

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (1) of (22)

TEST REPORT Part 15 Subpart C 15.247

Equipment under test Flat Panel Digital X-ray Detector

Model name Prudent 1717

FCC ID 2AWVMPRUDENT1717

Applicant PIXXGEN Corporation

Manufacturer PIXXGEN Corporation

Date of test(s) $2020.09.09 \sim 2020.09.18$

Date of issue 2020.10.23

Issued to PIXXGEN Corporation

5F, SMART BAY, 123, Beolmal-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
Tel: +82-70-4846-8891 / Fax: +82-70-4846-8891

Issued by KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by:	Report approval by:
	lel
Young-Jun, Cho	Young-Jin, Lee
Test engineer	Technical manager

KES Co., Ltd.3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF1-20T0202 Page (2) of (22)

Revision history

Revision	Date of issue	Test report No.	Description
-	2020.10.23	KES-RF1-20T0202	Initial

KES Co., Ltd.3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF1-20T0202 Page (3) of (22)

TABLE OF CONTENTS

1.	General in	ıformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	4
	1.3.	Device modifications	4
	1.4.	Information about Variant Model name	4
	1.5.	Frequency/channel operations	5
	1.6.	Worst case data rate	5
	1.6.	Accessory information	5
	1.8.	Antenna information	
	1.9.	Measurement results explanation example	6
	1.10.	Measurement Uncertainty	
2.	Summary	of tests	7
3.	Test result	S	8
	3.1.	Radiated restricted band and emissions	8
App	endix A.	Measurement equipment	21
		Test setup photos	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (4) of (22)

1. General information

Applicant: PIXXGEN Corporation

Applicant address: 5F, SMART BAY, 123, Beolmal-ro, Dongan-gu, Anyang-si,

Gyeonggi-do, Republic of Korea

Test site: KES Co., Ltd.

Test site address: 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Test Facility FCC Accreditation Designation No.: KR0100, Registration No.: 444148

FCC rule part(s): 15.247

FCC ID: 2AWVMPRUDENT1717

Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test Flat Panel Digital X-ray Detector

Frequency range $2.412 \text{ MHz} \sim 2.462 \text{ MHz} (11n_HT20)$

UNII-1 5 180 Mb ~ 5 240 Mb (11ac_VHT20)

Model: Prudent 1717

Modulation technique WIFI: OFDM

Number of channels 2 412 MHz ~ 2 462 MHz (11n_HT20): 11 ch

5 180 Mb ~ 5 240 Mb (11ac_VHT20): 4ch

Antenna specification 2.4 GHz Antenna type: PCB antenna, Peak gain: 2.27 dBi

5 dlz Antenna type : : PCB antenna, Peak gain(UNII-1) : 1.86 dBi

Power source DC 14.8 V (Battery)

H/W version v1.0.0 S/W version v1.0.0.3

1.2. Test configuration

The <u>PIXXGEN Corporation // Prudent 1717 // FCC ID: 2AWVMPRUDENT1717</u> was tested per the guidance of KDB 558074 D01 v05r02, ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

1.3. Device modifications

N/A

1.4. Information about Variant Model name

N/A

The authenticity of the test report, contact shchoi@kes.co.kr

KES-QP-7081-06 Rev. 7

KES

A4

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (5) of (22)

1.5. Frequency/channel operations

Ch.	Frequency (Mb)	Mode
01	2412	802.11n_HT20
:		
06	2437	802.11n_HT20
·		
11	2462	802.11n_HT20

1.6. Worst case data rate

- 1. Radiated emission was performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.
- 2. Worst-case data rates were: 802.11n_HT20: MCS0

1.6. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source	
-	-	-	-	-	

1.8. Antenna information

Mode	SI	SO	MIMO
	Antenna 0	Antenna 1	Antenna 0 + 1
802.11n(HT20)	✓	×	X

 \checkmark = Support; \times = Not support

Antenna Model: Xls-857 (PCB antenna)

Ant0 Gain (dBi)	Ant1 Gain (dBi)	Note
2.27	2.27	2 412 to 2 462 MHz
1.86	1.86	5 180 to 5 240 MHz

The authenticity of the test report, contact shchoi@kes.co.kr

KES-QP-7081-06 Rev. 7

KES A4

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (6) of (22)

1.9. Measurement results explanation example

For all conducted test items

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$1.01 + 10 = 11.01$$
 (dB)

1.10. Measurement Uncertainty

Test Item	Uncertainty	
Uncertainty for Conduction er	2.46 dB	
Uncertainty for Radiation emission test	Below 10tz	4.40 dB
(include Fundamental emission)	Above 10½	5.94 dB

Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

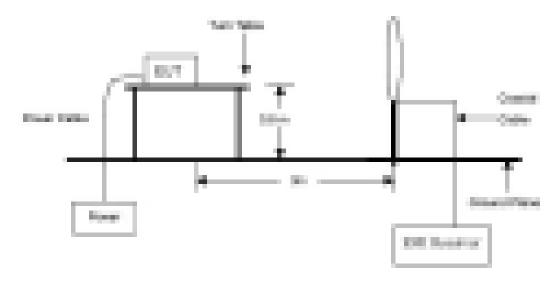
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (7) of (22)

2. Summary of tests

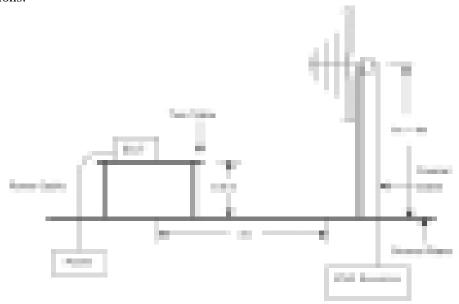
Reference	Parameter	Test results
15.247(a)(2)	6 dB bandwidth	N/A ⁽¹⁾
15.247(b)(3)	Output power	N/A ⁽¹⁾
15.247(e)	Power spectral density	N/A ⁽¹⁾
15.205, 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	N/A ⁽¹⁾
15.207(a)	AC conducted emissions	N/A ⁽²⁾

Note:

- 1) Please Refer to the approved Module Report (Report No.: KES-RF1-20T0137) for result of existing test items. The output power setting is same as original module and confirmed that RF conducted tests of original report remain valid for this filing.
- 2) EUT is operated only from dedicated batteries, with no provisions for connection to the public utility ac power lines.

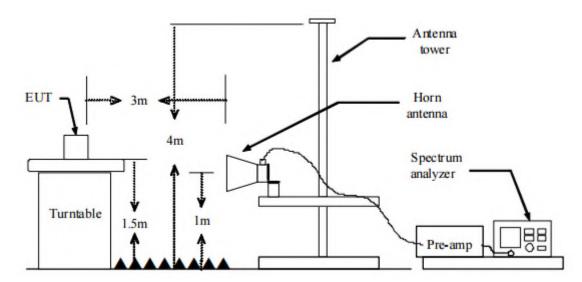

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (8) of (22)

3. Test results


3.1. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 Mz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 GHz emissions.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (9) of (22)

Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mbz

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The antenna is a bi-log antenna, a horn antenna ,and its height are varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- **4.** The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 5. Spectrum analyzer settings for f < 1 GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - \bigcirc RBW = 100 kHz
 - $3 \text{ VBW} \geq \text{RBW}$
 - 4 Detector = quasi peak

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (10) of (22)

- ⑤ Sweep time = auto
- \bigcirc Trace = max hold
- 6. Spectrum analyzer settings for $f \ge 1$ (Hz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - \bigcirc RBW = 1 Mbz
 - ③ VBW ≥ 3 Mb
 - 4 Detector = peak
 - 5 Sweep time = auto
 - \bigcirc Trace = max hold
 - 7 Trace was allowed to stabilize
- 7. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 Mbz
 - \bigcirc VBW \geq 3 × RBW
 - ① Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - ⑤ Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - \bigcirc Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step \bigcirc 5, then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step 5, then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (11) of (22)

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40 log(D_m/Ds)$ $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20 log(D_m/Ds)$ Where:

 F_d = Distance factor in dB

 $D_m \ = \ Measurement \ distance \ in \ meters$

 D_s = Specification distance in meters

- 3. CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)
- 8. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 9. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that **X orientation** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **X orientation**.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. All channels, modes (e.g. 802.11b/g/n (20 Mb BW)), and modulations/data rates were investigated among DTS band. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.
- 10. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

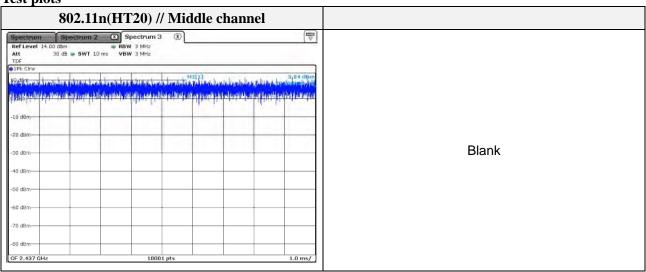
LimitAccording to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Distance (Meters)	Radiated (µV/m)				
300	2400/F(kHz)				
30	24000/F(kHz)				
30	30				
3	100**				
3	150**				
3	200**				
3	500				
	300 30 30 30 30 3 3				

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72\,$ Mb, $76 \sim 88\,$ Mb, $174 \sim 216\,$ Mb or $470 \sim 806\,$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections $15.231\,$ and $15.241.\,$

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (12) of (22)

Duty cycle

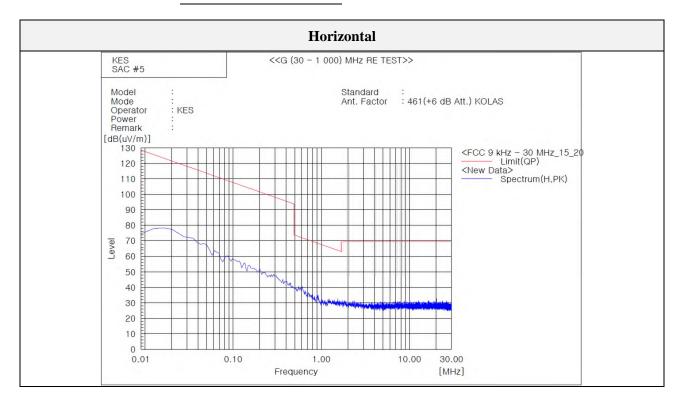

Regarding to KDB 558074 D01_v04, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear) Duty cycle (%)		Duty cycle correction factor (dB)
802.11n(HT20)	10	10	1	100	0

Duty cycle (Linear) = T_{on} time/Period DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

Test plots


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (13) of (22)

Test results (Below 30 Mb)

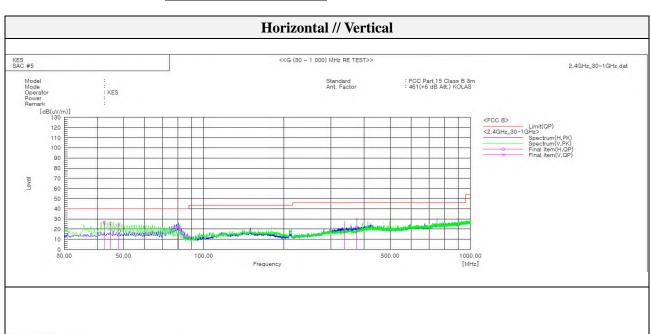
Mode: 802.11n_HT20

Distance of measurement: 3 meter

Channel: 11 (Worst case)

Note

1. No spurious emission were detected Below 30 Mz.


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (14) of (22)

Mode: 802.11n_HT20

Distance of measurement: 3 meter

Channel: 11 (Worst case)

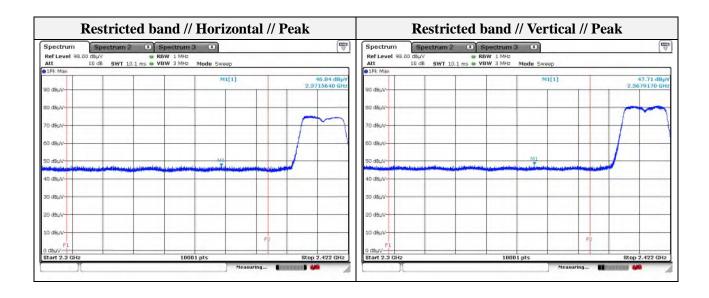
Final Result

No.	Frequency	(P)	Reading QP	c.f	Result QP	Limit	Margin QP	Height	Angle	Remark
	[MHz]		[dB(uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]	
1	42.368	V	39.5	-12.9	26.6	40.0	13.4	135.0	328.2	
2	44.671	V	38.2	-12.7	25.5	40.0	14.5	108.0	222.9	
3	48.066	V	37.2	-12.8	24.4	40.0	15.6	251.0	304.8	
4	80.319	H	39.6	-17.6	22.0	40.0	18.0	377.0	1.3	
5	337.490	H	31.4	-11.5	19.9	46.0	26.1	241.0	7.4	
6	374.956	H	32.7	-10.8	21.9	46.0	24.1	364.0	7.4	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (15) of (22)

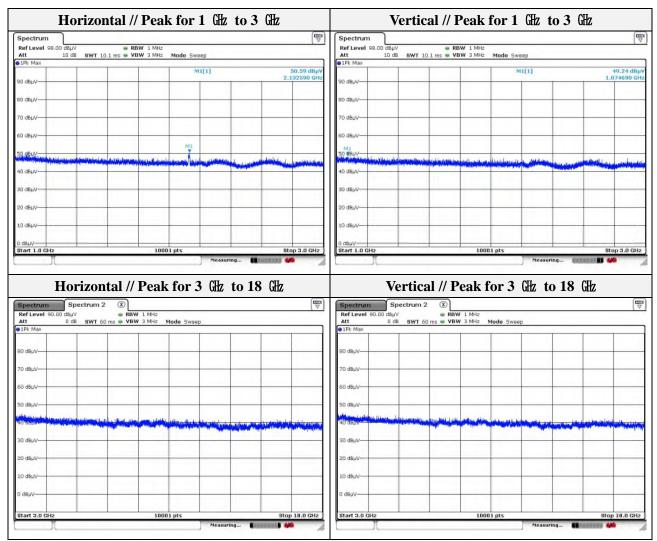
Mode: 802.11n(HT20)

Distance of measurement: 3 meter


Channel: 01

- Spurious

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2132.59	50.59	Peak	Н	-5.97	-	44.62	74.00	29.38
1074.69	49.24	Peak	V	-11.30	-	37.94	74.00	36.06


- Band edge

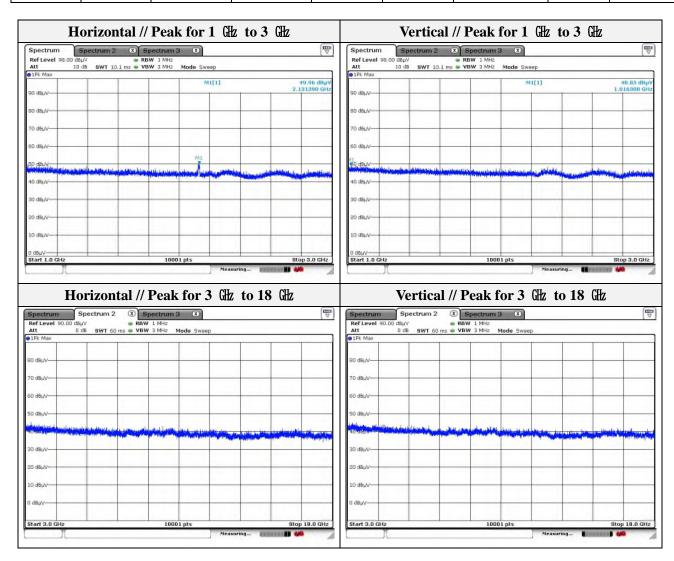
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2371.56	46.84	Peak	Н	-7.02	-	39.82	74.00	34.18
2367.92	47.71	Peak	V	-7.01	-	40.70	74.00	33.30

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (16) of (22)

Note.

- 1. No spurious emission were detected above 3 GHz.
- 2. Average test would be performed if the peak result were greater than the average limit.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (17) of (22)


Mode: 802.11n(HT20)

Distance of measurement: 3 meter

Channel: 06

- Spurious

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2131.39	49.96	Peak	Н	-5.97	-	43.99	74.00	30.01
1016.30	48.85	Peak	V	-11.31	-	37.54	74.00	36.46

Note

- 1. No spurious emission were detected above 3 GHz.
- 2. Average test would be performed if the peak result were greater than the average limit.

The authenticity of the test report, contact shchoi@kes.co.kr

KES-QP-7081-06 Rev. 7

KES

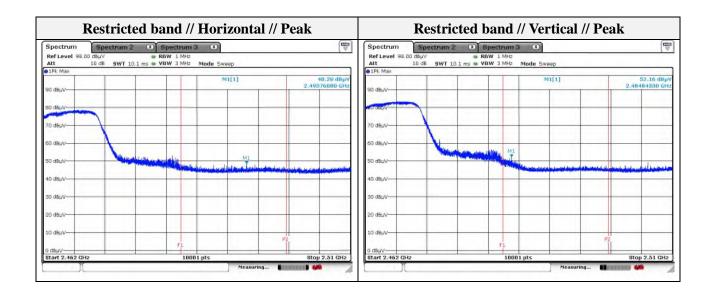
A4

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (18) of (22)

A4

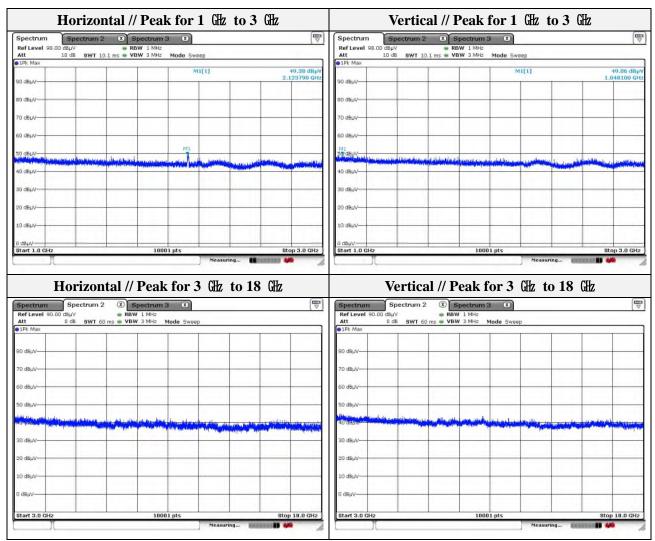
Mode: 802.11n(HT20)

Distance of measurement: 3 meter


Channel: 11

- Spurious

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2123.79	49.38	Peak	Н	-5.93	-	43.45	74.00	30.55
1048.10	49.06	Peak	V	-11.30	-	37.76	74.00	36.24


- Band edge

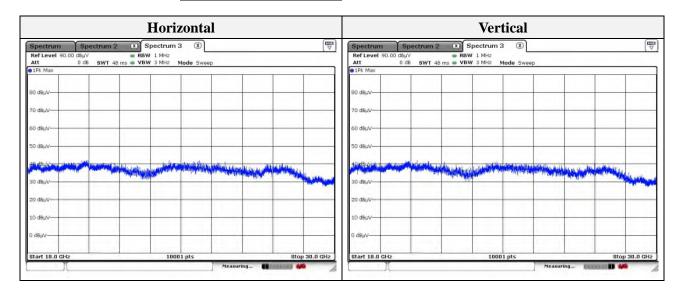
Duna tage									
	Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	2493.76	48.28	Peak	Н	-7.60	-	40.68	74.00	33.32
	2484.84	52.16	Peak	V	-7.56	-	44.60	74.00	29.40

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (19) of (22)

Note.

- 1. No spurious emission were detected above 3 GHz.
- 2. Average test would be performed if the peak result were greater than the average limit.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (20) of (22)


A4

Test results (18 \times to 30 \times) – Worst case

Mode: 802.11n_HT20

Distance of measurement: 3 meter

Channel: 11 (Worst case)

Note.

1. No spurious emission were detected above 18 GHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF1-20T0202 Page (21) of (22)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
SPECTRUM ANALYZER	R&S	FSV40	101725	1 year	2021.06.22
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2021.01.15
SIGNAL GENERATOR	KEYSIGHT	N5182B	MY59100115	1 year	2021.05.12
ATTENUATOR	Mini-Circuits	BW-S10-2W263+	1	1 year	2021.01.17
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2021.02.15
BILOG ANTENNA	VULB 9168	SCHWARZBECK	9168-461	2 years	2022.05.26
HORN ANTENNA	A.H.	SAS-571	414	1 years	2021.01.31
BAND REJECT FILTER	MICRO-TRONICS	BRM50702	G272	1 year	2021.01.15
BAND REJECT FILTER	MICRO-TRONICS	BRM50716	G199	1 year	2021.01.15
AMPLIFIER	310N	SONOMA INSTRUMENT	401123	1 year	2021.06.08
PREAMPLIFIER	8449B	AGILENT	8008A01640	1 year	2021.04.01
ATTENUATOR	F04-C1206-01	SRT	20022403	1 year	2021.05.06
EMI Test Receiver	R&S	ESU26	100552	1 year	2021.04.01

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook computer	LG Electronics Inc.,	15UD590	904QCSF564006