en tra e	a tunes tinhel
70 n	ولدورتاء دولست	destro (letrociale estrocomo no le	and as a subdividual, while ranges of assistance requires	Girmanidada da da. Vojego Granija se da	artenetik filikal Maranania	description.	el processa de la contraction.	and the state of t	and the state of	day in territory is
89.0										
-89.0										
.99.0										
-109										
-119						_				
-129										
	0000 GI W 1.0 M				Video BV	W 3.0 MH	z		Sweep ~20.1	top 2.4000 Gi
4	n	a a (May 06, 2020 2:46:45 AM	ΩΔ					.:: 🖫	181

5 MHz 3 Non-Overlapping Beams

RBW = 1 MHz: VBW = 10 kHz

Spec		nalyzer 1	Spectrum Swept SA	Analyzer 2	Spectrum Swept S	n Analyzer 3 A	Spectrum Analy Swept SA	zer 4	+
		Input: RF Coupling: DC Align: Auto	Input 7: 50 0 Corrections: On Freq Ref: Int (S)	#Affen: 0 dB Source: Off	PNO: Fest Gate: Off IF Gain: High Sig Track: Off	Avg Typer Log-Power Avg Hold: 10/10 Trig: Free Run	1 2 3 4 5 6 MWWWWW N N N N N		'
1 Spectri	um	•			Ref Lvl Offset 10	.50 dB		Mkr1 2.3	375 03 GH
Scale/D	iv 10 d	В			Ref Level -40.00	dBm			77.89 dBn
Log					1				
-50.0									
-60.0									
.70.0									DL1-68-61-8B
									•
-80.0	repline			-	-				
-90.0									
-100									
-110									
-120									
-130									
Start 1.0 #Res BV					#Video BW 10	kHz			top 2.4000 GH ms (30001 pt
#Res BV	۷ 1.0 M	Hz	May 06, 2020 2:47:57 AM	$\cap \Lambda$				Sweep ~386	ms (30001 pt

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.103 Spurious emission measurements in 1 - 2.4 GHz range at low carrier frequency

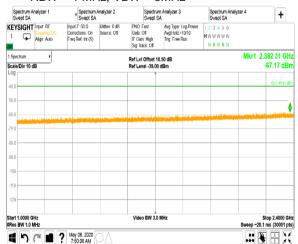
CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

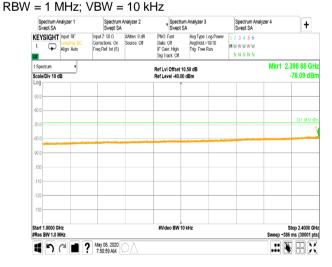
RBW = 1 MHz: VBW = 3MHz

Spectrum Analyzer 1
Spectrum Analyzer 2
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectr

5 MHz 3 Non-Overlapping Beams #3

RBW = 1 MHz; VBW = 10 kHz




Plot 7.5.104 Spurious emission measurements in 1 - 2.4 GHz range at mid carrier frequency

CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict: PASS			
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.105 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz: VBW = 3MHz

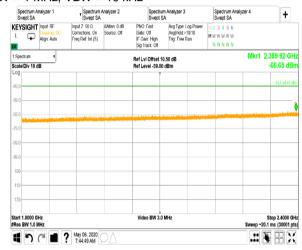
Spectrum Analyzer 1
Svept SA

Spectrum Analyzer 2
Svept SA

Spectrum Analyzer 3
Svept SA

Spectrum Analyzer 3
Svept SA

Spectrum Analyzer 4
Svept SA

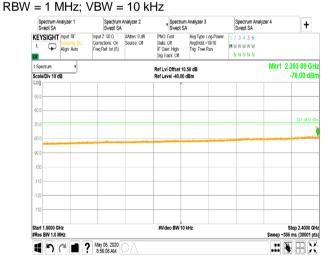

Svept SA

Spectrum Analyzer 3
Svept SA

Svept

5 MHz 3 Non-Overlapping Beams #3

RBW = 1 MHz; VBW = 10 kHz


Plot 7.5.106 Spurious emission measurements in 1 - 2.4 GHz range at low carrier frequency

CHANNEL BANDWIDTH:

CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA Spectrum Analyzer 3 Swept SA + Input 2: 50 0 AAtten: 0 dB Corrections: On Freq Ref: Int (S) KEYSIGHT Input RF Align Auto Mkr1 2 326 13 GHz Ref Lvi Offset 10.50 dB Ref Level -39.00 dBm Scale/Div 10 dB **♦**1 Start 1.0000 GHz #Res BW 1.0 MHz Video BW 3.0 MHz Stop 2.4000 GHz Sweep ~20.1 ms (30001 pts) 1 9 P 1 9 May 06, 2020

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict: PASS			
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.107 Spurious emission measurements in 1 - 2.4 GHz range at mid carrier frequency

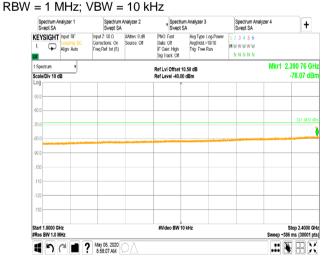
CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz: VBW = 3MHz

Spectrum Analyzer 1
Spectrum Analyzer 2
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectr

5 MHz 3 Non-Overlapping Beams #4

RBW = 1 MHz; VBW = 10 kHz

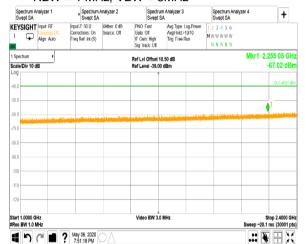


Plot 7.5.108 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz


Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.5.109 Spurious emission measurements in 1 - 2.4 GHz range at low carrier frequency

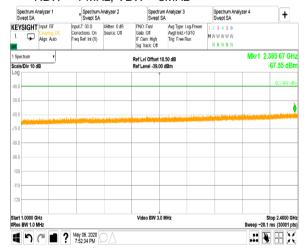
CHANNEL BANDWIDTH: CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz: VBW = 3MHz

5 MHz 3 Non-Overlapping Beams #5

RBW = 1 MHz; VBW = 10 kHz


Plot 7.5.110 Spurious emission measurements in 1 - 2.4 GHz range at mid carrier frequency

CHANNEL BANDWIDTH:

CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

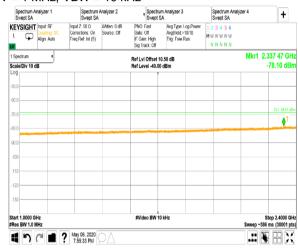
5 MHz
3 Non-Overlapping Beams
#5

RBW = 1 MHz; VBW = 10 kHz

Spectrum Analyzer 3 Swept SA Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA + Input 2: 50 0 4Atten: 0 dB Corrections: On Freq Ref: Int (S) KEYSIGHT Input RF PNO: Fast Gate: Off IF Gain: High Sig Track: Off Avg Type: Log-Power Avg|Hold>10/10 Trig: Free Run Align: Auto Mkr1 2 357 53 GHz Ref Lvi Offset 10.50 dB Ref Level -40.00 dBm Scale/Div 10 dB Start 1.0000 GHz #Res BW 1.0 MHz #Video BW 10 kHz Stop 2.4000 GHz Sweep ~386 ms (30001 pts) 1 9 PM ? May 06, 2020 7:54:05 PM

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict: PA	PASS
Date(s):	28-Jul-19	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			

Plot 7.5.111 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

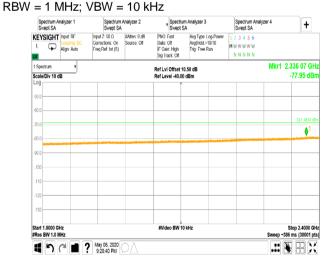

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

Spectrum Analyzer 1
Spectrum Analyzer 2
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer A
Spectr

5 MHz 3 Non-Overlapping Beams #5

RBW = 1 MHz; VBW = 10 kHz


Plot 7.5.112 Spurious emission measurements in 1 - 2.4 GHz range at low carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA Spectrum Analyzer 3 Swept SA + Input 2: 50 0 AAtten: 0 dB Corrections: On Freq Ref: Int (S) KEYSIGHT Input RF Align Auto Mkr1 2 345 31 GHz Ref Lvi Offset 10.50 dB Ref Level -39.00 dBm Scale/Div 10 dB -67.16 dBm •1 Start 1.0000 GHz #Res BW 1.0 MHz Video BW 3.0 MHz Stop 2.4000 GHz Sweep ~20.1 ms (30001 pts) 1 9 (2020 9:20:16 PM

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict: PA	PASS
Date(s):	28-Jul-19	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			

Plot 7.5.113 Spurious emission measurements in 1 - 2.4 GHz range at mid carrier frequency

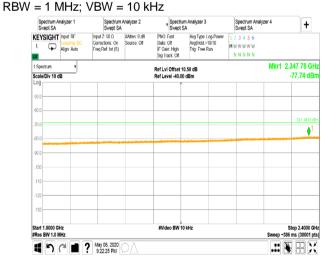
CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz: VBW = 3MHz

Spectrum Analyzer 1
Sheets A
S

5 MHz 3 Non-Overlapping Beams #6

RBW = 1 MHz; VBW = 10 kHz


Plot 7.5.114 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

Spectrum Analyzer 1
Sept SA
Spectrum Analyzer 2
Sept SA
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Sept SA
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer Analyzer 4
Spectrum Analyzer Analyzer

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict: PASS	
Date(s):	28-Jul-19	verdict.	FASS
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			

Plot 7.5.115 Spurious emission measurements in 1 - 2.4 GHz range at low carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION:

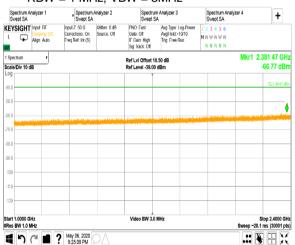
ANTENNA PORT: RBW = 1 MHz: VBW = 3MHz

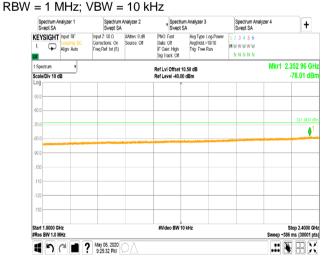
Spectrum Analyzer 1
Spectrum Analyzer 2
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer Analyzer 4
Spectrum Analyzer Anal

5 MHz 3 Non-Overlapping Beams #7

RBW = 1 MHz; VBW = 10 kHz

Plot 7.5.116 Spurious emission measurements in 1 - 2.4 GHz range at mid carrier frequency


黑麗田兴


CHANNEL BANDWIDTH:

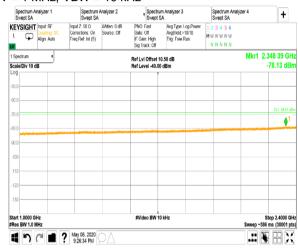
CONFIGURATION: ANTENNA PORT:

■ 9 May 06, 2020 0 A

RBW = 1 MHz; VBW = 3MHz

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict: PA	PASS
Date(s):	28-Jul-19	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			

Plot 7.5.117 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

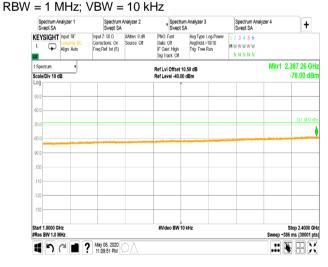

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz: VBW = 3MHz

Spectrum Analyzer 1
Spectrum Analyzer 2
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectr

5 MHz 3 Non-Overlapping Beams #7

RBW = 1 MHz; VBW = 10 kHz


Plot 7.5.118 Spurious emission measurements in 1 - 2.4 GHz range at low carrier frequency

CHANNEL BANDWIDTH:

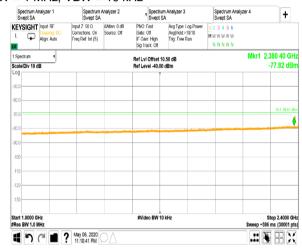
CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

Spectrum Analyzer 1
Sept SA
Spectrum Analyzer 2
Sept SA
Spectrum Analyzer 3
Sept SA
Spectrum Analyzer 3
Sept SA
Spectrum Analyzer 4
Sept SA
Spectrum Analyzer 3
Spectrum Analyzer 4
Sept SA
Spectrum Analyzer 4
Spectrum Sept Sala Off
Sala Off
Sept Sala Off
Sept SA
Spectrum Analyzer 4
Spectrum Analyzer Analyzer 4
Spectrum Analyzer Analyzer

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict: PASS	
Date(s):	28-Jul-19	verdict.	FASS
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			

Plot 7.5.119 Spurious emission measurements in 1 - 2.4 GHz range at mid carrier frequency

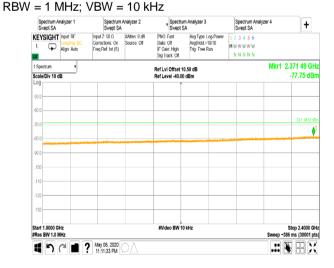

CHANNEL BANDWIDTH: CONFIGURATION: ANTENNA PORT:

RBW = 1 MHz: VBW = 3MHz

Spectrum Analyzer 1
Spectrum Analyzer 2
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 4
Spectrum Analyzer 3
Spectrum Analyzer 4
Spectr

5 MHz 3 Non-Overlapping Beams #8

RBW = 1 MHz; VBW = 10 kHz



Plot 7.5.120 Spurious emission measurements in 1 - 2.4 GHz range at high carrier frequency

CHANNEL BANDWIDTH: CONFIGURATION:

ANTENNA PORT:

RBW = 1 MHz; VBW = 3MHz

