

Page 1 of 19

Report No.: UNIA21012008ER-01

FCC RADIO TEST REPORT

FCC ID: 2AWXK-WKM910K

Product : Wireless keyboard

Trade Name : ABKO

Model Name :WKM910 (KEYBOARD)

Series Model : N/A

Report No. : UNIA21012008ER-01

Prepared for

ABKO CO., LTD M Signature 7th floor, 20, Magokjungang 1-ro, Gangseo-gu, Seoul, South Korea

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULT CERTIFICATION

Applicant's name:	ABKO CO., LTD
Address:	M Signature 7th floor, 20, Magokjungang 1-ro, Gangseo-gu, Seoul, South Korea
Manufacture's Name:	ABKO CO., LTD
Address:	M Signature 7th floor, 20, Magokjungang 1-ro, Gangseo-gu, Seoul, South Korea
Product description	
Product name:	Wireless keyboard
Trade Mark:	АВКО
Model and/or type reference .:	WKM910 (KEYBOARD)
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests	Jan. 15 ~ 25, 2021
Date of Issue:	Jan. 25, 2021
Test Result:	Pass

Tested by:

Reviewer:

i.

Approved & Authorized Signer:

Bob (im

Bob liao/Editor

Kahn yang/Supervisor

Durte /

Liuze/Manager

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

		Table of Contents		Page
1. TES	T SUMMARY			4
1.1 7	TEST PROCEDURES	SAND RESULTS		4
1.2	TEST FACILITY			4
1.3	MEASUREMENT UN	CERTAINTY		4
2. GEN	ERAL INFORMATI	ON		5
2.1 0	GENERAL DESCRIP	TION OF EUT		5
2.2 (Carrier Frequency o	f Channels		5
2.3 (Operation of EUT du	uring testing		5
2.5 1	MEASUREMENT INS	STRUMENTS LIST		6
3. CON	DUCTED EMISSIC	ONS TEST		7
3.1 (Conducted Power L	ine Emission Limit		7
3.2	Test Setup			7
3.3 1	Test Procedure			7
3.4 1	Test Result			7
4. RAD	IATED EMISSION	TEST		8
4.1 F	Radiation Limit			8
4.2	Test Setup			8
4.3	Test Procedure			9
4.4 1	Test Result			9
5. BAN	D EDGE			14
5.1 I	Limits 💦 💛			14
5.2	Test Procedure			14
5.3	Test Result			14
6. OCC	UPIED BANDWID	TH MEASUREMEN	т	16
6.1	Test Setup			16
6.2	Test Procedure			16
	Measurement Equip	ment Used		16
6.4	Test Result			16
7. ANT	ENNA REQUIREM	ENT		18
8. PHO	TOGRAPH OF TE	ST		19

Page 3 of 19

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA21012008ER-01

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST BAND EDGE OCCUPIED BANDWIDTH MEASUREMENT ANTENNA REQUIREMENT Remark: "N/A" means Not Applicable RESULT N/A COMPLIANT COMPLIANT COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address

: 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

A2LA Certificate Number: 4747.01

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty Radiated emission expanded uncertainty(9kHz-30MHz) Radiated emission expanded uncertainty(30MHz-1000MHz) Radiated emission expanded uncertainty(Above 1GHz) 2.23dB, k=2
3.08dB, k=2
4.42dB, k=2
4.06dB, k=2

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LNi

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless keyboard
Trade Mark	АВКО
Test Model Name	WKM910 (KEYBOARD)
Sample ID	UNIA21012008ER-1#
Serial No.	N/A
Model Difference	N/A
FCC ID	2AWXK-WKM910K
Antenna Type	PCB Antenna
Antenna Gain	1.8dBi
Frequency Range	2403.85-2479.85MHz
Number of Channels	16CH
Modulation Type	GFSK
Power Source	DC 1.5V AA Battery

Table for auxiliary equipment:

Equipment Description	Manufacturer	Model	Serial Number
N/A	N/A	N/A	N/A

2.2 Carrier Frequency of Channels

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2403.85	01	2407.85	02	2414.85	03	2419.85
04	2422.85	05	2426.85	06	2436.85	07	2439.85
08	2441.85	09	2445.85	10	2453.85	11	2459.85
12	2463.85	13	2466.85	14	2473.85	15	2479.85

Press any button to start transmitting signal

2.3 Operation of EUT during testing

Operating Mode The mode is used: Transmitting mode Low Channel: 2403.85MHz Middle Channel: 2414.85MHz High Channel: 2479.85MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

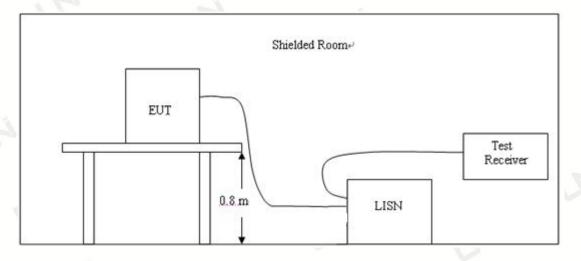
2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated unti
	R	CONDUCTED	EMISSIONS TEST		
1	AMN	Schwarzbeck	NNLK8121	8121370	2021.09.05
2	AMN	ETS	3810/2	00020199	2021.09.05
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2021.09.05
4	AAN	TESEQ	T8-Cat6	38888	2021.09.05
		RADIATED	EMISSION TEST	V	
1	Horn Antenna	Sunol	DRH-118	A101415	2021.09.05
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2021.09.05
3	PREAMP	HP	8449B	3008A00160	2021.09.05
4	PREAMP	HP	8447D	2944A07999	2021.09.05
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2021.09.05
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2021.09.05
7	Signal Generator	Agilent	E4421B	MY4335105	2021.09.05
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2021.09.05
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2021.09.05
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2021.09.05
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2021.09.05
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2021.09.05
13	RF Power sensor	DARE	RPR3006W	15100041SNO88	2021.09.05
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2021.09.05
15	RF power divider	Anritsu	K241B	992289	2021.09.05
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2021.09.05
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2021.09.05
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2021.09.05
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2021.09.05
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2021.09.05
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2021.09.05
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2021.09.05
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2021.09.05
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2021.09.05
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2021.09.05
26	Frequency Meter	VICTOR	VC2000	997406086	2021.09.05
27	DC Power Source	HYELEC	HY5020E	055161818	2021.09.05
		Test	software		n la
1	E3	Audix	6.101223a	N/A	N/A

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) & RSS-Gen [8.8] Line Conducted Emission Limits is as following

	Maximum RF Line Voltage(dBμV)				
Frequency	CLA	CLASS A		CLASS B	
(MHz)	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

N/A

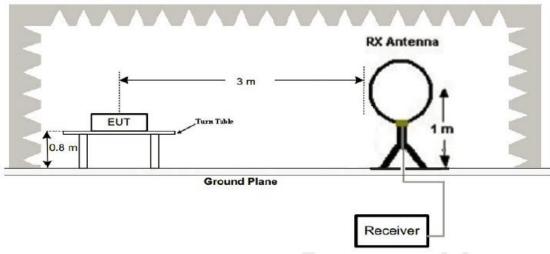
Remark:

The EUT is powered by Battery, no requirements for this item.

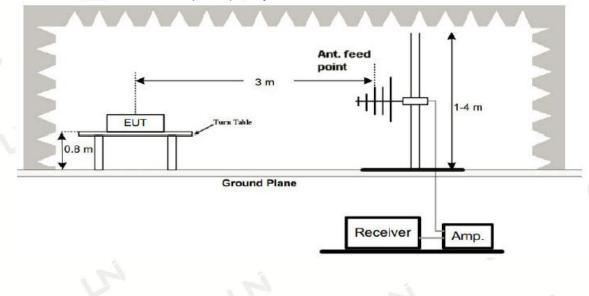
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4. RADIATED EMISSION TEST

4.1 Radiation Limit

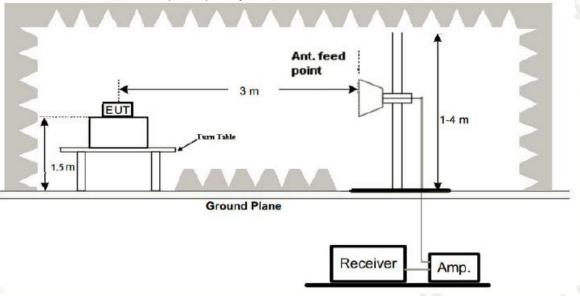

For unintentional device, according to § 15.109(a) & RSS-247 [5.5], except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

and renorming randoor			
Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz


2. Radiated Emission Test-Up Frequency 30MHz~1GHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. Radiated Emission Test-Up Frequency Above 1GHz

- 4.3 Test Procedure
 - 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
 - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
 - 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
 - 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
 - 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
 - 6. Repeat above procedures until the measurements for all frequencies are complete.
 - 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).
 - 8. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Note:

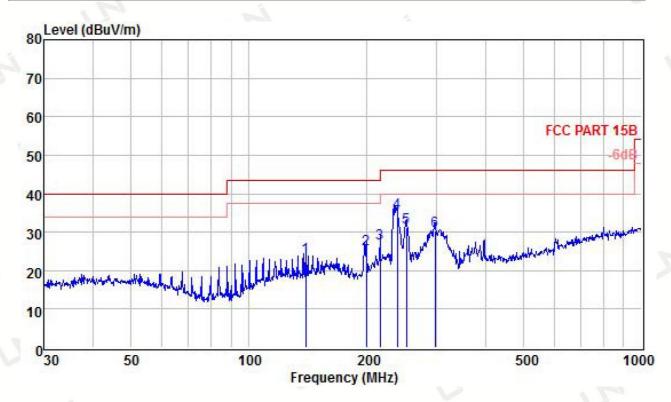
For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS

Remark:

1. We tested at Low, Middle and High channe, recored the worst data at Low channel in the report. 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.


3. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

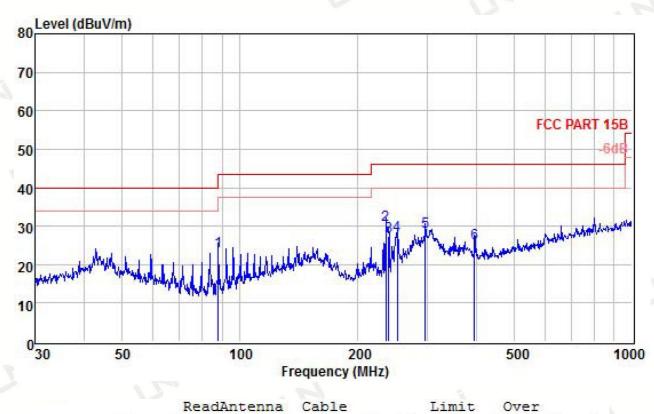
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LNI

Below 1GHz	Test Results:
------------	---------------

Temperature:	22 °C	Relative Humidity:	48%
Test Date:	Jan. 19, 2021	Pressure:	1010hPa
Test Voltage:	DC 1.5V	Polarization:	Horizontal
Test Mode: Transmitting mode of GFSK 2403.85MHz			

		Read	Antenna	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	-
1	139.36	8.13	14.48	0.85	23.46	43.50	-20.04	QP
2	199.29	15.05	9.71	0.88	25.64	43.50	-17.86	QP
3	216.02	16.15	10.11	0.87	27.13	46.00	-18.87	QP
4	238.31	23.35	10.75	0.87	34.97	46.00	-11.03	QP
5	252.06	18.71	11.63	0.86	31.20	46.00	-14.80	QP
6	298.27	15.77	13.85	0.85	30.47	46.00	-15.53	QP


Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 11 of 19

Report No.: UNIA21012008ER-01

Temperature:	22°C	Relative Humidity:	48%				
Test Date:	Jan. 19, 2021	Pressure:	1010hPa				
Test Voltage:	DC 1.5V	Polarization:	Vertical				
Test Mode: Transmitting mode of GFSK 2403.85MHz							

	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
5	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
1	88.03	13.84	8.84	0.85	23.53	43.50	-19.97	QP
2	235.82	18.69	10.68	0.87	30.24	46.00	-15.76	QP
	239.15	15.70	10.78	0.87	27.35	46.00	-18.65	QP
4	252.06	15.04	11.63	0.86	27.53	46.00	-18.47	QP
5	297.22	13.83	13.82	0.85	28.50	46.00	-17.50	QP
6	396.24	8.76	15.63	1.29	25.68	46.00	-20.32	QP

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Above 1 GHz Test Results: CH Low (2403.85MHz)

			Horizontal			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2403.85	111.08	-5.84	105.24	114.00	-8.76	PK
2403.85	83.37	-5.84	77.53	94.00	-16.47	AV
4807.70	62.14	-3.64	58.50	74.00	-15.50	PK
4807.70	51.11	-3.64	47.47	54.00	-6.53	AV
7211.55	58.33	-0.95	57.38	74.00	-16.62	PK
7211.55	48.49	-0.95	47.54	54.00	-6.46	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	evel – Limit

Vertical Reading **Emission Level** Frequency Factor Limits Margin Result Detector (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) Туре 2403.85 111.81 -5.84 105.97 114.00 -8.03 PK 2403.85 4807.70 81.65 60.17 -5.84 -3.64 -18.19 75.81 94.00 AV 56.53 74.00 -17.47 ΡK 4807.70 47.62 51.26 54.00 -6.38 -3.64 AV 56.69 55.74 7211.55 -0.95 74.00 -18.26 PΚ 47.83 7211.55 -0.95 46.88 54.00 -7.12 AV Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH Middle (2441.85MHz)

		-	Horizontal			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2441.85	112.19	-5.84	106.35	114.00	-7.65	PK
2441.85	82.31	-5.84	76.47	94.00	-17.53	AV
4883.70	62.24	-3.64	58.60	74.00	-15.40	PK
4883.70	52.52	-3.64	48.88	54.00	-5.12	AV
7325.55	56.45	-0.95	55.50	74.00	-18.50	PK
7325.55	47.17	-0.95	46.22	54.00	-7.78	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	evel – Limit

			Vertical			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2441.85	112.15	-5.71	106.44	114.00	-7.56	PK
2441.85	82.42	-5.71	76.71	94.00	-17.29	AV
4883.70	61.33	-3.51	57.82	74.00	-16.18	PK
4883.70	50.27	-3.51	46.76	54.00	-7.24	AV
7325.55	56.22	-0.82	55.40	74.00	-18.60	PK
7325.55	46.71	-0.82	45.89	54.00	-8.11	AV
Remark: Fac	tor = Antenna	Factor + Cab	le Loss – Pre-amp	lifier. Margin =	= Absolute L	evel – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High (2479.85MHz)

			Horizontal			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2479.85	113.82	-5.65	108.17	114.00	-5.83	PK
2479.85	82.12	-5.65	76.47	94.00	-17.53	AV
4959.70	61.81	-3.43	58.38	74.00	-15.62	PK
4959.70	50.37	-3.43	46.94	54.00	-7.06	AV
7439.55	57.25	-0.75	56.50	74.00	-17.50	PK
7439.55	46.29	-0.75	45.54	54.00	-8.46	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2479.85	113.44	-5.65	107.79	114.00	-6.21	PK
2479.85	82.39	-5.65	76.74	94.00	-17.26	AV
4959.70	61.52	-3.43	58.09	74.00	-15.91	PK
4959.70	50.27	-3.43	46.84	54.00	-7.16	AV
7439.55	57.59	-0.75	56.84	74.00	-17.16	PK
7439.55	46.77	-0.75	46.02	54.00	-7.98	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7) All modes of operation were investigated and the worst-case emissions are reported.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

5. BAND EDGE

5.1 Limits

FCC PART 15.249 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10kHz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

LN

Radiated Band Edge Test:

Worst case on $\pi/4DQPSK$

Operation Mode: TX CH Low (2403.85MHz)

		1	Horizontal		1.1				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2310	53.12	-5.81	47.31	74.00	-26.69	PK			
2310	1	-5.81	/	54.00	/	AV			
2390	53.34	-5.84	47.50	74.00	-26.50	PK			
2390	/	-5.84	/	54.00	1	AV			
2400	53.18	-5.84	47.34	74.00	-26.66	PK			
2400	1	-5.84		54.00	/	AV			
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

5		N	Vertical			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	52.29	-5.81	46.48	74.00	-27.52	PK
2310	/	-5.81	/	54.00	/	AV
2390	53.44	-5.81	47.63	74.00	-26.37	PK
2390	/	-5.84		54.00	1	AV
2400	53.24	-5.84	47.40	74.00	-26.60	PK
2400		-5.84	1	54.00	/	AV
Remark [.] Fact	tor = Antenna Facto	or + Cable I	oss – Pre-amplifier	1	•	

Operation Mode: TX CH High (2479.85MHz)

			Horizontal						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2483.5	53.36	-5.65	47.71	74.00	-26.29	PK			
2483.5	1	-5.65	/	54.00	1	AV			
2500	53.22	-5.72	47.50	74.00	-26.50	PK			
2500	1	-5.72	/	54.00	1	AV			
Remark: Fac	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

			Vertical						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2483.5	52.54	-5.65	46.89	74.00	-27.11	PK			
2483.5	1	-5.65	1	54.00	1	AV			
2500	53.19	-5.72	47.47	74.00	-26.53	PK			
2500	/	-5.72	1	54.00	/	AV			
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

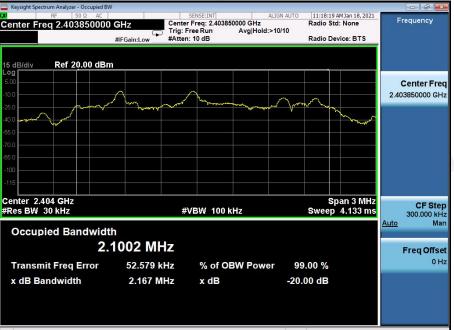
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

6. OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Setup

Same as Radiated Emission Measurement

- 6.2 Test Procedure
 - 1. The EUT was placed on a turn table which is 0.8m above ground plane.
 - 2. Set EUT as normal operation.
 - 3. Based on ANSI C63.10 section 6.9.2: RBW=30KHz, VBW=100KHz, Span=3MHz.
 - 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.
- 6.3 Measurement Equipment Used


Same as Radiated Emission Measurement

6.4 Test Result

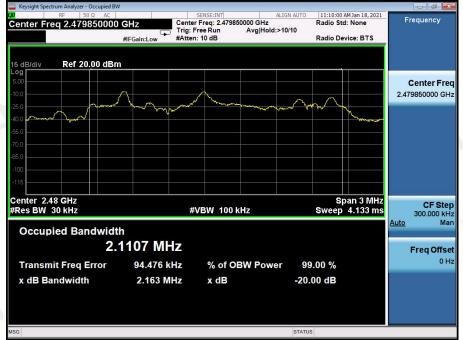
PASS

GFSK Modulation:

Frequency (MHz)	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2403.85	2.167	2.100	PASS
2441.85	2.125	2.098	PASS
2479.85	2.163	2.111	PASS

CH: 2403.85MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited



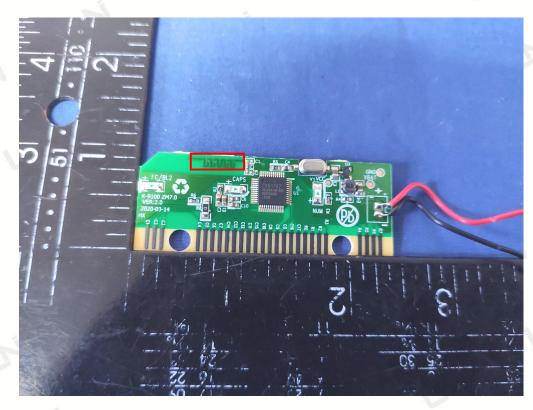
Page 17 of 19

CH: 2441.85MHz

CH: 2479.85MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

7. ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is an PCB Antenna, The directional gains of antenna used for transmitting is 1.8dBi.

BT ANTENNA:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA21012008ER-01

8. PHOTOGRAPH OF TEST

Radiated Emission (Below 1G)

Radiated Emission (Above 1G)

End of Report

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

http://www.uni-lab.hk