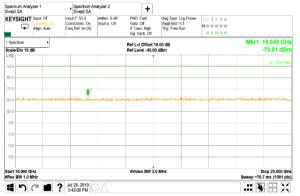
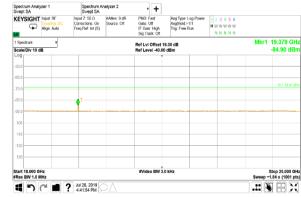


Test specification:	Section 15.247(d) / RSS-24	47 section 5.5, Conducted s	purious emissions
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	28-Jul-19	verdict.	FA33
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			


Plot 7.4.242 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH: 5 MHz

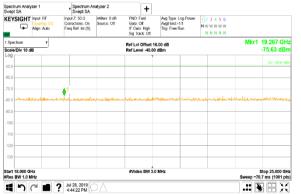


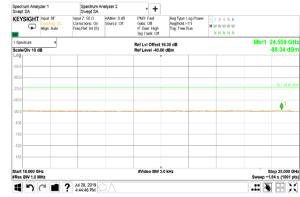
5 MHz ONE BEAM #1

Plot 7.4.243 Spurious emission measurements in 18 - 25 GHz range at high carrier frequencyCHANNEL BANDWIDTH:5 MHzCONFIGURATION:ONE BEAMANTENNA PORT:#1RBW = 1 MHz; VBW = 3 MHzRBW = 1 MHz; VBW = 3 kHz



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:	-				


Plot 7.4.244 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 5 MHz

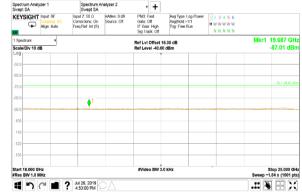


5 MHz ONE BEAM #2

Plot 7.4.245 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequencyCHANNEL BANDWIDTH:5 MHzCONFIGURATION:ONE BEAMANTENNA PORT:#2RBW = 1 MHz; VBW = 3 MHzRBW = 1 MHz; VBW = 3 kHz

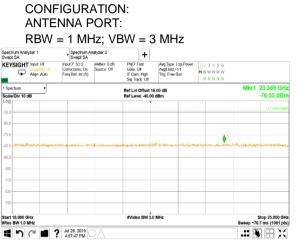
Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

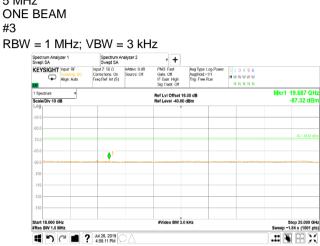
Plot 7.4.246 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 5 MHz

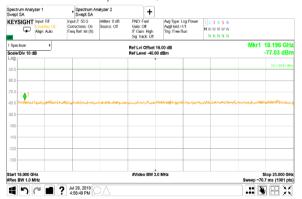


5 MHz ONE BEAM #2

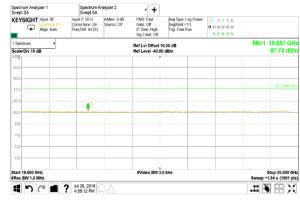
Plot 7.4.247 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 5 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #3 RBW = 1 MHz; VBW = 3 MHz RBW = 1 MHz; VBW = 3 kHz Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA • + + nout Z: 50 (#Atten: 0 dB Source: Off





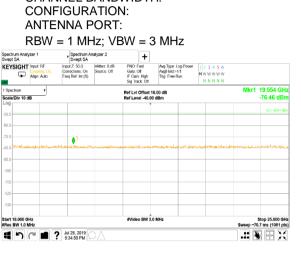

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdici.	FA33		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.4.248 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH: 5 MHz

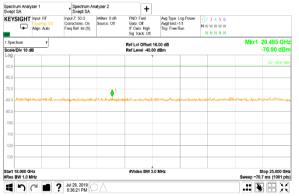


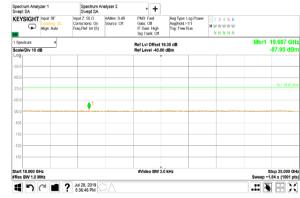
Plot 7.4.249 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 5 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #3 RBW = 1 MHz; VBW = 3 MHz

RBW = 1 MHz; VBW = 3 kHz


■? Jul 28, 2019

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

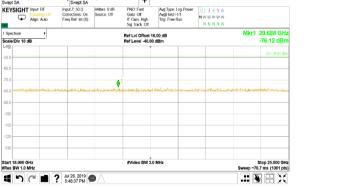

Plot 7.4.250 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 5 MHz

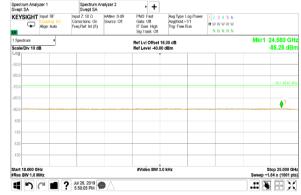


5 MHz ONE BEAM #4

Plot 7.4.251 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequencyCHANNEL BANDWIDTH:5 MHzCONFIGURATION:ONE BEAMANTENNA PORT:#4RBW = 1 MHz; VBW = 3 MHzRBW = 1 MHz; VBW = 3 kHz

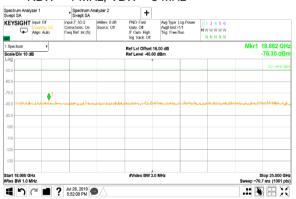
Test specification:	Section 15.247(d) / RSS-24	47 section 5.5, Conducted s	purious emissions
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	28-Jul-19	verdict.	FA33
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			

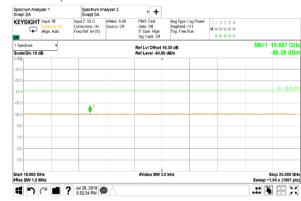

Plot 7.4.252 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 5 MHz



5 MHz ONE BEAM #4

Plot 7.4.253 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 5 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #5 RBW = 1 MHz; VBW = 3 MHz RBW = 1 MHz; VBW = 3 kHz Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA • + + nout Z: 50 (#Atten: 0 dB Source: Off

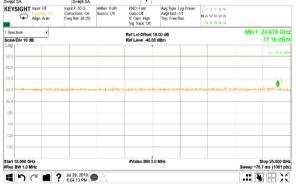

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdici.	FA33		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

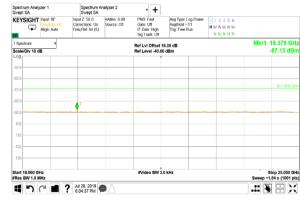

Plot 7.4.254 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH: 5 MHz

Plot 7.4.255 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 5 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #5 RBW = 1 MHz; VBW = 3 MHz



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	FA33	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:				

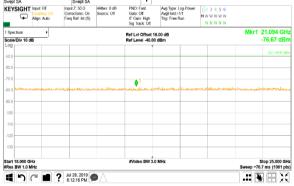

Plot 7.4.256 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 5 MHz

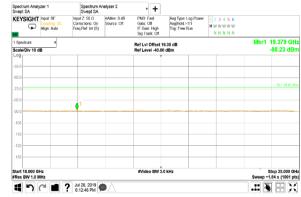

-	NDV			3W = 3	3 IVIHZ			
ipectrum Anal wept SA	yzer 1	Spectrum Ar Swept SA	halyzer 2	+				
	Input: RF Coupling: DC Align: Auto	Input Z: 50 O Corrections: On Freq Ref: Int (S)	#Atten: 0 dB Source: Off	PND: Fast Gate: Off IF Gain: High Sig Track: Off	Avg Type: Log-Power Avg(Hold.>1/1 Trig: Free Run	123456 MWWWWW NNNNN		
Spectrum	•			Ref Lvi Offset 1	6.00 dB			24.510 GHz
cale/Div 10 c	IB			Ref Level -40.00	0 dBm		-	-76.65 dBm
								DL1-48.61 dBm
0.0								
0.0								∳ ¹ .
30.0 444774974	aleneria de la la desta de la desta de La desta de la d	atthe colorest of the state of the	ule de la constantion de la constantio La constantion de la c	englenghalan (bilanglalan (bi	and a second	aga Magalang pang kalin	(integralistandigting	
0.0								
100								
110								
120				_				
130								
tart 18.000 G Res BW 1.0 J				#Video BW 3.	0 MHz			top 25.000 GHz 7 ms (1001 pts)

5 MHz ONE BEAM #6

Plot 7.4.257 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH: 5 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #6 RBW = 1 MHz; VBW = 3 MHz RBW = 1 MHz; VBW = 3 kHz Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Coupling DC Align: Auto Spectrum Analyzer 2 Swept SA Spectrum Analyzer 1 Swept SA · + + #Atten: 0 dB Source: Off Avg Type: Log-I Avg(Hold.>1/1 Trig: Free Run

Test specification:	Section 15.247(d) / RSS-24	47 section 5.5, Conducted s	purious emissions
Test procedure:	ANSI C63.10 section 11.12.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	28-Jul-19	verdict.	FA33
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC
Remarks:			


Plot 7.4.258 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 5 MHz


	um Analy		Spectrum A	'	3W = 3) IVII IZ			
wept	SA		Swept SA		+				
(EY:	Sight Sight	Input: RF Couping: DC Align: Auto	Input Z: 50 0 Corrections: On Freq Ref: Int (S)	#Atten: 0 dB Source: Off	PND: Fast Gate: Off IF Gain: High Sig Track: Off	Avg Type: Log-Power Avg Hold>1/1 Trig: Free Run	1 2 3 4 5 6 M W W W W W N N N N N		
Sper		•			Ref Lvi Offset 1				24.475 GHz
cale	Div 10 d	В			Ref Level -40.00	dBm			-76.58 dBm
50.0									DL1-48.61 dBm
0.0									
0.0									
						Handway Capilloper & Jones			. 1
0.0	er, topy	- Jose - energy of the	Cargolitzino profesione	nyn hinnightioref-di	******	and the state of the second	allen ander ander en de la serie de la La serie de la s	No. of Table - Chargers of	90-98-10/U-9-U-9-J
0.0									
100									
110									
120				_					
130									
	8.000 GI 3W 1.0 N				#Video BW 3.0) MHz			top 25.000 GHz 7 ms (1001 pts)

5 MHz ONE BEAM #6

Plot 7.4.259 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 5 MHz **CONFIGURATION:** ONE BEAM ANTENNA PORT: #7 RBW = 1 MHz; VBW = 3 MHz RBW = 1 MHz; VBW = 3 kHz Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Coupling DC Align: Auto Spectrum Analyzer 2 Swept SA Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA • + + input Z: 50 C #Atten: 0 dB Source: Off Avg Type: Log-Avg(Hold.>1/1 Trig: Free Run

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdici.	FA33		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:					

Plot 7.4.260 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH: 5 MHz

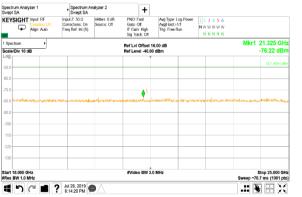
pectrum Ana			,	3W = 3	, IVII 12			
wept SA	ilyzer 1	Spectrum A Swept SA	nalyzer 2	+				
EYSIGH	Input: RF Coupling: DC Align: Auto	Input Z: 50 0 Corrections: On Freq Ref: Int (S)	#Atten: 0 dB Source: Off	PND: Fast Gate: Off IF Gain: High Sig Track: Off	Avg Type: Log-Power Avg Hold.>1/1 Trig: Free Run	1 2 3 4 5 6 M W W W W W N N N N N		
Spectrum	•			Ref Lvi Offset 16				4.216 GHz
cale/Div 10	dB			Ref Level -40.00	dBm		-	76.55 dBm
50.0								DL1-48.61 dBm
\$0.0								
70.0								
	- Jacob Alexand	والمراجعة والمحالة			-			Constantine Service
		and the second s	A 1007-01-01-01-01-01-01-01-01-01-01-01-01-01-	1000 million (1000 million (10		haling district of the o		
0.0								
100								
110								
-120								
-120								

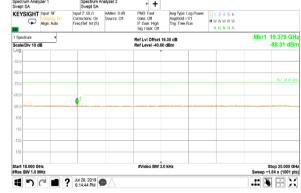
5 MHz ONE BEAM #7

 Plot 7.4.261 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency

 CHANNEL BANDWIDTH:
 5 MHz

 CONFIGURATION:
 ONE BEAM


 ANTENNA PORT:
 #7

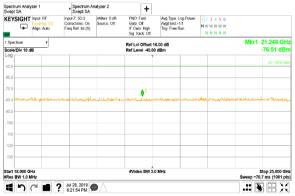

 RBW = 1 MHz; VBW = 3 MHz
 RBW = 1 MHz; VBW = 3 kHz

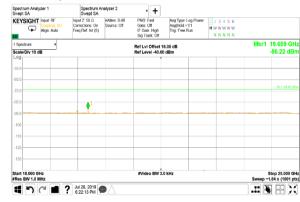
 Negers 1
 Impertant Angers 1

 Impertant Angers 1
 Impertant Angers 1

 Impertant Angers 1
 Impertant Angers 1

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Conducted spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC		
Remarks:	-				


Plot 7.4.262 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 5 MHz



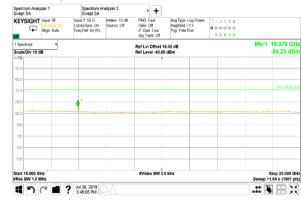
5 MHz ONE BEAM #8

Plot 7.4.263 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequencyCHANNEL BANDWIDTH:5 MHzCONFIGURATION:ONE BEAMANTENNA PORT:#8RBW = 1 MHz; VBW = 3 MHzRBW = 1 MHz; VBW = 3 kHz



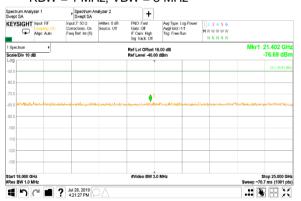
Test specification:	Section 15.247(d) / RSS-24	47 section 5.5, Conducted s	purious emissions	
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	FA33	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:				

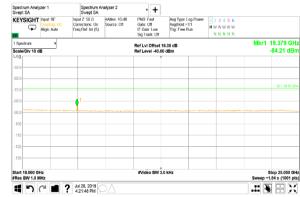
Plot 7.4.264 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 5 MHz



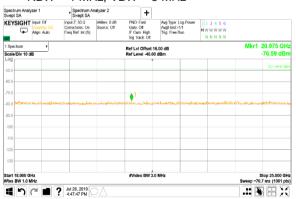
ONE BEAM #8 RBW = 1 MHz; VBW = 3 kHz

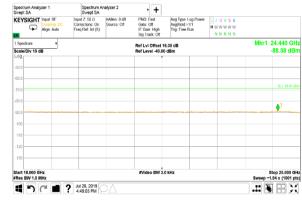
Plot 7.4.265 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 10 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #1 RBW = 1 MHz; VBW = 3 MHz


Test specification:	Section 15.247(d) / RSS-24	47 section 5.5, Conducted s	purious emissions	
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	FA33	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:				

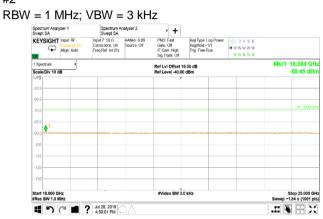

Plot 7.4.266 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH: 10 MHz

Plot 7.4.267 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 10 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #1 RBW = 1 MHz; VBW = 3 MHz

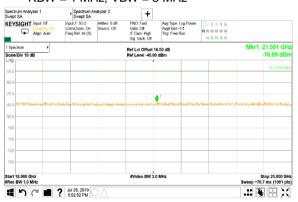

Test specification:	Section 15.247(d) / RSS-24	7 section 5.5, Conducted s	purious emissions	
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdici.	FA33	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:				

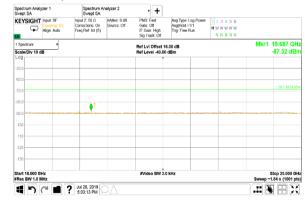

Plot 7.4.268 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 10 MHz

Plot 7.4.269 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH: 10 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #2 RBW = 1 MHz; VBW = 3 MHz



Test specification:	Section 15.247(d) / RSS-24	7 section 5.5, Conducted s	purious emissions	
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdici.	FA33	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:				

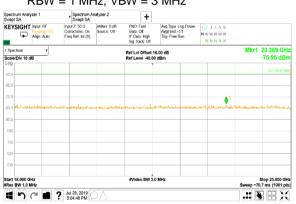

Plot 7.4.270 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH:

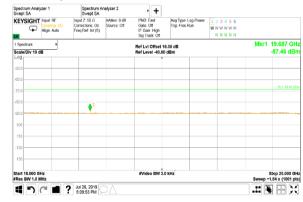


10 MHz ONE BEAM #2

Plot 7.4.271 Spurious emission measurements in 18 - 25 GHz range at low carrier frequency CHANNEL BANDWIDTH: 10 MHz CONFIGURATION: ONE BEAM ANTENNA PORT: #3 RBW = 1 MHz; VBW = 3 MHz

Test specification:	Section 15.247(d) / RSS-24	47 section 5.5, Conducted s	purious emissions	
Test procedure:	ANSI C63.10 section 11.12.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	28-Jul-19	verdict.	FA33	
Temperature: 24 °C	Relative Humidity: 44 %	Air Pressure: 1004 hPa	Power: 48 VDC	
Remarks:				


Plot 7.4.272 Spurious emission measurements in 18 - 25 GHz range at mid carrier frequency CHANNEL BANDWIDTH:


spectrum Ana		_ Spectrum Ar	'	3W = 3	/			
Wept SA (EYSIGH) ()	Input: RF Coupling: DC Align: Auto	Swept SA Input 2: 50 O Corrections: On Freq Ref: Int (S)	#Atten: 0 dB Source: Off	PNO: Fast Gato: Off IF Cain: High Sig Track: Off	Avg Type: Log-Power Avg[Hold.>1/1 Trig: Free Run	T 123456 MWWWWW NNNNN		
Spectrum	•			Ref Lvi Offset 1				23.726 GHz
cale/Div 10	dB			Ref Level -40.00	dBm			-76.63 dBm
50.0								DL1-48.61 dEm
30.0								
0.0								
10.0 10 10 10 10 10 10 10 10 10 10 10 10 10	(Boll) and a start of the board	haburd mental and	spolifized to solid	-alphynesianikaid	Indexise with the distribution of	adeallering aread	ang kalang kanalang salah sa	aller all all all all all all all all all al
0.0								
100								
110								
120								
130								
start 18.000 0	Hz MHz	1		#Video BW 3.0) MHz			Stop 25.000 GHz

10 MHz ONE BEAM #3

Plot 7.4.273 Spurious emission measurements in 18 - 25 GHz range at high carrier frequency CHANNEL BANDWIDTH: 10 MHz **CONFIGURATION:** ONE BEAM ANTENNA PORT: #3 RBW = 1 MHz; VBW = 3 MHz

